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WEAK SOLUTIONS OF NAVIER-STOKES EQUATIONS
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Introduction. Consider the initial-value problem for the Navier-
Stokes equation in a domain Ω of Rn:

($!L - A n + w V u + V p = / ; V-u = 0 , x e Ω , 0 < t < T .
(N-S) dt

\u\Γ = 0 u\t=0 = a

(Γ: the boundary of Ω) where u = u(x, t) is the unknown velocity vector
(u1, u2, , un); p = p(x, t) is the unknown pressure; a — a(x) is the initial
velocity vector field; / = f(x, t) is a given external force. Here we use
the notation:

for vector functions %, t;.
In his famous paper [8], E. Hopf showed the existence of the so-

called Hopf's weak solution to the problem (N-S). The first purpose of
the present paper is to show the existence of a weak solution, belonging
to some class of functions introduced by J. L. Lions [14], which seems
to have a somewhat stronger property than the Hopf's weak solution.

In the general case the uniqueness of a weak solution has been not
known. Lions-Prodi [15] gave the uniqueness theorem when n = 2. C.
Foias [15] introduced function spaces Lr>r' (for the definition see the chapter
1 of this paper), and showed that if Ω = Rn, and if there is a weak solu-
tion u in Lr>r' with r > n, and with n/r + 2/r' < 1, then this u is the only
weak solution of (N-S). J. Serrin [23] gave a similar theorem under the
assumptions that Ω is a general domain of Rn (n = 2, 3, 4), and that a
pair of exponents r, r' satisfies r > n and n/r + 2/r' <Ξ 1. The second
purpose is to generalize the Foias-Serrin uniqueness theorem in two direc-
tions. First we shall remove the artificial restriction on the dimension
n imposed in the theorem of Serrin. Secondly, we shall show that if
there is a weak solution u in Ln'°° which is right continuous for t as an
Ln-valued function, then u is the only weak solution. Recently von Wahl
[26] obtained similar results (the uniqueness in the class C([0, T); Ln))
under the assumptions that the initial velocity and the external force
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are regular to some extent, and that Ω is a bounded domain, His method
is however different from ours.

In the celebrated paper [13], J. Leray considered the case Ω = R\
and constructed a weak solution. At the very end of the paper cited
above he posed the problem whether or not the energy of the flow
(1/2) I s I u(x, t) \2dx tends to zero as t -> co. Our third purpose is to give
an affirmative answer to this; the more general situations will be con-
sidered. T. Kato has obtained similar results on the decay of strong
solutions with small initial value by a different method from ours.

1. Results.

1.1. Before stating our results we introduce some function spaces,
and give our definition of weak solutions of (N-S). C0~σ is the set of all
C°° (vector) functions φ = (φ\ φ2

9 , φn) with support in Ωf such that
V-φ = 0. L\ is the closure of C^σ with respect to the IΛ-norm || ||; ( , •)
denotes the ZΛinner product. Lp stands for the usual (vector-valued)
Lp-space over Ω9 1 ^ p tS °° Ho,σ denotes the closure of C?tσ with respect
to the norm

where V^ = dxφ = {dφ^dxf, i, j = 1, 2, , n). Y is the set of all φ in
Hlσf]Ln. Equipped with the norm

• +

Y is a Banach space.
When X is a Banach space, its norm is a denoted by || \\x; C

k([t19 t2]; X),
Lp((t1912); X) are then usual Banach spaces, where t19 and t2 are real
numbers such that tλ < t2. H\(t19 ί2); X) is the closure of C\[t19 ί j ; X)
with respect to the norm

(wt = dw/dt). In this paper we shall denote by M various constants.
We can now introduce the assumptions on the initial function a and

the external force /, and state the definition of weak solutions of (N-S).

ASSUMPTION 1. The initial function a = a(x) is in L\.

ASSUMPTION 2. The function / = /(-,*) is in U for almost all t in
(0, Γ), and Pf{t) is an L^-valued integrable function on (0, T). (P: the
projection on Ua (in L2)).

Throughout the present paper, we make the above assumptions. Our
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definition of a weak solution of (N-S) is as follows.

DEFINITION. Let a and / be as above. A measurable function u on
Ω x (0, T) is called a weak solution of the initial-valued problem (N-S) if

( i ) ueΠ((Q, T'); H0\σ) for any T with 0 < T < T;
(ii) ueL~((0, T);Ll);
(iii)

(1.1) Γ{-(w, Φt) + (Vw, VΦ) + (% V%, Φ)}dί - \\f Φ)dί + (α, Φ(0))
Jo Jo

for all Φ in H\(0, T); Y) such that for some To < T, Φ( , ί) - 0 on (Γβ, Γ),

The above definition is essentially due to J. Lions [14]. There are
many other definitions of weak solutions. Concerning the relation be-
tween the Hopf s weak solution and the weak solution in our sense, we
have

PROPOSITION 1. Any weak solution in the above sense is a Hopf's
weak solution. The converse is true when C^σ is dense in Y. C^σ is
dense in Y if one of the following conditions is satisfied:

(a) 2 ^ n ^ 4

(b) Ω is a star-shaped bounded domain;

( c ) Ω = Rn .

(For the proof, see the appendix).
Concerning the (weak) continuity (in t) of weak solutions, we have

the result of G. Prodi [20] (see also J. Serrin [23]).

PROPOSITION 2. (Prodi) Suppose that u is a weak solution of (N-S).
After suitable modification of its value of u{t) on a set of measure zero
of the time interval [0, T], we have that u( , t) is continuous for t in
the weak topology of L2

σ, and that for any 0 ^ s ^ t < T,

(1.2) Γ {-(u, Φt) + {Vu, VΦ) + (u-Vu, Φ)}dt

/, Φ)dt - (u(t), Φ(t)) + (u(s), Φ(s))

for every Φ in HX(s, t); Y). Here and in what follows we simply write
u(t), Φ(t) for u( ,t), Φ( , ί) .

In what follows we shall mean by a weak solution a weak solution
redefined as above.
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1.2. Our result on the existence of weak solutions now reads:

THEOREM 1. Let the assumptions 1 and 2 hold. Then there is a
weak solution u of the problem (N-S). Moreover,

(1.3) || u(t) ||2 + 2 (* || Vu \\2dt ^ 2 Γ (/, u)dt + || a ||2 (0 ^ t < Γ)
Jo Jo

(1.4) lim \\u(t) - a\\ = 0 .
t-»0

REMARKS. 1. The existence of a Hopf 's weak solution is well-known.
For the existence of our weak solution, see J. Lions [14].

2. For the existence of strong solutions, see Kiselev-Ladyzhenskaya
[10], Fujita-Kato [5], Giga-Miyakawa [6].

3. If Ω is a bounded domain, then the energy inequality (of strong
form)

\u(t) ||2 + 2 Γ || Vu\\2dt ̂  2 j * (/, u)dt

holds for almost all s *£ 0, including s = 0, and all £ > s. However, it is
not known whether or not the above energy inequality of the strong
form does hold for a general domain Ω. Thus in the general case it is
not known whether or not there is a weak solution of (N-S) with / = 0,
such that ||tt(t)ll monotonously decreases with t.

1.3. We next proceed to our uniqueness results. To this end we
first define a function space Lr>r'. If w = w(x9 t) is defined and measur-
able in a cylindrical domain Ω x (t1912) of space-time, we set

| | w ( ί ) | | L r =

and

Here r and rf are considered to be independent exponents with l ^ r , r'rs* ©°.

DEFINITION. We say that w = w(a;, t) is contained in the class
Lr'r\Ω x (ίlf ί2)) if w is defined and measurable in Ω x (ίx, ί2), and
\w\rtr> < oo.

REMARK. It is easy to see that

(1.5) 'L' 'ΪΩ x (tlf t2)) - L'\(tl912); Lr) .

(see H. Rikimaru [21]).
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Our uniqueness theorems read:

THEOREM 2. Let the assumptions 1 and 2 hold. Let u, v be weak
solutions of the problem (N-S). Suppose also that

(1.6) \\v\\2 + 2 ^ \\Vv\\2dt ^ 2 ^ ( f v ) d t + \\a\\2 , 0 < t < T ,
Jo Jo

and that u e Lr>r'(Ω x (0, T)) for a pair of exponents r, r' satisfying

(1.7) — + A ^ 1
r r

<md also r > n. Then u — v on [0, T).

THEOREM 3. Let the assumptions, 1 and 2 hold. Let u, v be weak
solutions of the problem (N-S). Suppose that v satisfies the inequality
(1.6) and that u e LTO((0, T); Ln). If there is an s (0 <> s < T) with u = v
on [0, s], and if u is right continuous for t at t = s in the norm of Ln,
then there is a δ > 0 such that u — v on [0, s + δ).

COROLLARY. Let the assumptions 1 and 2 hold. Let u, v be weak
solutions of (N-S). Suppose that v satisfies the inequality (1.6) and
u e L°°((0, T); Ln). If u is right continuous for all t in [0, T) in the norm
of Ln, then u = v on [0, T).

REMARKS. 1. If n — 2, then it can be shown that any weak solu-
tion u in L°°((0, T); L2) is continuous for all t in (0, T). The uniqueness
theorem for n = 2 due to Prodi-Lions [15] can be obtained.

2. C. Foias [4] first introduce function spaces Lr>r' and showed that
the uniqueness theorem (similar to Theorem 2 above) holds if Ω = Rn;
r > n and n/r + 2/r' < 1. On the other hand, J. Serrin [23] gave the
uniqueness theorem under the assumptions that Ω is a general domain;
2 ^ n ^ 4; r > n; n/r + 2/r' ^ 1. Thus Theorem 2 may be considered
as a generalization of the Foias-Serrin uniqueness theorem.

3. Recently von Wahl [26](1) gave the uniqueness theorem similar to
Theorem 3 above. Under the assumptions that a — a(x), and / = f(x, t)
are regular to some extent, and that Ω is a bounded domain, he showed
that the uniqueness theorem holds in the class C([0, Γ); Lπ), by using
the α-priori estimates due to Solonnikov [24]; the method is different
from ours.

(1) After the completion of the present paper, Professor von Wahl kindly informed the
author of their recent work [27], in which they independently showed similar results (Theorems
2 and 3 above) by using the Yosida approximation; the author would like to express his
sincere thanks to Professor von Wahl for it.
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1.4. We are next concerned with the problem whether or not
||w(ί)|| ->0 as ί-* oo. We first define the operator Ao in L\. Let Ao be
the operator in L\ defined by: Aoφ = -Δφ\ D(A0) = Co°%. (D(S); domain
of S). Then the Ao thus defined is clearly symmetric and positive in L2

σ.
Moreover we have (AQφ, φ) = \\Fφ\\2. Hence Ao admits the self-adjoint
extension A (called the Friedrichs extension of Ao) in L\. It is then
easy to see that A is positive and satisfies:

(1.8) ||A"V||

From the above identity it follows that the zero is not an eigenvalue of
A. Thus A is a strictly positive self-adjoint operator in L\. Now we
make the following assumption on A.

ASSUMPTION 3. For some non-negative a,

(I + A)-«φ e Ln for all φ in L\ .

In many cases the above assumption is satisfied:

PROPOSITION 3. The above assumption is satisfied with a = (n — 2)/4
if one of the following conditions is satisfied.

(i) 2 ^ r a ^ 4 ;
(ii) Ω = Rn, n^2.

PROOF. Define the operator B in L\Rn) by: Bφ = -Aφ, D(B) = H\Rn)
(Sobolev space). By the Sobolev inequality

(1.9) || φ \\Ln{Rn) ^ M\\ (I + B)«φ || , φ e D(B")

(a = (n- 2)/4). If Ω = Rn, then (/ + A)'" = (/ + B)~aP. (P: the projection
on LI). By (1.9), (/ + B)~a is a bounded operator from L\Rn) to Ln{Rn).
Hence (/ + A)~a is a bounded operator from L2

σ(Rn) to Ln(Rn). We next
suppose that 2 ^ n ^ 4. Let E be the extension operator from L\(Ω) to
L\Rn): Eφ(x) = φ(x) (if x e Ω); = 0 (if x <£ Ω). Since (/ + B)ι/2E(I + A)~m

is a bounded operator by (1.8), it follows from the interpolation theorem
that (/ + B)βE(I + A)~β is a bounded operator for 0 ^ β g 1/2. Hence
by (1.9) we see that (/ + A)~a is a bounded operator from LI to Ln.

Our result on the decay of solutions reads:

THEOREM 4. Let T = oo. Lei ίfee assumptions 1, 2 omd 3 /κ)£d. Lei

% δe α weαA; solution of (N-S) wΐίA, I || V^ \\2dt < CXD . ΓΛe^ |] (/ + A)~au(t) \\
Jo

ίe^ds to zero as t-^oo.
The following two corollaries are immediate consequences of Theo-

rem 4.
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COROLLARY 1. Under the assumptions of Theorem 4,

S ί+l
\\u(s)\\2ds = 0 .

t

COROLLARY 2. Let the assumptions of Theorem 4 hold. If \\u(t)\\

tends to some constant, say c, as t —> °°, then we have c = 0.

J. Leray [13] considered the case Ω = Rz and / = 0, and constructed
a weak solution w that becomes smooth (in x and t) for large £, say
t > T; moreover, ||i&(ί)|| monotonously decreases with t > T. He posed
a problem whether or not \\u(t)\\-^0 as ί-*oo. Corollary 2, together
with Proposition 3, gives an affirmative answer to it. More generally,
if Ω is a domain of iί3, / = 0, and if u is a generalized solution (in the
sense of Ladyzhenskaya [12]), then ||%(£)|| monotonously decreases with
t, and hence tends to zero as t —> °o, by Corollary 2.

REMARKS. 1. We can construct a weak solution that ||w(£)|| tends
to zero as t—> °o. (see K. Masuda [18]). T. Kato constructed a strong
solution with \\u(t) || —• 0 as £ —• oo by a method different from ours. (His
result was motivation for the present work.)

2. For the decay of \\u(t)\\L- and ||Vu(t)\\ see Masuda [17, 18], J. G.
Hey wood [7], P. Maremonti [16].

3. Theorem 4 and the outline of its proof have been reported in
Masuda [19].

2. Preliminaries.

2.1. We first recall elementary properties of the mollifier Jh[w] of
w, h > 0. Let p be a C°° function in R1 with support in |ί[ ^ 1, such

that ρ(t) = |0(-ί), p(t) ^ 0, and Γ p(t)dt = 1. We set ρh(t) = h^pit/h).
J —oo

Let s, ί be fixed numbers such that 0 ^ s < t < + °o. Let X be a Banach
space. For w in Lp((s, ί); X), 1 ^ p < oo, we define the mollifier Jh[w]
of w by

(2.1) Jh[w](τ) = j | ft(τ - σ)w(σ)dσ ,

Then the following lemma is well-known, and is easy to prove.

LEMMA 2.1. We have
( i ) For each fixed h, Jh is a bounded operator from Lp((s, t); X)

into C\[s, t]; X).
(ii) For each fixed w in Lp((s,t);X), Jh[w] —> w as h-+0 in

L>((8, t); X);
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(iii) If we C([s, t]; X), then Jh[w](t) -+ (l/2)w(t) and Jk[w](s) -> (l/2)w(s)
as h —> 0 in the norm of X.

LEMMA 2.2. Let Xo be a dense subset of a Banach space X. Then
any function ΦeH\(s, t); X) can be approximated by a sequence {ΦN}, in
the topology of H\(s, t); X), such that each ΦN has the form

(2.2) ΦN{τ) = Σ \<τ)φj
finite

where λy is some C°° function on Rι and φ5 is some element of Xo. Simi-
larly, any function in L2((s, t); X) can be approximated by a sequence of
functions of the form (2.2) in the topology of L\(s, t); X).

PROOF. Since Cx([s, t\; X) is dense in H\(s, t); X), we may assume
that Φ is in (^([s, t]; X). Since Xo is dense in X by hypothesis, for any
positive integer N, there is a φNJ in Xo with | | ^ t ί — Φ(ί, )ll < l/^2> 3 =
0, 1, , N. (tj = 8 + jAN; Λ = (« - s)/N). Set

(2.3) ΦN{τ) = φN>j + Δ~N\τ - t^NJ+1 - φNJ) ,

if tj ^ τ ^ ίi+1. It is easy to see that ΦN e H\(s, t); X). Moreover ΦN

tends to Φ as N-+ oo in H\(s, t); X). Indeed, we have

Φ'N{τ) - Φ\τ) - Δ

if tj^τ ^ tj+1. Therefore

|| Φ'N(τ) - Φ\τ) || ^ 2ΔN + sup || Φ\σ) - Φ'(σ')
\a-σ'\<HN

from which it follows that the integral

tends to zero as N—>°o. Thus we can see that ΦN—>Φ in H\(s, t); X)]
note that clearly ΦN^Φ in C([s, t]; X). Extend ΦN to function on
R1: φN(τ) = ̂ f 0 (if τ ^ t0); = ̂ ^ (if τ ^ ί^). Then we mollify ΦN:

ΦN(τ) = \ p1/N(τ - σ)ΦN(σ)dσ .
J —oo

The ΦN thus defined is a desired function of the form (2.2). The latter
statement can be proved similarly.

2.2. In this subsection we shall give some estimates for (ttv Vw2, wΛ).

LEMMA 2.3. Let φ19 φ2 be in Ho,σ, φ3eLr, and φ±e Y, where n ^ r ^
oo. Then

( i ) H ^ I I
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(ii) |(&
(iii) |(Λ
(iv) (&-V&, φ2) = -(φA-

PROOF. By the Holder inequality,

(A = A - -L
\n 2 w\n 2

Hence the statement (i) follows from the Sobolev inequality:

The statements (ii), (iii) follow from (i). Let {φij}?^ be a sequence in

C^σ such that φitj —> φt as j -> ^ in iϊo1,*, i = 1, 2, 4. Then by (ii) and

(iii),

(Φi Vφz, φ,) = lim lim lim (φ4>ι Vφ2J, φ1)k)
j-+oo Jc—xx) I—>oo

= —lim lim lim (φ2J, φ4trVφltk)
j-+oo k-*oo l—>oo

showing (iv).

LEMMA 2.4. Lei ^ e L 2 ( ( s , ί); H0\σ) n L°°((s, t); ί'2), w2eD((s, t); HίJ,
wΆ e Lr'{(s, t); Lr), and w, e L2((s, t); Y) where n/r + 2/r' = 1, r ^ w. //
1 ^ r ' < oo ? we set

g(s, ί) =

if τf — oo ? ^ β seί

flf(s, ί) = ess sup || w 8 (r) | |Ln (s ^ r <; ί) .
Γ

S t rt

Kw^Vwt, w3)\dt + I \(w3'Vw2, wx)\dt l/q

(q = 2r/(n + r)) M being a constant independent of wlf w29 ws, and s, t.

(ii) I (wA'Vwίf w2)dt — — I (w± Vw2y wx)dt .

PROOF. The proofs of (i), (ii) follow from Lemma 2.3.

Let ζ be a monotone increasing C°° function in R1 such that 0 ^ ζ ^ 1,
|3.ζ(s)| ^ 1 (for all s in Λ1), and ζ(s) = 1 (if \s\ ^ 1); =0 (if | s | ^ 4 ) . Set
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ζk(x) = ζ(\χ\/k), (xe Rm) k = 1, 2, . Then a sequence {ζfc}Γ=i will be called
a sequence of m-dimensional cut-off functions. Then:

LEMMA 2.5. For any e > 0 ami w3 in C([0, T"]; Ln), ίfcβre is a con-
stant M, an integer N, and functions ψj(x) (i = 1, •• ,iV) m L2

/&e inequality

(2.4) ( j ( w Γ V w 2 , w 3 ) | < ^ ε ^ ( | | V w 1 | | 2 + | |Vw2 | |
2 + | | W l | | || Vw2\\)dt

= \
J 8

/or aM ^ , ^ 2 in L2((s, ί); iϊo1^), ct^d 0 ^ s < ί ^ T".

PROOF. We fix wlf w2\ and define the linear functional on C([s, t\; Ln).

29 w)dt .

Then we decompose I[w3] in the form:

(2.5) I[w3] = I[wΛιl] + I[wBt2] + /[w8 | 8]

where
W8,i(»f *) = (1 - ζP(x))wz(x, t)

w,ί2{x, t) = ζp(a0(l - ^ff(|w8(a?, ί)|))w8(», *) ;

)w8(&, ί) .

Here {ζp}, {ηq} be sequences of ^-dimensional, 1-dimensional cut-off func-
tions, respectively. We shall estimate each term on the RHS of (2.5).
By Lemma 2.4 (i), (ii),

(2.6) I I[wSti] I ^ M Γ || Vwt || || Vw2 \\dt sup ||w8f<(r) \\Ln , i = 1, 2 .

We shall show that supo<;Γ<sΓ' 11^3,^)11^ is sufficiently small for large p,
and q. From hypothesis it easily follows that | |wM(τ)| |Ln is continuous
for T. Moreover the family of continuous functions || w3)1(r)||Lπ on [0, T"]
is monotone decreasing in p, and converges to zero for each fixed τ by
Lebesgue convergence theorem. Hence it follows from the Dini theo-
rem that | |wM(r) | |Ln converges to zero as p—> °o, uniformly on [0, T'].
Hence we can take p so large that

(2.7) | / [ w 8 1 ] | ^ — [ \ \ V w L \ \ \ \ V w 2 \ \ d t , 0 ^ s < t ^ T f

4 Js

(see (2.6)): we fix such a p. Using the elementary inequality

^ SUP (17(8) + \sV\s)\)\ξ - ξ'\
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for two vectors ξ9 ξ', we can see that \\w3f2(τ)\\Ln is continuous for τ.
Also the family of continuous functions ||w3,2(τ) | | z* is monotone de-
crersing in q and tends to zero as q —> °o for each fixed τ (and a fixed
p). Hence by the Dini theorem, it converges to zero as q —> oo, uniformly
on [0, T"] Hence we can take q so large that

(2.8) I i[w3>2] i ^ - £ • Γ I I v ^ I I I I V w * Wdt> o ^ s < t ^ r

(see (2.6)): we fix such a q.
We finally proceed to the estimate of /[w3>3]. We have

(2.9) \I[wBf3]\ ^ Γ K^WWVwzWdt sup
Js s^τ^t

A trivial calculation gives:

(2.10)

On the other hand since Ho(Ωp) is compactly imbedded in L2(ΩP) (Ωp =
{xeΩ;\x\ ^ 4p}), and since ζvw1^Ho{Ωp)f it follows from the Friedrichs
inequality (Courant-Hilbert [2; p. 489]) that for any ε' > 0 there is an
integer N and functions ωt in L2(ΩP) (i = 1, , iV) with

+ M Σ l(C,Wi(r), 0 ) ^ , 1 a.e. in (s, ί) .

((•» )i2(ΰ ) denotes the L2-inner product over i2p.) Hence since \dxζp(x)\ ^ 1,
we have

(2.11) ||ζ,Wi(r)|| ^ ε '

where ψt(x) = ζp{x)ωt{x) (xeΩp); = 0 (xeΩ\Ωp). Thus, by the Schwarz
inequality, (2.9), (2.10), (2.11), we have

(2.12) I I[wd 3] I ^ 4gε' \ (|| Vwx ||2 + || Vw21|2 4- || wL \\ \\ Vw2 \\)dt
Js

Taking e' so small that 4gε' < 1, and collecting all the estimates (2.7),
(2.9), (2.12), we obtain the desired estimate (2.4).

We wish to relax the assumption, made in Lemma 2.5, that wz is
continuous on [0, T'] in the norm of L\ To this end we prepare a lemma:

LEMMA 2.6. Let f be a non-negative and integrable function on

[s, T']f and {gk}ΐ=i be a sequence of non-negative functions in L°°(s, T").

Suppose that \ f(τ)dτ > 0 for any t in (s, T"). Suppose also that for each
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fixed t gk(t) decreases monotonously to zero as k —» <>o 9 and for each fixed
k gk(t) is right continuous for t at t = s. Then for any e > 0, there is
an N such that

for all t in (s, T') and k > N.

PROOF. Put

zk(t) = \[fθkdt/^fdt , t> s , fc = 1,

If we define zk(s) — gk(s), then zk is continuous for t in [s, T']. Indeed,
it is clearly continuous for t in (s, T']. It is also easy to see that

|s*(ί) - 9k(s)\ ^ sup \gk(τ) - flrfc(s)| ,
S<T<t

from which it follows that zk is continuous on [s, T"]. On the other hand
for each fixed t zk(t) decreases monotonously to zero as k —> co. Hence
by the Dini theorem zk(t) converges to zero as k -> °o, uniformly on
[s, T']. This proves Lemma 2.6.

LEMMA 2.7. Lei weL\(s, T')\ Hitσ), and ueL°°((s, T')\ Ln). Suppose

S t

|| w\\2dt > 0 for any t in (s, T"). Suppose also that u is right con-
tinuous for t at t — s in the norm of Ln. Then for any e > 0

(2.13) Γ |O Vw, u)\dt £

M being a constant independent of t.

PROOF. If we set

Ut = (1 - ζp(x))u(x, t) ^ 2 =

then in the same way as in the proof of Lemma 2.5 we can get, by
u = uγ + u2 + u3,

From hypothesis it follows that for each fixed p Wu^t)\\Ln is right con-
tinuous for t at t — s, and for each fixed t ||^i(ί)IUw decreases monot-
onously to zero as p —• °o, and that I ||Vwψdt > 0 for t in (s, T') Thus
by Lemma 2.6, there is a p0 such that
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Γ II V w W'Wu, \\Lndt ^ ε Γ || V w \\2dt , p ^ pQ , s ^ t ^ T ' .

Similarly we can see that for each fixed p there is a q0 with

^\\Vw\\2\\u2\\Lndt^ e^\\Vw\\2dt , g ^ g 0 , s ^ t ^ T ' .

By the Holder inequality, for each fixed p and q,

j * || ζpw || || V w \\dt ^ e j * || V w | | 2 d £ + M e " 1 Γ || w | | 2 d ί , s ^ t ^ T .

Collecting all the estimates above, we can get the desired estimate
(2.13).

3. Existence of weak solutions; Proof of Theorem 1. Following
Hopf [8], we first construct approximate solutions of the problem (N-S)
by the well-known Galerkin method, in the Banach space Y = Ho,σf)Ln.
To this end we need the following.

LEMMA 3.1. The Banach space Y is separable.

PROOF. Define the extension E\Y ^ H\Rn) Π Ln(Rn) by (Eu)(x) = u(x)
(if x e Ω); = 0 (if x e Rn\Ω). By the identification u <— Euy Y can be
regarded as a closed subspace of H\Rn)C\Ln(Rn). By virtue of Lions
[12; p. 6], H\Rn)ΠLn(Rn) is separable. Hence, Y is separable.

Now by Lemma 3.1 just proved, there exists a sequence {φk}k=ι of
linearly independent vectors which is total in Y. Since C 0 " β c 7 c L 5 , and
since C^σ is dense in 14, it follows that {Φk}ΐ=i is also total in L\\ we
may assume, without loss of generality, that it is a complete orthonormal
system in L2

σ. Using {φk}, we construct approximate solution um = um(x, t)
of the problem (N-S) which has the form

(3.1) um(x,t) = Σ U « ) Λ W -
Z = l

Here the coefficient cml = cml{t) (i = 1, 2, , m) is a solution of a system
of ordinary differential equation

(3.2) dcmI/dί + Σ aaCmi + Σ aiplcmicmp = ft (I = 1, 2, , m)

with the initial condition

(3.3) c m l ( 0 ) = c0)l (I = 1 , 2 , .- , m )

where

V^) α<pl = (Φt Vφp, Vφi) /, = (/, Φι) c0,̂  = (α, ̂ ) .
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We note that aipl is finite by Lemma 2.3. If λzeiΓ((0, T)) (1 ^ l^ m),
then noting the relation

(3.4) {ujfi, φi) = cml ,

we multiply the both side of (3.2) by X^t) and integrate it in t over the
interval (s, ί); and there results:

(3.5) £ {-(um, Φt) + (Vum, VΦ) + (um Vum, Φ)}dt

/, Φ)dt - (UM), Φit)) + (Um(8), Φ(S)) ,

where Φ = Xι(t)φι(x). Putting xt(t) = cmi(t) in the above identity, and
taking the summation with respect to Z, we find

(3.6) || uM) II2 + 2 Γ || Vum \\2dt = 2 Γ (wm>
Jo Jo

where am = ujfi), since we have (um Vum, um) = 0 by Lemma 2.3. Since
ll̂ mll ^ HαIL it follows from the assumption 2 that

(3.7) || um(t) ||2 + Γ || V u m \\2dt S Mx , 0 ^ t < T ,
Jo

Mλ being a constant independent of m, ί. (see Ladyzhenskaya [12; Chap-
ter 6, Section 3]). As is well-known the above a priori estimate (3.7)
guarantees the global existence of solution of (3.2), (3.3). Moreover, we
have:

LEMMA 3.2. For each fixed j , the family {(um(t), φj)}?=1 forms a
uniformly bounded and equicontinuous family of continuous functions
on [0, T].

PROOF. The uniform boundedness is an immediate consequence of
(3.7). A simple calculation yields

), Φs) ~ (^(§)> Φi) = \[ i(d/dτ)ujτ)f φd)dt

^\ £/, φ5)dτ

We shall estimate I5, j = 1, 2, 3. By the Schwarz inequality and (3.7),

(3.8) |/J ^M{t - s)m

and

(3.9) | / 8 | ^ Λ
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M being a constant independent of m, s, t. Applying to I2 Lemma 2.5
with wx — w2 = wm and w3 = ^-, we see that for any ε' > 0, there holds

\I2\ ^ ε'

and hence, by (3.7)

(3.10) |/ 2 | ^Mλe
f + M\t - s\

M being a constant independent of m, s, £. Therefore it follows from
(3.8), (3.9), (3.10) that for any ε > 0 there is a δ > 0 with

(3.11) | ( ^ ( ί ) , ^ ) - ( % . ( s ) , ^ ) | < 6 if | ί - s | < δ , m = l ,2, •••.

Since ε is arbitrary positive number, (3.11) implies that the family
{(um(t), φj)} is equicontinuous.

Now by the Ascoli-Arzela theorem, and the usual diagonal argument,
it follows from (3.7) and Lemma 3.2 that there is a subsequence {mj of
{m} along which {um(t)} converges to some u(t), uniformly in t e [0, T],
in the weak topology of Uσ(Ω)\ The uniform limit u(t) of a sequence of
continuous functions um(t) is continuous for t, weakly (see Hopf [8]; and
also Ladyzhenskaya [12]). On the other hand, since {um} is bounded in
L2((0, T); H0\σ) by (3.7), there is a subsequence of {mj along which {um.}
converges to some u weakly in L2((0, T); Ho,σ). It is easy to see that
u = u; we shall assume that the original sequence {u^t)} itself converges
to u, for the sake of simplification of the notations. Since | | α m | | <̂  ]|α||,
taking the lim sup (in m) in (3.6), we see that the u satisfies the energy
inequality (1.3). To show that the u is a desired solution, it remains
only to show that it satisfies (1.2).

We claim:

(3.12) \* (um-Vum, Φ)dt->^ (u-Vu, Φ)dt , as m-^oo

for every Φ in ^ 7 , t : ^ 7 , t is the set of all Φ of the form

(3.13) Φ = Σ\(τ)φι(%) (finite sum)

where xt(τ) is arbitrary function in H\(89 t); R1). Indeed, we have

I (um Vum, Φ)dt — I {wVu, Φ)dt

- u)-Vum, Φ)dt + ^ (u V(um - u), Φ)dt ( = 1, + I2) .= J
By (1.3), (3.7) and Lemma 2.5 (with wλ = wm — u, w2 = um, w3 = Φ), we
see that for any ε > 0 there is a constant M = Mεj a positive integer
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-ZV = Nε, and function ψlx) (i = 1, 2, , N) in L\ such that

(3.14) 11,1 ^ εΛf' + M Σ Γ (ww - w, ψθ2dί .
ί = l JS

M' being a constant independent of ε, m. Hence, letting m —• oo, we get

lim sup 1111 ^ εΛΓ
m->oo

since wm(ί) —> u(f), uniformly in ί, in the weak topology of L2. Since ε
is arbitrary, it follows that It —• 0. We next show J2 —• 0. If wt(x, t) =
w(ί)(#, ί)Φfo *) (^( ί) : then i-th component of u), then wteL\Ω x (s, ί)) by
Lemma 2.3. Hence there is a sequence {wifk}%=1 (ΐ = 1, , n) in C0°°(i2 x
(s, ί)) with w<ffc —> w< as ί -^co in L2(i2 x (s, £)). For the w<ιifc, we have,
by partial integration,

(dt = d/dxt) .

Letting m —> °° and then A; -^ oo in the above inequality, we have, by
(3.7), JΓ2->0. Hence we have (3.12).

Taking a finite sum with respect to I and then letting m —•> co in
(3.5), we obtain, by (3.12),

(3.15) j * {-(w, ΦJ + (VM, VΦ) + (%• V

for every Φ in ^ , t . We next show that (3.15) holds for every Φ in
CX[s, t]; Y). Let ΦeC\[s, t]; Y). Let ^l be the set of all (finite) linear
combination of the functions in the set {̂ J; j^ is dense in Y by defini-
tion. Hence by (2.3), there is a sequence {ΦN} such that ΦN-*Φ in
H\(sf t); Y), and which has the form

1 - ψ3) if tό ^ τ ^ ίy+1

where ίy = s + iJ^ (i = 0, , N); and ή G / ; . Applying (3.15) with
8 = ίif ί = ίi+1, one finds

J''+1 {-(«*, ΦNιt) + (Vw, VΦN

Taking the summation with respect to j , we see that (3.15) holds for
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Φ = ΦN. Letting JV-> ^ in (3.15) with Φ = ΦN, we can conclude that
(3.15) holds for every Φ in C\[s, t]; Y). Since C\[s, i\; Y) is dense in
H\(s, t); Y), it follows from Lemma 2.2 that (3.15) holds for every Φ in
H\(s, t); Y). By taking s = 0, we can conclude that u satisfies (1.2).
This completes the proof of Theorem 1.

4. The uniqueness of weak solutions; Proofs of Theorems 2 and 3.
We follow Serrin [23]. Suppose u is a weak solution satisfying the as-
sumptions of either Theorem 2 or Theorem 3. We then define

uh(τ) = \ ph{τ - σ)u(σ)dσ
Jo

for arbitrarily fixed t (0 < t < T) and the weak solution u. Then
uh G H\(Q9 T); Y). Hence we can take the uh as a test function in (1.2)
with u replaced by v, and there results: (uhtt = dtuh)

(4.1) Γ {-(v, uhft) + (Vv, V^) + (v Vv, wA)Wί
Jo

/, uh)dt - (v(t), uh{t)) + (α,

On the other hand, since v e L2((0, ί); H0\σ) by hypothesis, and since Co%
is dense in Ho,σ, it follows from Lemma 2.2 that there is a sequence {vk}
in iΓ((0, Γ); Y) with v* -> v in L2((0, Γ); ftf,,): note Co% c Γ. We then
define vh, v\\

vh{τ) = \ ρh(τ - σ)v{σ)dσ v\(τ) = \ ρh{τ - σ)vk{σ)dσ .
Jo Jo

Then it follows from Lemma 2.1 that vheH\(0, t); H},,), vk

heH\(0, t); Y);
and that vh^ v as h-*Q, v\ —• vh as k —> co in the norm of H\(0, t); H0\σ).
Now we take v* as a test function in (1.2), and there results

(4.2) [{-(u, vϊtt) + (Vu, Vvϊ) + (u Vu, vϊ)}dt
Jo

= Γ (ff vh)dt - W<), vi(i)) + WO), v*(0)).

Letting k —> ^ in the above identity, we get, by Lemma 2.1 and Lemma
2.4,

(4.3) Γ {-(u, vh,t) + {Vu, Vvh) + (u-Vu, vh)}dt
Jo

, vh)dt - (u(t), vh(t)) + (α, vh(0)) .

Now by virtue of FubinΓs theorem and the symmetry of the kernel ph,

=
J
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it is easy to see that

I (u, vhtt)dt = - (uh>t, v)dt .
Jo Jo

Consequently, addition of (4.1) and (4.3) yields

I {(Vv, Vuκ) + (Vw, Vvh) + (v-Vv, uh) + (u Vu, vh)}dt
Jo

= Γ {(/, M») + (/, vh))dt ~ (v(t), uh(t)) - (u(t), vh(t))+(a,
Jo

In the above identity we let /&—•(). Then it follows from Lemma 2.1
and Lemma 2.4 that

(4.4) Γ {2(Vu, Vv) + (v Vv, %) + (u Vu, v)}dt
Jo

= Γ {(/, M) + (/, v)}dt - (u(t), v{t)) + (α, a) .
Jo

By the theorem of Prodi [18] and Serrin [20], the u satisfies the energy
equality:

(4.5) || n(t) ||2 + 2 Γ| | V^ \\2dt = 2 Γ (/, u)dt + \\ a ||2

Jo Jo

since u is a weak solution in the class Lr>r'(Ω x (0, T)). On the other
hand, by (1.6), it satisfies the energy inequality:

(4.6) || v{t) ||2 + 2 Γ || V^ \\2dt ̂  2 Γ (/, v)dί + || a ||2 .
Jo Jo

Addition of (4.4) (multiplied by -2), (4.5) and (4.6) yields

(4.7) II w(t)||2 + 2 Γ || Vwfdt ^ 2 Γ (w-Vw, w)dt
Jo Jo

where w(ί) = v{t) — u(t). Here we made use of the identity:

I {(u'Vw, u) + (w, U'Vu)}dt = 0 ,

which can be seen from Lemma 2.4.

PROOF OF THEOREM 2. From Lemma 2.4 and the Holder inequality
it follows that for any ε > 0

the RHS of (4.7) ^ ε Γ || Vw \\2dt + M[ \\ u | |£ | | w \\2dt ,
Jo Jo

M being a constant independent of w. If we take ε so small that ε ^ 2,
then by (4.7) and the above inequality,
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(4.8) || w(t) ||2 £ M [ || u | |£ | | w \\2dt , 0 ^ t < T .
Jo

Since ||w(£)||2 is locally integrable on [0, T), the above inequality (4.8)
implies w(t) = 0, a.e. in (0, T), by the Gronwall inequality, (see Beckenbach-
Bellmann [1; p. 134]). This completes the proof of Theorem 2.

PROOF OF THEOREM 3. Assume that there were not such a ί > 0 ,

Then I || Vw \\2dt > 0 for any t > s. Hence it follows from Lemma 2.7 that
JS

the RHS of (4.7) ^ e Γ || Vw \\2dt + M\* \\ w \\2dt ,

M being a constant independent of w. Hence, similarly to the proof of
Theorem 2, we can get

I w(t) ||2 ^ M Γ || w \\2dt , s <,t < T .
Js

Hence we must have w = 0 on (s, T); a contradiction. This proves
Theorem 3.

PROOF OF COROLLARY. Since u and v are both continuous in t in
the weak topology of L2

σ, Corollary easily follows from Theorem 3.

5. The decay of solutions; Proof of Theorem 4.

5.1. The proof of Theorem 4 is based on the following estimate to
be proved in the next subsection.

(5.1) || (/ + A)-°u(fi) II2 ^ II e-«-°)A(I + A)-*u(s) ||2

+ M\ \\Vu\\2dt + | |α| |Γ \\Pf\\dt (0 ^ s < t) ,
Js Js

M being a constant independent of s, t.
For the moment we assume that (5.1) holds true. If Av = 0, then

Vv = 0 by (1.8), from which it follows that v = 0. Hence the zero is not
an eigenvalue of the positive self-adjoint operator A in L2. Thus

(5.2) Ile-^H-^O as t -> oo

for every ^ in L2. Hence, letting £ tend to infinity in (5.1), we see

(5.3) lim sup | | ( I + A)-«u(t)\\2 ̂  M[ \\Vu\\2dt +
ί-oo Js

Letting s tend to infinity in the above inequality, we have Theorem 4
by hypothesis.

5.2. We shall show the estimate (5.1). Let s, t be fixed numbers
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such that 0 ^ s < t < +00. For positive numbers s, h, we define

(5.4) Φε>h(τ) = Uε(τ) £ ft(r - σ)U.(σ)u(σ)dσ , s ^ τ ^ t ,

where u is a weak solution of the problem (N-S); ph = jθA(r) is a function
defined in the section 4; and

U£τ) = e - { t + ε ~ τ ) A ( I + A ) ~ a , τ ^ t .

Then it is easy to see that for each fixed ε and h, Φε>h has the following
properties (i), (ii), (iii):

( i ) ΦKth e C\[s, t]; LI) and

(5.5) II Φtth(τ) II ^ M2 (M2 = sup || u(t) ||)
ί>0

(ii) 0 α ( r ) e l ) ( 4 ) and AΦε>h(τ) is continuous for r (s ^ r ^ ί) in the
norm of L\\

(iii) Φεh satisfies

(5.6) dτΦε>h(τ) - AΦε,h(τ) = Uε{τ) \ \ p h ( τ - σ) Uε(σ)u(σ)dσ , s ^ τ ^ t .

(3r = d/dτ). Moreover we have:
(iv) Φε>heC([s,t];Ln) and

(5.7) \\Φ£)h(τ)\\Ln^M0M2

Mo being a constant independent of ε, h, u.
Indeed, since by the closed graph theorem (/ + A)~2a is a bounded

operator from L\ into Ln (with a bound, say, Λf0), it follows that ΦβfΛ(τ)
is continuous for τ in the norm of Ln, and that

Ln £ Mo jl ^ ( r - α)| | ̂ (σ) ||dσ ^ MQM2

by hypothesis. Thus we have (iv).
Now we can take the Φ£}h as a test function Φ in (1.2) and there

results

(5.8)

since

= j * j]3r loA(r - σ)(Uε(τ)u(τ), Us(σ)u(σ))dσdτ (by (5.6))

= 0 (by the symmetry of ph(t)) .
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We shall let ε -»0 and then h -> 0 in (5.8). Since ((/ + A)'2ae'{t'σ)Au(t)9

n{σ)) (= g(σ)) is continuous for σ, we have, by Lemma 2.1,

lim lim (u(t), Φε A(ί)) = lim 1 ρh(t - σ)g(σ)dσ = —(u(t), (I + A)"2au(t)) .
Λ->0 ε->0 h-*0 Js 2

Similarly,

lim lim (u(s), Φ£}h(s)) —
fe->0 ε-»0 ' 2

and

lim lim I (/, Φε>h)dt = \ (/,

£M2^\\Pf\\dσ (by (5.5)).

On the other hand, by Lemma 2.4 and (5.7)

the LHS of ( 5 . 8 ) ^ —Λf Γ ||Vu\\2\\Φε>h\\Lndt ^ -MM0M2 Γ | |Vufdt .

Noting all the results obtained above, we let ε —> 0, and then A —> 0 in
(5.8). Then we get the desired estimate (5.1). This completes the proof
of Theorem 4.

5.3. PROOF OF COROLLARY 1. By the interpolation theorem,

||φ\\^ | |(/+il)-^|H|(/+ Ay'VH1-'

where β = 1/(1 + 2α). Hence

(5.9) ^ \\u(s)\\2ds

/fί + l \iS/fί+l

^ ( ^ | | ( / + A ) - ^ ( s ) | | 2 d s ) ( j t \\(I +

Since

S ί + l f ί + l fί

II (/ + A)wn{s) \\*ds = || u(s) \\>ds + \
ί Jί Jί

by hypothesis, it easily follows from Theorem 4 that the RHS of (5.9)

tends to zero as t—> °°. This proves Corollary 1.

5.4. PROOF OF COROLLARY 2. By the change of the variable and

Corollary 1,
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c = lim [ || u(s + t) \\2ds = lim Γ ' || u(s) \\2ds = 0 .
ί-»oo Jo ί^w Jί

This proves Corollary 2.

Appendix. PROOF OF PROPOSITION 1. We first recall the definition
of a Hopf 's weak solution ([8], [23]). Let T be the set of all C°° vector
functions Φ = (Φ\ , Φn) on Ω x [0, T), which has its support in Ω x
[0, T), and are divergent free, i.e., Σ?=i (d/dx^ΦXx, t) = 0. A function w
on i2 x (0, T) is called a Hopf's weak solution if

(H-l) for each F (0 < F < T), u is in the closure Vτ, of T under
the norm of L2((0, F); H0\σ);

(H-2) the norm \\u\\ is uniformly bounded in t;
(H-3)

('{(«, Φt) + (u, ΔΦ) + (u, u VΦ)}dt = -\T(f, Φ)dt - (a, Φ(0))
Jo Jo

for all Φ in T.
Suppose that u is a weak solution in our sense. Since Co% is dense in
Ho,σ, it follows from Lemma 2.2 that for any F «T) u can be approxi-
mated by a sequence of functions uN of the form: uN = Σ \(t)ψ3- (finite
sum) in the norm of L2((0, F)\ H0\σ), where X3 e C°°([0, T']), ψ3- e CQησ. Hence
it is easy to see that uNe Vτ» and so ue Vτ>> for all F' «F). Thus u
satisfies the condition (H-l). Since (H-2), (H-3) are easily verified, u is
a Hopf's weak solution. Under the assumption that Co% is dense in Y,
we next show that a Hopf s weak solution u is a weak solution in our
sense. By Lemma 2.2, any function Φ in ίP((0, T); Y) such that for some
To (<Γ) Φ( ,t) — 0 on (Γo, 2

1), can be approximated by a sequence of
functions of the form Σ \ (t)ψj (finite sum) in the norm of L2((0, Γ); Y)
where λy e C0°°([0, T7)), ψ y e C07σ. Hence it follows from Lemma 2.4 and (H-3)
that (1.1) holds for such a Φ. It is now easy to see that a Hopf's solution
is a weak solution in our sense. We next proceed to the proof of the
latter part of Proposition 1. If 2<^n ̂ 4 , then by the Sobolev inequality,
Hlσ c Ln, and so 7 = H0\σ. Hence Co% is dense in Y. If Ω is a star-
shaped bounded domain with respect to some point, say the origin, then
for any u in Y, uλ e Y and uλ^u as λ —• 1 (λ > 1) in Y where uλ(x) =
(Eu)(Xx) {E is defined in Lemma 3.1). We mollify u:

uλΛ(x) = \ ρh{x - y)uλ(y)dy = ph * uλ(x)

where ρh * is the usual mollifier on Rn. Then uλ>heC^σ and uλfh-^uλ as
h -> 0 in Y. Thus Co% is dense in Y. Finally we consider the case Ω = Rn.
If / e Y, then we mollify /: fh = ph*f, h>0. Let B be the operator defined
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in Proposition 3, and {ζ̂ } be a sequence of ^-dimensional cut-off functions.
We then set

)ζN(x)(μ μ>0.

It is easy to see that Λ,^eC0%. After letting iV-> °°, we let /* —>0,
and then h—>0; we see that fhtμtN-*f in y. Thus Q°ff is dense in Y.
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ADDED IN PROOF. Professors J. Heywood and Y. Giga orally com-
municated to the author that C^σ is dense in Y if Ω is a bounded or
exterior domain. (See Proposition 1.)




