RATIONAL MAPPINGS OF DEL PEZZO SURFACES, AND SINGULAR COMPACTIFICATIONS OF TWODIMENSIONAL AFFINE VARIETIES*

David Bindschadler, Lawrence Brenton and Daniel Drucker

Introduction. Let F be an algebraically closed field and let (X, \mathcal{O}_{x}) be a two-dimensional, rational, normal compact Gorenstein space over F. If the anticanonical divisor of X is ample, then X is called a (possibly singular) Del Pezzo surface. For $F=\boldsymbol{C}$, these surfaces were studied systematically by Du Val [12] in his investigation of the relation between rational double points and subgroups of reflection groups of regular polyhedra (cf. also [8], [13], [20]). They have recently attracted new interest as singular fibres of versal deformations of elliptic singularities ([9], [16], [21], [26]). We have studied certain of these spaces as examples of singular complex surfaces of the homology, cohomology, or homotopy type of $\boldsymbol{C P}{ }^{2}$ ([2], [7]).

If X is a Del Pezzo surface, the degree of X is the integer $d=K \cdot K$, where K is the canonical divisor. If X is singular, each singularity is a double point of type A_{k}, D_{k}, or E_{k}, and the Dynkin diagram Γ correponding to the singular set is the Coxeter graph of a subgroup of one of the reflection groups $A_{1}, A_{2}+A_{1}, A_{4}, D_{5}$, or $E_{k}, 6 \leqq k \leqq 8$ ([12]). The number n of vertices of Γ is always less than or equal to $9-d$; if $n=$ $9-d, X$ will be called maximally degenerate. In this case $H^{i}(X, \boldsymbol{Q}) \cong$ $H^{i}\left(\boldsymbol{P}^{2}, \boldsymbol{Q}\right) \forall i$, with $H^{1}(X, \boldsymbol{Z}) \cong 0, H^{2}(X, \boldsymbol{Z}) \cong \boldsymbol{Z}$, and $H^{3}(X, \boldsymbol{Z})$ a finite group of order $\sqrt{(\operatorname{det}(\Gamma)) / d}$, where $\operatorname{det}(\Gamma)$ is the determinant of the associated Cartan matrix. Except when X is the singular quadric hypersurface $\boldsymbol{Q}_{0}^{2} \subset \boldsymbol{P}^{3}(F)$, the Chern class of K generates $H^{2}(X, \boldsymbol{Z})$ and so the degree also gives the cohomology ring structure. In the maximally degenerate case (but not in general), the singularity type determines the surface up to a deformation through fibres of the same singularity type ([12], [20]).

Now let X be any Del Pezzo surface. Since X is rational, there exists a birational mapping f of X onto $\boldsymbol{P}^{2}(F)$. Factoring f into a

[^0]sequence of monoidal point transformations and their inverses, we obtain a commuting diagram

where \tilde{X} is non-singular and ρ and π are regular (cf. Nagata [19]). The meromorphic map f will be called minimal if \tilde{X} can be taken to be the minimal non-singular model of X. In that case, ρ and π are unique and exhibit the construction of X as the result of blowing up $9-d$ points in \boldsymbol{P}^{2}, then collapsing the union of $n=10-d-b_{2}(X)$ non-singular curves of grade -2 to one or more singular points. The purpose of this paper is to give the complete classification of such maps f in the maximally degenerate case. Our techniques rely on the existence of certain "global extensions" $\tilde{\Gamma}$ of Dynkin diagrams Γ, having the property that for each vertex w_{i} of $\tilde{\Gamma}-\Gamma$, the subgraph of $\tilde{\Gamma}$ induced by w_{i} and the vertices of the components of Γ which meet w_{i}, is an extended Dynkin diagram of type \bar{A}_{k}, \bar{D}_{k}, or \bar{E}_{k}.

In part II we will use our results to study compactifications of affine varieties V of $\boldsymbol{C} \boldsymbol{P}^{2}$. For $V=\boldsymbol{C}^{2}, \boldsymbol{C} \times \boldsymbol{C}^{*}$, and $\left(\boldsymbol{C}^{*}\right)^{2}$, non-singular compactifications have been studied in such recent papers as [17], [24], [25], and [27]. Our techniques allow us to treat certain singular compactifications as well. Indeed, we will find all "minimal projective compactifications" (defined precisely below) $h: V \rightarrow X$ of affine varieties $V \subset \boldsymbol{C P}^{2}$, where X is a minimal singular Gorenstein surface with vanishing geometric genus. In particular, this gives a classification of all compactifications of this type for affine surfaces of the form $\left(\boldsymbol{C}-\left\{P_{1}, \cdots, P_{r}\right\}\right) \times\left(\boldsymbol{C}-\left\{Q_{1}, \cdots, Q_{s}\right\}\right)$.
I. Rational mappings of maximally degenerate Del Pezzo surfaces. In this section we will obtain the list of all minimal birational mappings $f: X \rightarrow \boldsymbol{P}^{2}(F)$, modulo automorphisms of $\boldsymbol{P}^{2}(F)$, where F is any algebraically closed field of characteristic different from 2 , and where X is a maximally degenerate Del Pezzo surface over F. Let $X \neq \boldsymbol{P}^{2}, \boldsymbol{Q}_{0}^{2}$ be such a surface, and let $\pi: \widetilde{X} \rightarrow X$ be the minimal resolution of singularities. Then \tilde{X} contains only finitely many negatively embedded irreducible curves, and each such curve is non-singular rational with self-intersection -2 or -1 . Let C_{1}, \cdots, C_{n} be the curves of grade -2 and let D_{1}, \cdots, D_{m} be the curves of grade -1 . Then $n \leqq 8$ and the dual intersection graph of the C_{i} 's is the Dynkin diagram Γ corresponding to the singular points of X. The a priori possibilities for Γ are those Coxeter graphs that correspond
to generators of subgroups of certain distinguished finite reflection groups on $\boldsymbol{R}^{n}, 3 \leqq n \leqq 8$, as listed below .

\[

\]

(Cf. [8], [12], [13]. Several other characterizations of these graphs are given in [3].)

If $n<8$ then blowing up $8-n$ additional points in sufficiently general position on the curves D_{i} produces a new surface $\tilde{\widetilde{X}}$ of the same type and from which the properties of \tilde{X} can easily be recovered. Thus we can assume $n=8$. Let \mathscr{E} be the vector subspace of $H^{2}(\tilde{X}, \boldsymbol{R})$ orthogonal to the canonical divisor K. Then the Chern classes γ_{i} of the divisors C_{i} form a basis for \mathscr{E} and a base for the root system of the complex Lie algebra \mathfrak{g} corresponding to Γ. If δ_{j} denotes the orthogonal projection of the Chern class of D_{j} into \mathscr{E}, then the vectors δ_{j} represent certain of the "directrices" of the system ([11]). Taking the negative of the cup product pairing as an inner product on \mathscr{E}, it is easy to verify that

$$
\left\langle\delta_{i}, \delta_{j}\right\rangle=\left\{\begin{array}{lll}
2 & \text { if } & i=j \\
1 & \text { if } & D_{i} \cap D_{j}=\varnothing \\
0 & \text { if } & D_{i} \text { meets } D_{j}, i \neq j
\end{array}\right.
$$

while $\left\langle\gamma_{i}, \delta_{j}\right\rangle=-\left(C_{i} \cdot D_{j}\right) \leqq 0 \forall i, j$. These observations motivate the following lemma.

Lemma 1. Let $B=\left\{v_{1}, \cdots, v_{8}\right\}$ be a base in \boldsymbol{R}^{8} for a root subsystem of E_{8}, with $\left\|v_{i}\right\|^{2}=2 \forall i$. Then there exists a unique (up to an orthogonal transformation of \boldsymbol{R}^{8} taking B onto itself) collection $B^{\prime}=\left\{w_{1}, \cdots, w_{m}\right\}$ of vectors of squared length 2 satisfying
(1) $\left\langle v_{i}, w_{j}\right\rangle$ is a non-positive integer $\forall i, j$,
(2) $\left\langle w_{i}, w_{j}\right\rangle$ is a non-negative integer $\forall i, j$, and
(3) B^{\prime} is maximal with respect to (1) and (2).

The Lemma is proved by means of a graphical construction. For any vector w in \boldsymbol{R}^{8} that satisfies condition (1) and has squared length 2,
we now show that the weighted intersection multigraph Γ_{w} of the set $\widetilde{B}=\left\{v_{1}, \cdots, v_{8}, w\right\}$ is the union of an extended Dynkin diagram of type \bar{A}, \bar{D}, or \bar{E} with a (possibly empty) collection of Dynkin diagrams of types A, D, and E. (A "multigraph" is a graph with multiple edges allowed. The term "quasi-graph" allows unanchored edges, pictured e-; cf. [7]. In this paper, the extended Dynkin diagram \bar{A}_{1} is the only multigraph we encounter that has a multiple edge.) Let $\widetilde{B}_{w}=\{w\} \cup\{v \in B$: v is linked to $w\}$, where " v is linked to w " means that there is a sequence $v_{0}, \cdots, v_{k}(k \geqq 1)$ of vectors in \widetilde{B} such that $v_{0}=v, v_{k}=w$, and $\left\langle v_{i-1}, v_{i}\right\rangle \neq 0$ for $i=1, \cdots, k$. Then \widetilde{B}_{w} is indecomposable (not the union of two nonempty orthogonal subsets), $\widetilde{B}_{w} \perp\left(\widetilde{B}-\widetilde{B}_{w}\right)$, and $\widetilde{B}=\widetilde{B}_{w} \cup\left(\widetilde{B}-\widetilde{B}_{w}\right)$. Since \widetilde{B} is dependent and $\widetilde{B}-\widetilde{B}_{w}$ is independent, \widetilde{B}_{w} must be dependent. Γ_{w} is the union of the multigraphs for \widetilde{B}_{w} and $\widetilde{B}-\widetilde{B}_{w}$, so the fact that Γ_{w} has the form described above follows from standard arguments of the type used to classify Dynkin diagrams. (See [10] for a suitably general classification result.)

Conversely, if $\hat{\Gamma}$ is a 9 -vertex multigraph containing Γ with an extended Dynkin diagram of type \bar{A}, \bar{D}, or \bar{E} as one component, and if the other components (if any) are Dynkin diagrams of types A, D, and E, then $\hat{\Gamma}$ uniquely determines a vector w such that $\hat{\Gamma}=\Gamma_{w}$. In fact, $w=\sum_{i, j}\left(-c_{i j}\right) \sqrt{N_{i}} v_{j}$, where $\left(c_{i j}\right)$ is the inverse of the Cartan matrix of Γ and N_{i} is the number of edges joining v_{i} to the single vertex of $\hat{\Gamma}-\Gamma$.

To find the desired maximal collection B^{\prime}, select the graph Γ corresponding to B from the list of all 15 graphs for $n=8$ given earlier. Adjoin vertices w_{1}, w_{2}, \cdots to Γ in such a way that for each j the multigraph of $\widetilde{B}_{w_{j}}$ is an extended Dynkin diagram of type \bar{A}, \bar{D}, or \bar{E}, and $\left\langle w_{i}, w_{j}\right\rangle$ is a non-negative integer for every $i<j$. When this process can no longer be continued, one obtains a maximal collection $B^{\prime}=\left\{w_{1}\right.$, $\left.\cdots, w_{m}\right\}$ together with a multigraph $\widetilde{\Gamma}=\bigcup_{i=1}^{m} \Gamma_{w_{i}}$.

To prove uniqueness, consider each of the 15 graphs in turn and construct all possible maximal collections together with the corresponding multigraphs. For each Γ, it is found that all the multigraphs obtained from maximal collections are isomorphic. From this it follows easily that the maximal collections correspond under suitably chosen orthogonal transformations of \boldsymbol{R}^{8}. Note that $\tilde{\Gamma}$ depends only on Γ, not on the particular choice of B or B^{\prime}.

The multigraph $\tilde{\Gamma}$ constructed in the proof from a Dynkin diagram Γ of a base B will be called the maximal special global extension of Γ (cf. [3]). The maximal special global extensions of the 15 admissible 8-
point Dynkin diagrams are shown in Table I. Solid dots represent the vertices v_{i} of Γ, and circles represent the vertices w_{j} of $\widetilde{\Gamma}-\Gamma$. Note that the full intersection matrix of $\left\{v_{1}, \cdots, v_{8}, w_{1}, \cdots, w_{m}\right\}$ can be recovered from $\tilde{\Gamma}$ by using the fact that $\left\langle w_{i}, w_{j}\right\rangle$ equals 1 or 0 according to whether or not Γ has a component that is joined to both w_{i} and w_{j} in $\widetilde{\Gamma}$.

Table I: Maximal Special Global Extensions of Admissible 8-point Dynkin Diagrams.

From this list of maximal extensions we will obtain the classification of minimal birational mappings $f: X \rightarrow \boldsymbol{P}^{2}(F)$ of maximally degenerate Del Pezzo surfaces X. As noted in the introduction, any such f uniquely determines the map ρ in the diagram

and X determines π. Thus all minimal birational mappings of X can be found by finding all maps $\rho: \widetilde{X} \rightarrow \boldsymbol{P}^{2}$ inverse to blowing up points. For each such ρ, the dual intersection graph Γ_{ρ} of the exceptional curves of ρ is a subgraph of the maximal special global extension $\widetilde{\Gamma}$ of the Dynkin diagram Γ which characterizes X. (This follows from the remarks preceding Lemma 1 and the fact that D_{i} cannot meet D_{j} if both are exceptional curves of ρ of grade -1.) All rational maps ρ, then, can be found by determining which sequences of eight vertices in the multigraphs of Table I can be blown down to non-singular points. The remaining vertices must correspond to irreducible curves on $\boldsymbol{P}^{2}(F)$, and a check to see if such curves actually occur on $\boldsymbol{P}^{2}(F)$ confirms that the expected exceptional curves of ρ exist on \tilde{X}. Once all maps for $n=8$ are found, the search for $n<8$ can be completed by observing which sequences have intermediate stages where the dual intersection graph of the curves of self-intersection -2 form a Dynkin diagram on the appropriate number of vertices. For the sake of completeness we will also include the case $\operatorname{ch} \operatorname{ar}(F)=2$, where the singular space X may not exist (cf. Artin [1]), although the "non-singular model" \tilde{X} can be obtained from $\boldsymbol{P}^{2}(F)$ as in the general case by blowing up points as described by ρ^{-1}.

In Table II we list all maps $\rho: \widetilde{X} \rightarrow \boldsymbol{P}^{2}(F)$ derived in this fashion. Every entry in the table occurs over every algebraically closed field F, except that the graph $2 A_{3}+2 A_{1}$ does not occur in the case $\operatorname{char}(F)=2$, while the graphs $7 A_{1}, D_{4}+4 A_{1}$, and $8 A_{1}$ occur only in this case. (In particular, these three graphs do not occur over \boldsymbol{C}; cf. [12], [20], [3]). First we give the Dynkin diagram Γ of curves on \tilde{X} with self-intersection -2. (Recall that Γ determines \tilde{X} uniquely up to an algebraic deformation in the maximally degenerate case.) The second column is the list of curves with self-intersection -1 that are blown down by ρ, described by identifying which curves of self-intersection -2 they meet (e.g., 178 is the curve which intersects the curves numbered 1,7 , and 8 , while 88 is the curve which intersects curve 8 twice). The third column is the list of those curves in the Dynkin diagram that are blown down. Finally we give the variety, normalized by an appropriate linear fractional transformation of projective space, which is the image on $\boldsymbol{P}^{2}(\boldsymbol{F})$ of the remaining -2 curves.

Table II: Minimal birational mappings of maximally degenerate Del Pezzo SURFACES ONTO P^{2}

	8	2345678	y
	$\begin{aligned} & 2 \\ & 2,7 \\ & 2,7 \\ & 2,7 \end{aligned}$	$\begin{aligned} & 2345678 \\ & 234578 \\ & 123567 \\ & 134567 \end{aligned}$	$\begin{aligned} & x^{2}-y z \\ & y z \\ & y z \\ & y\left(x^{2}-y z\right) \end{aligned}$
	$\begin{aligned} & 78,2 \\ & 78,2 \\ & 78,2 \\ & 78,88 \end{aligned}$	$\begin{aligned} & 234568 \\ & 123467 \\ & 124567 \\ & 234567 \end{aligned}$	$\begin{aligned} & y z \\ & y z \\ & y\left(x^{2}-y z\right) \\ & y\left(x^{3}+p x y z-y z^{2}\right) \end{aligned}$
	$\begin{aligned} & 18 \\ & 3,6 \\ & 18,3 \\ & 18,3 \\ & 18,3,6 \\ & 18,3,6 \end{aligned}$	$\begin{aligned} & 2345678 \\ & 123678 \\ & 235678 \\ & 134567 \\ & 13467 \\ & 12456 \end{aligned}$	$\begin{aligned} & x^{3}+p x y z-y z^{2} \text { where } p \neq 0 \\ & y z \\ & x\left(x^{2}-y z\right) \\ & x\left(x^{2}-y z\right) \\ & x y z \\ & x y z \end{aligned}$
	27,1 27,78 27,68,1 27,68,1 27,68,1 27,68,78	145678 234568 12356 12458 23458 12346	$y z$ $y\left(x^{3}+p x y z-y z^{2}\right)$ xyz xyz $x y\left(x^{2}-y z\right)$ $y(y-z)\left(x^{2}-y z\right)$
$\mathrm{A}_{7}+\mathrm{A}_{1}$	$\begin{aligned} & 28,4 \\ & 28,17 \\ & 28,88 \end{aligned}$	$\begin{aligned} & 124567 \\ & 345678 \\ & 234567 \end{aligned}$	$\begin{aligned} & y\left(x^{2}-y z\right) \\ & x\left(x^{2}-y z\right) \\ & \left(x^{2}-y z\right)\left(2 x^{3}-3 x^{2} y+y^{3}-x^{2} z-\right. \\ & \left.\quad 2 x y z+3 y^{2} z+y z^{2}\right) \end{aligned}$
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$	28,17,4	34678	$x y z$
	28,17,4	14568	$x y z$
	28,17,4	23567	$x y\left(x^{2}-y z\right)$
	28,68,4	12467	$y z\left(x^{2}-y z\right)$
	28,68,17	13456	$x\left(x^{2}-y z\right)\left(x^{2}-y^{2}-y z\right)$
	28,68,88	12456	$\begin{aligned} & x y\left(x^{3}-2 x^{2} y+x y^{2}+p y z^{2}\right) \text { where } \\ & p \neq 0 \end{aligned}$
	28,68,17,4	1346	$x y z(y-z)$
	28,68,17,4	2356	$x y z\left(x^{2}-y z\right)$

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| | | | |
| :--- | :--- | :--- | :--- | :--- |

			148,278,578,88	2356	$\begin{aligned} & y z\left(x^{2}-y z\right)\left(x^{2} y-x^{2} z+4 x y z-\right. \\ & \left.y^{2} z+y z^{2}\right) \end{aligned}$
			148,278,167,578	2346	$\begin{aligned} & (x+2 z)\left(x^{2}-y z\right)\left(x^{2}-x y-y z\right) \\ & \times\left(4 x^{2}-4 x y-y^{2}-8 y z\right) \end{aligned}$
			148,278,368,13,25	467	$x y z(2 x-y-z)\left(x^{2}-y z\right)$
			148,167,368,13,25	247	$y z(x-z)(y-z)\left(x^{2}-y z\right)$
			148,278,167,13,25	346	$x y z(y-z)\left(x^{2}-y z\right)$
			148,278,368,167,13	245	$z(x-y)(x-z)\left(x^{2}-y z\right)\left(x^{2}-x y-y z\right)$
			148,278,368,578,88	135	$\underset{8 x y z)}{x y z(y-z)\left(x^{2} z+8 x y^{2}-4 y^{2} z+4 y z^{2}-\right.}$
			$\begin{aligned} & 148,278,167,578 \\ & 347,25 \end{aligned}$	36	$y z(x-z)(y-z)(x+y)\left(x^{2}-y z\right)$
			$\begin{aligned} & 148,278,368,167,578, \\ & 347 \end{aligned}$	25	$\begin{aligned} & (x-y)(x-z)(x+y)(x+z)\left(x^{2}-y z\right) \\ & \times\left(x^{2}+y z\right) \end{aligned}$
			$\begin{aligned} & 148,278,368,167,347 \\ & 13,25 \end{aligned}$	5	$x y z(x-y)(x-z)(y-z)(x-y-z)$
			138,145,12	25678	$y z\left(x^{3}-3 x y z+y^{2} z+y z^{2}\right)$
			138,145,236,12	3578	$z(x-y-z)\left(x^{2}-y z\right)\left(x^{2}-x y-y z\right)$
			138,145,167,12	2357	$x y z\left(x y^{2}+x^{2} z-3 x y z+y z^{2}\right)$
			138,145,167,236,357	248	$\begin{aligned} & z(x-y)((p+1) x-y-p z)\left(x^{2}-y z\right) \\ & \times\left(x^{2}-x y+(p-1) y z\right) \text { where } \\ & p^{2}-p+1=0 \end{aligned}$
			$\begin{aligned} & 138,145,167,236,247, \\ & 258,357,468 \end{aligned}$		$\begin{aligned} & x y z(x-z)(y-p z)(x-y-z)((p+1) \\ & \times x-y)((p+1) x-y-z) \text { where } \\ & p^{2}+p+1=0 \end{aligned}$
\int_{3}^{1}	$\begin{gathered} \mathrm{D}_{4}+4 \mathrm{~A}_{1} \\ (\text { char. }=2 \text {) } \\ -\stackrel{\bullet}{4} \\ -4 \\ \hline \end{gathered}$		156,457,178	23468	$\begin{aligned} & \left(x^{2}-y z\right)\left(x^{2}-y^{2}-y z\right)\left(x^{2}+p y z\right) \\ & \quad \text { where } p(p-1) \neq 0 \end{aligned}$
			156,457,178,2	2368	$y z(y-z)\left(x^{2}-y z\right)$
			156,457,358,2	2678	$y z(y-z)\left(x^{2}-y z\right)$
			156,457,358,55	1278	$\begin{aligned} & x y(x-y)\left(p x^{3}+(p+1) x^{2} y+x y^{2}+\right. \\ & \left.(p+1) y z^{2}\right) \text { where } p(p-1) \neq 0 \end{aligned}$
			5678,156,457,55	2348	$\begin{aligned} & y z\left(x^{2}-y z\right)\left(x^{2} y+x^{2} z+p y^{2} z+y z^{2}\right) \\ & \quad \text { where } p-1 \neq 0 \end{aligned}$
			5678,156,457,367	1348	$\begin{aligned} & (x-z)\left(x^{2}-y z\right)\left(x^{2}+p y z\right)\left(x^{2}+\right. \\ & \left.p y^{2}+(p+1) y z\right) \text { where } \\ & p(p+1) \neq 0 \end{aligned}$
			156,457,178,358,2	346	$y z(x-z)(y-z)\left(x^{2}-y z\right)$
			5678,156,457,358,55	134	$\begin{aligned} & x y z(y-z)\left(x^{2} y+p x^{2} z+y^{2} z+y z^{2}\right) \\ & \quad \text { where } p(p-1) \neq 0 \end{aligned}$
			$\begin{aligned} & 5678,156,457,178,358 \text {, } \\ & 468 \end{aligned}$	23	$\begin{aligned} & (x-y)(x-z)((p+1) x-z)(x- \\ & (p+1) y)\left(x^{2}-y z\right)\left(x^{2}+p x y+y z\right\} \\ & \text { where } p(p-1) \neq 0 \end{aligned}$
			$\begin{aligned} & 156,457,178,358,468 \\ & 367,2 \end{aligned}$	2	$x y z(x-y)(x-z)(y-z)(x-y-z)$
$\begin{gathered} 8 \mathrm{~A}_{1} \\ (\text { char. }=2) \end{gathered}$			1234,1256,1368,2367	4578	$\begin{aligned} & \left(x^{2}-y z\right)\left(x^{2}-p y z\right)\left(\left(q^{2}-p\right) x^{2}+\right. \\ & \left.p(p-1) y^{2}+\left(q^{2}-p^{2}\right) y z\right)\left(\left(q^{2}-\right.\right. \\ & p) x^{2}+p\left(q^{2}-1\right) y z+q^{2}(p-1) \\ & \left.1) z^{2}\right) \text { where } p(p-1)\left(q^{2}-1\right) \\ & \left(q^{2}-p\right) \neq 0 \end{aligned}$

	$\begin{aligned} & 1234,1256,1278,1368 \\ & 1234,1256,1278,1368, \\ & 1357,2358,2367 \\ & \\ & 1234,1256,1278,1368, \\ & 1357,1458,1467,11 \end{aligned}$	457 4	$\begin{aligned} & y z(y-z)\left(x^{2}-y z\right)\left((p+q) x^{2} y+q(p+\right. \\ & \left.1) x x^{2} z+p(q+1) y^{2} z+p(p+q) y z^{2}\right) \\ & \text { where } p(p-1)(q-1)(p+q)\left(p^{2}+\right. \\ & q)\left(p q^{2}+p^{2}+p q+q\right) \neq 0 \\ & x y z(x-y-z)((p+q+1) x y+ \\ & \left.p q x z+p q y z+p q z^{2}\right)\left(q x^{2}+q x y+\right. \\ & q y z+p(p+q+1) y z)\left(p x y+p y^{2}+\right. \\ & q(p+q+1) x z+p y z) \text { where } \\ & p q(p+q+1) \neq 0 \\ & x y z(x-y)(x-z)(y-z)(x-y-z) \\ & \times\left(x^{2} y-x y^{2}-q x^{2} z+p y^{2} z+q x z^{2}\right) \\ & \left.p y z^{2}\right) \text { where pq(p-1)(q-1)(p-q)} \\ & \times(p+q+1) \neq 0 \end{aligned}$
	7	234567	y
	$\begin{aligned} & 2 \\ & 2,6 \end{aligned}$	$\begin{aligned} & 234567 \\ & 23467 \end{aligned}$	$\begin{aligned} & x^{2}-y z \\ & y z \end{aligned}$
	$\begin{aligned} & 67,3 \\ & 67,3 \\ & 67,3 \end{aligned}$	$\begin{aligned} & 23457 \\ & 12356 \\ & 12456 \end{aligned}$	$\begin{aligned} & y z \\ & y z \\ & y\left(x^{2}-y z\right) \end{aligned}$
	17,3 17,56 17,56,3 17,56,3	$\begin{aligned} & 34567 \\ & 23457 \\ & 2357 \\ & 1245 \end{aligned}$	$\begin{aligned} & y z \\ & x\left(x^{2}-y z\right) \\ & x y z \\ & x y z \end{aligned}$
	$\begin{aligned} & 14,57 \\ & 14,57,36 \\ & 14,57,27 \\ & 14,57,36,27 \end{aligned}$	$\begin{aligned} & 12356 \\ & 1267 \\ & 2356 \\ & 135 \end{aligned}$	$\begin{aligned} & y\left(x^{2}-y z\right) \\ & x y z \\ & y z\left(x^{2}-y z\right) \\ & x y z(y-z) \end{aligned}$
	$\begin{aligned} & 15,37,46 \\ & 567,15,37 \\ & 567,15,37,46 \end{aligned}$	$\begin{aligned} & 1267 \\ & 1246 \\ & 134 \end{aligned}$	$\begin{aligned} & y z(y-z) \\ & y z\left(x^{2}-y z\right) \\ & x y z(y-z) \end{aligned}$
	$\begin{array}{r} 123,145,246,167 \\ 123,145,246,167 \\ 357,257,356 \end{array}$	357	$\begin{aligned} & y z(y-z)\left(x^{2}-y z\right) \\ & x y z(x-y)(x-z)(y-z) \\ & \times(x-y-z) \end{aligned}$

	6	23456	y
	$\begin{aligned} & 16 \\ & 16,4 \\ & 16,4 \end{aligned}$	$\begin{aligned} & 12345 \\ & 1245 \\ & 2346 \end{aligned}$	$\begin{aligned} & x^{2}-y z \\ & y z \\ & y z \end{aligned}$
	$\begin{aligned} & 16,23 \\ & 16,23,45 \end{aligned}$	$\begin{aligned} & 3456 \\ & 246 \end{aligned}$	$\begin{aligned} & y z \\ & x y z \end{aligned}$
$\underbrace{1}_{2}$	3	2345	y

$\mathrm{A}_{2}+\mathrm{A}_{1}$

234
y
2

13
12
y
II. Compactifications of affine surfaces. An analytic (or algebraic) compactification of a two-dimensional affine variety V is an injective holomorphic (regular) mapping h of V into a normal compact complex surface X (the compactifying surface) such that $X-h(V)$ is a closed curve Y (the curve at infinity) on X. For $V=\boldsymbol{C}^{2}$ the problem of finding all analytic compactifications with X non-singular and for which Y consists
of non-singnlar components meeting transversally was solved in detail by Morrow [17], following important contributions by Remmert and Van de Ven [23], Van de Ven [28], Ramanujam [22], and Kodaira [14]. In [4] and [6] we took up the question of the possible singularities of Y and of X if the conditions of normal meetings and of smoothness are relaxed.

Meanwhile attention turned to compactifications of other affine spaces such as $\boldsymbol{C} \times \boldsymbol{C}^{*}$ and $\left(\boldsymbol{C}^{*}\right)^{2}$. The complete list (modulo blowing up extra points at infinity) of rational compactifying surfaces of these varieties was given by Suzuki [25], while for $V=\left(C^{*}\right)^{2}$, all non-rational compactifying surfaces were listed by Ueda [27]. (See also Simha [24]. For $V=\boldsymbol{C}^{2}$ and $V=\boldsymbol{C} \times \boldsymbol{C}^{*}$, all compactifying surfaces are rational (Kodaira [14]).) These ideas have recently been extended by Enoki [15], with especially interesting results in the non-algebraic case.

Now if X is a Del Pezzo surface over C and if $f: X \rightarrow \boldsymbol{C P}^{2}$ is one of the rational mappings listed in Table II, with associated plane curve C, then $\left(\left.f\right|_{\boldsymbol{P}^{2}-c}\right)^{-1}: \boldsymbol{P}^{2}-C \rightarrow X$ is a compactification of the affine variety $V=$ $\boldsymbol{P}^{2}-C$. Conversely, if $h: V \rightarrow X$ is any algebraic compactification, then h^{-1} extends meromorphically across the curve at infinity in X to provide a birational mapping $f: X \rightarrow \boldsymbol{C} \boldsymbol{P}^{2}$. Thus classifying minimal birational mappings of Del Pezzo surfaces onto $\boldsymbol{C P}^{2}$ is equivalent to classifying certain compactifications of affine subvarieties of $\boldsymbol{C P}^{2}$ (cf. [6]).

Definitions. Let V be an open two-dimensional variety, let S be a compact surface containing V as a Zariski open subset, and let $h: V \rightarrow X$ be an algebraic compactification of V. Then h is called a minimal compactification of V in S provided (a) h does not extend regularly across any component of the curve $S-V$, and (b) if $\tilde{h}: S \rightarrow X$ is the meromorphic extension of h to S, then \tilde{h} admits a resolution of singularities

for which π is the minimal resolution of singularities of X. For any affine variety V, a compactification $h: V \rightarrow X$ will be called a minimal projective compactification if V admits an embedding into $\boldsymbol{C P}{ }^{2}$ for which h is a minimal compactification of V in $\boldsymbol{C P} \boldsymbol{P}^{2}$. A normal compact surface X is called minimal if X has smallest second Betti number among all normal surfaces dominated by its non-singular model.

Lemma 2. Let V be an affine subvariety of $\boldsymbol{C P}^{2}$, and let $h: V \rightarrow X$ be a minimal projective compactification of V such that X is a singular
minimal Gorenstein surface with vanishing geometric genus. Then X is a maximally degenerate Del Pezzo surface and h^{-1} extends to one of the rational maps classified in Table II. In particular, the only varieties V admitting such compactifications are the complements in \boldsymbol{P}^{2} of the curves C listed in the fourth column of the Table.

To prove the lemma one notes that the existence of h implies that X is rational. But a minimal rational surface $X \neq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ has $b_{2}(X)=1$ ([19]). In this context, $p_{g}=0$ implies that the canonical bundle K_{X} is negative ([2]), so X is a maximally degenerate Del Pezzo surface as claimed. That h^{-1} extends to a mapping of the type classified is clear from the definitions of minimal in each section.

We will now apply our work to the problem of finding compactifications for a particularly interesting class of affine surfaces, which includes, for instance, the spaces $\boldsymbol{C}^{2}, \boldsymbol{C} \times \boldsymbol{C}^{*}$, and $\left(\boldsymbol{C}^{*}\right)^{2}$.

Lemma 3. Let $P_{1}, \cdots, P_{r}, Q_{1}, \cdots, Q_{s}$ be points of \boldsymbol{C}, with $r \leqq s$. Put $V=\left(\boldsymbol{C}-\left\{P_{1}, \cdots, P_{r}\right\}\right) \times\left(\boldsymbol{C}-\left\{Q_{1}, \cdots, Q_{s}\right\}\right)$, and let $h: V \rightarrow S$ be an algebraic compactification with S non-singular. Denote by $Y=\bigcup_{i=1}^{n} Y_{1}$ the curve $S-h(V)$, and assume that (a) each component Y_{i} is non-singular, (b) Y_{i} meets Y_{j} transversally in a single point, if at all, and (c) $Y_{i} \cap Y_{j} \cap Y_{k}=$ \varnothing for all distinct vertices i, j, k. Denote the weighted dual intersection graph of Y by Γ_{Y}, the subgraph of Γ_{Y} consisting of the union of all elementary cycles (i.e., the "two-connected block" of Γ_{Y}) by Γ_{Y}^{\prime}, and the fundamental group of the boundary of a tubular neighborhood of Y in S by $\pi_{1}\left(\Gamma_{Y}\right)$. (If $H^{1}(Y, \boldsymbol{R})=0$, then $\pi_{1}\left(\Gamma_{Y}\right)$ is the group on n generators x_{1}, \cdots, x_{n} with relations $\prod_{j=1}^{n} x_{j}^{Y j \cdot Y_{i}}=1 \quad \forall i$ and $\left(x_{i} x_{j}\right)^{Y_{i} \cdot Y_{j}}=$ $\left(x_{j} x_{i}\right)^{Y_{i} \cdot Y_{j}} \forall i, j$; see Mumford [18].) Then Γ_{Y} has the following properties.
(1) The number n of vertices of Γ_{Y} is equal to $r+s+b_{2}(S)$, where b_{2} is the second Betti number.
(2) If c denotes the circuit rank (the number of independent cycles of a graph), then $c\left(\Gamma_{Y}\right)=\operatorname{dim} H^{1}(Y, \boldsymbol{R})=r s$.
(3) If $r=0$ then $\Gamma_{Y}^{\prime}=\varnothing$ and $\pi_{1}\left(\Gamma_{Y}\right)$ is free on s generators.
(4) If $r \geqq 1$ then Γ_{Y}^{\prime} contains at least $r+1$ vertices of order $s+1$, and each component of the weighted graph $\Gamma_{Y}-\Gamma_{Y}^{\prime}$ has determinant equal to ± 1.

Proof. Suppose that $h_{1}: V \rightarrow S_{1}$ and $h_{2}: V \rightarrow S_{2}$ are two such compactifications. Then, since the maps are algebraic, $h_{2} \circ h_{1}^{-1}$ extends to a birational mapping $f: S_{1} \rightarrow S_{2}$. If properties (a), (b), and (c) hold for both S_{1} and S_{2}, then the singularities of f can be resolved by a diagram

where ρ_{1} and ρ_{2} are inverse to a sequence of monoidal transformations at points of $S_{1}-h_{1}(V)$ and $S_{2}-h_{2}(V)$, and where conditions (a), (b), and (c) continue to hold for the curve at infinity in each intermediate step between S_{1} and \widetilde{S} and between S_{2} and \widetilde{S}. Since under these conditions properties (1), (2), (3), and (4) are preserved by monoidal point transformations and their inverses, we conclude that if V admits any such compactification satisfying (1)-(4), then all such compactifications will.

But clearly (a)-(c) and (1)-(4) hold for the standard embedding (C $\left.\left\{P_{1}, \cdots, P_{r}\right\}\right) \times\left(\boldsymbol{C}-\left\{Q_{1}, \cdots, Q_{s}\right\}\right) \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, for which Γ_{Y} is the bipartite

Table III: Minimal singular projective compactifications of
$\left(\boldsymbol{C}-\left\{P_{1}, \cdots, P_{r}\right\}\right) \times\left(C-\left\{Q_{1}, \cdots, Q_{s}\right\}\right)$
Compactifications of \boldsymbol{C}^{2}

Compactifications of $\boldsymbol{C} \times \boldsymbol{C}^{*}$

Compactifications of $\left(\boldsymbol{C}^{*}\right)^{2}$

Compactifications of $C \times(\boldsymbol{C}-\{0,1\})$

Compactifications of $C^{*} \times(C-\{0,1\})$

graph $K_{r+1, s+1}$ with all weights zero. This completes the proof.
Theorem. Let V be an affine variety of the type $\left(C-\left\{P_{1}, \cdots, P_{r}\right\}\right) \times$ $\left(\boldsymbol{C}-\left\{Q_{1}, \cdots, Q_{s}\right\}\right) . \quad$ Suppose that V admits a minimal projective compactification $h: V \rightarrow X$, where X is a minimal singular Gorenstein surface with $p_{g}=0$. Then $r \leqq 2, s \leqq 2$, and X is a maximally degenerate Del Pezzo surface. Furthermore, every such compactification is represented in Table III.
(We identify the compactification by drawing the graph of the curve $Y=X-h(V)$ at infinity. The solid dots represent the irreducible components of Y, while the symbol Γ_{k} inserted in an edge (or multiple edge or quasi-edge) means that the corresponding curves intersect in the indicated singular point of X. Thus for example the picture below means

that Y has three irreducible components, the first passing simply through the A_{7} singularity, the second with two local components passing through A_{7}, the third passing through both A_{7} and A_{1}, and with no other points of intersection.)

Proof of the Theorem. By Lemma 2 each compactification of the type under consideration is represented in Table II. Indeed, for each entry of Table II the given map $\rho: X \rightarrow \boldsymbol{C} P^{2}$ represents a minimal projective compactification of a space V of type $\left(\boldsymbol{C}-\left\{P_{1}, \cdots, P_{r}\right\}\right) \times\left(\boldsymbol{C}-\left\{Q, \cdots, Q_{s}\right\}\right)$ if and only if the variety $\boldsymbol{C P ^ { 2 }}-C$, for C the projective plane curve indicated in the fourth column, is isomorphic to such a V. When C is one of the collections of lines

$$
\begin{array}{rl}
y & x y(x-y) \\
x y & x y z(y-z) \\
x y z & x y z(x-y)(z-x),
\end{array}
$$

this is trivially the case. The Cremona transformations $[x, y, z] \rightarrow[x z$,
$\left.y z-x^{2}, z^{2}\right]$ and $[x, y, z] \rightarrow\left[x^{2}, y z, x y\right]$ on $\boldsymbol{C P}^{2}$ give three additional isomorphisms $\boldsymbol{C} \boldsymbol{P}^{2}-C \cong V$ as follows:

$$
\begin{aligned}
y\left(y z-x^{2}\right), & \text { for } V=\boldsymbol{C} \times \boldsymbol{C}^{*} \\
x y\left(y z-x^{2}\right), & \text { for } V=\left(\boldsymbol{C}^{*}\right)^{2} \\
x y z\left(y z-x^{2}\right), & \text { for } V=\boldsymbol{C}^{*} \times(\boldsymbol{C}-\{0,1\})
\end{aligned}
$$

For each occurrence (a total of 37) in Table II of one of these 9 admissible curves, the "graph at infinity" for the corresponding compactification is easily determined from the graph Γ_{Y} described in the second column of Table II, by collapsing each component of the Dynkin diagram Γ to a (quasi-) edge. For every other curve C appearing in the fourth column of Table II, it is a straightforward verification that the corresponding graph Γ_{Y} does not satisfy properties (1)-(4) of Lemma 3 for any choice of r and s, so the only compactifications of this type are the 37 listed.

References

[1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
[2] D. Bindschadler and L. Brenton, On singular 4-manifolds of the homology type of $\boldsymbol{C P} \boldsymbol{P}^{2}$, to appear in J. Math. Kyoto Univ.
[3] D. Bindschadler, L. Brenton, D. Drucker and G. C. E. Prins, On global extensions of Dynkin diagrams and singular surfaces of the topological type of \boldsymbol{P}^{2}, Proc. Symp. Pure Math. 40 (1983), Part 1, 145-151.
[4] L. Brenton, A note on compactifications of C^{2}, Math. Ann. 206 (1973), 303-310.
[5] L. Brenton, On singular complex surfaces with negative canonical bundle, with applications to singular compactifications of \boldsymbol{C}^{2} and to 3 -dimensional rational singularities, Math. Ann. 248 (1980), 117-124.
[6] L. Brenton, D. Drucker and G. C. E. Prins, Graph theoretic techniques in algebraic geometry I: the extended Dynkin diagram \bar{E}_{8} and minimal singular compactifications of \boldsymbol{C}^{2}, Recent Developments in Several Complex Variables, Annals of Math. Studies 100, Princeton Univ. Press, Princeton (1981), 47-63.
[7] L. Brenton, D. Drucker and G. C. E. Prins, Graph theoretic techniques in algebraic geometry II: construction of singular complex surfaces of the rational cohomology type of $\boldsymbol{C P}^{2}$, Comment. Math. Helvetici 56 (1981), 39-58.
[8] H. Coxeter, Finite groups generated by reflections, and their subgroups generated by reflections, Proc. Cambridge Phil. Soc. 30 (1934), 466-482.
[9] M. Demazure, Surface de Del Pezzo II, III, IV, V, in Lecture Notes in Math. 777, Springer-Verlag (1980).
[10] D. Drucker and D. Frohardt, A Euclidean model for bases of root systems, to appear.
[11] P. Du Val, On the directrices of a set of points in a plane, London Math. Soc. (2) 35 (1933), 23-74.
[12] P. Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction, I, II, and III, Proc. Cambridge Phil. Soc. 30 (1934), 453-465, 483-491.
[13] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, A. M. S. Translations (2) 6 (1957), 111-244.
[14] K. Kodaira, Holomorphic mappings of polydises into compact complex manifolds, J. Differential Geometry 6 (1971), 33-46.
[15] I. Enoki, On compactifiable complex analytic surfaces, Invent, Math, 67 (1982), 189-211.
[16] E. Looijenga, On the semi-universal deformation of a simple elliptic hypersurface singularity, part II: the discriminant, Topology 17 (1978), 23-40.
[17] J. A. Morrow, Minimal normal compactifications of \boldsymbol{C}^{2}, Rice Univ. Studies 59 (1973), 97-112.
[18] D. MUMFORD, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I. H. E. S. 9 (1961), 5-22.
[19] M. Nagata, On rational surfaces I: Irreducible curves of arithmetic genus 0 or 1, Memoirs of the College of Science, Univ. of Kyoto, Series A, 32, Mathematics No. 3 (1960), 351-370.
[20] I. Naruki and T. Urabe, On singularities on degenerate Del Pezzo surfaces of degree 1, 2, preprint. (A summary appears in Proc. Symp. Pure Math. 40 (1983), part 2, 587-591.)
[21] H. C. Pinkham, Simple elliptic singularities, Del Pezzo surfaces and Cremona transformations, Proc. Symp. Pure Math. 30 (1977), 69-70.
[22] C. P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. Math. (2) 94 (1971), 69-88.
[23] R. Remmert and T. Van de Ven, Zwei Sätze über die komplexprojective Ebene, Nieuw Arch. Wisk. (3) 8 (1960), 147-157.
[24] R. R. Simha, Algebraic varieties biholomorphic to $\boldsymbol{C}^{*} \times \boldsymbol{C}^{*}$, Tôhoku Math. J. 30 (1978), 455-461.
[25] M. Suzuki, Compactifications of $\boldsymbol{C} \times \boldsymbol{C}^{*}$ and $\left(\boldsymbol{C}^{*}\right)^{2}$, Tôhoku Math. J. 31 (1979), 453-468.
[26] G. N. TJurina, Resolution of singularities for plane deformations of double rational points, Funk. Anal. App. 4 (1970), 68-73.
[27] T. Ueda, Compactifications of $\boldsymbol{C} \times \boldsymbol{C}^{*}$ and $\left(\boldsymbol{C}^{*}\right)^{2}$, Tôhoku Math. J. 31 (1979), 81-90.
[28] A. Van de Ven, Analytic compactifications of complex homology cells, Math. Ann. 147 (1962), 189-204.

Mathematics Department
Wayne State University Detroit, MI 48202
U.S.A.

[^0]: * Some of the results of Part I of this paper were announced in [3], where a preliminary version of the present paper was referred to under the title: Graph theoretic techniques in algebraic geometry III.

