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Introduction. Let F be an algebraically closed field and let (X,
be a two-dimensional, rational, normal compact Gorenstein space over F.
If the anticanonical divisor of X is ample, then X is called a (possibly
singular) Del Pezzo surface. For F = C, these surfaces were studied
systematically by Du Val [12] in his investigation of the relation between
rational double points and subgroups of reflection groups of regular
polyhedra (cf. also [8], [13], [20]). They have recently attracted new
interest as singular fibres of versal deformations of elliptic singularities
([9], [16], [21], [26]). We have studied certain of these spaces as examples
of singular complex surfaces of the homology, cohomology, or homotopy
type of CP2 ([2], [7]).

If X is a Del Pezzo surface, the degree of X is the integer d = K-K,
where K is the canonical divisor. If X is singular, each singularity is
a double point of type Ak, Dk, or Ek, and the Dynkin diagram Γ corre-
ponding to the singular set is the Coxeter graph of a subgroup of one
of the reflection groups Alf A2 + Alf Ait Dδ, or Ek, 6 ^ k ^ 8 ([12]). The
number n of vertices of Γ is always less than or equal to 9 — d; if n —
9 — d, X will be called maximally degenerate. In this case H*(X, Q) =
H\P\ Q) Vί, with H\X, Z) = 0, H2(X, Z) = Z, and H\X, Z) a finite group
of order τ/(det(Γ))/c£, where det (Γ) is the determinant of the associated
Cartan matrix. Except when X is the singular quadric hypersurface
QlaPXF), the Chern class of K generates H\X, Z) and so the degree
also gives the cohomology ring structure. In the maximally degenerate
case (but not in general), the singularity type determines the surface up
to a deformation through fibres of the same singularity type ([12], [20]).

Now let X be any Del Pezzo surface. Since X is rational, there
exists a birational mapping / of X onto P2(F). Factoring / into a

* Some of the results of Part I of this paper were announced in [3], where a preliminary-
version of the present paper was referred to under the title: Graph theoretic techniques in
algebraic geometry III.
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sequence of monoidal point transformations and their inverses, we obtain
a commuting diagram

X

9

f \

X —>P
f . ~2

where X is non-singular and p and π are regular (cf. Nagata [19]). The
meromorphic map / will be called minimal if X can be taken to be the
minimal non-singular model of X. In that case, p and π are unique and
exhibit the construction of X as the result of blowing up 9 — d points
in P\ then collapsing the union of n = 10 — d — b2(X) non-singular curves
of grade — 2 to one or more singular points. The purpose of this paper
is to give the complete classification of such maps / in the maximally
degenerate case. Our techniques rely on the existence of certain "global
extensions" Γ of Dynkin diagrams Γ, having the property that for each
vertex wt of Γ — Γ, the subgraph of Γ induced by wt and the vertices
of the components of Γ which meet wi9 is an extended Dynkin diagram
of type Ak, Dk, or Ek.

In part II we will use our results to study compactifications of affine
varieties V oΐ CP2. For V — C2, CxC*, and (C*)2, non-singular compacti-
fications have been studied in such recent papers as [17], [24], [25], and [27].
Our techniques allow us to treat certain singular compactifications as well.
Indeed, we will find all "minimal projective compactifications" (defined
precisely below) h: V —» X of affine varieties VaCP2, where X is a minimal
singular Gorenstein surface with vanishing geometric genus. In particular,
this gives a classification of all compactifications of this type for affine
surfaces of the form (C - {Pl9 , Pr}) x (C - {Q19 , Q8}).

I. Rational mappings of maximally degenerate Del Pezzo surfaces.
In this section we will obtain the list of all minimal birational mappings
/: X-+P\F), modulo automorphisms of P2(F), where F is any algebraically
closed field of characteristic different from 2, and where X is a maximally
degenerate Del Pezzo surface over F. Let X Φ P2, Ql be such a surface,
and let π: X-+X be the minimal resolution of singularities. Then X
contains only finitely many negatively embedded irreducible curves, and
each such curve is non-singular rational with self-intersection —2 or —1.
Let Clf '- ,Cn be the curves of grade —2 and let D19 •• ,Z)m be the
curves of grade —1. Then n ^ 8 and the dual intersection graph of the
C/s is the Dynkin diagram Γ corresponding to the singular points of X.
The a priori possibilities for Γ are those Coxeter graphs that correspond



RATIONAL MAPPINGS OF DEL PEZZO SURFACES 593

to generators of subgroups of certain distinguished finite reflection groups
on Rn, 3 ^ n ^ 8, as listed below .

n = 8: E8, D8, EΊ + Alf A8, E6 + A2, A7 + Alf A + Az,

7~) I O /d O 7~) 9 Δ A I /I I yl ^) A I ^) A A Δ
J-SQ ~ *dJΛ-\i **±s±, ^-^MJ -̂ *-5 ~Γ -^12 ~T~ «:L1» ^ ^ - S I " ^ l j ^** 2f

A + 4A l f 8AX

rγ% — r7 ZT7 Λ 7~) -1- Δ Δ Λ- Δ 9 A Λ- Δ J~) _L Q 2l 7 4̂
At/ — I . -LL/7) -ίi7> -LSQ \ -ft-iy -ίiδ ~Γ Λ-2) ^^*-3 ~Γ ^-l> -^'4 ~Γ Ox±ίf I J±ι

n — bi JG/6, O ^ 2 > ^-5 ~r -A]_

w = 5: A, Λ + 2ΛX

7Z» == ό'm Ά-2 \ -fl-i

(Cf. [8], [12], [13]. Several other characterizations of these graphs are
given in [3].)

If n < 8 then blowing up 8 — n additional points in sufficiently general
position on the curves A produces a new surface X of the same type
and from which the properties of X can easily be recovered. Thus we
can assume n = 8. Let if be the vector subspace of H2(X, R) orthogonal
to the canonical divisor K. Then the Chern classes Ίt of the divisors
Ct form a basis for g? and a base for the root system of the complex Lie
algebra g corresponding to Γ. If δs denotes the orthogonal projection of
the Chern class of D3 into g7, then the vectors δs represent certain of
the "directrices" of the system ([11]). Taking the negative of the cup
product pairing as an inner product on if, it is easy to verify that

2 if i = j

(δif δy> = l if A n Dά = 0

0 if A meets DjΊ iφ j ,

while (Ύif δj) = —(Ct D3) ^ 0 Vi, j . These observations motivate the fol-
lowing lemma.

LEMMA 1. Let B = {vlf , v8) be a base in R8 for a root subsystem
of E8y with \\Vi\\2 = 2 Vi. Then there exists a unique (up to an orthogonal
transformation of R8 taking B onto itself) collection Bf — {wlf , wm} of
vectors of squared length 2 satisfying

(1) (vif Wj) is a non-positive integer Vi, j ,
(2 ) (wif Wj) is a non-negative integer Vi, j , and
(3) B' is maximal with respect to (1) and (2).

The Lemma is proved by means of a graphical construction. For
any vector w in R8 that satisfies condition (1) and has squared length 2,
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we now show that the weighted intersection multigraph Γw of the set
B = {vlf , vQ, W) is the union of an extended Dynkin diagram of type
A, D, or E with a (possibly empty) collection of Dynkin diagrams of types
A, D, and E. (A "multigraph" is a graph with multiple edges allowed.
The term "quasi-graph" allows unanchored edges, pictured •— cf. [7].
In this paper, the extended Dynkin diagram Ax is the only multigraph
we encounter that has a multiple edge.) Let Bw = {w} U {v e B: v is linked to
w}, where "v is linked to w" means that there is a sequence vQ,'' ,vk (A ^ l )
of vectors in B such that v0 = v, vk = w, and (vt_lf v^ΦO for i — 1, , k.
Then Bw is indecomposable (not the union of two nonempty orthogonal
subsets), Bw ± (B - Bw), and B = Bw U (B - Bw). Since B is dependent
and B — Bw is independent, Bw must be dependent. Γw is the union of
the multigraphs for Bw and B — Bw, so the fact that Γw has the form
described above follows from standard arguments of the type used to
classify Dynkin diagrams. (See [10] for a suitably general classification
result.)

Conversely, if Γ is a 9-vertex multigraph containing Γ with an
extended Dynkin diagram of type A, D, or E as one component, and if
the other components (if any) are Dynkin diagrams of types A, D, and
E, then f uniquely determines a vector w such that Γ = Γw. In fact,
w = Σ<,i ( — Cij)V/Nivj, where (ci3) is the inverse of the Cartan matrix of
Γ and Nt is the number of edges joining vt to the single vertex of
f - Γ.

To find the desired maximal collection B', select the graph Γ cor-
responding to B from the list of all 15 graphs for n = 8 given earlier.
Adjoin vertices wltw2, to Γ in such a way that for each j the multi-
graph of BWj is an extended Dynkin diagram of type A, D, or E, and
(wif Wj) is a non-negative integer for every i < j . When this process
can no longer be continued, one obtains a maximal collection Br = {w19

" •> ^m} together with a multigraph Γ = \J?=1ΓW..
To prove uniqueness, consider each of the 15 graphs in turn and

construct all possible maximal collections together with the corresponding
multigraphs. For each Γ, it is found that all the multigraphs obtained
from maximal collections are isomorphic. From this it follows easily that
the maximal collections correspond under suitably chosen orthogonal
transformations of R8. Note that Γ depends only on Γ, not on the
particular choice of B or J5\

The multigraph Γ constructed in the proof from a Dynkin diagram
Γ of a base B will be called the maximal special global extension of Γ
(cf. [3]). The maximal special global extensions of the 15 admissible 8-
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point Dynkin diagrams are shown in Table I. Solid dots represent the
vertices vt of Γ, and circles represent the vertices w3- of Γ — Γ. Note
that the full intersection matrix of {vlf , vβ, wlf , wm) can be recovered
from Γ by using the fact that (wi9 w3 ) equals 1 or 0 according to whether
or not Γ has a component that is joined to both wt and w3- in Γ.

TABLE I: MAXIMAL SPECIAL GLOBAL EXTENSIONS OF ADMISSIBLE 8-POINT DYNKIN

DIAGRAMS.

7+A, ommlm mc

2A4

A5 + A2 + A1

From this list of maximal extensions we will obtain the classification
of minimal birational mappings / : X —> P2(F) of maximally degenerate
Del Pezzo surfaces X. As noted in the introduction, any such / uniquely
determines the map p in the diagram
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X

/ f \
X -—>P2

and X determines π. Thus all minimal birational mappings of X can be
found by finding all maps p:X-+P2 inverse to blowing up points. For
each such p, the dual intersection graph Γp of the exceptional curves of
p is a subgraph of the maximal special global extension Γ of the Dynkin
diagram Γ which characterizes X. (This follows from the remarks
preceding Lemma 1 and the fact that Dt cannot meet D3 if both are
exceptional curves of p of grade —1.) All rational maps p, then, can be
found by determining which sequences of eight vertices in the multigraphs
of Table I can be blown down to non-singular points. The remaining
vertices must correspond to irreducible curves on P2(F), and a check to
see if such curves actually occur on P\F) confirms that the expected
exceptional curves of p exist on X Once all maps for n = 8 are found,
the search for n < 8 can be completed by observing which sequences have
intermediate stages where the dual intersection graph of the curves of
self-intersection —2 form a Dynkin diagram on the appropriate number
of vertices. For the sake of completeness we will also include the case
char(F) = 2, where the singular space X may not exist (cf. Artin [1]),
although the "non-singular model" X can be obtained from P\F) as in
the general case by blowing up points as described by p~\

In Table II we list all maps p:X->P\F) derived in this fashion.
Every entry in the table occurs over every algebraically closed field F,
except that the graph 2A3 + 2AX does not occur in the case char(i^) = 2,
while the graphs 7A19 D4 + 4A19 and 8AX occur only in this case. (In
particular, these three graphs do not occur over C; cf. [12], [20], [3]).
First we give the Dynkin diagram Γ of curves on X with self-intersection
— 2. (Recall that Γ determines X uniquely up to an algebraic deformation
in the maximally degenerate case.) The second column is the list of
curves with self-intersection —1 that are blown down by p, described by
identifying which curves of self-intersection —2 they meet (e.g., 178 is
the curve which intersects the curves numbered 1, 7, and 8, while 88 is
the curve which intersects curve 8 twice). The third column is the list
of those curves in the Dynkin diagram that are blown down. Finally
we give the variety, normalized by an appropriate linear fractional
transformation of projective space, which is the image on P\F) of the
remaining —2 curves.
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TABLE II: MINIMAL BIRATIONAL MAPPINGS OF MAXIMALLY DEGENERATE DEL PEZZO

SURFACES ONTO P 2

1

•— —i — — —
2 3 4 5 6 7 8

2345678 y

^ 4 5 6 7 8

2

2,7

2,7

2,7

2345678 x
2
 - yz

234578 yz

123567 yz

134567 y(x
2
 - yz)

2 3 4 5 6 7

78,2

78,2

78,2

78,88

234568 yz

123467 yz

124567 y(x
2
 - yz)

234567 2/(α;
3
 + pxyz - yz

2
)

A8

1 2 3 4 5 6 7

18

3,6

18,3

18,3

18,3,6

18,3,6

2345678 a;3 + pxyz - yz2 where p φ 0

123678 yz

235678 x(x2 - yz)

x(x2 — yz)

xyz

xyz

134567

13467

12456

E6+A2

1

2 3 4 5 6 7

27,1

27,78

27,68,1

27,68,1

27,68,1

27,68,78

145678

234568

12356

12458

23458

12346

yz

y(x3 + pxyz — yz2)

xyz

xyz

xy(x2 — yz)

y(y - z)(x2 - yz)

A 7 +A x

1 2 3 4 5 6 7

28,4

28,17

28,88

28,17,4

28,17,4

28,17,4

28,68,4

28,68,17

28,68,88

28,68,17,4

28,68,17,4

yz - x2z -

124567 y(x
2
 - yz)

345678 x(x
2
 - yz)

234567 (x2 - yz){2xz - 2x2y
2xyz + 3y2z + yz2)

34678 xyz

14568 xyz

23567 xy(x2 - yz)

12467 yz(x2 - yz)

13456 x(x2 - yz)(x2 - y2 - yz)

12456 xy(xz - 2x2y + xy2 + pyz2) where
pΦO

1346 xyz(y-z)

2356 xyz(x2 - yz)
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D5+A3

4 5 6 7 8

16,4

16,38

16,68

16,38,4

16,57,4

16,57,4

16,38,57

16,57,68

16,57,68

16,38,57,4

16,38,57,4

16,38,57,4

16,38,57,68

16,38,57,68

234678
234567

124578

14578

12378

23478

24568

12358

23458

1258

1347

2468

1345

1247

yix -
ix2-

- yz)
yz)ix2 -

yix* + pxyz •

xyz

yzix2

yzix2 •

xix —

yiy -

yiy -

xyziy

xyziy

xyziy

yzix -

xyix -

- yz)

-yz)

z)ix2 -

z)ix2 -

z)ix2 -
-z)

-z)

-z)

- y)ix -

- z)ix2 -

- xy — yz)

- yz2) where p φ 0

yz)

•yz)

• yz)

-z)

- yz)

2D 4

1

• ^ 2 4

15,37 124678 ix2 - yz)ix2 -pyz) where pip-l)ΦO

15,37,2 24568 yzix2 - yz)

15,37,48,2 1467 xyziy - z)

15,37,48,2 2578 xyziy - z)

D6+2Aχ

• —
4 5 6 7 8

17,38

17,38,5

17,38,5

678,17,5

678,17,5

678,17,38

678,17,77

678,17,77

678,17,77

678,17,38,5

678,17,38,5

124568

12568

24578

12358

23458

13456

12356

12458

23456

1345

1246

ix2 - yz)ix2 - y 2 - yz)

yziy - z)

yziy — z)

yzix2—yz)

yzix2-yz)

xix2 — yz)ix2 — y2 — yz)

xyix*—2x2y+xy2+pyz2) where pΦO

xyixz—2x2yJrxy2jrpyz2) where pΦO

yix2 - yz)i2xz - Sx2y + yB - x2z -
2xyz + Zy2z -

xyziy — z)

xyzix2 — yz)

yz2)

2A 4

1 2 3 4 5 6 7

16,58

16,14

16,47,58

16,35,47

16,35,58

16,35,14

16,35,28,47

16,35,47,58

16,35,47,58

16,35,28,58

16,35,28,47,58

123478

234678

12357

12578

13478

23678

1458

1248

2368

3467

137

xix2 — yz)

yix3 + pxyz — yz2) where p φ 0

xix — z)ix2 — yz)

yiy - z)iχ2 — yz)

yiy - z)ix2 — yz)

zix2 — yz)ix2 — xy — yz)

yzix — y)ix — z)

yzix - y)ix - z)

xyix - z)iχ2-yz)

yzix — y)ix2 — yz)

xyzix — z)iy — z)
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A5+A2+A,

1 2 3 4 5 6 7 8

168,15

168,67

27,38,15

27,38,15

27,38,46

168,27,15

168,27,38

168,27,67

168,38,15

168,38,88

168,46,67

168,46,67

168,578,88

168,27,38,15

168,27,38,46

168,27,46,15

168,27,46,15

168,27,46,67

168,578,27,15

168,578,27,38

168,578,27,67

168,578,38,88

168,578,38,88

168,27,38,46,

168,578,27,38

168,578,27,38

168,578,27,46

168,578,27,38

15

,15

,46

,67

,46,

234567

123457

45678

13467

12458

34578

13457

23458

23567

34567

12457

23478

23456

2456

1457

3478

2358

2458

2346

2456

1345

1245

2356

357

346

135

235

15 24

y(xz + pxyz — yz2) where p φ 0

ix2-yz)i2xz-Sx2y+ yz - x2z - 2xyz
+ SyH + yz2)

xy(x2 - yz)

yz(x2 — yz)

yiy — z)ix2 — yz)

zix2 — yz)ix2 — xy — yz)

zix2 — yz)ix2 — y2 — yz)

zix2 — yz)ix2—xy — yz)

yzixz — Sxyz + y2z + yz2)

xyixz — 2x2y + xy2 + pyz2) where
pφ 0

xyix3 — 2x2y + xy2 + pyz2) where
vΦ 0

xix2 - yz)i%xz + xy2 - x2z - Sxyz +
yz2)

xyix - z)ix2 - yz)

yzix — z)ix2 — yz)

yzix — z)ix2 - yz)

yzix — z)ix2 — yz)

yziy - z)ix2 — yz)

zix - y)ix2 - yz)ix2 - xy — yz)

zix - y)ix2 — yz)ix2 - xy - yz)

xzix2 — yz)ix2 — y2 — yz)

xyzixz — Sxyz + y2z + yz2)

xyzixy2 + x2z — Sxyz + yz2)

xyzix — z)iy — z)

yzix — y)ix — z)ix2 — yz)

yzix — y)ix — z)ix2 — yz)

xyziy — z)ix2 — yz)

xyzix — y)ix — z)iy — z)

(char. #2)-
3 4 5 6

148,278,13 34567

148,167,13 23568

7 * 148,278,88 23456

148,167,347 23568

148,167,13,25 3578

148,278,13,25 3567

148,167,25,46 2378

148,278,368,88 3457

148,278,368,25 1357

148,278,357,25 1356

z(x2 - yz)(x2 - y2 - yz)

xy(xz — 2x2y + xy2 + pyz2) where
pΦO

y(x2 - yz)(Sxz - 4x2y + 4y2z + yz2-
Sxyz)

(x2 - yz)(x2 - xy - yz)(x2 + 4xz -
yz)

yz{y - z)(x2 - yz)

yz(y - z)(x2 - yz)

yz(2x - y- z)(x2 - yz)

xyz{xz - 2x2y + xy2 + Sxyz - lyz2)

yz{x
2
 — yz)(xy + xz - 2yz)

yz(x
2
 — yz)(xy+xz - 2yz)
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148,278,578,88 2356 yzix2 - yz)ix2y - x2z + ϊxyz -
y2z + yz2)

148,278,167,578 2346 ix + 2z)ix2 - yz)ix2 -xy- yz)

x(4ίc2 - ixy - y2 - Syz)

148,278,368,13,25 467 xyzi2x - y - z)ix2 - yz)

148,167,368,13,25 247 yzix - z)iy - z)ix2 - yz)

148,278,167,13,25 346 xyziy - z)ix2 - yz)

148,278,368,167,13 245 zix - y)ix - z)ix2 -yz)ix2-xy-yz)

148,278,368,578,88 135 xyziy -z)ix2z+Sxy2- 4y2z+4yz2-
8xyz)

148,278,167,578, 36 yzix - z)iy - z)ix + y)ix2 - yz)
347,25
148,278,368,167,578, 25 ix - y)ix - z)ix + y)ix + z)ix2 -yz)
347 Xix2+yz)
148,278,368,167,347, 5 xyzix - y)ix - z)iy - z)ix -y-z)
13,25

138,145,12 25678 yzix% - Sxyz + y2z + yz2)
4 A z 138,145,236,12 3578 zix - y - z)ix2 - yz)ix2 - xy - yz)

* _ _ « _ *__, 138,145,167,12 2357 xyzixy2 + x2z - Sxyz + yz2)
1 2 3 4 5 6 7 8 138,145,167,236,357 248 zix-y)iip+Dx-y-pz)ix2-yz)

x ix2 — xy+ip — Dyz) where
p2-p+l=0

138,145,167,236,247, xyzix-z)iy - pz)ix-y-z)iip+D
258,357,468 xx - y)iip+Dx-y-z) where

p2 + p + 1 = 0

156,457,178 23468 ix2 - yz)ix2 - y2- yz)ix2 + pyz)

D4-j-4A where pip—1) φ 0

1 (char.=2) 156,457,178,2 2368 yziy - z)ix2 - yz)

φ m φ 156,457,358,2 2678 yziy - z)ix2 - yz)
5 6 7 8 156,457,358,55 1278 xyix - y)ipxz + ip + Dx2y + xy2-\-

ip + Dyz2) where pip — 1) φ 0
5678,156,457,55 2348 yzix2 - yz)ix2y + x2z + py2z+yz2)

where p — 1 φ 0
5678,156,457,367 1348 ix - z)ix2 - yz)ix2 + pyz)ix2 +

py2 + ip + Dyz) where
pip + 1) φ 0

156,457,178,358,2 346 yzix - z)iy - z)ix2 - yz)

5678,156,457,358,55 134 xyziy - z)ix2y + px2z + y2z + yz2)
where pip — 1) φ 0

5678,156,457,178,358, 23 ix - y)ix - z)ϋp + l)x - z)ix -
468 ip + Dy)ix2 - yz)ix2 + pxy + yz)

where pip — 1) φ 0

156,457,178,358,468, 2 xyzix - y)ix - z)iy - z)ix -y-z)
367,2

8Aχ 1234,1256,1368,2367 4578 ix2 - yz)ix2 - pyz)ϋq2 - p)x2 +
-2) pip - Dy2 + iq2 - P2)yz)ϋq2 -

p)x2 + piq2 — Dyz + q2ip —
• • • • • • • • Dz2) where pip - Diq2 - D
1 2 3 4 5 6 7 8 ί f/>2_ / n\_^ n
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1234,1256,1278,1368 457 yz(y-z)(x2-yz)((p +q)x2y+q(p+
l)x2z+p(qJrl)y2z+p(pΛ-q)yz2)
where p(p-l)(q-l)(p+q)(p2+
q)(pq2+p2+pq+q)Φ0

1234,1256,1278,1368, 4 xyz(x - y - z){(p + q + ϊ)xy +
1357,2358,2367 pqxz + pqyz + pqz2)(qx2 + qxy+

2 3

1 2

s
3

1 2

•—•-
1 2

E7

4 5 6

A7

3 4 5

D6 +A,

4 5 6

A5+A2

3 4 5

2A3 + A!

— —•—
3 4 5

D4+3A!

V-
r ^ 2 4 5 6
3

1 2

7A,
(char. = 2)

3 4 5

7

6

7

φ—

6

—
6

7

6

7

— Φ

7

7

7

1234,1256,1278,1368,
1357,1458,1467,11

7

2

2,6

67,3

67,3

67,3

17,3

17,56

17,56,3

17,56,3

14,57

14,57,36

14,57,27

14,57,36,27

15,37,46

567,15,37

567,15,37,46

123,145,246,167

123,145,246,167

357,257,356

234567

234567

23467

23457

12356

12456

34567

23457

2357

1245

12356

1267

2356

135

1267

1246

134

357

q(p + q + l)xz + pyz) where
pqip + q + 1) Φ 0

xyz(x — y)(x — z)(y — z)(x — y — z)
x (x2y—xy2—qx2z+py2z+qxz2—
pyz2) where pq(p—l)(q—l)(p—q)
X(p+q+l)φθ

y

x2 - yz

yz

yz

yz

y{χ2-yz)

yz

x(x2—yz)

xyz

xyz

y(x2 - yz)

xyz

yz(x2 — yz)

xyz(y — z)

yz(y—z)

yz(x2—yz)

xyz(y-z)

yziy - z)(x2 — yz)

xvz(x — y)(x — z)(v — z)

X(x-y - z)
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E6
1

2 3 4 5 6

1 2 3 4

23456 y

A5+A l 16 12345 x* - yz
_ 16,4 1245 yz

1 2 3 4 5 6 16,4 2346 yz

3A* 16,23 3456 yz
•— *-^ •— 16,23,45 246 xyz
1 2 3 4 5 6

D5

3 2 3 4 5 y

A,+2A,
15,34 235 yz

234

13 12-
2 3

II. Compactifications of affine surfaces. An analytic (or algebraic)
compactification of a two-dimensional affine variety V is an injective
holomorphic (regular) mapping h of V into a normal compact complex
surface X (the compactifying surface) such that X — h(V) is a closed
curve F (the curve at infinity) on X. For V = C2 the problem of finding
all analytic compactifications with X non-singular and for which Y consists
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of non-singnlar components meeting transversally was solved in detail by
Morrow [17], following important contributions by Remmert and Van de
Ven [23], Van de Ven [28], Ramanujam [22], and Kodaira [14]. In [4] and
[6] we took up the question of the possible singularities of Y and of X
if the conditions of normal meetings and of smoothness are relaxed.

Meanwhile attention turned to compactifications of other affine spaces
such as C x C* and (C*)2. The complete list (modulo blowing up extra
points at infinity) of rational compactifying surfaces of these varieties
was given by Suzuki [25], while for V = (C*)2, all non-rational compactify-
ing surfaces were listed by Ueda [27]. (See also Simha [24]. For V — C2

and V = C x C*, all compactifying surfaces are rational (Kodaira [14]).)
These ideas have recently been extended by Enoki [15], with especially
interesting results in the non-algebraic case.

Now if X is a Del Pezzo surface over C and if / : X —> CP2 is one of
the rational mappings listed in Table II, with associated plane curve C,
then (/|p2_(7)"

1: P2 — C -+X is a compactification of the affine variety V —
P2 — C. Conversely, if h: V-+ X is any algebraic compactification, then h~ι

extends meromorphically across the curve at infinity in X to provide a
birational mapping / : X -+CP2. Thus classifying minimal birational map-
pings of Del Pezzo surfaces onto CP2 is equivalent to classifying certain
compactifications of affine subvarieties of CP2 (cf. [6]).

DEFINITIONS. Let V be an open two-dimensional variety, let S be a
compact surface containing F a s a Zariski open subset, and let h:V-^X
be an algebraic compactification of V. Then h is called a minimal com-
pactification of V in S provided (a) h does not extend regularly across
any component of the curve S — V, and (b) if h: S-+ X is the meromorphic
extension of h to S, then h admits a resolution of singularities

X

?/ V

s—^—>x
for which π is the minimal resolution of singularities of X. For any
affine variety V, SL compactification h:V—>X will be called a minimal
projective compactification if V admits an embedding into CP2 for which
h is a minimal compactification of V in CP2. A normal compact surface
X is called minimal if X has smallest second Betti number among all
normal surfaces dominated by its non-singular model.

LEMMA 2. Let V be an affine subvariety of CP2, and let h:V-+ Xbe
a minimal projective compactification of V such that X is a singular
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minimal Gorenstein surface with vanishing geometric genus. Then X is
a maximally degenerate Del Pezzo surface and h~λ extends to one of the
rational maps classified in Table II. In particular, the only varieties
V admitting such compactifications are the complements in P2 of the
curves C listed in the fourth column of the Table.

To prove the lemma one notes that the existence of h implies that
X is rational. But a minimal rational surface X Φ P1 x P1 has b2(X) = 1
([19]). In this context, pg = 0 implies that the canonical bundle Kx is
negative ([2]), so X is a maximally degenerate Del Pezzo surface as claimed.
That h~x extends to a mapping of the type classified is clear from the
definitions of minimal in each section.

We will now apply our work to the problem of finding compactifica-
tions for a particularly interesting class of affine surfaces, which includes,
for instance, the spaces C2, C x C*, and (C*)2.

LEMMA 3. Let P19 , Pr9 Q19 , Q8 be points ofC, with r <; s. Put
V = (C - {P19 , Pr}) x (C - {Q19 , Q8}), and let h:V->Sbean algebraic
compactification with S non-singular. Denote by Y — U?=i^i *^e curve
S — h{V), and assume that (a) each component Yt is non-singular, (b) Yt

meets Yά transversally in a single point, if at all, and (c) Yi Π Y3 Π Y* =
0 for all distinct vertices i, j , k. Denote the weighted dual intersection
graph of Y by Γγ, the subgraph of Γγ consisting of the union of all
elementary cycles (i.e., the "two-connected block9' of Γγ) by Γ'γ, and
the fundamental group of the boundary of a tubular neighborhood of
V in S by π^Γy). {If H\Y, R) = 0, then πx(Γγ) is the group on n
generators xX9 9xn with relations ΐl'j=1xjj'Yί = 1 Vi and {XiX3)

Yi'Y3 =
(XjXi)Ti'Yί Vi, j ; see Mumford [18].) Then Γγ has the following prop-
erties.

(1) The number n of vertices of Γγ is equal to r + s + b2(S), where
b2 is the second Betti number.

(2) If c denotes the circuit rank (the number of independent cycles
of a graph), then c(Γγ) = dim iϊ^Y, R) = rs.

(3) Ifr = 0 then Γγ — 0 and TC^ΓY) is free on s generators.
(4) Ifr^l then ΓY contains at least r + 1 vertices of order s + 1,

and each component of the weighted graph ΓY — Γ'Y has determinant
equal to ± 1 .

PROOF. Suppose that h1:V—>S1 and h2:V-^S2 are two such compac-
tifications. Then, since the maps are algebraic, h^hϊ1 extends to a
birational mapping / : SL —> S2. If properties (a), (b), and (c) hold for both
5X and S2, then the singularities of / can be resolved by a diagram
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where px and p2 are inverse to a sequence of monoidal transformations
at points of Sx — h^V) and S2 — h2(V), and where conditions (a), (b), and
(c) continue to hold for the curve at infinity in each intermediate step
between St and S and between S2 and S. Since under these conditions
properties (1), (2), (3), and (4) are preserved by monoidal point trans-
formations and their inverses, we conclude that if V admits any such
compactification satisfying (l)-(4), then all such compactifications will.

But clearly (a)-(c) and (l)-(4) hold for the standard embedding (C —
{P19 - - , Pr}) x (C - {Qlf , Q8}) -* P1 x P\ for which Γγ is the bipartite

TABLE III: MINIMAL SINGULAR PROJECTIVE COMPACTIFICATIONS OF

( C - { P l f - ' . , P r } ) X (C-{Qlf - - . , 0 , } )

Compactifications of C2

Compactifications of C x C*
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Compactifications of (C*)2

Compactifications of C x (C - {0, 1})

Compactifications of C* x (C-{0, 1})
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Compactifications (C - {0, I})2

graph Kr+lf8+1 with all weights zero. This completes the proof.

THEOREM. Let V be an affine variety of the type (C — {Pi, , Pr}) x
(C — {Qit , Q8}). Suppose that Vadmits a minimal protective compacti-
fication h:V—> X, where X is a minimal singular Gorenstein surface
with pg — 0. Then r ^ 2, s ^ 2, and X is a maximally degenerate Del
Pezzo surface. Furthermore, every such compactification is represented
in Table III.

(We identify the compactification by drawing the graph of the curve
Y — X — h (V) at infinity. The solid dots represent the irreducible
components of Y, while the symbol Γk inserted in an edge (or multiple
edge or quasi-edge) means that the corresponding curves intersect in the
indicated singular point of X. Thus for example the picture below means

that Y has three irreducible components, the first passing simply through
the A7 singularity, the second with two local components passing through
A7, the third passing through both A7 and Alf and with no other points
of intersection.)

PROOF OF THE THEOREM. By Lemma 2 each compactification of the
type under consideration is represented in Table II. Indeed, for each entry
of Table II the given map p: X —> CP2 represents a minimal projective
compactification of a space V of type (C — {Plf , Pr}) x (C — {Q, , Q8})
if and only if the variety CP2 — C, for C the projective plane curve
indicated in the fourth column, is isomorphic to such a V. When C is
one of the collections of lines

y xy(x — y)

xy χyz{y — z)

xyz xyzix — y){z — x) ,

this is trivially the case. The Cremona transformations [x, y, z] —> [xz,



v(yz
χy(yz

xyz(yz

-χ
2
),

for

for

for
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yz — x\ z2] and [x, y, z] -> [x2, yz, xy] on CP2 give three additional isomor-
phisms CP2 — C = V as follows:

V = C x C*

F - (C*)2

F = C* x (C - {0, 1})

For each occurrence (a total of 37) in Table II of one of these 9 admissible
curves, the "graph at infinity" for the corresponding compactification is
easily determined from the graph Γγ described in the second column of
Table II, by collapsing each component of the Dynkin diagram Γ to a
(quasi-) edge. For every other curve C appearing in the fourth column
of Table II, it is a straightforward verification that the corresponding
graph Γγ does not satisfy properties (l)-(4) of Lemma 3 for any choice
of r and s, so the only compactifications of this type are the 37 listed.
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