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1. In Tate [5] and Turner [7], the following result is proved:

THEOREM. Let k, k&' be function fields in one variable over a finite
constant field F and &, . Dedekind zeta-functions of k, k'. Let C, C’
be complete non-singular curves defined over F with function fields
isomorphic to k, k' and J(C), J(C') the Jacobian varieties of C, C'. Then
the following are equivalent:

(1) &= G-

(2) J(C) and J(C') are F-isogenous.

In the present paper, we shall investigate the situation which arises
when we replace the function fields by the algebraic number fields. In
[2] and [3], Iwasawa discussed analogues of Jacobian varieties in this
situation. We shall see that these analogues play some roles in this
question.

Let Q be the rational number field, k, k' finite algebraic extensions
of Q and {,, {, the Dedekind zeta-functions of k and k', respectively.
Perlis [4] gave interesting consequences from {, = {,.. Using his method,
we shall obtain the following results:

Let p be a prime number, k(p) the maximal abelian pro-p-extension
of k£ and G,(p) the Galois group of k(p) over k. For these and also for
other notations which will be introduced afterwards, we adopt similar
notations for k’. Let Z, be the p-adic integer ring and k.. the cyclotomic
Z,-extension of k. We shall prove that {, = {,. implies G.(p) = G, (p)
and G,_(p) = G,.(p) for almost all prime numbers p. Let k.. the maximal
unramified abelian pro-p-extension of k. and Y,(p) the Galois group of
l?m/lcw. Let A and A’ be the p-primary subgroups of ideal class groups
of k. and k., respectively. Let X,(p) be the Pontrjagin dual of the
discrete group A. Let a, be a primitive p-th root of 1. We shall prove
that &, = ¢y implies Xy, (D) = Xore,(P) and Vi () = Vi (p) for almost
all prime numbers p. The duals of X, ,(p) and Y,.,(p) are regarded as
analogies of the Jacobian variety in our situation (cf. [2], [3]), so that this
can be interpreted as an analogue of the fact that (1) implies (2) in the
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case of function fields. We are not in a position now to prove an analogue
of (2) implies (1) in our case, but it is conjectured that & # @ would imply
that there exist some primes p such that Y,(p) # 0. (This can be in fact
proved in case k is not totally real, as shown below.) In our last
paragraph, we shall give such p’s for some real quadratic fields k.

In this paper, Z and R denote the ring of rational integers and the
field of real numbers. As already mentioned, @ denotes the rational
number field. For a finite algebraic number field k, we denote by k; the
idele group of k.

2. Let k and k' be finite algebraic number fields such that £, = &,.
Let L be the Galois closure of k& over Q. It is well known that LDk’
and that the degree (k; @) is equal to (¥’; @). Let G be the Galois group
G(L/Q) of L over Q, H = G(L/k) and H' = G(L/k'). Let s = (k; Q). Let
D and D’ be the linear representations of G induced by the unit represen-
tations of H and H’. Let Z be the integer ring and M,(Z) the set of
all integral s X s matrices. We put

M, ={MeM(Z)|det (M) =0, D(g9)M = MD'(g) for every geG}.

By [4] and [7], we see that I, is not empty. The following Lemma
is also proved in [4].

LEMMA 1 (cf. [4, Theorem 1]). Let v = ged {det (M)|MeM,}. Then
every prime number dividing v divides (L; k).

Let o, ---, 0, and p;, -, 0. be representatives for left cosets of G
by H and H’, with p, = o; = 1. Let L* be the multiplicative group of
L. For a matrix A = (a;;) € M(Z), we now define an endomorphism g,
of L™ by p,(x) = IIi-, 0:(x)* for x € L*. We also define an endomorphism
of L* by p(x) = Il;-, 0i(x)*2. Then we have the following:

LEMMA 2 (cf. [4, Lemma 5]). For matrices A and B in I, and for
a€k*, we have

(1) pak*) k™.

(2) pa(tta(a)) = pasi(a). Here B! is the transpose of B.

Let k® be the maximal abelian extension of k. Let M be a matrix
in M,. We now define a homomorphism of G(k®/k) into G(k'*/k") induced
by pu.

LEMMA 8. Let v be a place of Q, Q, the completion of Q at v
and k Qe Q, the temsor product of k and @, Then there exists a con-

tinuous homomorphism tty, of (k Qe Q,)* into (k' Qe®.,)* such that
iV (pty(a)) = ey ,(i(@)) for any element a of k*. Here i is a natural injec-
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tion of k into k Qo Q,, while i’ is a natural injection of k' into k' Q¢ Q..

Proor. Let w, -, w, be the places of L lying above v. Let @;
be a multiplicative valuation belonging to w;. For positive number 7,
we put V,.(p) ={ack*|pjl@a—1)<mn j=1,---,m}. For any positive
number ¢ there exists a positive number ¢ such that p,(V,(9)) c V,.(e).
Hence our assertion follows from the fact that & is dense in & @, @,.

Let w, :--, v, be the real places of k and wv,., ---, ¥,.4,, the
imaginary places of k;wvi, ---, v}, the real places of k' and vl -+, Vriiyy
the imaginary places of k’. Since we have {, = {,,, we have 7, = r; and
r,=r,. Weput ki, ={ack,la>0} for j =1, -, r; kX, = [T:L k7, ¥
1755, b, and k2, = IG5 koo X TGSV, k. Let w be the infinite place
of Q. Since p, , is continuous, we have g, (k% ,)CkZ,. Let a = (a,)
be an element of kX such that a,c(k Qo Q,)*. We can define a con-
tinuous homomorphism [, of ki into k* by Zy(a) = (ttx.(a,). Let
U, = E*kX . Jk* be the topological closure of k*kX ,/k* in the idele class
group C, = k3/k*. Let % and A be the Artin mappings of C,/U, onto
G(k®/k) and of C,/U, onto G(k'*/k'). Since t,(k*)C k'™ and g, (kX ,)C
k., we can define a continuous homomorphism f,; G(k®/k) — G(k'**/k)
making the diagram

ey — s
f l lf’
/U, Co/Us

9[1 lg{l

C(kab/k) ‘ﬁT’G(k'ab/k')

commutative. Here f and f' are canonical homomorphisms of k} into
C./U, and of kK into C,/U,. For simplicity, g, will denote f, in the
following;

THEOREM 1. Let k and k' be finite algebraic extensions of Q such
that &, = (... Let k® be the maximal abelian extemnsion of k. Let G be
the Galois group G(k®/k) and G' the Galois group GE'®/k). For a prime
number p, we denote by G(p) the pro-p-sylow subgroup of G. Then there
exists a continuous homomorphism p of G into G’ such that the restric-
tion of tt to G(p) is an isomorphism of G(p) onto G'(p) for almost all p.

ProOOF. Let M be a matrix in IN,. Let B be the matrix (det (M)M™)?,
which belongs to M,. We have defined the continuous homomorphism g,
of G into G'. In a similar way, we can define a continuous homomor-
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phism gz of G’ into G. From Lemma 2, we have ph(pey(g)) = giet@r
for all geG. In a similar way, we have p,(¢5(g9") = g’®™ for all
g'€G. Let p be a prime number such that p does not divide det (M).
Then we have

x(G(D)) D pu(ts(G' (D)) = {g"** ™ |g' € G'(P)} = G'(p) .

Suppose that p,(9) =1 for ge G(p). We have git“ =1, Since p is
prime to det (M), we have g = 1.

3. Let k and k' be finite algebraic number fields such that &, = ;..
We put s = (k; Q). Let L be as before the Galois closure of k over @
and p a prime number such that p does not divide (L;Q). Let Z, be
the p-adic integer ring and Q“* the cyclotomic Z,-extension of Q. Then
there exists a sequence of fields @ = Q? Q" c...cQ ™" c---CQ="?
such that Q™?/Q is a cyclic extension of degree p*, n = 0. We put
k, =kQ" k, = KQ™", L, = LQ™" and L., = LQ™=?. We put further-
more G = G(L/Q), H, = G(L,/k,), H, = G(L«/k.), N, = G(L«/L,) and S =
G(L../Q>*). Then we have G = SX N, Let 7 be a topological generator
of N,., We have the following:

LEMMA 4 (cf. [8, Lemma 1]). Let k and k' be finite algebraic number
fields such that C, = ... Let K be a finite Galois extension of Q. Then
we have Cxp = Cxir

We have §;,, = &, from this Lemma 4. Let D, and D, be the linear
representations of G induced by the unit representations of H, and H,.
We should notice that we can regard D, and D, as representations of S.
Let R, be the linear representation of N, induced by the unit represen-
tation of N,. Let D,® R, be the tensor product of D, and R,. Then
we have D, = D,Q R, and D, = D;,® R,. We put

M, = {Me M,«(Z)|det (M) # 0, D,(9)M = MD.(g) for every geG}.
We can easily show the following:

LEMMA 5. Let M be a matriz in M, and I, the unit matriz of
degree p*. Let M & I, be the Kronecker product of M and I,.. Then
we have M&Q I,.eIN,.

We put M, = M Q I,». We see easily the following:

LEMMA 6. Let M be a matriz in M,. Let m and n be non-negative
integers such that m = n. Let pty, and p, be the above endomorphisms
of Ly and Ly. Let N4, and Nyy: be the morms of k./k. and k. k...
Then we have fty, (Ny, i, () = N,,;./,,;n(,uMn(x)) Jor all x€kX.
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By Lemma 1, there exists a matrix Me IR, such that p does not
divide det (M). We have det (M, = £(det (M))*". Hence Theorem 1,
Lemma 6 and class field theory yield the following:

THEOREM 2. Let k and k' be finite algebraic number fields such that
e = Cw. Let L be the Galois closure of k/Q and p a prime number which
does mot divide (L; Q). Let k. and k.. be the cyclotomic Z,-extensions of
k and K. Let k.. and k. be the mawimal abelian pro-p-extensions of
ke and k... Then the Galois group Gk/k.) and G(k./k.) are isomorphic
as topological groups.

Let p be an odd prime number which does not divide (L;@). Let
A, and A, be the Sylow p-subgroups of the ideal class groups of k, and
of k;, respectively. For 0 £ m < n, there exists a natural homomorphism
St An — A, induced by the imbedding of the ideal group of k, in that
of k,. Let A and A’ denote the direct limits of 4,, » =0 and of A,
n = 0, with respect to the above homomorphisms. Let 4 denote the ring
of power series in an indeterminate T with coefficients of Z,: 4 = Z,[[T]].
Let X,(p) and X,.(p) be the duals of the discrete abelian group A4 and of
A'. We can consider X,(p) and X,.(p) as A-modules in the usual manner
(cf. [3]). Let M be a matrix in M, such that p does not divide det (M).
We put M, = M@ I,.. For a finite place v of k, we denote by r, the
integer ring of (k,), and by =X the unit group of r,. Since we have

B, (B (b, @o R)* X 11 7))

v; the finite places of k,,
C kX ((kr, @ R)* X I1 )
v’; the finite places of k;
and since p does not divide det(M,), we can induce the isomorphism
Y, of A, onto A, by #Z,,. Then, for 0 <m =< n, we can show that
U fun(@)) = fun(ttn(@)) for all ac A,. Hence we have the following:

THEOREM 3. Let k and k' be finite algebraic number fields such that
e = . Let L be the Galois closure of k/Q and p an odd prime number
which does not divide (L; Q). Let X,(p) and X,(p) be as above. Then
X.(p) and X, (p) are isomorphic as topological A-modules.

Lemma 4 and Theorem 3 yield the following:

COROLLARY. Notations and assumptions being as above, let a, be a
primitive p-th root of 1. Then we have kap)(p) = Xk/(ap)(p).

Let ko be t}~1e maximal unramified abelian pro-p-extension of k.. We
put Y.(p) = G(k-/ks). We can consider Y,(p) as 4-module in the usual
manner (cf. [3]). Lemma 6 and class field theory yield the following:



560 K. KOMATSU

THEOREM 4. Let k and k' be finite algebraic number fields such that
¢, =Cv. Let L be the Galois closure of k/Q and p a prime number
which does not divide (L; Q). Let k. and k., be the cyclotomic Z,-extensions
of k and of k', respectively. Let k. and k. be the maximal unramified
abelian pro-p-extensions of k. and of k., respectively. Then the Galois
group Yu(p) = Glk./k.) and Y. (p) = GkL/kL.) are isomorphic as topologi-
cal A-modules.

COROLLARY. Notations and assumptions being as above, let a, be a
primitive p-th root of 1. Then we have Yiu,(p) = Yy, (D).

4. It would be interesting to examine whether Y, (p) = Y,.(p) for
almost all prime numbers p implies {, = {,. We shall examine now
whether Y,(p) =0 for any prime number p implies {, = {,. We notice
that Yy(p) = 0 for any prime number p follows from Iwasawa [1] and
that {, = {, implies k¥ = Q. TFor a finite algebraic number field F, we
denote by h, the class number of F' and by E, the group of units in F.
Let K be a cyclic extension of F' and a, the number of ambiguous ideal
classes with respect to K/F. The following Lemma is well known:

LEMMA 7 (cf. [9]). Let K be a cyclic extension of a number field F.
Then we have

ax = hy X Il e(v) X (K; F)(Er; Er N Ngo(K)) ™,

where [I,e(v) is the product of the ramification indices of all the finite
and infinite places in F with respect to K/F.

COROLLARY. If Y,(p) = 0 for all prime numbers p, then k is totally
real.
PrOOF. Let p be a prime number which splits completely in k/Q.

We put k, = kQ™*. If k is not totally real, it follows from Lemma 7
that p~ divides h,,. This shows that Y,(p) is not trivial.

In the rest of this section, we shall give examples of real quadratic
fields F' and prime numbers p such that Y,(p) # 0. Since the center of
p-groups are non-trivial, we have the following:

LEMMA 8. Let K be a cyclic p-extension of F. Then the prime
number plhg if and only if p|ag.

Now, we put 1+ p"Z,={xeZ,Jx=1 (modp")}. Let a,, be a
primitive (p — 1)-th root of 1. Then local class field theory yields the

following:



ZETA-FUNCTIONS 561

LEMMA 9. Let Q, be the p-adic number field and Q,, = Q,Q™".
Then we have NQ,,,”/QP(Q;»(,n) = (p) X (o X (1 + p"*'Z,), where {p) and
{a,_y are the subgroups generated by p and by a,_, in Q;, respectively.

PROPOSITION. Let F be a real quadratic field and ¢ a fundamental
unit of F. We assume that an odd prime number p splits completely
wm F and that p does mot divide hy. We put F, = FQ™?. Then the
Jollowing conditions are equivalent:

(1) The prime number p divides hg,.

(2) er'=1 (modp°Z,).

(8) e """ =1 (mod p"*'Z,) for all positive integers .

(4) The prime number p divides hy, for all positive integers m.

PROOF. Since p is an odd prime, it is clear that (2) and (3) are
equivalent. Let us show the equivalence of (1) and (2). Assume that
e?7' =1 (mod p°Z,). Then from Lemma 9 and Hasse’s norm theorem
follows that there exists an element 7 of F, such that Ny, () = ¢. Hence
it follows from Lemma 7 that p divides hp. Now, assume pl|hy. It
follows from Lemma 8 that play. Since pth, Lemma 7 yields that
E;C Ny, #(F,). Hence, from Lemma 9 follows that ¢=1 (mod p’Z,). We
can simillary prove that (3) and (4) are equivalent.

According to this Proposition, we have only to examine whether (2)
holds for F' and p to know whether Y (p) = 0 holds. We have examined
this for F = Q0 d) and found the following pairs (d, p) for which we
have Yova)(p) # 0:

dl 2] 6‘19’23‘ 31’33'37, 41'43'57‘ 62'

'p|31l523,79, 7'157’29‘ 7‘7221‘ 3’59’263’
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