ON ZETA-FUNCTIONS AND CYCLOTOMIC Z_p -EXTENSIONS OF ALGEBRAIC NUMBER FIELDS

KEIICHI KOMATSU

(Received September 20, 1983)

1. In Tate [5] and Turner [7], the following result is proved:

THEOREM. Let k, k' be function fields in one variable over a finite constant field \mathbf{F} and ζ_k , $\zeta_{k'}$ Dedekind zeta-functions of k, k'. Let C, C' be complete non-singular curves defined over \mathbf{F} with function fields isomorphic to k, k' and J(C), J(C') the Jacobian varieties of C, C'. Then the following are equivalent:

- (1) $\zeta_k = \zeta_{k'}$.
- (2) J(C) and J(C') are F-isogenous.

In the present paper, we shall investigate the situation which arises when we replace the function fields by the algebraic number fields. In [2] and [3], Iwasawa discussed analogues of Jacobian varieties in this situation. We shall see that these analogues play some roles in this question.

Let Q be the rational number field, k, k' finite algebraic extensions of Q and ζ_k , $\zeta_{k'}$ the Dedekind zeta-functions of k and k', respectively. Perlis [4] gave interesting consequences from $\zeta_k = \zeta_{k'}$. Using his method, we shall obtain the following results:

Let p be a prime number, k(p) the maximal abelian pro-p-extension of k and $G_k(p)$ the Galois group of k(p) over k. For these and also for other notations which will be introduced afterwards, we adopt similar notations for k'. Let Z_p be the p-adic integer ring and k_∞ the cyclotomic Z_p -extension of k. We shall prove that $\zeta_k = \zeta_{k'}$ implies $G_k(p) \cong G_{k'}(p)$ and $G_{k_\infty}(p) \cong G_{k'_\infty}(p)$ for almost all prime numbers p. Let \widetilde{k}_∞ the maximal unramified abelian pro-p-extension of k_∞ and $Y_k(p)$ the Galois group of $\widetilde{k}_\infty/k_\infty$. Let A and A' be the p-primary subgroups of ideal class groups of k_∞ and k'_∞ , respectively. Let $X_k(p)$ be the Pontrjagin dual of the discrete group A. Let α_p be a primitive p-th root of 1. We shall prove that $\zeta_k = \zeta_{k'}$ implies $X_{k(\alpha_p)}(p) \cong X_{k'(\alpha_p)}(p)$ and $Y_{k(\alpha_p)}(p) \cong Y_{k'(\alpha_p)}(p)$ for almost all prime numbers p. The duals of $X_{k(\alpha_p)}(p)$ and $Y_{k(\alpha_p)}(p)$ are regarded as analogies of the Jacobian variety in our situation (cf. [2], [3]), so that this can be interpreted as an analogue of the fact that (1) implies (2) in the

case of function fields. We are not in a position now to prove an analogue of (2) implies (1) in our case, but it is conjectured that $k \neq Q$ would imply that there exist some primes p such that $Y_k(p) \neq 0$. (This can be in fact proved in case k is not totally real, as shown below.) In our last paragraph, we shall give such p's for some real quadratic fields k.

In this paper, Z and R denote the ring of rational integers and the field of real numbers. As already mentioned, Q denotes the rational number field. For a finite algebraic number field k, we denote by k_A^{\times} the idele group of k.

2. Let k and k' be finite algebraic number fields such that $\zeta_k = \zeta_{k'}$. Let L be the Galois closure of k over Q. It is well known that $L \supset k'$ and that the degree (k; Q) is equal to (k'; Q). Let G be the Galois group G(L/Q) of L over Q, H = G(L/k) and H' = G(L/k'). Let s = (k; Q). Let D and D' be the linear representations of G induced by the unit representations of H and H'. Let H be the integer ring and $H_s(X)$ the set of all integral $S \times S$ matrices. We put

$$\mathfrak{M}_{\scriptscriptstyle 0} = \{M \in M_{\scriptscriptstyle s}(Z) \, | \, \det{(M)} \neq 0, \ D(g)M = MD'(g) \ \text{for every} \ g \in G \}$$
.

By [4] and [7], we see that \mathfrak{M}_0 is not empty. The following Lemma is also proved in [4].

LEMMA 1 (cf. [4, Theorem 1]). Let $\nu = \gcd \{\det (M) | M \in \mathfrak{M}_0 \}$. Then every prime number dividing ν divides (L; k).

Let ρ_1, \dots, ρ_s and ρ'_1, \dots, ρ'_s be representatives for left cosets of G by H and H', with $\rho_1 = \rho'_1 = 1$. Let L^{\times} be the multiplicative group of L. For a matrix $A = (a_{ij}) \in M_s(Z)$, we now define an endomorphism μ_A of L^{\times} by $\mu_A(x) = \prod_{i=1}^s \rho_i(x)^{a_{i1}}$ for $x \in L^{\times}$. We also define an endomorphism of L^{\times} by $\mu'_A(x) = \prod_{i=1}^s \rho'_i(x)^{a_{i1}}$. Then we have the following:

LEMMA 2 (cf. [4, Lemma 5]). For matrices A and B in \mathfrak{M}_0 and for $a \in k^{\times}$, we have

- (1) $\mu_{A}(k^{\times}) \subset k^{\prime \times}$.
- (2) $\mu_{B^t}(\mu_A(a)) = \mu_{AB^t}(a)$. Here B^t is the transpose of B.

Let k^{ab} be the maximal abelian extension of k. Let M be a matrix in \mathfrak{M}_0 . We now define a homomorphism of $G(k^{ab}/k)$ into $G(k'^{ab}/k')$ induced by μ_M .

LEMMA 3. Let v be a place of Q, Q_v the completion of Q at v and $k \otimes_Q Q_v$ the tensor product of k and Q_v . Then there exists a continuous homomorphism $\mu_{M,v}$ of $(k \otimes_Q Q_v)^{\times}$ into $(k' \otimes_Q Q_v)^{\times}$ such that $i'(\mu_M(a)) = \mu_{M,v}(i(a))$ for any element a of k^{\times} . Here i is a natural injection.

tion of k into $k \otimes_{\mathbf{Q}} \mathbf{Q}_v$, while i' is a natural injection of k' into $k' \otimes_{\mathbf{Q}} \mathbf{Q}_v$.

PROOF. Let w_1, \dots, w_m be the places of L lying above v. Let φ_j be a multiplicative valuation belonging to w_j . For positive number η , we put $V_k(\eta) = \{a \in k^\times | \varphi_j(a-1) < \eta \ j=1, \cdots, m\}$. For any positive number ε there exists a positive number δ such that $\mu_{\scriptscriptstyle M}(V_k(\delta)) \subset V_{\scriptscriptstyle K'}(\varepsilon)$. Hence our assertion follows from the fact that k is dense in $k \otimes_{\mathbf{0}} \mathbf{Q}_v$.

Let v_1, \cdots, v_{r_1} be the real places of k and $v_{r_1+1}, \cdots, v_{r_1+r_2}$ the imaginary places of k; $v'_1, \cdots, v'_{r'_1}$ the real places of k' and $v'_{r'_1+1}, \cdots, v'_{r'_1+r'_2}$ the imaginary places of k'. Since we have $\zeta_k = \zeta_{k'}$, we have $r_1 = r'_1$ and $r_2 = r'_2$. We put $k^{\times}_{v_j,+} = \{a \in k_{v_j} | a > 0\}$ for $j = 1, \cdots, r_1; k^{\times}_{\infty,+} = \prod_{j=1}^{r_1} k^{\times}_{v_j,+} \times \prod_{j=r_1+1}^{r_1+r_2} k^{\times}_{v'_j}$ and $k^{\times}_{\infty,+} = \prod_{j=1}^{r_1} k^{\times}_{v'_j,+} \times \prod_{j=r_1+1}^{r_1+r_2} k^{\times}_{v'_j}$. Let u be the infinite place of \mathbf{Q} . Since $\mu_{M,u}$ is continuous, we have $\mu_{M,u}(k^{\times}_{\infty,+}) \subset k^{\times}_{\infty,+}$. Let $a = (a_v)$ be an element of k^{\times}_{A} such that $a_v \in (k \otimes_{\mathbf{Q}} \mathbf{Q}_v)^{\times}$. We can define a continuous homomorphism $\bar{\mu}_M$ of k^{\times}_A into k^{\times}_A by $\bar{\mu}_M(a) = (\mu_{M,v}(a_v))$. Let $U_k = \overline{k^{\times}k^{\times}_{\infty,+}/k^{\times}}$ be the topological closure of $k^{\times}k^{\times}_{\infty,+}/k^{\times}$ in the idele class group $C_k = k^{\times}_A/k^{\times}$. Let $\mathfrak A$ and $\mathfrak A'$ be the Artin mappings of C_k/U_k onto $G(k^{ab}/k)$ and of $C_{k'}/U_{k'}$ onto $G(k'^{ab}/k')$. Since $\bar{\mu}_M(k^{\times}) \subset k'^{\times}$ and $\mu_{M,u}(k^{\times}_{\infty,+}) \subset k'^{\times}_{\infty,+}$, we can define a continuous homomorphism $\bar{\mu}_M$; $G(k^{ab}/k) \to G(k'^{ab}/k')$ making the diagram

commutative. Here f and f' are canonical homomorphisms of k_A^{\times} into C_k/U_k and of $k_A'^{\times}$ into $C_{k'}/U_{k'}$. For simplicity, $\mu_{\mathtt{M}}$ will denote $\widetilde{\mu}_{\mathtt{M}}$ in the following;

THEOREM 1. Let k and k' be finite algebraic extensions of \mathbf{Q} such that $\zeta_k = \zeta_{k'}$. Let k^{ab} be the maximal abelian extension of k. Let G be the Galois group $G(k^{ab}/k)$ and G' the Galois group $G(k'^{ab}/k')$. For a prime number p, we denote by G(p) the pro-p-sylow subgroup of G. Then there exists a continuous homomorphism μ of G into G' such that the restriction of μ to G(p) is an isomorphism of G(p) onto G'(p) for almost all p.

PROOF. Let M be a matrix in \mathfrak{M}_0 . Let B be the matrix $(\det(M)M^{-1})^t$, which belongs to \mathfrak{M}_0 . We have defined the continuous homomorphism μ_M of G into G'. In a similar way, we can define a continuous homomor-

phism μ'_{B^t} of G' into G. From Lemma 2, we have $\mu'_{B^t}(\mu_{M}(g)) = g^{\det{(M)}}$ for all $g \in G$. In a similar way, we have $\mu_{M}(\mu'_{B^t}(g')) = g'^{\det{(M)}}$ for all $g' \in G'$. Let p be a prime number such that p does not divide $\det{(M)}$. Then we have

$$\mu_{\mathtt{M}}(G(p)) \supset \mu_{\mathtt{M}}(\mu'_{\mathtt{B}t}(G'(p))) = \{g'^{\det(\mathtt{M})} | g' \in G'(p)\} = G'(p).$$

Suppose that $\mu_{\mathtt{M}}(g)=1$ for $g\in G(p)$. We have $g^{\det{(M)}}=1$. Since p is prime to $\det{(M)}$, we have g=1.

3. Let k and k' be finite algebraic number fields such that $\zeta_k = \zeta_{k'}$. We put $s = (k; \mathbf{Q})$. Let L be as before the Galois closure of k over \mathbf{Q} and p a prime number such that p does not divide $(L; \mathbf{Q})$. Let \mathbf{Z}_p be the p-adic integer ring and $\mathbf{Q}^{(\infty,p)}$ the cyclotomic \mathbf{Z}_p -extension of \mathbf{Q} . Then there exists a sequence of fields $\mathbf{Q} = \mathbf{Q}^{(0,p)} \subset \mathbf{Q}^{(1,p)} \subset \cdots \subset \mathbf{Q}^{(n,p)} \subset \cdots \subset \mathbf{Q}^{(\infty,p)}$ such that $\mathbf{Q}^{(n,p)}/\mathbf{Q}$ is a cyclic extension of degree p^n , $n \geq 0$. We put $k_n = k\mathbf{Q}^{n,p}$, $k'_n = k'\mathbf{Q}^{(n,p)}$, $L_n = L\mathbf{Q}^{(n,p)}$ and $L_\infty = L\mathbf{Q}^{(\infty,p)}$. We put furthermore $G = G(L_\infty/\mathbf{Q})$, $H_n = G(L_n/k_n)$, $H'_n = G(L_\infty/k'_n)$, $N_n = G(L_\infty/L_n)$ and $S = G(L_\infty/\mathbf{Q}^{(\infty,p)})$. Then we have $G = S \times N_0$. Let γ be a topological generator of N_0 . We have the following:

LEMMA 4 (cf. [8, Lemma 1]). Let k and k' be finite algebraic number fields such that $\zeta_k = \zeta_{k'}$. Let K be a finite Galois extension of \mathbf{Q} . Then we have $\zeta_{Kk} = \zeta_{Kk'}$.

We have $\zeta_{k_n}=\zeta_{k'_n}$ from this Lemma 4. Let D_n and D'_n be the linear representations of G induced by the unit representations of H_n and H'_n . We should notice that we can regard D_0 and D'_0 as representations of S. Let R_n be the linear representation of N_0 induced by the unit representation of N_n . Let $D_0 \otimes R_n$ be the tensor product of D_0 and R_n . Then we have $D_n = D_0 \otimes R_n$ and $D'_n = D'_0 \otimes R_n$. We put

 $\mathfrak{M}_n=\{M\in M_{\mathfrak{sp}^n}(\boldsymbol{Z})\,|\,\det{(M)}\neq 0,\, D_n(g)M=MD'_n(g) \text{ for every }g\in G\}\text{ .}$ We can easily show the following:

LEMMA 5. Let M be a matrix in \mathfrak{M}_0 and I_{p^n} the unit matrix of degree p^n . Let $M \otimes I_{p^n}$ be the Kronecker product of M and I_{p^n} . Then we have $M \otimes I_{p^n} \in \mathfrak{M}_n$.

We put $M_n = M \otimes I_{n^n}$. We see easily the following:

LEMMA 6. Let M be a matrix in \mathfrak{M}_0 . Let m and n be non-negative integers such that $m \leq n$. Let μ_{M_m} and μ_{M_n} be the above endomorphisms of L_m^{\times} and L_n^{\times} . Let N_{k_n/k_m} and $N_{k'_n/k'_m}$ be the norms of k_n/k_m and k'_n/k'_m . Then we have $\mu_{M_m}(N_{k_n/k_m}(x)) = N_{k'_n/k'_m}(\mu_{M_n}(x))$ for all $x \in k_n^{\times}$.

By Lemma 1, there exists a matrix $M \in \mathfrak{M}_0$ such that p does not divide $\det(M)$. We have $\det(M_n) = \pm (\det(M))^{p^n}$. Hence Theorem 1, Lemma 6 and class field theory yield the following:

THEOREM 2. Let k and k' be finite algebraic number fields such that $\zeta_k = \zeta_{k'}$. Let L be the Galois closure of k/Q and p a prime number which does not divide (L; Q). Let k_{∞} and k'_{∞} be the cyclotomic \mathbf{Z}_p -extensions of k and k'. Let \hat{k}_{∞} and \hat{k}'_{∞} be the maximal abelian pro-p-extensions of k_{∞} and k'_{∞} . Then the Galois group $G(\hat{k}_{\infty}/k_{\infty})$ and $G(\hat{k}'_{\infty}/k'_{\infty})$ are isomorphic as topological groups.

Let p be an odd prime number which does not divide $(L; \mathbf{Q})$. Let A_n and A'_n be the Sylow p-subgroups of the ideal class groups of k_n and of k'_n , respectively. For $0 \leq m \leq n$, there exists a natural homomorphism $f_{m,n} \colon A_m \to A_n$ induced by the imbedding of the ideal group of k_m in that of k_n . Let A and A' denote the direct limits of A_n , $n \geq 0$ and of A'_n , $n \geq 0$, with respect to the above homomorphisms. Let A denote the ring of power series in an indeterminate T with coefficients of $\mathbf{Z}_p \colon A = \mathbf{Z}_p[[T]]$. Let $X_k(p)$ and $X_{k'}(p)$ be the duals of the discrete abelian group A and of A'. We can consider $X_k(p)$ and $X_{k'}(p)$ as A-modules in the usual manner (cf. [3]). Let M be a matrix in \mathfrak{M}_0 such that p does not divide det M. We put $M_n = M \otimes I_{p^n}$. For a finite place p of p, we denote by p the integer ring of p and by p the unit group of p. Since we have

$$\begin{split} \overline{\mu}_{\texttt{M}_{\textit{n}}}(k_{\texttt{n}}^{\times}((k_{\texttt{n}} \bigotimes_{\textit{\textbf{Q}}} \textit{\textbf{R}})^{\times} \times \prod_{v; \text{ the finite places of } k_{\texttt{n}}} r_{v}^{\times})) \\ \subset k_{\texttt{n}}^{\prime \times}((k_{\texttt{n}}^{\prime} \bigotimes_{\textit{\textbf{Q}}} \textit{\textbf{R}})^{\times} \times \prod_{\texttt{v}^{\prime}; \text{ the finite places of } k_{\texttt{n}}^{\prime}} r_{v}^{\prime \times}) \end{split}$$

and since p does not divide $\det(M_n)$, we can induce the isomorphism μ_n of A_n onto A'_n by $\overline{\mu}_{M_n}$. Then, for $0 \le m \le n$, we can show that $\mu_n(f_{m,n}(a)) = f'_{m,n}(\mu_m(a))$ for all $a \in A_m$. Hence we have the following:

THEOREM 3. Let k and k' be finite algebraic number fields such that $\zeta_k = \zeta_{k'}$. Let L be the Galois closure of k/\mathbf{Q} and p an odd prime number which does not divide $(L;\mathbf{Q})$. Let $X_k(p)$ and $X_{k'}(p)$ be as above. Then $X_k(p)$ and $X_{k'}(p)$ are isomorphic as topological Λ -modules.

Lemma 4 and Theorem 3 yield the following:

COROLLARY. Notations and assumptions being as above, let α_p be a primitive p-th root of 1. Then we have $X_{k(\alpha_p)}(p) \cong X_{k'(\alpha_p)}(p)$.

Let \widetilde{k}_{∞} be the maximal unramified abelian pro-p-extension of k_{∞} . We put $Y_k(p) = G(\widetilde{k}_{\infty}/k_{\infty})$. We can consider $Y_k(p)$ as Λ -module in the usual manner (cf. [3]). Lemma 6 and class field theory yield the following:

Theorem 4. Let k and k' be finite algebraic number fields such that $\zeta_k = \zeta_{k'}$. Let L be the Galois closure of k/\mathbf{Q} and p a prime number which does not divide $(L;\mathbf{Q})$. Let k_{∞} and k'_{∞} be the cyclotomic \mathbf{Z}_p -extensions of k and of k', respectively. Let \widetilde{k}_{∞} and \widetilde{k}'_{∞} be the maximal unramified abelian pro-p-extensions of k_{∞} and of k'_{∞} , respectively. Then the Galois group $Y_k(p) = G(\widetilde{k}_{\infty}/k_{\infty})$ and $Y_{k'}(p) = G(\widetilde{k}'_{\infty}/k'_{\infty})$ are isomorphic as topological Λ -modules.

COROLLARY. Notations and assumptions being as above, let α_p be a primitive p-th root of 1. Then we have $Y_{k(\alpha_p)}(p) \cong Y_{k'(\alpha_p)}(p)$.

4. It would be interesting to examine whether $Y_k(p) \cong Y_{k'}(p)$ for almost all prime numbers p implies $\zeta_k = \zeta_{k'}$. We shall examine now whether $Y_k(p) = 0$ for any prime number p implies $\zeta_k = \zeta_{Q}$. We notice that $Y_Q(p) = 0$ for any prime number p follows from Iwasawa [1] and that $\zeta_k = \zeta_Q$ implies k = Q. For a finite algebraic number field F, we denote by h_F the class number of F and by E_F the group of units in F. Let K be a cyclic extension of F and a_K the number of ambiguous ideal classes with respect to K/F. The following Lemma is well known:

LEMMA 7 (cf. [9]). Let K be a cyclic extension of a number field F. Then we have

$$a_{\scriptscriptstyle{K}} = h_{\scriptscriptstyle{F}} imes \prod_{\scriptscriptstyle{v}} e(v) imes ((K;F)(E_{\scriptscriptstyle{F}};E_{\scriptscriptstyle{F}} \cap N_{\scriptscriptstyle{K/F}}(K)))^{\scriptscriptstyle -1}$$
 ,

where $\prod_{v} e(v)$ is the product of the ramification indices of all the finite and infinite places in F with respect to K/F.

COROLLARY. If $Y_k(p) = 0$ for all prime numbers p, then k is totally real.

PROOF. Let p be a prime number which splits completely in k/\mathbf{Q} . We put $k_n = k\mathbf{Q}^{(n,p)}$. If k is not totally real, it follows from Lemma 7 that p^n divides h_{k_n} . This shows that $Y_k(p)$ is not trivial.

In the rest of this section, we shall give examples of real quadratic fields F and prime numbers p such that $Y_F(p) \neq 0$. Since the center of p-groups are non-trivial, we have the following:

LEMMA 8. Let K be a cyclic p-extension of F. Then the prime number $p|h_{\kappa}$ if and only if $p|a_{\kappa}$.

Now, we put $1 + p^n \mathbf{Z}_p = \{x \in \mathbf{Z}_p | x \equiv 1 \pmod{p^n}\}$. Let α_{p-1} be a primitive (p-1)-th root of 1. Then local class field theory yields the following:

LEMMA 9. Let Q_p be the p-adic number field and $Q_{p,n} = Q_p Q^{(n,p)}$. Then we have $N_{Q_{p,n}/Q_p}(Q_{p,n}^{\times}) = \langle p \rangle \times \langle \alpha_{p-1} \rangle \times (1 + p^{n+1} \mathbf{Z}_p)$, where $\langle p \rangle$ and $\langle \alpha_{p-1} \rangle$ are the subgroups generated by p and by α_{p-1} in Q_p^{\times} , respectively.

PROPOSITION. Let F be a real quadratic field and ε a fundamental unit of F. We assume that an odd prime number p splits completely in F and that p does not divide h_F . We put $F_n = FQ^{(n,p)}$. Then the following conditions are equivalent:

- (1) The prime number p divides h_{F_1} .
- $(2) \quad \boldsymbol{\varepsilon}^{p-1} \equiv 1 \pmod{p^2 \boldsymbol{Z}_p}.$
- (3) $\varepsilon^{p^{n-p^{n-1}}} \equiv 1 \pmod{p^{n+1}Z_p}$ for all positive integers n.
- (4) The prime number p divides h_{F_n} for all positive integers n.

PROOF. Since p is an odd prime, it is clear that (2) and (3) are equivalent. Let us show the equivalence of (1) and (2). Assume that $\varepsilon^{p-1} \equiv 1 \pmod{p^2 \mathbf{Z}_p}$. Then from Lemma 9 and Hasse's norm theorem follows that there exists an element η of F_1 such that $N_{F_1/F}(\eta) = \varepsilon$. Hence it follows from Lemma 7 that p divides h_{F_1} . Now, assume $p \mid h_{F_1}$. It follows from Lemma 8 that $p \mid a_{F_1}$. Since $p \nmid h_F$, Lemma 7 yields that $E_F \subset N_{F_1/F}(F_1)$. Hence, from Lemma 9 follows that $\varepsilon \equiv 1 \pmod{p^2 \mathbf{Z}_p}$. We can simillarly prove that (3) and (4) are equivalent.

According to this Proposition, we have only to examine whether (2) holds for F and p to know whether $Y_F(p) \neq 0$ holds. We have examined this for $F = \mathbf{Q}(\sqrt{d})$ and found the following pairs (d, p) for which we have $Y_{\mathbf{Q}(\sqrt{d})}(p) \neq 0$:

d	2	6	19	23	31	33	37	41	43	57	62
p	31	523	79	7	157	29	7	7221	3	59	263

The author would like to thank Mr. T. Fukuda at the Tokyo Institute of Technology who helped him in making this table using a computer of the institute and Prof. H. Wada at Sophia University who kindly made a program for this calculation. He is also thankful to Profs. S. Iyanaga and T. Kanno for their encouragement and advises.

REFERENCES

- [1] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Humburg, 20 (1956), 257-258.
- [2] K. IWASAWA, On p-adic L-functions, Ann. of Math., 89 (1969), 198-205.
- [3] K. IWASAWA, On Z_l -extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326.

- [4] R. Perlis, On the class number of arithmetically equivalent fields, J. Number Theory, 10 (1978), 489-509.
- [5] J. TATE, Endomorphisms of abelian varieties over finite fields, Invent. Math., 2 (1966), 134-144.
- [6] W. TRINKS, Arithmetisch ähnliche Zahlkorper, Diplomarbeit, Karlsruhe, (1969).
- [7] S. Turner, Adele rings of global field of positive characteristic, Bol. Soc. Brasil. Math., 9 (1978), 89-95.
- [8] K. UCHIDA, Isomorphisms of Galois groups of solvably closed Galois extensions, Tohoku Math. J., 31 (1979), 359-362.
- [9] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.

DEPARTMENT OF MATHEMATICS TOKYO UNIVERSITY AGRICULTURE AND TECHNOLOGY FUCHU, TOKYO 183 JAPAN