Tôhoku Math. Journ. 37 (1985), 27-32.

AXIOMS FOR STIEFEL-WHITNEY HOMOLOGY CLASSES OF Z_2 -EULER SPACES

AKINORI MATSUI

(Received October 13, 1983)

1. Introduction and the statement of results. In [2], Blanton and Schweitzer gave an axiomatic characterization for Stiefel-Whitney classes or Stiefel-Whitney homology classes of smooth manifolds, and raised a question of axiomatic characterizations of these classes for other categories, for example, categories of *PL*-manifolds, topological manifolds or Euler spaces. In this paper we give an answer to this question for Z_2 -Euler spaces (cf. [5], [8]).

Let X and Y be \mathbb{Z}_2 -Euler spaces and let $\varphi: Y \to X$ be a *PL*-embedding. We call φ a regular embedding if dim $X = \dim Y$, $\varphi(Y)$ is closed in X, $\varphi(\operatorname{Int} Y) \cap \partial X = \emptyset$ and $\varphi|\operatorname{Int} Y$ is an open map, where $\operatorname{Int} Y = Y - \partial Y$.

Let H_*^{\inf} denote the homology theory of infinite chains. Given a regular embedding $\varphi: Y \to X$, we define a homomorphism $\varphi^*: H_*^{\inf}(X, \partial X; \mathbb{Z}_2) \to H_*^{\inf}(Y, \partial Y; \mathbb{Z}_2)$ by $\varphi^* = (\varphi_*)^{-1} \circ i_*$, where $i_*: H_*^{\inf}(X, \partial X; \mathbb{Z}_2) \to H_*^{\inf}(X, X \to \varphi(\operatorname{Int} Y); \mathbb{Z}_2)$ is the homomorphism induced from the identity $i: (X, \partial X) \to (X, X - \varphi(\operatorname{Int} Y))$. Note that $\varphi_*: H_*^{\inf}(Y, \partial Y; \mathbb{Z}_2) \to H_*^{\inf}(X, X - \varphi(\operatorname{Int}); \mathbb{Z}_2)$ is an isomorphism by the excision property. Therefore φ^* is well defined.

Let \mathscr{C} be the category whose objects are \mathbb{Z}_2 -Euler spaces and whose morphisms are regular embeddings. Let \mathscr{S} be a full subcategory of \mathscr{C} . Consider a homology class

$$S_{*}(X) = S_{0}(X) + S_{1}(X) + \cdots + S_{n}(X)$$
 in $H_{*}^{inf}(X, \partial X; \mathbb{Z}_{2})$,

where n is the dimension of X, satisfying the following axioms:

AI. For every object X of \mathscr{S} and every integer $i \ge 0$, there is a homology class $S_i(X)$ in $H_i^{\text{inf}}(X, \partial X; \mathbb{Z}_2)$.

AII. If $\varphi: Y \to X$ is a morphism of \mathscr{S} , then $S_*(Y) = \varphi^* S_*(X)$.

AIII. $S_*(X \times Y) = S_*(X) \times S_*(Y)$ for every objects X, Y of \mathcal{S} , such that $X \times Y$ is an object of \mathcal{S} .

AIV. For every integer $n \ge 0$, $S_*(\mathbf{P}^n) = s_*(\mathbf{P}^n)$, where $s_*(\mathbf{P}^n)$ is the Stiefel-Whitney homology class of the *n*-dimensional real projective space \mathbf{P}^n .

We call $S_*(X)$ an axiomatic Stiefel-Whitney homology class of X in

 \mathcal{S} . Since the Stiefel-Whitney homology classes satisfy the axioms ([2], [3], [6]), there exists at least one axiomatic Stiefel-Whitney homology class.

The purpose of this paper is to prove the following theorem:

THEOREM. Let $\mathcal S$ be a full subcategory of $\mathcal S$ satisfying the following conditions:

(1) All compact \mathbb{Z}_2 -Euler spaces are objects of \mathcal{S} .

(2) If X is an object of \mathcal{S} , so is $X \times [0, 1]$.

Then, the axiomatic Stiefel-Whitney homology class $S_*(X)$ of X in \mathscr{S} coincides with the Stiefel-Whitney homology class $s_*(X)$.

REMARK. In general, axiomatic Stiefel-Whitney homology classes in the category of \mathbb{Z}_2 -Poincaré-Euler spaces are not unique (cf. [8]). For example, the Poincaré dual of Stiefel-Whitney class $[X] \cap w^*(X)$ and the Stiefel-Whitney homology class $s_*(X)$ both satisfy the axioms.

2. Elementary properties of axiomatic Stiefel-Whitney homology classes. In this section, we consider axiomatic Stiefel-Whitney homology classes in a full subcategory \mathscr{S} of \mathscr{C} such that all compact \mathbb{Z}_2 -Euler spaces are objects of \mathscr{S} .

LEMMA 1. Let X be an object of S and let $S_*(X)$ be an axiomatic Stiefel-Whitney homology class in S. Then, (1) $S_n(X) = [X]$, where dim X = n and [X] is the homology class given by the chain of all nsimplexes of a triangulation of X, and (2) $S_i(\partial X) = \partial S_{i+1}(X)$ when X is compact.

PROOF. (1) Let Δ^n be the *n*-dimensional simplex and let $\iota: \Delta^n \to \mathbf{P}^n$ be a regular embedding. Then $S_*(\Delta^n) = \iota^* S_*(\mathbf{P}^n)$ by AII. Noting that $\iota^*: H_n(\mathbf{P}^n; \mathbb{Z}_2) \to H_n(\Delta^n, \partial \Delta^n; \mathbb{Z}_2)$ is an isomorphism, we have $S_n(\Delta^n) = [\Delta^n]$ by AIV. By AII and the above, for every regular embedding $c: \Delta^n \to X$, we have $c^* S_n(X) = S_n(\Delta^n) = [\Delta^n]$. Then $S_n(X) = [X]$.

(2) Let $i: X \to X \cup (\partial X \times I)$ and $j: \partial X \times I \to X \cup (\partial X \times I)$ be the canonical inclusions. Then they are regular embeddings. By AII, we have $S_{i+1}(X) = i^{\dagger}S_{i+1}(X \cup (\partial X \times I))$ and $S_{i+1}(\partial X \times I) = j^{\dagger}S_{i+1}(X \cup (\partial X \times I))$. Note that $(\times)^{-1}(S_{i+1}(\partial X \times I)) = S_i(\partial X) \times S_1(I)$ by AIII, and that $\partial \circ i^{\dagger} = p_* \circ (\times)^{-1} \circ j^{\dagger}$, where $\times: H_*^{1nf}(\partial X; \mathbb{Z}_2) \times H_*(I, \{0, 1\}; \mathbb{Z}_2) \to H_*^{1nf}(\partial X \times I, \partial X \times \{0, 1\}; \mathbb{Z}_2)$ is the cross product and $p: \partial X \times I \to \partial X$ is the projection. Thus $\partial S_{i+1}(X) = S_i(\partial X)$. q.e.d.

Define a homomorphism $S: \mathfrak{B}_*(A, B) \to H_*(A, B; \mathbb{Z}_2)$ by $S(\varphi, X) = \varphi_*S_*(X)$. Here $\mathfrak{B}_*(A, B)$ is the bordism group of compact \mathbb{Z}_2 -Euler spaces. (See [8].) The following lemma shows that S is well defined:

28

LEMMA 2. Let $S_*(X)$ be an axiomatic Stiefel-Whitney homology class of X in \mathscr{S} . Let $\varphi: (X, \partial X) \to (A, B)$ be in $\mathfrak{B}_n(A, B)$. Suppose that $(\varphi, X) = 0$ in $\mathfrak{B}_n(A, B)$. Then $\varphi_*S_*(X) = 0$ in $H_*(A, B; \mathbb{Z}_2)$.

PROOF. Let (Φ, W) be a cobordism of (φ, X) . Then the inclusion $\iota: X \to \partial W$ is a regular embedding. Put $U = \partial W - \iota(\operatorname{Int} X)$. If we denote by *i*, *j* the identity and the inclusion respectively, we have a commutative diagram:

$$\begin{array}{cccc} H_{i+1}(W, \partial W; \mathbb{Z}_2) & \xrightarrow{i_* \circ \partial} & H_i(\partial W, U; \mathbb{Z}_2) \xrightarrow{j_*} & H_i(W, U; \mathbb{Z}_2) \\ & & & & \downarrow^{i_*} & & \downarrow^{i_*} & & \downarrow^{i_*} \\ & & & & \downarrow^{i_*} & & \downarrow^{i_*} & & \downarrow^{\varphi_*} \\ & & & & H_i(\partial W; \mathbb{Z}_2) & \xrightarrow{t^*} & H_i(X, \partial X; \mathbb{Z}_2) \xrightarrow{\varphi_*} & H_i(A, B; \mathbb{Z}_2) , \end{array}$$

where the upper sequence is exact. Now $S_*(\partial W) = \partial S_*(W)$ by (2) of Lemma 1 and $S_*(X) = \ell^* S_*(\partial W)$ by AII. Therefore $\varphi_* S_*(X) = 0$. q.e.d.

3. Stiefel-Whitney classes of block bundles. Let $\xi = (E(\xi), A, t)$ be an *n*-block bundle (cf. [10]) over a locally compact polyhedron A where $t: A \to E(\xi)$ is the inclusion. Let $\overline{E}(\xi)$ be the total space of the sphere bundle associated with ξ . We shall define a homomorphism $e_{\xi}: \mathfrak{B}_{*}(E(\xi), \overline{E}(\xi)) \to \mathbb{Z}_{2}$ (cf. [8]), where $\mathfrak{B}_{*}(E(\xi), \overline{E}(\xi))$ is the bordism group of compact \mathbb{Z}_{2} -Euler spaces. We need the following:

TRANSVERSALITY THEOREM (Rourke and Sanderson [10]). Let M and N be PL-manifolds. Suppose that $f: (M, \partial M) \to (N, \partial N)$ is a locally flat proper embedding and that X is a closed subpolyhedron in N. If $f(\partial M) \cap X = \emptyset$ or if $(\partial N, \partial N \cap X)$ is collared in (N, X) and $\partial N \cap X$ is block transverse to $f|\partial M: \partial M \to \partial N$, then there exists an embedding $g: M \to N$, ambient isotopic to f relative to ∂N such that X is block transverse to g.

Let R be a regular neighborhood of A embedded properly in \mathbb{R}^{α} for α sufficiently large (cf. [7]). Let $i: A \subset R$ be the inclusion and let $p: R \to A$ be a retraction. Let $p^*\xi = (E(p^*\xi), R, \iota_R)$ be the induced bundle (cf. [10].) Then there exist bundle maps $(\bar{i}, i): (E(\xi), A) \to (E(p^*\xi), R)$ and $(\bar{p}, p): (E(p^*\xi), R) \to (E(\xi), A)$. For each (φ, X) in $\mathfrak{B}_*(E(\xi), \bar{E}(\xi))$, there exists an embedding $\tilde{\varphi}: (X, \partial X) \to (E(p^*\xi), \bar{E}(p^*\xi))$ such that $\tilde{\varphi} \simeq i \circ \varphi$. By the transversality theorem, we may assume that $\tilde{\varphi}(X)$ is block transverse to $\iota_R: R \to E(p^*\xi)$. Let $Y = \tilde{\varphi}^{-1}(\iota_R(R))$. Then Y is a closed \mathbb{Z}_2 -Euler space. We write $e_{\xi}(\varphi, X)$ for the modulo 2 Euler number e(Y) of Y.

We need the following lemma to prove Lemma 6:

LEMMA 3. Let $S_*(X)$ be an axiomatic Stiefel-Whitney homology class

A. MATSUI

of X in \mathscr{S} . Let $\nu = (E, M, \epsilon)$ be the normal block bundle of a proper embedding from a compact triangulated differentiable manifold M into \mathbf{R}_{+}^{α} for α sufficiently large. Then $\langle U_{\nu} \cup (\iota^{*})^{-1}w^{*}(M), \varphi_{*}S_{*}(X) \rangle = e_{\nu}(\varphi, X)$ for each (φ, X) in the bordism group $\mathfrak{B}_{*}(E, \overline{E})$ of compact \mathbb{Z}_{2} -Euler spaces, where \overline{E} is the total space of the sphere bundle associated with ν .

This lemma is a consequence of the following two lemmas, which we merely state without proof. For, if we note AI, \cdots , AIV, and Lemmas 1, 2, the proofs given in Matsui [8] for the case of Stiefel-Whitney homology classes can be applied without any change to the present situation by simply replacing therein s_* by S_* .

LEMMA 4. Let $S_*(X)$ be an axiomatic Stiefel-Whitney homology class of X in S. Let $\xi = (E, A, \iota)$ be an n-block bundle over a locally compact polyhedron A. Then there exists a unique cohomology class $\Phi(\xi)$ in $H^*(E, \overline{E}; \mathbb{Z}_2)$ satisfying $\langle \Phi(\xi), \varphi_* S_*(X) \rangle = e_{\xi}(\varphi, X)$ for each (φ, X) in $\mathfrak{B}_*(E, \overline{E})$.

Let $\xi = (E, X, \iota)$ be a block bundle. Let $\Phi(\xi)$ be the cohomology class as in Lemma 4. Define $\widetilde{w}(\xi)$ by $\widetilde{w}(\xi) = \iota^* \circ (U_{\xi} \cup)^{-1} \Phi(\xi)$, where $\iota^* \circ (U_{\xi} \cup)^{-1}$: $H^*(E, \overline{E}; \mathbb{Z}_2) \to H^*(X; \mathbb{Z}_2)$ is the Thom isomorphism of ξ . Then we have the following:

LEMMA 5. If ξ is the block bundle induced by a vector bundle over a locally compact polyhedron X, the cohomology class $\tilde{w}(\xi)$ coincides with the dual Stiefel-Whitney class $\bar{w}(\xi)$ of $w^*(\xi)$.

PROOF OF LEMMA 3. Since ν is induced from a vector bundle, we have $\langle U_{\nu} \cup (\iota^*)^{-1} \overline{w}(\nu), \varphi_* S_*(X) \rangle = e_{\nu}(\varphi, X)$ by Lemmas 4 and 5. On the other hand, there holds $w^*(M) = \overline{w}(\nu)$. Thus $\langle U_{\nu} \cup (\iota^*)^{-1} w^*(M), \varphi_* S_*(X) \rangle = e_{\nu}(\varphi, X)$. q.e.d.

4. Proof of Theorem. Let X be an n-dimensional \mathbb{Z}_2 -Euler space. Then there exists a proper PL-embedding $\varphi: (X, \partial X) \to (\mathbb{R}^{\alpha}_+, \partial \mathbb{R}^{\alpha}_+)$ for α sufficiently large. (See Hudson [7].) Suppose that R is a regular neighborhood of X in \mathbb{R}^{α}_+ . Put $\tilde{R} = R \cap \partial \mathbb{R}^{\alpha}_+$ and $\bar{R} = \operatorname{cl}(\partial R - \tilde{R})$. Regard φ as a proper PL-embedding from $(X, \partial X)$ to (R, \tilde{R}) . We also call $(R; \tilde{R}, \bar{R}; \varphi)$ a regular neighborhood of X in \mathbb{R}^{α}_+ . We will define a homomorphism $e_{\varphi}: \mathfrak{N}_*(R, \bar{R}) \to \mathbb{Z}_2$ as in [8], where $\mathfrak{N}_*(R, \bar{R})$ is the unoriented differentiable bordism group. Let $f: (M, \partial M) \to (R, \bar{R})$ be in $\mathfrak{N}_*(R, \bar{R})$. Then there exists an PL-embedding $g: (M, \partial M) \to (R \times D^{\beta}, \bar{R} \times D^{\beta})$ for β sufficiently large, such that $g \simeq f \times \{0\}$ and that $(\varphi \times \operatorname{id})(X \times D^{\beta})$ is block transverse to g by the transversality theorem. Let $Y = (\varphi \times \operatorname{id})^{-1} \circ g(M)$. is a closed \mathbb{Z}_2 -Euler space. We write $e_{\varphi}(f, M)$ for the modulo 2 Euler number e(Y) of Y.

LEMMA 6. Let X be an object of \mathscr{S} . Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of X in \mathbb{R}_+^{α} . Then $\langle ([R] \cap)^{-1} \circ \varphi_* S_*(X), f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M)$ for each (f, M) in $\mathfrak{R}_*(R, \bar{R})$.

PROOF. (i) First we prove the lemma in the case where $f: (M, \partial M) \rightarrow (R, \overline{R})$ is a *PL*-embedding with a normal block bundle $\xi = (E, M, f_E)$ and φ is transverse to ξ . Let $\varphi = ([R] \cap)^{-1} \circ \varphi_* S_*(X)$. Since $[E] \cap U_{\xi} = (f_E)_* [M]$ and $j_E \circ f_E = f$, where U_{ξ} is the Thom class of ξ and $j_E: E \rightarrow R$ is an inclusion, we get

 $\langle arPsi, f_*([M] \cap w^*(M))
angle = \langle U_{\epsilon} \cup (f^*_{\scriptscriptstyle E})^{-_1} w^*(M)$, $[E] \cap j^*_{\scriptscriptstyle E} arPsi
angle$.

Now, we have the following commutative diagram:

$$\begin{array}{ccc} (X_E, \partial X_E) & \xrightarrow{j_X} (X, X - j(\operatorname{Int} X_E)) & \xleftarrow{j} (X, \partial X) \\ & & \downarrow \varphi_E & & \downarrow \tilde{\varphi}_E & & \downarrow \varphi \\ (E, \bar{E}) & \xrightarrow{j_E} (R, \widetilde{\tilde{R}}) & \xleftarrow{i} (R, \tilde{R}) , \end{array}$$

where $X_E = \varphi^{-1}(E)$, $\widetilde{\widetilde{R}} = \operatorname{cl}(R - j_E(E))$, and where i, j and j_X are inclusions. If we note $(j_E)_*[E] = i_*[R]$, then $[E] \cap j_E^* \varphi = ((j_E)_*^{-1} \circ i_*[R]) \cap j_E^* \varphi = (j_E)_*^{-1} \circ i_* ([R] \cap \varphi) = (j_E)_*^{-1} \circ i_* \circ \varphi_* S_*(X) = (j_E)_*^{-1} \circ (\widetilde{\varphi}_E)_* \circ j_* S_*(X)$. Since $j_X: X_E \to X$ is a regular embedding and $S_*(X_E) = j_X^* S_*(X) = (j_X)_*^{-1} \circ j_* S_*(X)$ by AII, we have $[E] \cap j_E^* \varphi = (\varphi_E)_* S_*(X_E)$. Thus $\langle \varphi, f_*([M] \cap w^*(M)) \rangle = \langle U_{\xi} \cup (f_E^*)^{-1} w^*(M), (\varphi_E)_* S_*(X_E) \rangle$. We have $\langle \varphi, f_*([M] \cap w^*(M)) \rangle = e_{\xi}(\varphi_E, X_E)$ by Lemma 3 and also $e_{\varphi}(f, M) = e_{\xi}(\varphi_E, X_E)$ in the view of the definitions of e_{φ} and e_{ξ} . Therefore, $\langle \varphi, f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M)$.

(ii) We now consider the case where $f: (M, \partial M) \to (R, \overline{R})$ is not an embedding.

Let (f, M) be in $\mathfrak{N}_*(R, \overline{R})$. Then there exists a *PL*-embedding $g: (M, \partial M) \to (R \times D^\beta, \overline{R} \times D^\beta)$ for β sufficiently large, such that $g \simeq f \times \{0\}$ and $(\varphi \times \mathrm{id})(X \times D^\beta)$ is block transverse to g by the transversality theorem. Here $X \times D^\beta$ is an object of \mathscr{S} in view of the property (2) of \mathscr{S} . From the previous result (i), it now follows:

 $\langle ([R imes D^{\beta}] \cap)^{-1} \circ (\varphi imes \operatorname{id})_* S_*(X imes D^{\beta}), \ g_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M) \ .$

However $S_*(X \times D^{\beta}) = S_*(X) \times S_*(D^{\beta})$ by AIII and $S_*(D^{\beta}) = [D^{\beta}]$ by (1) of Lemma 1. Hence we get $\langle ([R] \cap)^{-1} \circ \varphi_* S_*(X), f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M)$. q.e.d. LEMMA 7 (See [8]). Let (A, B) be a pair of polyhedra and let $\Phi \in H^*(A, B; \mathbb{Z}_2)$. If $\langle \Phi, f_*([M] \cap w^*(M)) \rangle = 0$ for every (f, M) in $\mathfrak{N}_*(A, B)$, then $\Phi = 0$.

PROOF OF THEOREM. Noting that $s_*(X)$ is an axiomatic Stiefel-Whitney homology class, we have by Lemma 6, $\langle ([R] \cap)^{-1} \circ \varphi_* s_*(X), f_*([M] \cap w^*(M)) \rangle = e_{\varphi}(f, M)$ for each (f, M) in $\mathfrak{N}_*(R, \overline{R})$. By Lemmas 6 and 7, we also have $([R] \cap)^{-1} \circ \varphi_* S_*(X) = ([R] \cap)^{-1} \circ \varphi_* s_*(X)$. Therefore $S_*(X) = s_*(X)$.

References

- E. AKIN, Stiefel-Whitney homology classes and cobordism, Trans. Amer. Math. Soc. 205 (1975), 341-359.
- [2] J. D. BLANTON AND P. A. SCHWEITZER, Axioms for characteristic classes of manifolds, Proc. Symp. in Pure Math. 27 (1975), Amer. Math. Soc., 349-356.
- [3] J. D. BLANTON AND C. MCCRORY, An axiomatic proof of Stiefel conjecture, Proc. Amer. Math. Soc. 77 (1979), 409-414.
- [4] J. CHEEGER, A combinatorial formula for Stiefel-Whitney classes, in Topology of Manifolds, (Cantrel and Edward, eds.), Markham Pubul., 1970, 470-471.
- [5] S. HALPERIN AND D. TOLEDO, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972), 511-525.
- [6] S. HALPERIN AND D. TOLEDO, The product formula for Stiefel-Whitney homology classes, Proc. of Amer. Math. Soc. 48 (1975), 239-244.
- [7] J.F.P. HUDSON, Piecewise Linear Topology, Benjamin, New York, 1969.
- [8] A. MATSUI, Stiefel-Whitney homology classes of Z₂-Poincaré-Euler spaces, Tôhoku Math. J. 35 (1983), 321-339.
- [9] J. MILNOR AND J. STASHEFF, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press., 1974.
- [10] C. P. ROURKE AND B. J. SANDERSON, Block bundles, I and II, Ann. of Math. 87 (1968), 1-28 and 255-277.
- [11] D. SULLIVAN, Combinatorial invariant of analytic spaces, Proc. Liverpool Singularities, I, Lecture Notes in Math. 192, Springer-Verlag, Berlin, Heidelberg, New York, 1971, 165-168.
- [12] L. TAYLOR, Stiefel-Whitney homology classes, Quart. J. Oxford 28 (1977), 381-387.
- [13] H. WHITNEY, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153.

Ichinoseki Technical College Ichinoseki, 021 Japan