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1. Introduction. In this note, we will give a proof of the Lp norm
equivalence between the Lusin area integral A(u) and the nontangential
maximal function N(u) of a biharmonic function u defined on the product
space D = JB^1+1xi?+2+1, where Rns+1 = Rnix(0, oo) {% = 1, 2).

We will use the following notations. We write

Λv.(1) n r ( 2 ) ni λ — /V 1 } . . . τ ( 1 ) Ή τ ( 2 ) . . . r ( 2 ) OJ λ

f o r t h e p o i n t of R n i + 1 x R n * + 1 , w h e r e ( x { ί ) , y t ) e R n ^ + \ x i i ] = (a?«}, • • • , < ) 6
Rni, and ^ e f i (i = 1, 2). We also write (x{1), yλ; x{2), y2) = (x, y), where
x = (xω, x{2)) e RN {N = ^ + w,), and » - (»„ y.) e R\ Let Λ? + 1 = {(^(ί), Vi) e
Λn<+1: y€ > 0} (i = 1, 2) and D = Λp+ Ix/Ep+ 1.

Let %(α?, 2/) be a biharmonic function on D, that is, u is twice con-
tinuously differentiate and Atu = 0 on D(i = 1, 2), where

is the Laplacian in the (ίu(ί), yt) variable. For a = (αx, α2), αx > 0, α 2 >0,
and a? = (xa), xl2)) e RN, we define a product cone Γa(x) by

(1.1) Γ.(a) = {(ί(1), ^ ί(2), yt) 6D: \t" - ajc

We say that ueHp(D) (0 < p < oo) if its nontangential maximal func-
tion

(1.2) Na(u) = sup{Kί, y)\: (ί, ») e Γα(

belongs to the Lebesgue space LP(RN). It is known that this definition
is independent of α. The Lusin area integral of a biharmonic function
u is defined by

(1.3) Aa(u){x) = ( t IV.V.^ί, y)\2y\-nίyl-n*dtdy)1/2,

where | V ^ ^ l 2 = ΣiUVΣiktiΊPKfaPtoΐW with d/dx™+ι = d/dylf d/dx%+1

d/dy2. We write A{1Λ)(u) = A{u)> N{ltl)(u) = iV(w), and Γιltl)(x) = Γ(x).
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The main purpose of this note is to give proofs of the inequalities

(1.4) \\A(u)\\p^cp\\N(u)\\p

and

(1.8) \\N(u)\\p^cp\\A(u)\\p,

for u 6 HP(D). Gundy and Stein [7] showed the inequalities (1.4) and (1.5)
for u 6 HP(R\ x JB2+), 0<p< oo (see also Gundy [6]). We will give a simpler
proof of the inequality (1.4). In order to prove the inequality (1.5), we
will introduce Hp spaces of conjugate biharmonic functions in §2. Our
result is stated as Theorem (2.5) in §2.

In this note, tne letter c will denote a positive constant, which need
not be the same at each occurrence, and CE denotes the complement of
a set E.

2. Hp spaces of conjugate biharmonic functions and the theorem.
Let ujk(x, y) (j = 1, 2, , nx + 1 and k = 1, 2, , n2 + 1) be (nx + 1) x
(n2 + 1) biharmonic functions on D which satisfy the following generalized
Cauchy-Riemann equations:

(2.1) Σ dujk /dxf = 0 , dujk / dx?)==duik/ dxf ,

1 ^ i, j ^ nt + 1, k = 1, 2, , n2 + 1, and
n 2 + l

(2.2) Σ duύk/dxf = 0 , dujk/dxl2) = duάl/dxkk

2)

1 ^ k, I ^ n2 + 1, i = 1, 2, , n, + 1, where a/δa^+i = 3/3^ and d/dx{ξ+1 =
d/dy2. Let JFOE, y) be the (ŵ  + 1) x (n2 + 1) matrix-valued function whose
(j, &)-component is ujk(x, y) for 1 ^ j 1 ^ ^ + 1 and 1 ^ & ̂  n2 + 1: F{x, y) =
(%AX#, ?/))• We call F a system of conjugate biharmonic functions. Let

( Σ ^ Σ ϊ S 1 \ujk\Ύ2 and let p0 = max((^ - l)/nlf (n, - l)ln2).

DEFINITION (2.3). Let p0 < p < oo, and let F be a system of con-
jugate biharmonic functions on D. We say that FeH%(D), if

G JRN

We write \\F\\P for the left hand side of the above inequality.

HP(D) spaces are characterized in terms either of the area integral
or HP

A spaces. In fact, we have the following theorem.

THEOREM 2.5. Let u(x, y) be a biharmonic function on D and let
Po<p<2. Then the following three properties are equivalent.
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( 1 ) N(u)eLp(RN).
(2 ) u(xf ylf y2) -> 0 as yx + y2 -> oo and A(u) e LP(RN).
( 3 ) There exists F = (%iJfc) e £?!(/)) ŝ cfe ί/iaί u = uLM (L = n, + 1,

M = % + 1).
Moreover, we have

(2.6)

and

(2.7)

where cp is a constant independent of u.

REMARK (2.8). The inequalities (2.6) and (2.7) were shown in Gundy
and Stein [7] for ueHp{R\xR\).

REMARK (2.9). Theorem (2.5) is stated only for p, p0 < p < 2, for
simplicity, but in view of the one-variable theory in Fefferman and Stein
[4], Theorem (2.5) is also valid for all p, 0<p<oof if we introduce
appropriate HI spaces for p <̂  p0.

3. Proof of Theorem (2.5), I. In this section and §4, we prove the
implication (1) => (2) in Theorem (2.5).

Assume that N(u)eLp. Then by Lemma (6.3) in §6, we have that
u(x,y)-^>0 as yt + y2 —> oo. in order to show that A(u)eLp, we will
prove the following.

PROPOSITION (3.1). Let ueHp(D) (0 < p < 2). Then we have

(3.2) \{x e RN: A(u)(x) > a}\ ^ ca-2\\N(u) A a \\l

for all a > 0, where \ | denotes the Lebesgue measure and c is a constant
independent of u and a.

The analogue of Proposition (3.1) for the bidisc was shown in Gundy
and Stein [7] (see also Gundy [6]). We give a simpler proof. By Pro-
position (3.1) and a well-known argument, we obtain || A(w)||p ^ cp\\N(u)\\p

(0<p<2) (see Fefferman and Stein [4, p. 165]). Thus we only have to
prove Proposition (3.1).

Before we give a proof of Proposition (3.1), we introduce the iterated
Poisson integral of a function defined on RN. For (x, y) = (χω, yx\ χ{2\ y2) e
D, the iterated Poisson kernel Py(x) is defined by Py(x) = P1(xω, y^P2{x{2\ y2),
where
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is the Poisson kernel associated with the upper half space Rli+1 (i = 1, 2)
(see [11]). For feLp(RN) (1 ̂  p ^ <χ>), we define the iterated Poisson
integral of / by

(3.3) P(f)(x, y) = Py* fix) = \RNf(x - t)Py{t)dt .

It is easy to see that P{f)(x, y) is a biharmonic function on D.
Now we begin the proof of Proposition (3.1). We may assume that

u is a real-valued function. We first assume that u is the iterated
Poisson integral of / e L\RN): u(x, y) = Py* f(χ). Let α > 0 and let

(3.4) E = {xe RN: N(u)(x) ^ a} .

We need the following lemmas on the iterated Poisson integral of the
characteristic function of E.

LEMMA (3.5). Let E be the same as in (3.4). Let v(x, y) = P(XE)(x, y),
where XE is the characteristic function of E. Then there exists a positive
constant δ0 not depending on E such that 0 < δ0 < 2~δ and

sup {\u(x, y)\: (x,y)eS}^a,

where S = {(x, y) e D: v(x, y) ̂  1 - 2δ0}.

LEMMA (3.6). Let δ0 be the same as in Lemma (3.5). Put δ = δo/4.
Let E be the same as in (3.4). Then there exists a subset E* of E such that

(3.7) inf inf {P(XE)(t, y): (ί, y) e Γ(x)} ^ 1 - 8
xeE*

and

(3.8) \CE*\ ^c\CE\ ,

where c is a constant independent of f and α.

Lemma (3.5) follows from the definition of E. Lemma (3.6) is essen-
tially given in [7]. We omit the proof.

We continue to prove Proposition (3.1). Let δ0 and δ be the same as
in Lemmas (3.5) and (3.6), respectively. Let φ and ψ be non-negative C°°
functions on R such that φ(r) = 1 if r ^ 1 - δ, φ(r) = 0 if r ^ 1 - 2δ,
and ψ(r) = 1 if r ^ 1 - δ0, ψ(r) = 0 if r ^ 1 - 2δ0. Note that

(3.9) \φ\r)\'^cφ{r)

(3.10) \ψ'(r)\2 ^ cψ(r)

for all reR and

(3.11) inf ψ(r)>0 (T = {reR: \φ'(r)\ + |
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(see [8]). Then by (3.7), we have

(3.12) ^A2(u)(x)dx ^ c^yMrfWlV&

where v = P(XE). We write / for the integral on the right hand side of
(3.12). We modify /. For ε > 0, wet set

(3.13) Iε = ]y^(vt(x, y))|V1V2%,(a?, y)\2dxdy ,

where vε(x, y) = P(XE)(%, Vi + e, y2 + ε) and uε(x, y) = u(x, yt + ε, y2 + ε)
(Vl, V2 ^ 0).

For a continuously differentiate function g(x, y) on D, let

(
ni \ 1/2

Σ \(d/dxf)g(x, y)\2 + \(d/dyMXf v)\2)
for i = 1, 2. Then, applying Green's theorem with respect to (#(1), y j ,
we obtain

(3.14) ^yΛiiΦMlV.u^dxdy = \y2φ{v£(x, 0, yj)\V*ite9 0, y2)\2dxdy2

= Jε, say .

On the other hand, we have

(3.15) I AiWtO I V2 f̂i |
2) - φ'\v.) I V l W. |2| V2ue |

2 - 2^(

where w,(x9 y) = P(XCE)(%, Vi + ε, ι/2 + ε). Put

(3.16) Kε = \yιy2f{vε) I V l W. |21 V2uε \
2dx dy .

Then by (3.9), (3.11), (3.14), and (3.15), using Schwarz's inequality, we
obtain

(3.17) /. ^ c(Jε + Kε + 76

1/2iΓε

1/2) .

We need the following two inequalities (3.18) and (3.19), whose proofs
we will give in §4.

(3.18) J,ύc(\ φ(vg(x, 0))u2

ε(x, 0)dx + a2 [ w\(x, 0)dx) ,

(3.19) Ks ^ caA wl(x, 0)dx ,

where c is a constant independent of ε, u, and a.
By (3.17), (3.18), and (3.19), we have
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(3.20) Iε ^ cQφ(vXx, 0))u\{x, 0)dx +

We can easily see that U(v,(a?, 0))u*t(x, 0)cte-> [ f\x)dx and [w\{x, 0)dx->

\CE\ as ε-*0. Thus letting ε-+0 in (3.20), w*e have

(3.21) I^c(^EN\u)(x)dx + a2\CE\) .

By (3.21), (3.12), and (3.8), we conclude that

\{x 6 RN: A(u)(x)>a}\ rg \CE*| + α~2 ( A\u){x)dx
JE*

^ c(\CE\ + a~2\ N\u)(x)dx)

= ca-*\\N(u)Λa\\l.

Now we remove the restriction that u is the iterated Poisson integral
of an U function. Assume that Niu) e LP(RN) (0 < p < 2). Let η > 0
and let uη(x, y) = u(x9 yx + η, y2 + 57). By Lemmas (6.3) and (6.6) in §6,
it is easy to see that uη is the iterated Poisson integral of an U function.
Therefore by what we have proved, we have

(3.22) I{xeRN: A(uη)(x) > a}\ ^ ca~2\\N(uη) Λ a\\l .

Letting η->0 in (3.22), we obtain \{xeRN: A(u)(x) > a}\ ^ ca,-2\\N(u) Λ
all*. This completes the proof of Proposition (3.1).

4. Proof of (3.18) and (3.19). In this section, we prove (3.18) and
(3.19) in §3.

PROOF OF (3.18). Applying Green's theorem, we find

(4.1) \y2^{φ{vε{x, 0, y2))u\(x, 0, y2))dxdy2 = \φ(ve(x, Q))u%x, 0)dx .

On the other hand, we have

(4.2) I AMvM) - Φ"(vε) I V2wε M - 2φ(vε) \ V2uε |
21

^ c\φ'(vε)uε\ |V2^ε | \V2uε\ .

Set

Lε = \y2ψ(vε(x, 0, y2))u\{x, 0, y2)\V2wε(x, 0, y2)\2dxdy2 .

By (4.1), (4.2), (3.9), (3.11), and Schwarz's inequality, we obtain

(4.3) Jε ^ c(\φ(vε(x, 0))u\(x, 0)dx + Lε + J^L
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By Lemma (3.5) and the definition of ψ, we have

(4.4) Lε <: caλyΛ V2wε(x, 0, y2) \2dxdy2 = ca2\wl(x, fydx .

By (4.3) and (4.4), we obtain (3.18). This completes the proof of (3.18).

PROOF OF (3.19). By Green's theorem, Lemma (3.5) and the definition
of ^ , we have

(4.5) ^

ύa2\vMv*(Pf Vi, OWIV^.ίa?, ylf 0)\2dxdy1 ^ ca2\w\{x, 0)dx .

On the other hand, we have

(4.6) I Δ,(τKv.) I V ^ . \2ul) - f"{vε) I V2wε \
2 \V±wε \

2u2

ε

-2ψ{vε) I V^.w. \2n\ - 2ψ(vε) \ V,wε |2 \V2uε |
21

^ c(W(vε)u2

ε\ \Vxwε\ \V2wε\ \VJJ2wε\

Let ikfε = U ^ I VxW, |21 V2iί;e |
2dx d?/, and ΛΓε = j y,y2 \ V ^ w , |2da? rft/. By

(4.5), (4.6), Lemma (3.5), (3.10) and the definition of ψ, using Schwarz's
inequality, we find

(4.7) Ke ^ c^aΛwlix, 0)dx + a2Mε + a2Ne + a2M\/2N\/2

+aK1

e

/2M1

ε

/2

We easily see that Ne = c\tί;2(^, 0)dx and Mε is bounded by c\t(;2(α;, 0)dx

(cf. [7]). Since ΐΓ, is finite, by (4.7) we conclude that

Kε ^ caΛw\(x, 0)dx .

This completes the proof of (3.19).

REMARK (4.8). Let G{i)(x{ί)) = exv(-\xli) |2) and
j - 1, 2, , n< (i = 1, 2). For (a?, 2/) = (z ( 1 ), x{2); y19 y2) e D, let

Gy{x) = yrwnΦι)(x

and
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For feU(RN) and (x,y)eD, we set F(x, y) = Gy * f(x), Kίιk(x, y) =
H\j>k) * f(x). We define a maximal function /* and a square function S(f)
for / 6 L\R") by

and

S(f)(χ) = (\ Σ Σ I #,,,(«,
\)Γ{x) 3=1 fc=l

We can prove the following theorem in the same way as Proposition (3.1).

THEOREM (4.9). If feU{RN), then we have

\{xeR»: S{f)(x) > a}\ ^ ca~>||/* Λ a\\l

for all a > 0, where c is a constant independent of f and a.

5. Proof of Theoreom (2.5), II. In this section, we prove the im-
plication (3) => (1) in Theorem (2.5).

LEMMA (5.1). Let f e LP(RN) (1 < p < oo). Let u(x, y) = Py* f(x).
Then we have

\\N{u)\\,£c,\\f\\9,

where cp is a constant independent of f.

This is well-known. See [10] and [11].

LEMMA (5.2). Let FeHftD) (p0 < p < <*>). We define a maximal
function F* by

F*(x) = sup {IF(t, y)\: (ίf y) e Γ(x)} .

Then we have

(5.3) \\F*\\,£c,\n,
where cp is a constant indendent of F.

PROOF. We first note that \F\P° is bisubharmonic, i.e., subharmonic
in each of the variables (x{ί\ yt) (i = 1, 2). This follows from Stein [10,
p. 217], because F is a system of conjugate biharmonic functions. Thus
by the same argument as in Stein and Weiss [11, pp. 116-117], there
exists g e Lq(RN) (q = p/p0) such that

(5.4)

and

(5.5)
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Since q = p/pQ > 1, by (5.4), (5.5) and Lemma (5.1), we have
cp || FHp. This completes the proof.

Now we prove the implication (3) => (1). Suppose that F = (ujk) e
Hi(D), uLM = u (L = nx + 1, M = n2 + 1) as in (3) of Theorem (2.5). By
Lemma (5.2), we have \\N(u)\\p£\\F*\\9£ cp\\F\\9. This completes the
proof.

6. Lemmas for biharmonic functions. In this section, we give six
lemmas on biharmonic functions, which will be used in the proof of the
implications (2) ==> (1) and (2) ==> (3) in Theorem (2.5). We omit the proofs,
since we can prove these lemmas by the same argument as in the proofs
of the corresponding one-variable results in [4], [10] and [11], or by
repeated use of the one-variable results.

LEMMA (6.1) (cf. Stein [10, p. 90]). Let u be a biharmonic function
on D. For xeRN, let

I f oof oo \ 1/2

(6.2) g(u)(x) = {\\\VxV^a, y)\ty1y1dy1dytJ .

Suppose that Aa(u)(x) < °°. Then we have

g(u)(x) ^ cAa(u)(x) ,

where c is a constant independent of u.

LEMMA (6.3) (cf. Fefferman and Stein [4, p. 173]). Let u be a
biharmonic function on D and let 0 < p < ©o. Suppose that

(6.4) Iv(u) = sup ( ί \u(x, y)\pdx)1/P < oo .
yvy2>0\ Jfi^ /

Then we have

sup Iu(x, y)I ^ cplp(u)yτniipy2n2/p ,
xeRN

where cp is a constant independent of u and y.

LEMMA (6.5) (cf. Fefferman and Stein [4, p. 166]). Let u be a
biharmonic function on D. For e > 0 and δ > 0, let uε>δ(x, y) = u(xf yx +
ε9 V2 + 8) {{x, y)eD). Let a = (alf α2), b = (blf 62). Suppose that 0 < a, <
blf 0 < α2 < b2. Then if Ab(u)(x) < oo, we have

Aa(uε>δ)(x) ^ cAb(u)(x) ,

where c is a constant independent of u, ε and δ.

LEMMA (6.6) (cf. Stein [10], Stein and Weiss [11]). Let u be a
biharmonic function on D. Suppose that
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sup 1 \u(xf y)\2dx < oo .
yvy2>0 JRX

Then there exists f e L\RN) such that u{xf y) = Py* f(x) for all (x, y) e D.

LEMMA (6.7) (cf. Stein [10, p. 143]). Let u be a biharmonic function
on D. Suppose that there exist positive constants c0, e and δ such that

sτφju(xfy)\ ^ c,yry2*

for all ylf y2 > 0. Then we have

(6.8) sup Kd/dxPMx, y)\ ^ cyr^yr9 ,

(6.9) sup \(d/dxh

ι))u(xf y)\ ^ cyϊey2

for j = 1, 2, , nx + 1; k = 1, 2, , n2 + 1 ( 5 / 3 ^ = d/dyιt d/dx™+ι = d/dy2)
and for all ylf y2 > 0, where c is a constant independent of y1 and y2.

LEMMA (6.10) (cf. Stein [10, p. 213]). Let uik(j = 1, 2, , nx + 1;
k = 1, 2, , n2 + 1) be (nx + l)(n2 + 1) biharmonic functions on D which
satisfy the generalized Cauchy-Riemann equations (2.1) and (2.2). Let
a = (a19 a2) and b — φlt b2) be the same as in Lemma (6.5). Suppose that
Ab(uLM)(x) < oo (L = nx + 1, M = n2 + 1). Then

Aa(ujk)(x) ^ cAb(uLM)(x)

for j = l, 2, , %! + 1 α^d k = 1, 2, , n2 + 1, where c is a constant
independent of ujk.

7. Proof of Theorem (2.5), III . In this section, we prove the im-
plication (2) =* (1) in Theorem (2.5). We first assume that u is the
iterated Poisson integral of an L2 function. For j = 1, 2, , nx + 1 and
k = 1, 2, , n2 + 1, we define %ifc(sc, y) by

(7.1) %*(», 2/) - ( " Γ ^ V a ^ a ^ ) ^ ^ , Λ» h2)dhxdh2 ,

where 3/dα^+i = 3/3Λi and d/dx^+i = a/3fe2. It is easy to see that %te is
the iterated Poisson integral of an II function. Note that uLM = w (L =
nx + 1, M = n2 + 1).

Let F be the (nt + 1) x (n2 + 1) matrix-valued function whose (j9 k)-
component is given by uίk(x9 y) for j = 1, 2, , nλ + 1 and k = 1, 2, ,
w2 + 1. By the definition of ujk, it is obvious that F is a system of
conjugate biharmonic functions. In order to prove that FeH%(D) (p0 < p),
we need the following lemma.
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LEMMA (7.2). Let v(x, y) be the iterated Poisson integral of an U
function. Then we have, for 0 < p < oo,

sup ( \v(x, y)\pdx ^ c| |i
yvy2>0JRN

where c is a constant independent of v.

We can prove this lemma as in [7, Lemm 1] using the one-variable
result in [4]. We omit the proof.

Since ujk is the iterated Poisson integral of an U function, by Lemmas
(6.10) and (7.2), we have that FeHp

A(D) and \\F\\, ^ c\\A{1/2tl/2)(u)\\p. Thus
by Lemma (5.2), we obtain

(7.3) || N(u) \\p ^ cp || A a / 2 > 1 / 2 ) ( u ) \\p ( p 0 < p ) .

Now we remove the restriction that u is the iterated Poisson integral
of an L2 function. Let u be a biharmonic function on D such that
u(x, y) -> 0 as yx + y2 -> oo and A(u) e LP(RN). For ε > 0 and K > 0 (ε <
K), let

uεK(x, y) = u(x, yx + ε, y2 + ε) - u(x, y, + ε, y2 + K)

— u(x, yλ + K, y2 + ε) + u(x, yx + K,y2 + K) .

Then, by Schwarz's inequality and Lemma (6.1), we have

1/2

S Vi+KCy^K
\ I (dydhβh^uix, hlf h2) \ dhγdh2

Vl+ε JV2+e

^ \og(K/ε)([Ύ\ (y/dhjhjufWM

= \og(K/e)g(u)(x) ^ cε>κA(u)(x) .
Thus we have

r
\ueK(x, y)\pdx < oosup 1

yvy2>QJ

Since p ^ 2, by Lemmas (6.3) and (6.6), we see that uεK is the iterated
Poisson integral of an U function. By (7.3), we have

\\N(uεK)\\p^c\\Aa/2Λ/2)(uεK)\\p.

Thus by Lemma (6.5), we obtain

\\N(uεK)\\P ^ c||A(2/8,2/8)(tt)||p

Since uεK(x, y)-*u(xf y) as ε->0 and K-+oo9 we conclude, by Fatou's lemma,

(7.4) | | N ( u ) \ \ p ^ l i m i n f | | N ( u ε K ) \ \ p £ c \ \ A ( 2 / 3 , 2 / s ) ( u ) \ \ p .
e-*0, K-+oo

This completes the proof.
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8. Proof of Theorem (2.5), IV. In this section, we prove the im-
plication (2) => (3) in Theorem (2.5). Suppose that u(x, y) —> 0 as y1 + y2 —>
oo and A{u)eLp(RN). we have already proved in §7 that N(u)eLp(RN).
Thus by Lemma (6.3), there are constants ε > 0 and δ > 0 such that

(8.1) sup \u(x, y)\ ̂  cyΓyί* .

This allows us to define ujk (j = 1, 2, , nx + 1; k = 1, 2, , n2 + 1) by

(8.2) uik(x, y) = \°° ["(dηdxfdx^uix, h19 h^dh.dh,

(d/dx™+1 = 3/d/̂ , d/dx{

n

2)

2+1 = 3/3λ2), because the integral on the right hand
side of (8.2) converges by Lemma (6.7) and (8.1). Note that uLM = ^
(L = nx + 1, ikί = n2 + 1). Let F be the (% + 1) x (w2 + 1) matrix-valued
function whose (j, &)-component is given by ujk(x, y) for j = 1,2, ,
rii + 1 and A; = 1, 2, * , n2 + 1. As in §7, it is easy to see that F is a
system of conjugate bίharmonic functions.

By the definition of ujk in (8.2) and Lemma (6.10), we see that
%*(B, y) -* 0 as yt + y2 -> oo and

By (7.4), we obtain

| |#0^)11, ^ c\\A{2/Bi2/5)(ujk)\\p ^ c\\A(u)\\p .

Therefore

S
n i + l 712+1

J F{x, y) \'dx ^ c Σ Σ II iSΓ(«i*) II? ^
Λ ^ ί = l fc=l

Thus we have proved that FeH%(D). This completes the proof.

REFERENCES

[ 1 ] A. P. CALDERON AND A. TORCHINSKY, Parabolic maximal functions associated with a
distribution, Advances in Math. 16 (1975), 1-64.

[2] S. Y. A. CHANG, Carleson measure on the bi-disc, Ann. of Math. 109 (1979), 613-620.
[ 3 ] S. Y. A. CHANG AND R. FEFFERMAN, A continuous version of duality of H1 with BMO

on the bidisc, Ann. of Math. 112 (1980), 179-201.
[ 4 ] C. FEFFERMAN AND E. M STEIN, HP spaces of several variables, Acta Math. 129 (1972),

138-193.
[ 5 ] R. FEFFERMAN, Bounded mean oscillation on the polydisk, Ann. of Math. 110 (1979),

395-406.
[6] R. F. GUNDY, Inegalites pour martingales & un et deux indices: L'espaces Hp, Lecture

Notes in Math. 774, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
[7] R. F. GUNDY AND E. M. STEIN, HP theory for the poly-disc, Proc. Natl. Acad. Sci. USA

76 (1979), 1026-1029.



LUSIN FUNCTIONS 13

[ 8 ] M. P. MALLIAVIN AND P. MALLIAVIN, Integrates de Lusin-Calderόn pour les fonctions
biharmoniques, Bull. Sci. Math. 101 (1977), 357-384.

[9] E.M. STEIN, A variant of the area integral, Bull. Sci. Math. 103 (1979), 449-461.
[10] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton

Univ. Press, 1971.
[11] E.M. STEIN AND G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Prinece-

ton Univ. Press, 1971.
[12] A. ZYGMUND, Trigonometric series, I and II, Cambride Univ. Press, 1959.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI, 980

JAPAN






