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1. Introduction. In this note, we will give a proof of the L? norm
equivalence between the Lusin area integral A(u) and the nontangential
maximal function N(u) of a biharmonic function % defined on the product
space D = Ru*'X R%*, where R = R"x (0, ) (1 =1, 2).

We will use the following notations. We write

(1) .« m(2) —_ 1 . 2) 2
(xly Y 7, yz) = (xil)’ ] x:zl)’ Y xi s "%y x;;’ yz)

for the point of R™*'x R™", where (z, y,) e R"", z% = (&, .-+, 2{) €
R*, and y,€eR (1 =1,2). We also write (", ¥,; 2, ¥,) = (2, ), where
&= (", 2”)e RY (N=mn,+mn,),and ¥y = (¥, ¥.) € R’. Let R¥" = {x"?, y,) e
Rt y, >0} (¢ =1,2) and D = Ru*' x Ruet,

Let u(x, y) be a biharmonic function on D, that is, % is twice con-
tinuously differentiable and A,u = 0 on D(t = 1, 2), where

g

A, = 2, (0/ox”) + (0/0y.)*

i=1
is the Laplacian in the (x'”, y,) variable. For a = (a, a,), a, > 0, a,>0,
and ¢ = (2, 2*) e R¥, we define a product cone I',(x) by

(L.1) ) = (¢, ¥ t7, y) € D: [tV — a¥[<ayy,, ¥ — @<y}

We say that we H?(D) (0 < p < o) if its nontangential maximal func-
tion

(1.2) N,(u) = sup{lu(t, y)|: @, y) € I',(x)}

belongs to the Lebesgue space L?(R¥). It is known that this definition

is independent of a. The Lusin area integral of a biharmonic function
% is defined by

1/2
(1.3) aw@ = (| vV, wivwidtdy)”

where |V, Vyu|* = 2311 305t [0°/(0x P owi)u | with 6/0xl),, = 0/0y,, 8/0xr., =
0/0y,. We write A, ,,(u) = A(w), N,,(w) = Nu), and I ,,(x) = I'(x).
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The main purpose of this note is to give proofs of the inequalities

(1.4) I A@) ||, < ¢, || N(w) ||,
and
(1.5) I Nw)l,=c, | Aw)]|, ,

for w € H*(D). Gundy and Stein [7] showed the inequalities (1.4) and (1.5)
for u € H?(R: X R%), 0<p< oo (see also Gundy [6]). We will give a simpler
proof of the inequality (1.4). In order to prove the inequality (1.5), we
will introduce H? spaces of conjugate biharmoniec functions in §2. Our
result is stated as Theorem (2.5) in §2.

In this note, tne letter ¢ will denote a positive constant, which need
not be the same at each occurrence, and CE denotes the complement of
a set FE.

2. H? spaces of conjugate biharmonic functions and the theorem.
Let wp(x,9) G=1,2,---,m+1and k=1,2,:--,m, + 1) be (n, + 1)X
(n, + 1) biharmonic functions on D which satisfy the following generalized
Cauchy-Riemann equations:

n1+1

2.1) Di0uy s ow =0, ouy s 0x=ou, / oxs”
=1

1=45j=nm+L,k=12:--,n,+1, and

ng+1

(2.2) I?_;_‘iau,-k/ax;(,” =0 y auik/axf” = auﬂ/ax}f) y

1=kls=n+1,j=1,2 -+, n,+1, where 9/ox,, = 8/0y, and 0/0xy),; =
0/0y,. Let F(x, y) be the (n, + 1) X (n, + 1) matrix-valued function whose
(4, k)-component is u;(x, y) forl < j<m+landl1 <k < n,+ 1: F(x, y) =
(uj(x, ¥)). We call F' a system of conjugate biharmonic functions. Let
|F| = ot 2okt [ugl)'? and let p, = max((n, — 1)/n,, (n, — 1)/n,).

DEFINITION (2.3). Let p, < p < =, and let F be a system of con-
jugate biharmonic functions on D. We say that F'e H5(D), if

1/
2.4) sup (S Fle, y)]”dx) Py
¥1,¥5>0 \J RNV
We write ||F||, for the left hand side of the above inequality.
H?(D) spaces are characterized in terms either of the area integral
or H% spaces. In fact, we have the following theorem.

THEOREM 2.5. Let wu(x, y) be a biharmonic function on D and let
P, <p<2. Then the following three properties are equivalent.
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(1) N(u)e L*(R™.
(2) ux, ¥, ¥) >0 as y, + ¥, — o and A(u)€ L*(R").
(8) There exists F = (u;) € HY(D) such that w = uz, (L =mn, + 1,

M=mn,+1).

Moreover, we have

(2.6) AW, = ¢, || Nw)|l,
and

2.7 NI, = ¢,llAw)], ,

where ¢, is a constant independent of wu.

REMARK (2.8). The inequalities (2.6) and (2.7) were shown in Gundy
and Stein [7] for u e H?(R: x R%).

REMARK (2.9). Theorem (2.5) is stated only for p, p, < p < 2, for
simplicity, but in view of the one-variable theory in Fefferman and Stein
[4], Theorem (2.5) is also valid for all p, 0<p<c, if we introduce
appropriate H? spaces for p < p,.

3. Proof of Theorem (2.5), I. In this section and §4, we prove the
implication (1) = (2) in Theorem (2.5).

Assume that N(u)e L*. Then by Lemma (6.3) in §6, we have that
u(x, y) >0 as y, + ¥. — . In order to show that A(u)e L?, we will

prove the following.
PROPOSITION (8.1). Let we H?(D) (0 < p < 2). Then we have
(3.2) He e RY: A(w)(®) > a}| = ca™®||N(w) A allz

Sor all @ > 0, where || denotes the Lebesgue measure and ¢ is a constant
independent of u and a.

The analogue of Proposition (8.1) for the bidisc was shown in Gundy
and Stein [7] (see also Gundy [6]). We give a simpler proof. By Pro-
position (8.1) and a well-known argument, we obtain || A(u) ||, < ¢, || N(w)|l,
(0<p<?2) (see Fefferman and Stein [4, p. 165]). Thus we only have to

prove Proposition (3.1).
Before we give a proof of Proposition (3.1), we introduce the iterated

Poisson integral of a function defined on RY. For (z, ¥)= (", y,; 2%, ¥,) €
D, the iterated Poisson kernel P,(x) is defined by P,(x)=P,(x", y,)P.(x®, v,),

where
P, 4) = ¢, 0|2 ! + gt
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is the Poisson kernel associated with the upper half space R%*' (1 =1, 2)

(see [11]). For feL”(R") (1 £ p £ =), we define the iterated Poisson
integral of f by

(3.3) P(f)@,4) = Py f@) = | fl@ — OP,t)dt .

It is easy to see that P(f)(x, ) is a biharmonic function on D.

Now we begin the proof of Proposition (8.1). We may assume that
u is a real-valued function. We first assume that u is the iterated
Poisson integral of f e L*(RY): u(z, y) = P, * f(x). Let a>0 and let
(3.4) E={xeR": Nu)x) < a} .
We need the following lemmas on the iterated Poisson integral of the
characteristic function of E.

LEMMA (3.5). Let E be the same as in (3.4). Let v(z, y) = PXz)(x, ¥),
where Xz is the characteristic function of E. Then there exists a positive
constant 6, not depending on E such that 0 < d, < 27° and

sup {lu@, Y)|: (x, ) eS} = a,
where S = {(z, ¥y) € D: v(x, y) = 1 — 20,}.

LEMMA (3.6). Let 0, be the same as in Lemma (3.5). Put 6 = d,/4.
Let E be the same as in (3.4). Then there exists a subset E* of E such that

3.7 ileﬂEftinf (P, v): ¢, el @)} =1—0
and
(3.8) |CE*| < ¢|CE]|,

where ¢ is a constant independent of f and a.

Lemma (3.5) follows from the definition of E. Lemma (8.6) is essen-
tially given in [7]. We omit the proof.

We continue to prove Proposition (38.1). Let 6, and 6 be the same as
in Lemmas (3.5) and (3.6), respectively. Let ¢ and 4 be non-negative C=
functions on R such that ¢(r) =1 if r=1—0,4(r) =0 if r <1 — 20,
and y(r) =1if r=1 — 0y, P(r) =0 if »r =1 — 25,. Note that

(3.9) |¢'(r)[* = cg(r)

(3.10) [¢' (r)]* = eqp(r)

for all re R and

(3.11) inf 4 (1) >0 (T = {reR:|¢'()]| + " ()| >0})
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(see [8]). Then by (3.7), we have
(3.12) [, 4@ < o|4,.60)1V.Vurdedy
E‘

where v = P(X;). We write I for the integral on the right hand side of
(8.12). We modify I. For ¢ > 0, wet set

(3.13) I = §y1y2¢<ve<x, WV, y)dzdy

where v.(x, ) = PXp)(@, ¥, + & ¥ +¢) and u.(®,y) = u(®, y, + & ¥, + €)
(1 ¥ 2 0). _
For a continuously differentiable function g(x, ¥) on D, let

Ve, )| = (3100096, F + (6/oud9t@, wF)

for 1 =1,2. Then, applying Green’s theorem with respect to (xz*, y,),
we obtain

@14 [vaaeo)Vaudedy = [us.@, 0, w)ivan, 0, v dedy,
=J,, say .
On the other hand, we have

(8.15) | A (@00 | Vo, ) — 6" (0.) | Viw, ! Vaue [P — 26(v.) | V,Vau, [*
< clg' W)l | Vaw, | | Vaue | |V, Vo, |,

where w, (2, ¥) = PXox)®, ¥, + &, ¥ + ¢). Put
(3.16) K, = [0y @) | Voo, P Vo, Pz dy .

Then by (3.9), (8.11), (8.14), and (3.15), using Schwarz’s inequality, we
obtain

(8.17) I = clJ. + K, + L[K.") .

We need the following two inequalities (3.18) and (3.19), whose proofs
we will give in §4.

(3.18) b c<SRN¢(ve(x, 0)ui(z, 0)dx + o SRNwE(x, O)dw) ,

(3.19) K, < cazg Wiz, 0)da ,
RN

where ¢ is a constant independent of ¢, u, and «.
By (3.17), (3.18), and (3.19), we have
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(3.20) I< c(S;zS('v,(x, 0)ut(z, 0)da + azswz(x, O)doc) .

We can easily see that S¢(ve(x, 0)u(zx, 0)dx —»S fix)dx and Swi(m, 0)dx —
E
|CE| as € » 0. Thus letting ¢ — 0 in (8.20), we have

(3.21) Igc(SENZ(u)(x)dx + a2|CE'|) .
By (3.21), (3.12), and (38.8), we conclude that
€ R*: Aw)(@)>a)| < |CE*| + a SE*AZ(u)(m)dx

< c(ICEI + a—ngNz(u)(x)dx)
= ca”?|[N(u) A\ a|; .

Now we remove the restriction that « is the iterated Poisson integral
of an L’ function. Assume that N(u)e L*(R") (0 <p<2). Let >0
and let u,(x, y) = u(x, vy, + 7, ¥. + 7). By Lemmas (6.3) and (6.6) in §6,
it is easy to see that u, is the iterated Poisson integral of an L? funetion.
Therefore by what we have proved, we have

(3.22) |{zx e R": A(uy)(x) > a}| = ca™|| N(u,) A alli .

Letting 7 — 0 in (8.22), we obtain |{x e R": A(w)(®) > a}| < ca?|| N(u) A
a|. This completes the proof of Proposition (8.1).

4. Proof of (3.18) and (3.19). In this section, we prove (3.18) and
(3.19) in §3.

ProoF oOF (3.18). Applying Green’s theorem, we find
@) |hAdsua, 0, w)its, O, y)de dy, = (4(0.(z, O)uktw, 0)ds

On the other hand, we have

4.2) [ A(g(ve)ud) — ¢ (ve) | Vaw. [Pui — 26(v.) | Vou. |
é CIQS’('I)E)’U/CI |V2we| |V2uc| .

Set

L. = (5w (0@, 0, y))ui(w, 0, )| Vow, (@, 0, ) fdz dy -
By (4.1), (4.2), (8.9), (3.11), and Schwarz’s inequality, we obtain
4.3) J, < c<§¢(vs(x, O)ui(z, 0)de + L. + JI*L") .



LUSIN FUNCTIONS 7
By Lemma (3.5) and the definition of +», we have
(4.4) L = ca?Syllvzw,(w, 0, y,) [’ dady, = cazsuﬁ(w, 0)dx .

By (4.3) and (4.4), we obtain (3.18). This completes the proof of (3.18).

PrROOF OF (8.19). By Green’s theorem, Lemma (38.5) and the definition
of 4, we have

(4.5) SylyzAzwf(ve)!vlwelﬂuz)dwdy

<a [ pro@, v, 0)| Vanu(w, v, 0)[dedy, < ca [wila, 0)da

On the other hand, we have
(4.6) | Ay(yr(ve) | Viw, ['u?) — " (v.) | Vow [P V., [Pul
—29(v) | ViVow, "ul — 29:(v,) | Viw. [ | Vou, |
= e(ly'out| | Vaw. | | Vaw, | |V, Vw, |
+ ¥ wou| | Vw. | Vow, | [Vau |
+ [p@Ju.| | Viw.| | Vou | [V, V0, ])

Let M, = gylyglVlw, | V,w, 'z dy, and N, = Sylyzlvlvzwelzd:vdy. By
(4.5), (4.6), Lemma (3.5), (3.10) and the definition of +r, using Schwarz’s
inequality, we find

.7 K, < c(azgw‘:’(x, 0)dz + a*M, + a*N, + a*M2 N
+aK M + aK*NE ) |

We easily see that N, = cSwi(x, 0)dx and M, is bounded by cgwﬁ (2, 0)dx
(cef. [7]). Since K, is finite, by (4.7) we conclude that

K < cazgwﬁ(x, 0)dz .

This completes the proof of (3.19).

REMARK (4.8). Let G¥(x)=exp(—|2“ [*) and H{ (&)= (3/0x")G? (x*"),
i=4,2,+..4,n, (¢4=1,2). For (z,y) = (x®, 2?; y, ¥.) € D, let
G,(@) = yr"yy GV (@ [y) G (& [y.)
and
Hi® () = yryy2HP (a0 [y) HP (@ [y,)
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For feL*(RY) and (x, y)eD, we set F(x, y) = G, f(x), K;,(x, ¥) =
H{® x f(x). We define a maximal function f* and a square function S(f)
for fe L*R") by

f*(@) = sup {|F(, y)|: (¢, y) e ['(@)}

and

ny 1/2
2

() 5=1

s@ = (| S35 1K, v)Pvrvidtdy)

We can prove the following theorem in the same way as Proposition (3.1).
THEOREM (4.9). If f e L*RY), then we have
H{z e R": S(f)(x) > a}| < ca™|| f* A alfz
for all a« > 0, where ¢ is a constant independent of f and «a.

5. Proof of Theoreom (2.5), II. In this section, we prove the im-
plication (8) = (1) in Theorem (2.5).

LemMMA (5.1). Let feL’(RY) 1<p< o). Let ul,y) =P,* f(x).
Then we have

INw, = el I,

where ¢, 18 a constant independent of f.

This is well-known. See [10] and [11].

LEMMA (5.2). Let Fe Hi(D) (p, <p < ). We define a maximal
Junction F* by

F*@) = sup {|F&, »)|: ¢, v) e (@)} .

Then we have
(5.3) NE* [, = ¢ || F'l,
where ¢, 18 a constant indendent of F.

Proor. We first note that |F'| is bisubharmonie, i.e., subharmonic
in each of the variables (x*, ¥, (¢ =1, 2). This follows from Stein [10,
p. 217], because F' is a system of conjugate biharmonic functions. Thus
by the same argument as in Stein and Weiss [11, pp. 116-117], there
exists g€ LY(R") (¢ = p/p,) such that :

(5.4) | F(z, )| = P, * g(x)
and
(5.5) lglls = cll Fll5 .
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Since ¢ = p/p, > 1, by (5.4), (6.5) and Lemma (5.1), we have |[|F*|, =
¢, || F|l,- This completes the proof.

Now we prove the implication (3) = (1). Suppose that F' = (u;,) €
H:D), upy=u (L=m,+1, M =mn,+ 1) as in (3) of_ Theorem (2.5). By
Lemma (5.2), we have ||[Nw)|, = [|F*|l, = ¢,||F'||,» This completes the
proof.

6. Lemmas for biharmonic functions. In this section, we give six
lemmas on biharmonic functions, which will be used in the proof of the
implications (2) = (1) and (2) = (3) in Theorem (2.5). We omit the proofs,
since we can prove these lemmas by the same argument as in the proofs
of the corresponding one-variable results in [4], [10] and [11], or by
repeated use of the one-variable results.

LEMMA (6.1) (cf. Stein [10, p. 90]).  Let w be a bitharmonic function
on D. For xeR", let

(6.2) sw@ = (|1 1v.Veutz, ) Fydydy. )

Suppose that A,(w)(x) < . Then we have
gw)(x) = cA(w)(®) ,
where ¢ 18 a constant independent of u.

LEmMMA (6.3) (cf. Fefferman and Stein [4, p. 178]). Let u be a
biharmonic function on D and let 0 < p < o. Suppose that :

(6.4) L) = sup (| Jutz, )ds) < o .

Then we have
sup lu(@, )| = ¢, L(w)yr™?y; ™",

where ¢, 1s a constant independent of u and y.

LEMMA (6.5) (cf. Fefferman and Stein [4, p. 166]). Let u be a
biharmonic function on D. For ¢ >0 and 6 > 0, let u, ,(x, ¥) = u(x, ¥, +
&Y. +0) (x,y) e D). Let a = (a,a,),b=(b,b,). Suppose that 0 < a, <
b, 0<a, <b,. Then if A,(u)(x) < o, we have

A, (U, 5) (@) = cAy(u)(x) ,
where ¢ s a constant independent of wu, & and 9.

LEMMA (6.6) (cf. Stein [10], Stein and Weiss [11]). Let u be a
biharmonic function on D. Suppose that
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sup S [u(x, ¥) [fde < o« .
RN

Y1,¥3>0

Then there exists f € L*(R™) such that u(zx, y) = P, * f(x) for all (z, y) € D.

LEMMA (6.7) (cf. Stein [10, p. 143]). Let u be a btharmonic function
on D. Suppose that there exist positive constants c, € and & such that

sup |u®, ¥)| = ey’
ze RN

for all y,, ¥, > 0. Then we have
(6.8) sup |(9/0w;")u(®, y)| = ey’

(6.9) sup |@/oxM)ux, ¥)| < cyriys’™

forj=1,2,+---,m+1,k=1,2, ---, n, + 1(0/0%3),, = 8/0Y,, 6/0x.. = 3/0Ys,)
and for all y,, ¥y, > 0, where ¢ is a constant independent of y, and ¥y,.

LEMMA (6.10) (cf. Stein [10, p. 213]). Let uw;(s =1,2,---,n, + 1;
k=1,2,---,m, + 1) be (n, + 1)(n, + 1) biharmonic functions on D which
satisfy the genmeralized Cauchy-Riemann equations (2.1) and (2.2). Let
a = (a,, a;) and b = (b, b,) be the same as in Lemma (6.5). Suppose that
Ap)(@) < o (L=m,+1, M =n, 4+ 1). Then

Au(ujk)(x) = cAy(Uzy) (@)
Jor 5=1,2,--,n,+1 and k=1,2,---,n, + 1, where ¢ is a constant

independent of wj,.

7. Proof of Theorem (2.5), III. In this section, we prove the im-
plication (2) = (1) in Theorem (2.5). We first assume that w is the

iterated Poisson integral of an L* function. Forj=1,2,:--,7n, + 1 and
k=1,2,--+,n,+ 1, we define u;(z, y) by
7.1 uate, v) = || @poapongyuce, b, hdhdh,

Yi1Ju2

where 0/0x{),, = 0/6h, and 6/ox}),, = 0/0h,. It is easy to see that wu is
the iterated Poisson integral of an L* function. Note that u,, = (L =
n,+ 1, M=mn, + 1).

Let F be the (n, + 1) X (n, + 1) matrix-valued function whose (7, k)-
component is given by u;(x, y) for j=1,2,---,m, +1and b =1,2, ---,
n, + 1. By the definition of wu,, it is obvious that F' is a system of
conjugate biharmonic functions. In order to prove that F' e H5(D) (p, < p),
we need the following lemma.
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LEMMA (7.2). Let v(x, y) be the iterated Poisson integral of an L?
Sunction. Then we have, for 0 < p < oo,

sup S [v(@, ¥) [?de < c|| Au(W)|I5 ,
¥1,¥9>0 JRN
where ¢ 1s a constant independent of v.

We can prove this lemma as in [7, Lemm 1] using the one-variable
result in [4]. We omit the proof.

Since wuy, is the iterated Poisson integral of an L? function, by Lemmas
(6.10) and (7.2), we have that F e Hi(D) and | F||, < ¢|| Awp,un(®)|l,. Thus
by Lemma (5.2), we obtain
(7.3) I NW) |, = e[l Awym@)l, (0o < D) -

Now we remove the restriction that « is the iterated Poisson integral
of an L* function. Let u be a biharmonic function on D such that
u(®, y) —0 as ¥y, + ¥y, — c and A(u)e L*(R¥). For e >0 and K> 0 (¢ <
K), let

Ux(®, ¥) = u(@, ¥, + & ¥ + &) — u@, y, + ¢ 9. + K)
—ul, ¥, + K, 9. + &) + ul®, y, + K, ¥ + K) .
Then, by Schwarz’s inequality and Lemma (6.1), we have
K
"\ @/oh,dh,yu(@, by he) | dh,dh,

v1+K S Y2
Ygte

|uex(®@, ¥)| = S

< 1og(k/e)(| |1 @/ononyuhdh.dh,)”
= log(K/e)g(u)(®) < ¢, xAw)(®) .

Thus we have

sup S [wex(@, ¥) [Pd < oo .
RN

Y1, ¥3>0

Since p < 2, by Lemmas (6.3) and (6.6), we see that u., is the iterated
Poisson integral of an L* function. By (7.3), we have

II N(ueK) ”p é Y ” A(l/z,x/Z)(”’eK) ”p .
Thus by Lemma (6.5), we obtain

”N(usK)”p = CHA(2/3,2/3)('”/) “p .
Since u.x(x, ¥) > u(x, y¥) as e—0 and K—, we conclude, by Fatou’s lemma,

(7.4) | NG,  Tim inf | NGl S ¢l A0, -

This completes the proof.
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8. Proof of Theorem (2.5), IV. In this section, we prove the im-
plication (2)= (8) in Theorem (2.5). Suppose that u(x, y) >0 as y, + ¥, —
~ and A(u)€ L*(R"). we have already proved in §7 that N(u) € L*(R").
Thus by Lemma (6.3), there are constants ¢ > 0 and 6 > 0 such that
(8.1) sup |u(®, )| < cyr'y:’ .

zeRN

This allows us to define u;, (j=1,2,+,n, +1,k=1,2,--+,n, + 1) by
8.2) U@, ) = §°°§°°<32/ax;-1>ax,9>)u<x, by k)b,
Yi1J¥2

(0/0x,, = 0/0hy, 8/0x;),, = 0/0h,), because the integral on the right hand
side of (8.2) converges by Lemma (6.7) and (8.1). Note that u,, = u
(L=n,+1, M=mn,+1). Let F be the (n, + 1) X (n, + 1) matrix-valued
function whose (7, k)-component is given by wu;(x,y) for 7=1,2, ---,
n,+1land k=1,2 :--,n,+ 1. As in §7, it is easy to see that F is a
system of conjugate biharmonic functions.

By the definition of w; in (8.2) and Lemma (6.10), we see that
(2, ¥) — 0 as ¥, + ¥y, — « and

| A s,emUin) |, = el Aw) ],
By (7.4), we obtain
I N ll, = cll Awsm@i)ll, = cllAw)]|, -

Therefore
n3+1 no+1
sup | || Fa, y)lrde < o 3 35I| Nwsn) 13 < ell A7 -
Y ¥>0J R j=1 k=1

Thus we have proved that F'e H%(D). This completes the proof.
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