Tôhoku Math. J. 42 (1990), 419–428

ON A RESULT OF GROSS AND YANG

HONG-XUN YI

(Received October 4, 1989, revised December 18, 1989)

1. Introduction and main results. By a meromorphic function we shall always mean a meromorphic function in the complex plane. We use the usual notation of the Nevanlinna theory of meromorphic functions as explained in [1]. We use E to denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence.

For any set S and any meromorphic function h let

$$E_h(S) = \bigcup_{a \in S} \{ z \mid h(z) - a = 0 \},$$

where each zero of h-a with multiplicity m is repeated m times in $E_h(S)$ (cf. [2]).

Gross and Yang [3] obtained the following results:

THEOREM A. Let $S_1 = \{a_1, a_2\}$ and $S_2 = \{b_1, b_2\}$ be two pairs of distinct elements with $a_1 + a_2 = b_1 + b_2$ but $a_1 a_2 \neq b_1 b_2$. Suppose that there are two nonconstant entire functions f and g of finite order such that $E_f(S_j) = E_g(S_j)$ for j = 1, 2. Then either $f \equiv g$, $f + g \equiv a_1 + a_2$ or

$$f(z) = \frac{c}{2} \pm \left[\frac{a_1 a_2 - b_1 b_2}{2} e^{-p}\right]^{1/2}$$

and

$$g(z) = \frac{c}{2} \pm \left[\frac{a_1 a_2 - b_1 b_2}{2} e^p\right]^{1/2}$$

where $c = a_1 + a_2$ and p(z) is a polynomial.

THEOREM B. Let $S_1 = \{a_1, a_2\}$ and $S_2 = \{b_1, b_2\}$ be any two disjoint pairs of complex numbers with $a_1a_2 \neq b_1b_2$. Suppose that there are two nonconstant entire functions f and g of finite order such that $E_f(S_j) = E_g(S_j)$ for j = 1, 2. Then either $f(z) \equiv Ag(z) + B$ for some constants A, B, or

 $f(z) = c_1 + c_2 e^{p(z)}$ and $g(z) = c_1 + c_2 e^{-p(z)}$

for some polynomial p(z) and constants c_1 and c_2 .

The above results of Gross and Yang, however, are not true for

 $f(z) = 1 - 4e^z$, $g(z) = 1 - e^{-z}$, $S_1 = \{-1, 1\}$ and $S_2 = \{-\sqrt{3} i, \sqrt{3} i\}$.

In this note, we prove the following theorem which is a correction of Theorem A.

THEOREM 1. Assume that the conditions of Theorem A are satisfied. Then f and g must satisfy exactly one of the following relations:

(i) $f \equiv g$,

(ii) $f + g \equiv a_1 + a_2$,

(iii) $(f-c/2) \cdot (g-c/2) \equiv \pm ((a_1-a_2)/2)^2$, where $c = a_1 + a_2$. This occurs only for $(a_1-a_2)^2 + (b_1-b_2)^2 = 0$. (iv) $(f-a_i) \cdot (g-a_k) \equiv (-1)^{j+k} (a_1-a_2)^2$ for j, k=1, 2. This occurs only for

(iv) $(f-a_j) \cdot (g-a_k) \equiv (-1)^{j+k} (a_1-a_2)^2$ for j, k=1, 2. This occurs only for $3(a_1-a_2)^2 + (b_1-b_2)^2 = 0$.

(v) $(f-b_j) \cdot (g-b_k) \equiv (-1)^{j+k} (b_1-b_2)^2$ for j, k=1, 2. This occurs only for $(a_1-a_2)^2 + 3(b_1-b_2)^2 = 0$.

From Theorem 1 we immediately obtain the following:

COROLLARY. If, in addition to the assumptions of Theorem 1,

$$((a_1-a_2)/(b_1-b_2))^2 \neq -1, -3, -1/3,$$

then either $f \equiv g$ or $f + g \equiv a_1 + a_2$.

Now it is natural to ask what can be said if f and g are two meromorphic functions of arbitrary growth in Theorem 1. In this direction, we have the following results.

THEOREM 2. Let $S_1 = \{a_1, a_2\}$ and $S_2 = \{b_1, b_2\}$ be two pairs of distinct elements with $a_1 + a_2 = b_1 + b_2$ but $a_1 a_2 \neq b_1 b_2$, and let $S_3 = \{\infty\}$. Suppose that f and g are two nonconstant meromorphic functions satisfying $E_f(S_i) = E_a(S_i)$ for j = 1, 2, 3. Then

$$T(r,f) = (1+o(1))T(r,g) \quad for \quad r \in E.$$

THEOREM 3. If, in addition to the assumptions of Theorem 2, $\delta(c/2, f) > 1/5$, where $c = a_1 + a_2$, then f and g must satisfy exactly one of the following relations:

(i) $f \equiv g$,

(ii) $f + g \equiv a_1 + a_2$,

(iii) $(f-c/2) \cdot (g-c/2) \equiv \pm ((a_1-a_2)/2)^2$. This occurs only for $(a_1-a_2)^2 + (b_1-b_2)^2 = 0$.

THEOREM 4. If, in addition to the assumptions of Theorem 2,

$$N\left(r,\frac{1}{f-b_1}\right) + N\left(r,\frac{1}{f-b_2}\right) = (2+o(1))T(r,f) \quad for \quad r \in E$$

and $\delta(c/2, f) > 0$, where $c = a_1 + a_2$, then the conclusions of Theorem 3 hold.

2. Some lemmas. In order to prove our theorems, we need the following lemmas.

LEMMA 1. Let h(z) be a nonconstant entire function. Then

 $T(r, h') = o(T(r, e^h))$ for $r \in E$.

PROOF. We have

$$T(r, h') \leq (1+o(1))T(r, h)$$
 for $r \in E$.

On other hand, by Clunie's result (cf. [1, p. 54]), we have $T(r, h) = o(T(r, e^h))$. Thus $T(r, h') = o(T(r, e^h))$ for $r \in E$, which proves Lemma 1.

LEMMA 2 (cf. [4, Lemma 3]). Let f_1 , f_2 and f_3 be meromorphic functions with $f_3 \neq constnat$. Suppose that $\sum_{j=1}^{3} f_j \equiv 1$ and that

$$\sum_{j=1}^{3} N(r, f_j) = o(T(r)) \quad for \quad r \in E$$

and

$$\sum_{j=1}^{3} N\left(r, \frac{1}{f_j}\right) < (\lambda + o(1))T(r) \quad for \quad r \in E,$$

where T(r) denotes the maximum of $T(r, f_j)$ for j = 1, 2, 3 and λ is a positive constant < 1. Then either $f_1 \equiv 1$ or $f_2 \equiv 1$.

LEMMA 3 (cf. [5, Theorem 2]). Let p(z) and q(z) be nonconstnat polynomials of the same degree. If $(e^{p(z)}-1)/(e^{q(z)}-1)$ is entire, then $p(z)=mq(z)+2n\pi i$, where m, n are integers.

3. Proof of Theorem 2. By the assumption of Theorem 2, we have two entire functions p and q such that

(1)

$$(g-a_1) \cdot (g-a_2) = e^p (f-a_1) \cdot (f-a_2),$$

$$(g-b_1) \cdot (g-b_2) = e^q (f-b_1) \cdot (f-b_2).$$

Let

(2)
$$G(z) = (g(z) - c/2)^2$$
, $F(z) = (f(z) - c/2)^2$,

where $c = a_1 + a_2 = b_1 + b_2$. Again let $a = ((a_1 - a_2)/2)^2$, $b = ((b_1 - b_2)/2)^2$. By the assumption of Theorem 2, we have $a \neq 0$, $b \neq 0$ and $a \neq b$. From (1) we obtain

(3)
$$G-a=e^{p}(F-a), \quad G-b=e^{q}(F-b).$$

It is easy to see from the second main theorem and our assumption that

(4)

$$T(r, G) = O(T(r, F)) \quad \text{for } r \notin E,$$

$$T(r, e^{p}) + T(r, e^{q}) = O(T(r, F)) \quad \text{for } r \notin E.$$

Suppose that $F \neq G$. Then $e^q \neq e^p$. Thus from (3) we obtain

(5)
$$F = \frac{be^{q} - ae^{p} + a - b}{e^{q} - e^{p}}, \quad G = \frac{be^{-q} - ae^{-p} + a - b}{e^{-q} - e^{-p}}.$$

Let $\{z_n\}$ be the set of poles of F. Then from (2) and (5), $\{z_n\}$ are the roots of $(e^{q-p}-1)'=(q'-p')e^{q-p}=0$. Thus

$$N(r, F) \leq 2N\left(r, \frac{1}{q'-p'}\right) \leq 2T(r, q') + 2T(r, p') + O(1)$$
.

By Lemma 1 and (4), we obtain

(6)
$$N(r, F) = o(T(r, F)) \quad \text{for} \quad r \in E,$$

that is,

(7)
$$N(r, f) = o(T(r, f)) \quad \text{for} \quad r \in E.$$

Let $\{z'_n\}$ be the set of roots of F=0. Then from (2) and (5), $\{z'_n\}$ are the roots of $(be^q - ae^p + a - b)' = e^p(bq'e^{q-p} - ap') = 0$. Thus

$$N\left(r,\frac{1}{F}\right) \leq 2N\left(r,\frac{1}{bq'e^{q-p}-ap'}\right) \leq 2T(r,e^{q-p}) + o(T(r,F)) \quad \text{for} \quad r \in E,$$

that is,

(8)
$$N\left(r,\frac{1}{f-c/2}\right) \leq N\left(r,\frac{1}{e^{q-p}-1}\right) + o(T(r,f)) \quad \text{for} \quad r \in E.$$

By the second fundamental theorem, we have

$$4 T(r, f) < N\left(r, \frac{1}{f - a_1}\right) + N\left(r, \frac{1}{f - a_2}\right) + N\left(r, \frac{1}{f - b_1}\right) + N\left(r, \frac{1}{f - b_2}\right) + N\left(\frac{1}{f - c/2}\right) + N(r, f) + o(T(r, f)) \quad \text{for} \quad r \in E.$$

Hence by (7) and (8), we obtain

(9)
$$2T(r,F) < N\left(r,\frac{1}{F-a}\right) + N\left(r,\frac{1}{F-b}\right) + N\left(r,\frac{1}{e^{q-p}-1}\right) + o(T(r,F)) \quad \text{for } r \in E.$$

From (3) we have

422

$$G - F = (F - a) \cdot (e^{p} - 1) = (F - b) \cdot (e^{q} - 1) = \frac{e^{p}}{b - a} (F - a) \cdot (F - b) \cdot (e^{q - p} - 1)$$

Then

(10)
$$N\left(r,\frac{1}{G-F}\right) = N\left(r,\frac{1}{F-a}\right) + N\left(r,\frac{1}{e^{p}-1}\right) + o(T(r,F))$$
$$= N\left(r,\frac{1}{F-b}\right) + N\left(r,\frac{1}{e^{q}-1}\right) + o(T(r,F))$$
$$= N\left(r,\frac{1}{F-a}\right) + N\left(r,\frac{1}{F-b}\right) + N\left(r,\frac{1}{e^{q-p}-1}\right) + o(T(r,F)) \quad \text{for } r \in E.$$

By (9) and (10) we easily obtain

$$2T(r,F) < N\left(r,\frac{1}{G-F}\right) + o(T(r,F)) < (1+o(1))T(r,F) + T(r,G)$$
 for $r \in E$,

that is,

$$(1-o(1))T(r,F) < T(r,G)$$
 for $r \in E$.

In the same way, we have

$$(1-o(1))T(r, G) < T(r, F)$$
 for $r \in E$.

Hence

$$T(r, F) = (1 + o(1))T(r, G)$$
 for $r \in E$,

which implies

T(r, f) = (1 + o(1))T(r, g) for $r \in E$.

This completes the proof of Theorem 2.

REMARK. From the proof of Theorem 2, it is easy to see that if $F \neq G$, then the following conclusions hold:

(11)
$$N\left(r,\frac{1}{G-F}\right) = (2+o(1))T(r,F) \quad \text{for } r \in E,$$

(12)
$$N\left(r,\frac{1}{f-c/2}\right) = T(r,e^{q-p}) + o(T(r,f)) \quad \text{for } r \in E,$$

(13)
$$(1+o(1))T(r, F) \leq T(r, e^p) \leq (3/2+o(1))T(r, F)$$
 for $r \in E$,

(14)
$$(1+o(1))T(r, F) \leq T(r, e^q) \leq (3/2+o(1))T(r, F)$$
 for $r \in E$

4. **Proof of Theorem 3.** In the following, we shall use the notation of the above section.

If $F \equiv G$, then either $f \equiv g$ or $f + g \equiv a_1 + a_2$. Next, assume that $F \not\equiv G$. Let

$$f_1 = \frac{1}{a-b} \cdot (e^q - e^p) \cdot F$$
, $f_2 = -\frac{b}{a-b} \cdot e^q$, $f_3 = \frac{a}{a-b} \cdot e^p$

and denote by T(r) the maximum of $T(r, f_j)$ for j = 1, 2, 3. From (5) we have

(15)
$$\sum_{j=1}^{3} f_j \equiv 1$$

By (6) and (13) we obtain

(16)
$$\sum_{j=1}^{3} N(r, f_j) = o(T(r)) \quad \text{for} \quad r \in E.$$

Again by (2) and (12), we get

(17)
$$\sum_{j=1}^{3} N\left(r, \frac{1}{f_j}\right) = 3 N\left(r, \frac{1}{f - c/2}\right) + o(T(r)) \quad \text{for} \quad r \in E.$$

It is clear that

(18)
$$N\left(r,\frac{1}{f-c/2}\right) \leq (1-\delta(c/2,f)+o(1))T(r,f)$$
$$=\frac{1}{2}(1-\delta(c/2,f)+o(1))T(r,F) \quad \text{for } r \in E.$$

From (10) we obtain

$$N\left(r,\frac{1}{e^{p}-1}\right)+N\left(r,\frac{1}{e^{q}-1}\right)=N\left(r,\frac{1}{G-F}\right)+N\left(r,\frac{1}{e^{q-p}-1}\right)+o(T(r,F)) \quad \text{for} \quad r \in E.$$

This implies that

(19)
$$T(r, e^p) + T(r, e^q) = (2 + o(1))T(r, F) + N\left(r, \frac{1}{f - c/2}\right)$$
 for $r \in E$,

by (11) and (12). Combining (18) and (19), we have

(20)
$$T(r, e^{p}) + T(r, e^{q}) \leq \frac{1}{2} (5 - \delta(c/2, f) + o(1))T(r, F)$$
 for $r \in E$.

It follows from (17), (19) and (20) that

(21)
$$\sum_{j=1}^{3} N\left(r, \frac{1}{f_j}\right) = 3(T(r, e^p) + T(r, e^q)) - 6T(r, F) + o(T(r))$$

$$\leq \left(3 - \frac{12}{5 - \delta(c/2, f)}\right) (T(r, e^p) + T(r, e^q)) + o(T(r))$$

$$\leq \left\{\frac{6(1 - \delta(c/2, f))}{5 - \delta(c/2, f)} + o(1)\right\} T(r) \quad \text{for} \quad r \in E.$$

Since $\delta(c/2, f) > 1/5$,

$$\frac{6(1-\delta(c/2,f))}{5-\delta(c/2,f)} = 1 - \frac{5\delta(c/2,f)-1}{5-\delta(c/2,f)} < 1.$$

$$\frac{1}{a-b} \cdot (e^q - e^p) \cdot F = 1$$

and

$$-\frac{b}{a-b}\cdot e^{q}+\frac{a}{a-b}\cdot e^{p}=0.$$

Thus

$$e^{q} = \frac{a}{b} e^{p}$$

and

$$F=be^{-p}.$$

Again by (5) and (22),

$$(24) G = (a+b) - ae^p$$

From (2) we know that G has no simple zeros. Thus by (24) we have

a+b=0

and

$$(25) G = be^{p}.$$

By (23) and (25), we get $F \cdot G \equiv a^2$, which implies that

$$(f-c/2) \cdot (g-c/2) \equiv \pm ((a_1-a_2)/2)^2$$
.

This completes the proof of Theorem 3.

5. Proof of Theorem 4. Suppose that $F \neq G$. Proceeding as in the proof of

Theorem 3, we also obtain (15), (16), (17), (18), (19) and (20). By the assumption of Theorem 4, we have

$$N\left(r,\frac{1}{F-b}\right) = (1+o(1))T(r,F) \quad \text{for} \quad r \in E.$$

Again from (10) we obtain

$$T(r, e^{q}) = (1 + o(1))T(r, F)$$
 for $r \in E$.

From this and (19), we get

(26)
$$T(r, e^{p}) = (1 + o(1))T(r, F) + N\left(r, \frac{1}{f - c/2}\right) \quad \text{for} \quad r \in E.$$

Again by (18),

(27)
$$T(r, e^p) \leq \frac{1}{2} (3 - \delta(c/2, f) + o(1))T(r, F)$$
 for $r \in E$.

It follows from (17), (26) and (27) that

$$\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right) = 3T(r, e^{p}) - 3T(r, F) + o(T(r))$$

$$\leq \left(3 - \frac{6}{3 - \delta(c/2, f)}\right) T(r, e^{p}) + o(T(r))$$

$$\leq \left\{\frac{3(1 - \delta(c/2, f))}{3 - \delta(c/2, f)} + o(1)\right\} T(r) \quad \text{for} \quad r \in E$$

Since $\delta(c/2, f) > 0$,

$$\frac{3(1-\delta(c/2,f))}{3-\delta(c/2,f)} = 1 - \frac{2\delta(c/2,f)}{3-\delta(c/2,f)} < 1$$

Proceeding as in the proof of Theorem 3, by Lemma 2, we also have

$$(f-c/2) \cdot (g-c/2) \equiv \pm ((a_1-a_2)/2)^2$$
,

which occurs only for $(a_1 - a_2)^2 + (b_1 - b_2)^2 = 0$.

This completes the proof of Theorem 4.

6. Proof of Theorem 1. Suppose that $F \not\equiv G$. Since f and g are nonconstant entire functions of finite order, p and q are polynomials. From (13) and (14) we obtain deg $p = \deg q$. If $\deg(q-p) < \deg p$, then from (12),

426

$$N\left(r,\frac{1}{f-c/2}\right) = o(T(r,f))$$

and hence $\delta(c/2, f) = 1$. By Theorem 3, we obtain

$$(f-c/2)\cdot(g-c/2) \equiv \pm ((a_1-a_2)/2)^2$$
,

which occurs only for $(a_1 - a_2)^2 + (b_1 - b_2)^2 = 0$.

Next, assume that deg(q-p) = deg p. From (5) we have

(28)
$$\frac{(F-b)e^{p}}{b-a} = \frac{e^{p}-1}{e^{q-p}-1}$$

and hence by Lemma 3,

$$p = m(q-p) + 2n\pi i$$
 and $q = (m+1)(q-p) + 2n\pi i$,

where *m*, *n* are integers.

If m is positive, from (12), (19) and (28) we obtain

(29)

$$T(r, e^{p}) = mT(r, e^{q-p}) = (1 + o(1))T(r, F),$$

$$T(r, e^{q}) = (m+1)T(r, e^{q-p}) = \left(1 + \frac{1}{m} + o(1)\right)T(r, F).$$

Again by (14), we get $m \ge 2$. If $m \ge 3$, from (12) and (29), we obtain $\delta(c/2, f) = 1 - 2/m > 1/5$. By Theorem 3, $N(r, (f - c/2)^{-1}) = 0$, which is a contradiction. Thus m = 2. From (28) we obtain

(30)
$$F = (b-a) \cdot \left(e^{2(p-q)} + e^{p-q} + \frac{b}{b-a} \right) = (b-a) \cdot \left[\left(e^{p-q} + \frac{1}{2} \right)^2 + \left(\frac{b}{b-a} - \frac{1}{4} \right) \right]$$

From (2) we know that all the zeros of F must be multiple. Thus by (30) we have b/(b-a) = 1/4 and $F = b(2e^{p-q} + 1)^2$. Hence

$$f = b_1 + (b_1 - b_2)e^{p-q}$$
 or $f = b_2 + (b_2 - b_1)e^{p-q}$.

In the same way, we obtain

$$g = b_1 + (b_1 - b_2)e^{q-p}$$
 or $g = b_2 + (b_2 - b_1)e^{q-p}$.

Hence, f and g must satisfy exactly one of the following relations:

$$(f-b_j)\cdot(g-b_k) \equiv (-1)^{j+k}(b_1-b_2)^2$$
 for $j, k=1, 2$.

This occurs only for $(a_1 - a_2)^2 + 3(b_1 - b_2)^2 = 0$.

If m is negative, in the same manner as above, we have m = -3, 3a + b = 0,

$$(f-a_j) \cdot (g-a_k) \equiv (-1)^{j+k} (a_1-a_2)^2$$
 for $j, k=1, 2$

H.-X. YI

This occurs only for $3(a_1-a_2)^2 + (b_1-b_2)^2 = 0$. This completes the proof of Theorem 1.

ACKNOWLEDGEMENT. I am grateful to the referee for valuable comments.

References

- [1] W. K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [2] F. GROSS, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131 (1968), 199-214.
- [3] F. GROSS AND C. C. YANG, Meromorphic functions covering certain finite sets at the same points, Illinois J. Math. 26 (1982), 432-441.
- [4] HONG-XUN YI, Meromorphic functions with two deficient values, Acta Math. Sinica 30 (1987), 588-597.
- [5] C. F. OSGOOD AND C. C. YANG, On the quotient of two integral functions, J. Math. Anal. Appl. 54 (1976), 408-418.

DEPARTMENT OF MATHEMATICS SHANDONG UNIVERSITY JINAN, SHANDONG, 250100 PEOPLE'S REPUBLIC OF CHINA

428