ON a RESULT OF GROSS AND YANG

Hong-Xun Yi

(Received October 4, 1989, revised December 18, 1989)

1. Introduction and main results. By a meromorphic function we shall always mean a meromorphic function in the complex plane. We use the usual notation of the Nevanlinna theory of meromorphic functions as explained in [1]. We use E to denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence.

For any set S and any meromorphic function h let

$$
E_{h}(S)=\bigcup_{a \in S}\{z \mid h(z)-a=0\},
$$

where each zero of $h-a$ with multiplicity m is repeated m times in $E_{h}(S)$ (cf. [2]).
Gross and Yang [3] obtained the following results:
Theorem A. Let $S_{1}=\left\{a_{1}, a_{2}\right\}$ and $S_{2}=\left\{b_{1}, b_{2}\right\}$ be two pairs of distinct elements with $a_{1}+a_{2}=b_{1}+b_{2}$ but $a_{1} a_{2} \neq b_{1} b_{2}$. Suppose that there are two nonconstant entire functions f and g of finite order such that $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$. Then either $f \equiv g$, $f+g \equiv a_{1}+a_{2}$ or

$$
f(z)=\frac{c}{2} \pm\left[\frac{a_{1} a_{2}-b_{1} b_{2}}{2} e^{-p}\right]^{1 / 2}
$$

and

$$
g(z)=\frac{c}{2} \pm\left[\frac{a_{1} a_{2}-b_{1} b_{2}}{2} e^{p}\right]^{1 / 2},
$$

where $c=a_{1}+a_{2}$ and $p(z)$ is a polynomial.
Theorem B. Let $S_{1}=\left\{a_{1}, a_{2}\right\}$ and $S_{2}=\left\{b_{1}, b_{2}\right\}$ be any two disjoint pairs of complex numbers with $a_{1} a_{2} \neq b_{1} b_{2}$. Suppose that there are two nonconstant entire functions f and g of finite order such that $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$. Then either $f(z) \equiv A g(z)+B$ for some constants $A, \mathrm{~B}$, or

$$
f(z)=c_{1}+c_{2} e^{p(z)} \quad \text { and } \quad g(z)=c_{1}+c_{2} e^{-p(z)}
$$

for some polynomial $p(z)$ and constants c_{1} and c_{2}.
The above results of Gross and Yang, however, are not true for

$$
f(z)=1-4 e^{z}, \quad g(z)=1-e^{-z}, \quad S_{1}=\{-1,1\} \quad \text { and } \quad S_{2}=\{-\sqrt{3} i, \sqrt{3} i\}
$$

In this note, we prove the following theorem which is a correction of Theorem A.
Theorem 1. Assume that the conditions of Theorem A are satisfied. Then f and g must satisfy exactly one of the following relations:
(i) $f \equiv g$,
(ii) $f+g \equiv a_{1}+a_{2}$,
(iii) $(f-c / 2) \cdot(g-c / 2) \equiv \pm\left(\left(a_{1}-a_{2}\right) / 2\right)^{2}$, where $c=a_{1}+a_{2}$. This occurs only for $\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=0$.
(iv) $\left(f-a_{j}\right) \cdot\left(g-a_{k}\right) \equiv(-1)^{j+k}\left(a_{1}-a_{2}\right)^{2}$ for $j, k=1,2$. This occurs only for $3\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=0$.
(v) $\left(f-b_{j}\right) \cdot\left(g-b_{k}\right) \equiv(-1)^{j+k}\left(b_{1}-b_{2}\right)^{2}$ for $j, k=1,2$. This occurs only for $\left(a_{1}-a_{2}\right)^{2}+3\left(b_{1}-b_{2}\right)^{2}=0$.

From Theorem 1 we immediately obtain the following:
Corollary. If, in addition to the assumptions of Theorem 1,

$$
\left(\left(a_{1}-a_{2}\right) /\left(b_{1}-b_{2}\right)\right)^{2} \neq-1,-3,-1 / 3,
$$

then either $f \equiv g$ or $f+g \equiv a_{1}+a_{2}$.
Now it is natural to ask what can be said if f and g are two meromorphic functions of arbitrary growth in Theorem 1. In this direction, we have the following results.

Theorem 2. Let $S_{1}=\left\{a_{1}, a_{2}\right\}$ and $S_{2}=\left\{b_{1}, b_{2}\right\}$ be two pairs of distinct elements with $a_{1}+a_{2}=b_{1}+b_{2}$ but $a_{1} a_{2} \neq b_{1} b_{2}$, and let $S_{3}=\{\infty\}$. Suppose that f and g are two nonconstant meromorphic functions satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2,3$. Then

$$
T(r, f)=(1+o(1)) T(r, g) \quad \text { for } \quad r \& E .
$$

Theorem 3. If, in addition to the assumptions of Theorem $2, \delta(c / 2, f)>1 / 5$, where $c=a_{1}+a_{2}$, then f and g must satisfy exactly one of the following relations:
(i) $f \equiv g$,
(ii) $f+g \equiv a_{1}+a_{2}$,
(iii) $(f-c / 2) \cdot(g-c / 2) \equiv \pm\left(\left(a_{1}-a_{2}\right) / 2\right)^{2}$. This occurs only for $\left(a_{1}-a_{2}\right)^{2}+$ $\left(b_{1}-b_{2}\right)^{2}=0$.

Theorem 4. If, in addition to the assumptions of Theorem 2,

$$
N\left(r, \frac{1}{f-b_{1}}\right)+N\left(r, \frac{1}{f-b_{2}}\right)=(2+o(1)) T(r, f) \quad \text { for } \quad r \notin E
$$

and $\delta(c / 2, f)>0$, where $c=a_{1}+a_{2}$, then the conclusions of Theorem 3 hold.
2. Some lemmas. In order to prove our theorems, we need the following lemmas.

Lemma 1. Let $h(z)$ be a nonconstant entire function. Then

$$
T\left(r, h^{\prime}\right)=o\left(T\left(r, e^{h}\right)\right) \quad \text { for } \quad r \notin E .
$$

Proof. We have

$$
T\left(r, h^{\prime}\right) \leqslant(1+o(1)) T(r, h) \quad \text { for } \quad r \notin E .
$$

On other hand, by Clunie's result (cf. [1, p. 54]), we have $T(r, h)=o\left(T\left(r, e^{h}\right)\right)$. Thus $T\left(r, h^{\prime}\right)=o\left(T\left(r, e^{h}\right)\right)$ for $\mathrm{r} \& E$, which proves Lemma 1.

Lemma 2 (cf. [4, Lemma 3]). Let f_{1}, f_{2} and f_{3} be meromorphic functions with $f_{3} \not \equiv$ constnat. Suppose that $\sum_{j=1}^{3} f_{j} \equiv 1$ and that

$$
\sum_{j=1}^{3} N\left(r, f_{j}\right)=o(T(r)) \quad \text { for } \quad r \notin E
$$

and

$$
\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right)<(\lambda+o(1)) T(r) \quad \text { for } \quad r \notin E
$$

where $T(r)$ denotes the maximum of $T\left(r, f_{j}\right)$ for $j=1,2,3$ and λ is a positive constant <1. Then either $f_{1} \equiv 1$ or $f_{2} \equiv 1$.

Lemma 3 (cf. [5, Theorem 2]). Let $p(z)$ and $q(z)$ be nonconstnat polynomials of the same degree. If $\left(e^{p(z)}-1\right) /\left(e^{q(z)}-1\right)$ is entire, then $p(z)=m q(z)+2 n \pi i$, where m, n are integers.
3. Proof of Theorem 2. By the assumption of Theorem 2, we have two entire functions p and q such that

$$
\begin{align*}
& \left(g-a_{1}\right) \cdot\left(g-a_{2}\right)=e^{p}\left(f-a_{1}\right) \cdot\left(f-a_{2}\right), \\
& \left(g-b_{1}\right) \cdot\left(g-b_{2}\right)=e^{q}\left(f-b_{1}\right) \cdot\left(f-b_{2}\right) \tag{1}
\end{align*}
$$

Let

$$
\begin{equation*}
G(z)=(g(z)-c / 2)^{2}, \quad F(z)=(f(z)-c / 2)^{2}, \tag{2}
\end{equation*}
$$

where $c=a_{1}+a_{2}=b_{1}+b_{2}$. Again let $a=\left(\left(a_{1}-a_{2}\right) / 2\right)^{2}, b=\left(\left(b_{1}-b_{2}\right) / 2\right)^{2}$. By the assumption of Theorem 2, we have $a \neq 0, b \neq 0$ and $a \neq b$. From (1) we obtain

$$
\begin{equation*}
G-a=e^{p}(F-a), \quad G-b=e^{q}(F-b) . \tag{3}
\end{equation*}
$$

It is easy to see from the second main theorem and our assumption that

$$
\begin{align*}
& T(r, G)=O(T(r, F)) \quad \text { for } \quad r £ E, \tag{4}\\
& T\left(r, e^{p}\right)+T\left(r, e^{q}\right)=O(T(r, F)) \quad \text { for } \quad r \& E .
\end{align*}
$$

Suppose that $F \not \equiv G$. Then $e^{q} \not \equiv e^{p}$. Thus from (3) we obtain

$$
\begin{equation*}
F=\frac{b e^{q}-a e^{p}+a-b}{e^{q}-e^{p}}, \quad G=\frac{b e^{-q}-a e^{-p}+a-b}{e^{-q}-e^{-p}} . \tag{5}
\end{equation*}
$$

Let $\left\{z_{n}\right\}$ be the set of poles of F. Then from (2) and (5), $\left\{z_{n}\right\}$ are the roots of $\left(e^{q-p}-1\right)^{\prime}=\left(q^{\prime}-p^{\prime}\right) e^{q-p}=0$. Thus

$$
N(r, F) \leqslant 2 N\left(r, \frac{1}{q^{\prime}-p^{\prime}}\right) \leqslant 2 T\left(r, q^{\prime}\right)+2 T\left(r, p^{\prime}\right)+O(1) .
$$

By Lemma 1 and (4), we obtain

$$
\begin{equation*}
N(r, F)=o(T(r, F)) \quad \text { for } \quad r \notin E, \tag{6}
\end{equation*}
$$

that is,

$$
\begin{equation*}
N(r, f)=o(T(r, f)) \quad \text { for } \quad r \& E . \tag{7}
\end{equation*}
$$

Let $\left\{z_{n}^{\prime}\right\}$ be the set of roots of $F=0$. Then from (2) and (5), $\left\{z_{n}^{\prime}\right\}$ are the roots of $\left(b e^{q}-a e^{p}+a-b\right)^{\prime}=e^{p}\left(b q^{\prime} e^{q-p}-a p^{\prime}\right)=0$. Thus

$$
N\left(r, \frac{1}{F}\right) \leqslant 2 N\left(r, \frac{1}{b q^{\prime} e^{q-p}-a p^{\prime}}\right) \leqslant 2 T\left(r, e^{q-p}\right)+o(T(r, F)) \quad \text { for } \quad r \notin E,
$$

that is,

$$
\begin{equation*}
N\left(r, \frac{1}{f-c / 2}\right) \leqslant N\left(r, \frac{1}{e^{q-p}-1}\right)+o(T(r, f)) \quad \text { for } \quad r \notin E . \tag{8}
\end{equation*}
$$

By the second fundamental theorem, we have

$$
\begin{aligned}
4 T(r, f)< & N\left(r, \frac{1}{f-a_{1}}\right)+N\left(r, \frac{1}{f-a_{2}}\right)+N\left(r, \frac{1}{f-b_{1}}\right)+N\left(r, \frac{1}{f-b_{2}}\right)+N\left(\frac{1}{f-c / 2}\right) \\
& +N(r, f)+o(T(r, f)) \quad \text { for } r \notin E .
\end{aligned}
$$

Hence by (7) and (8), we obtain
(9) $2 T(r, F)<N\left(r, \frac{1}{F-a}\right)+N\left(r, \frac{1}{F-b}\right)+N\left(r, \frac{1}{e^{q-p}-1}\right)+o(T(r, F)) \quad$ for $\quad r \notin E$.

From (3) we have

$$
G-F=(F-a) \cdot\left(e^{p}-1\right)=(F-b) \cdot\left(e^{q}-1\right)=\frac{e^{p}}{b-a}(F-a) \cdot(F-b) \cdot\left(e^{q-p}-1\right) .
$$

Then

$$
\begin{align*}
& N\left(r, \frac{1}{G-F}\right)=N\left(r, \frac{1}{F-a}\right)+N\left(r, \frac{1}{e^{p}-1}\right)+o(T(r, F)) \tag{10}\\
&=N\left(r, \frac{1}{F-b}\right)+N\left(r, \frac{1}{e^{q}-1}\right)+o(T(r, F)) \\
&=N\left(r, \frac{1}{F-a}\right)+N\left(r, \frac{1}{F-b}\right)+N\left(r, \frac{1}{e^{q-p}-1}\right)+o(T(r, F)) \quad \text { for } \quad r \notin E .
\end{align*}
$$

By (9) and (10) we easily obtain

$$
2 T(r, F)<N\left(r, \frac{1}{G-F}\right)+o(T(r, F))<(1+o(1)) T(r, F)+T(r, G) \quad \text { for } \quad r \notin E,
$$

that is,

$$
(1-o(1)) T(r, F)<T(r, G) \quad \text { for } \quad r \& E .
$$

In the same way, we have

$$
(1-o(1)) T(r, G)<T(r, F) \quad \text { for } \quad r \notin E .
$$

Hence

$$
T(r, F)=(1+o(1)) T(r, G) \quad \text { for } \quad r \notin E,
$$

which implies

$$
T(r, f)=(1+o(1)) T(r, g) \quad \text { for } \quad r \notin E .
$$

This completes the proof of Theorem 2.
Remark. From the proof of Theorem 2, it is easy to see that if $F \not \equiv G$, then the following conclusions hold:

$$
\begin{equation*}
N\left(r, \frac{1}{G-F}\right)=(2+o(1)) T(r, F) \quad \text { for } \quad r \notin E, \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
N\left(r, \frac{1}{f-c / 2}\right)=T\left(r, e^{q-p}\right)+o(T(r, f)) \quad \text { for } \quad r \notin E, \tag{12}
\end{equation*}
$$

$$
\begin{array}{llll}
(1+o(1)) T(r, F) \leqslant T\left(r, e^{p}\right) \leqslant(3 / 2+o(1)) T(r, F) & \text { for } & r \notin E, \\
(1+o(1)) T(r, F) \leqslant T\left(r, e^{q}\right) \leqslant(3 / 2+o(1)) T(r, F) & \text { for } & r \notin E . \tag{14}
\end{array}
$$

4. Proof of Theorem 3. In the following, we shall use the notation of the above section.

If $F \equiv G$, then either $f \equiv g$ or $f+g \equiv a_{1}+a_{2}$. Next, assume that $F \not \equiv G$. Let

$$
f_{1}=\frac{1}{a-b} \cdot\left(e^{q}-e^{p}\right) \cdot F, \quad f_{2}=-\frac{b}{a-b} \cdot e^{q}, \quad f_{3}=\frac{a}{a-b} \cdot e^{p}
$$

and denote by $T(r)$ the maximum of $T\left(r, f_{j}\right)$ for $j=1,2,3$. From (5) we have

$$
\begin{equation*}
\sum_{j=1}^{3} f_{j} \equiv 1 \tag{15}
\end{equation*}
$$

By (6) and (13) we obtain

$$
\begin{equation*}
\sum_{j=1}^{3} N\left(r, f_{j}\right)=o(T(r)) \quad \text { for } \quad r \notin E . \tag{16}
\end{equation*}
$$

Again by (2) and (12), we get

$$
\begin{equation*}
\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right)=3 N\left(r, \frac{1}{f-c / 2}\right)+o(T(r)) \quad \text { for } \quad r \notin E . \tag{17}
\end{equation*}
$$

It is clear that

$$
\begin{align*}
N\left(r, \frac{1}{f-c / 2}\right) & \leqslant(1-\delta(c / 2, f)+o(1)) T(r, f) \tag{18}\\
& =\frac{1}{2}(1-\delta(c / 2, f)+o(1)) T(r, F) \quad \text { for } \quad r \notin E .
\end{align*}
$$

From (10) we obtain

$$
N\left(r, \frac{1}{e^{p}-1}\right)+N\left(r, \frac{1}{e^{q}-1}\right)=N\left(r, \frac{1}{G-F}\right)+N\left(r, \frac{1}{e^{q-p}-1}\right)+o(T(r, F)) \quad \text { for } \quad r \notin E
$$

This implies that

$$
\begin{equation*}
T\left(r, e^{p}\right)+T\left(r, e^{q}\right)=(2+o(1)) T(r, F)+N\left(r, \frac{1}{f-c / 2}\right) \quad \text { for } \quad r \notin E \tag{19}
\end{equation*}
$$

by (11) and (12). Combining (18) and (19), we have

$$
\begin{equation*}
T\left(r, e^{p}\right)+T\left(r, e^{q}\right) \leqslant \frac{1}{2}(5-\delta(c / 2, f)+o(1)) T(r, F) \quad \text { for } \quad r \notin E . \tag{20}
\end{equation*}
$$

It follows from (17), (19) and (20) that

$$
\begin{equation*}
\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right)=3\left(T\left(r, e^{p}\right)+T\left(r, e^{q}\right)\right)-6 T(r, F)+o(T(r)) \tag{21}
\end{equation*}
$$

$$
\begin{aligned}
& \leqslant\left(3-\frac{12}{5-\delta(c / 2, f)}\right)\left(T\left(r, e^{p}\right)+T\left(r, e^{q}\right)\right)+o(T(r)) \\
& \leqslant\left\{\frac{6(1-\delta(c / 2, f))}{5-\delta(c / 2, f)}+o(1)\right\} T(r) \quad \text { for } \quad r \& E .
\end{aligned}
$$

Since $\delta(c / 2, f)>1 / 5$,

$$
\frac{6(1-\delta(c / 2, f))}{5-\delta(c / 2, f)}=1-\frac{5 \delta(c / 2, f)-1}{5-\delta(c / 2, f)}<1
$$

By (13), (14) and Lemma 2, we obtain

$$
\frac{1}{a-b} \cdot\left(e^{q}-e^{p}\right) \cdot F=1
$$

and

$$
-\frac{b}{a-b} \cdot e^{q}+\frac{a}{a-b} \cdot e^{p}=0
$$

Thus

$$
\begin{equation*}
e^{q}=\frac{a}{b} e^{p} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
F=b e^{-p} . \tag{23}
\end{equation*}
$$

Again by (5) and (22),

$$
\begin{equation*}
G=(a+b)-a e^{p} . \tag{24}
\end{equation*}
$$

From (2) we know that G has no simple zeros. Thus by (24) we have

$$
a+b=0
$$

and

$$
\begin{equation*}
G=b e^{p} . \tag{25}
\end{equation*}
$$

By (23) and (25), we get $F \cdot G \equiv a^{2}$, which implies that

$$
(f-c / 2) \cdot(g-c / 2) \equiv \pm\left(\left(a_{1}-a_{2}\right) / 2\right)^{2}
$$

This completes the proof of Theorem 3.
5. Proof of Theorem 4. Suppose that $F \not \equiv G$. Proceeding as in the proof of

Theorem 3, we also obtain (15), (16), (17), (18), (19) and (20). By the assumption of Theorem 4, we have

$$
N\left(r, \frac{1}{F-b}\right)=(1+o(1)) T(r, F) \quad \text { for } \quad r \notin E .
$$

Again from (10) we obtain

$$
T\left(r, e^{q}\right)=(1+o(1)) T(r, F) \quad \text { for } \quad r \notin E .
$$

From this and (19), we get

$$
\begin{equation*}
T\left(r, e^{p}\right)=(1+o(1)) T(r, F)+N\left(r, \frac{1}{f-c / 2}\right) \quad \text { for } \quad r \notin E . \tag{26}
\end{equation*}
$$

Again by (18),

$$
\begin{equation*}
T\left(r, e^{p}\right) \leqslant \frac{1}{2}(3-\delta(c / 2, f)+o(1)) T(r, F) \quad \text { for } \quad r \notin E . \tag{27}
\end{equation*}
$$

It follows from (17), (26) and (27) that

$$
\begin{aligned}
\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right) & =3 T\left(r, e^{p}\right)-3 T(r, F)+o(T(r)) \\
& \leqslant\left(3-\frac{6}{3-\delta(c / 2, f)}\right) T\left(r, e^{p}\right)+o(T(r)) \\
& \leqslant\left\{\frac{3(1-\delta(c / 2, f))}{3-\delta(c / 2, f)}+o(1)\right\} T(r) \quad \text { for } \quad r \& E
\end{aligned}
$$

Since $\delta(c / 2, f)>0$,

$$
\frac{3(1-\delta(c / 2, f))}{3-\delta(c / 2, f)}=1-\frac{2 \delta(c / 2, f)}{3-\delta(c / 2, f)}<1
$$

Proceeding as in the proof of Theorem 3, by Lemma 2, we also have

$$
(f-c / 2) \cdot(g-c / 2) \equiv \pm\left(\left(a_{1}-a_{2}\right) / 2\right)^{2}
$$

which occurs only for $\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=0$.
This completes the proof of Theorem 4.
6. Proof of Theorem 1. Suppose that $F \not \equiv G$. Since f and g are nonconstant entire functions of finite order, p and q are polynomials. From (13) and (14) we obtain $\operatorname{deg} p=\operatorname{deg} q$. If $\operatorname{deg}(q-p)<\operatorname{deg} p$, then from (12),

$$
N\left(r, \frac{1}{f-c / 2}\right)=o(T(r, f))
$$

and hence $\delta(c / 2, f)=1$. By Theorem 3, we obtain

$$
(f-c / 2) \cdot(g-c / 2) \equiv \pm\left(\left(a_{1}-a_{2}\right) / 2\right)^{2}
$$

which occurs only for $\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=0$.
Next, assume that $\operatorname{deg}(q-p)=\operatorname{deg} p$. From (5) we have

$$
\begin{equation*}
\frac{(F-b) e^{p}}{b-a}=\frac{e^{p}-1}{e^{q-p}-1} \tag{28}
\end{equation*}
$$

and hence by Lemma 3,

$$
p=m(q-p)+2 n \pi i \quad \text { and } \quad q=(m+1)(q-p)+2 n \pi i
$$

where m, n are integers.
If m is positive, from (12), (19) and (28) we obtain

$$
\begin{align*}
& T\left(r, e^{p}\right)=m T\left(r, e^{q-p}\right)=(1+o(1)) T(r, F), \\
& T\left(r, e^{q}\right)=(m+1) T\left(r, e^{q-p}\right)=\left(1+\frac{1}{m}+o(1)\right) T(r, F) \tag{29}
\end{align*}
$$

Again by (14), we get $m \geqslant 2$. If $m \geqslant 3$, from (12) and (29), we obtain $\delta(c / 2, f)=1-2 / m>1 / 5$. By Theorem 3, $N\left(r,(f-c / 2)^{-1}\right)=0$, which is a contradiction. Thus $m=2$. From (28) we obtain

$$
\begin{equation*}
F=(b-a) \cdot\left(e^{2(p-q)}+e^{p-q}+\frac{b}{b-a}\right)=(b-a) \cdot\left[\left(e^{p-q}+\frac{1}{2}\right)^{2}+\left(\frac{b}{b-a}-\frac{1}{4}\right)\right] \tag{30}
\end{equation*}
$$

From (2) we know that all the zeros of F must be multiple. Thus by (30) we have $b /(b-a)=1 / 4$ and $F=b\left(2 e^{p-q}+1\right)^{2}$. Hence

$$
f=b_{1}+\left(b_{1}-b_{2}\right) e^{p-q} \quad \text { or } \quad f=b_{2}+\left(b_{2}-b_{1}\right) e^{p-q} .
$$

In the same way, we obtain

$$
g=b_{1}+\left(b_{1}-b_{2}\right) e^{q-p} \quad \text { or } \quad g=b_{2}+\left(b_{2}-b_{1}\right) e^{q-p}
$$

Hence, f and g must satisfy exactly one of the following relations:

$$
\left(f-b_{j}\right) \cdot\left(g-b_{k}\right) \equiv(-1)^{j+k}\left(b_{1}-b_{2}\right)^{2} \quad \text { for } \quad j, k=1,2
$$

This occurs only for $\left(a_{1}-a_{2}\right)^{2}+3\left(b_{1}-b_{2}\right)^{2}=0$.
If m is negative, in the same manner as above, we have $m=-3,3 a+b=0$,

$$
\left(f-a_{j}\right) \cdot\left(g-a_{k}\right) \equiv(-1)^{j+k}\left(a_{1}-a_{2}\right)^{2} \quad \text { for } \quad j, k=1,2 .
$$

This occurs only for $3\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}=0$.
This completes the proof of Theorem 1.
Acknowledgement. I am grateful to the referee for valuable comments.

References

[1] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[2] F. Gross, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131 (1968), 199-214.
[3] F. Gross and C. C. Yang, Meromorphic functions covering certain finite sets at the same points, Illinois J. Math. 26 (1982), 432-441.
[4] Hong-Xun Yı, Meromorphic functions with two deficient values, Acta Math. Sinica 30 (1987), 588-597.
[5] C. F. Osgood and C. C. Yang, On the quotient of two integral functions, J. Math. Anal. Appl. 54 (1976), 408-418.

Department of Mathematics

Shandong University
Jinan, Shandong, 250100
People's Republic of China

