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1. Introduction. The direct method of Lyapunov for ordinary differential
equations has a natural generalization for functional differential equations (FDE) by
introducing Lyapunov functionals [3], [5], [7], [9], [10], [11]. Since functions are
much simpler to use, sufficient conditions for stability of solutions of FDE are also
given in terms of the rate of change of functions on R" along solutions. This latter
approach is referred to as results of Razumikhin type [1], [7], [9], [10], [14], [17], [18].

Barnea [1] obtained a Razumikhin type stability result for autonomous FDE
with finite delay. In order to state his result we need the following noation. Let r>0
and define C=C([—r, 0], R") equipped with the sup norm | ‘|. For a continuous
function x: [—r, a)> R" and t€[0, a), x,e C is defined by x/(s)=x(t+s), —r<s<0.

Consider the autonomous FDE

() : x'O=F(x,),

where F: C—R" is continuous and F(0)=0. Then function x=x(¢)e C([—r, w), R"),
>0, is a solution of (E) through (0, ¢), ¢ e C, on [0, w) if x,=¢ and (E) holds on
[0, w). We assume that F has additional properties such that for any ¢ € C equation
(E) has a unique solution through (0, ¢) on [0, o) (see e.g. [5], [7]). We remark that
in [1], (E) is considered in the space of measurable bounded functions on [—r, 0]
instead of C. In any case, x,(¢)€e C for t>r. So, for the sake of stability investigations,
C can be used as a phase space.

The zero solution of (E) is said to be stable if for any £>0 there exists 6 =4(¢) >0
such that peC, | @] <6, t=0 imply | x(¢)(?)| <e.

Let V: R"— R be a differentiable function satisfying

o(|x)<Vx)<wy(lx])  (xeR")

where w, and w, are increasing functions in C(R*, R*) such that w;(0)=w,(0)=0 and
,(u), w,(u)—> o0 as u—o0. For ¢ € C and an integer k>0, define

Vie)= max V(x(¢Xs))

—r<s<kr
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and the set
H={yC: V()= V(x@)kr)>0, V(x(¥}kr)>0} .
Among others, Barnea [1] proved (see also [7], [9], [10]):
THEOREM A. If H is empty, then the zero solution of (E) is stable.

In addition, in [1], for some interesting examples, the condition H= (¥ is reduced
to certain optimization problems to get stability regions. It is also clear from the
procedure of [1] that the results improve monotonically when the integer k increases.
On the other hand, the larger k is chosen, the more complicated the solution of the
arising minimization problem becomes. The numerical calculations are much too difficult
in the case k>3 even for the simple equation

) x'(t)=—ax(t—r),

where a>0, r>0. The theoretical problem also arises according to Barnea’s paper:
whether the achieved stability regions for a given k approach the entire ones as k— 0.
We emphasize that the entire stability region 0 <ar <n/2 for (1) can be easily obtained
from the characteristic equation of (1). Here we show that a Razumikhin type idea
gives the region 0 <ar<z/2. Moreover, this idea works for certain equations where the
characteristic equations become very difficult and also for some nonlinear equations.

While we were looking for sufficient conditions for H= ¢ in some examples, we
found certain variational problems playing crucial role in the proofs. These problems
are different from those of [1] obtained for special equations in the case k=2.

The purpose of this paper is twofold. First, we formulate the arising nonstandard
variational problems which can be interesting in their own right. Unfortunately, we can
solve the proposed problems only in a particular case. Secondly, as a consequence of
this particular result, it will be shown that the above mentioned stability region
0<ar<m/2 can be obtained for (1) as k—oo, and more generally, that the condition
j‘l, | s|du(s) < m/2 is sufficient for the stability of the zero solution of the scalar equation

V]
x'(t)= —f x(t + s)duls) ,
where u: [ —r, 0]— R is nondecreasing on [ —r, 0] and continuous to the left on (—r, 0).
In the last section we indicate possible extensions of the idea and the difficulties of the
variational problems corresponding to a nonlinar example.

2. Variational problems. «First we show how to get a variational problem
considering equation (1). Choose V(x)=x?/2 and fix an integer k> 1. Suppose that H
is nonempty, i.e. there is ¢eC such that for x=x(¢) one has |x(kr)|=
max _, . < |X(s)| >0 and (d/dt)x?(kr)/2= —ax(kr)x((k— 1)r)>0. Since x'(t) and x(t—r)
have different signs, there must be t* > kr with
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d x*(t*)
d 2

|X(t*)|= max |x(s)|>0, = —ax(t*)x(t* —r)=0.
—r<s<t*

Then x(t* —r)=0. From (1) it is also easy to see that x;,e C'((—r, 0], R), i=1,2, - - -,
i.e. x is i-times continuously differentiable on [(i— 1)r, ir]. Since (1) is linear, without
loss of generality we may assume that x(¢t*)=1. Then, from |x(¢)|<1 for te[—r, t*]
and from (1), we clearly have the constraints on x
2 x(t*—r)=0, |x9)|<a’ @(i=0,1, -, k—1;te[t*—2r,t*—r])
and
3) x(t*—r)=x'(t*)=0, |x9¢)|<a’ @(i=0,1, - -, k;te[t*—r, t*]).
It is reasonable to expect that (2) and (3) imply the inequalities

x(t)=>y(t) (te[t*—2r,t*—r)),

x()<z(t) (te[t*—r,t*])
with certain y and z, respectively. Of course, y and z may depend on a, r and k. There

are two possibilities to contradict H# . From (1) one obtains
t*

1 =x(t*)—x(t*—r)=;['. x'(s)ds= —af x(s—r)ds
t*—r t

*—r

t*—r t—r
=— af x(s)ds< —a y(s)ds .

*—2r t*—2r

If we can show that either —a [:::'2, y(s)ds<1 or z(t*)< 1, then we have a contradiction.
Those values of a and r, for which one of the last two inequalities holds, belong to the
stability region of (1).

Conditions (2) and (3) yield the motivation to consider the following problems.
Let {b;}20, {ci}i20 and T be given sequences of nonnegative numbers and a positive
number, respectively. By m we denote either a positive integer or + 0o0. Define the sets

S(T, {b}, {c;}, m)={feC™([0, T], R): f(0)=0, —b;< ft)<c;,0<i<m, te[0, T]},

So(T, {b;}, {c;}, m)={f e C™([0, T], R): f(0)=f(T)=0,
—b;<f)<c;, 0<i<m, te[0, T]},

where 0<i<m means i=0, 1, - - - when m= + 0.
PrROBLEM 1. Find or approximate
sup{f(t): fe€S(T, {b;}, {c;}, m)} (te[0,T]).

PROBLEM 2. Find or approximate
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sup{f(e): f€So(T, {bi}, {ci}, m)} (¢€[0, T]).
We have only the following particular answers for the above problems.

LEMMA 1. For any c>1 there exists a positive integer m=m(c) such that

sup{ 1) feS(Enc—, (1, {1}, m)}SSin t (te[o, E’fc—D .

LEMMA 2. For te[0, n/2]
sup{f(t): feS(%, {1}, {1}, o‘o)}SSin t.
LEMMA 3. For any c¢>1 there exists a positive integer m’=m’(c) such that if
0<T<m/2c, then

sup{f(t): feSo(T, {1}, {1}, m")}<sinct (te[0, T]).
LeMMA 4. If0<T<m/2, then

sup{f(t): feS,,(%, a3, {13, w)}sm t (te[0, T]).

Notice that sin te Sy(n/2, {1}, {1}, 00)=S(n/2, {1}, {1}, ), and thus Lemmas 2
and 4 give sharp results.

PROOF OF LEMMA 1. Let ¢> 1 be fixed and define the sequence {a;};2 _; bya_, =0
and

=1 i=0,1,---).
2¢c dt' G )

n d .
0<oy<—, -sin ¢t | =,

Then O<a; <az<-:-<m/2c,0< -+ <, <ag=m/2c and a,;,,—=7/2c, 0,;—0 as i—o0.
Define

m(c)=1+max{l/e N: if i, j are integers with 0<2i+1</and 0<2j</then ay;,, <a,;} .

In the following we use the elementary fact that if u, ve C'([t,,t,], R), u(t,)<
v(t,), u(t,) =>v(t,) and one of the inequalities is strict, then there is &€ (¢, ¢,) such that
u'(§)>v'(%).

Assume that Lemma 1 is false for ¢ with the above defined m=m(c), i.e. there exist
feS(n/2c, {1}, {1}, m) and t,€(0, n/2c) such that f(t,)>sin ct,. Let t,,=0,1,,=1,
and ty 3 =ap=m/2c. Then

0=14,1 <lo,<lo3=00, flto,1) =5in cto 1, flto,2)>sin clo, 2, f(to,3)<sin cto 3

(see Figure 1). Thus, there are ¢, , € (o1, Zo.2), 11,3€ (f0,2, to,3) and ¢, ; such that
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ay =1y, <t,,<ty,3<0, f(t;,)<ccoscty,,
Sf(t1,2)>ccoscty 5, f'(t;3)<ccoscty

because of the definition of «, (see Figure 2). The procedure can be continued up to
m—1 to obtain ¢ ;, 1, , and ¢, 5, i=0, 1, - - -, m—1, such that one of the conditions
Wy Sty <t <tiz=ay fOt,)<c'sinct,,
SO )>ctsinet; 5, fOt)<c'sinct;y;
=t <t <t;3<0;_y, fOt;)<c’cosct;,,
@ SOt 2)>cicos cty 5, fOt;3)<c'cosct;y;
@y <t <t <tiz=oy fO>;,)>—c'sinct;y,
SOt )< —cisinct; 5, fO1;3)>—c'sinct;5;
=t <t <t;3<0_y, fOt; )= —c'cosct;y,
SOt )< —cicos ct; 5, fOt;3)> —c'cos ct; 5
holds according as i=4l, i=4/+1, i=4/+2 or i=4/+3 (see Figures 1-4 for i=0, 1,
2, 3).
Assume that m—1=4/. Then (4) with i=m—1, implies the existence of 7€
(tm=1,1> tm—1,2) such that

)] S™(t)<c™cosct.
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From the definition of m and (4) it follows that 7 <a,_, <a,. On the other hand,
¢™ cos ca,, =(d™/dt™) sin ct|,=am= 1. Therefore, by (5) and t<a,_,, one obtains
f™(t)>1, which contradicts f e S(n/2c, {1}, {1}, m). The other cases, m—1=4/+1,
4]+ 2 and 4/+ 3 also lead to a contradiction. The proof is complete.

ProoF oF LEMMA 3. Let ¢>1 and Te(0, n/2c] be fixed and define the sequence
{B:}2 -1 and m'=m’(c) by
Bai+1=0%+1, Bp=min{T, oy} (=-10,1,---),
m’=1+max{leN: if i, j are integers with 0<2i+1</,0<2j</then B,,,,<pB,;},

where {o;} is the same as in the proof of Lemma 1.

If the statement is not true for ¢ and T with m’, then there are f € So(T, {1}, {1}, m’)
and 7, € (0, T) such that f(#,) > sin cty. From f(0)=0, f(#,)> sin ct, it follows that there
exists ¢, , €(0, #,) such that f'(¢, ,)>ccos ct, ,. Choosing ¢, ; =B, and t, ;=T=p,, we
obtain

Bi=t1,1<ty <ty 3=PBo, f(t;,1)<ccoscty,, f(t;)>ccoscty, [(t;3)<ccosct, 3,

since B;=a,, f'(t;3)=0 and ccosct, ;>0. From this point, in order to get a
contradiction, one can follow the same procedure as in the proof of Lemma 1. The
proof is complete.

Lemmas 2 and 4 can be obtained by letting c—1 in Lemmas 1 and 3, respectively.
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Now, returning to equation (1), assume 0<ar<m/2 and choose ¢>1 and T>0
such that ar < T<n/2¢. Introducing the functions

f(t)=—x(—£t+t*—r> (ze[o,i]),
n 2c

g(t)=x(%t+t*—r) (te[o, T]),

from (2) and (3) it follows that f e S(n/2c, {1}, {1}, k—1) and ge Sy(T, {1}, {1}, k). If
k>max{m(c)+1, m’(c)}, then Lemmas 1 and 3 imply f(t)<sin ct,0<t<m/2c, and
g(t)<sin ct, 0<t<T, that is,

x(t)Zy(t):=sin2£(t+r—t*) (te[t*—2r,t*—r)),
r

T
xX(t)<z(t):=sin<—(t+r—1*) (te[t*—r, 1*]).
r
It can be easily seen that —aj':::'b y(s)ds=2ar/m <1 and z(t*)=sin ¢cT< 1. Therefore,
0<ar<m/2 implies the stability of the zero solution of (1).
Remark that {a>0, r>0: ar<n/2} is the entire region of stability for (1). Barnea
[1] obtained the region {a>0, r>0: ar<3/2} by choosing k=2 (see also [7]).

3. An example with distributed delay. The stability region {a>0, r>0: ar <m/2}
for (1) can be obtained easily by using pole locations. Now we consider the equation

o
(6) x'(t)= —J x(t+s)du(s) ,
which is still linear and autonomous. Nevertheless, the pole location becomes extremely
difficult, and neither the entire region of stability nor a good approximation of it is
given explicitly (as far as we know). In (6) we assume that r>0, u: [—r,0]—>R is
nondecreasing on [ —r, 0] and continuous to the left on (—r, 0). By introducing a linear
transformation in ¢, if necessary, it can be assumed that j g,dﬂ= 1. For the stability
region of the zero solution of (6) we have:

THEOREM 1. If jgrlsldy(s)<7z/2, then the zero solution of (6) is stable.
Proor. Theorem A will be applied. Choose ¢>1 so that
0
1
0 f |'s|du(s) <——+1——.
— 2c c

Let V(x)=x2/2 and k=2+max{m, m’}, where m=m(c) and m’'=m/'(c) are given by
Lemmas 1 and 3, respectively. It suffices to show that H= ¢ by Theorem A. Suppose
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that H with the above prescribed ¥ and k is nonempty, i.e. there is ¢ € C such that for
x=x(¢)

2
x(r) = max |x(g)]>0, LX &
—r<s<kr dt 2

= —x(kr) Io x(kr + s)du(s)>0 .

By (6), one cannot have x'(t)x(t+5s)>0 for all se[—r, 0]. Hence, a t*>kr can be ob-
tained such that

Ixt%)|= max |x)[>0, LX)

0
=—x(t* t*+5)du(s)=0.
—r<ss<t* a2 X )J._,X( +SMuls)

Without loss of generality we may assume x(t*)=1, since (6) is linear. Then, from (6)
it follows that there is Te (0, r] satisfying x(t*— 7T)=0 and x(t)>0 for te (¢*—T, t*].
We have t*—T—r>(k—2)r, and thus xeC* %([t*—T—r, t*], R). Equation (6),
x(t*)=1, j‘irdy= 1 and max_, . ..+ |%(s)| <1 imply the inequalities

[ x9)| <1 (=0,1, -, k—2;te[t*—T—r,t*]).

Defining
fO)=x(t*—T+1) 0<t<T),

gO)=1—x(t*—1) (05:55’5),

C

h(t)= —x(t*—T—1) (OSts—n—),
2c
it is clear that feSy(T, {1}, {1}, m’). If T<=n/2c, then by Lemma 3, 1=x(t*)=f(T) <
sin ¢cT'<sin(n/2)=1, a contradiction. Therefore, T>mn/2c, and consequently, g, he

S(n/2c, {1}, {1}, m).
From Lemma 1 we obtain g(t), h(t) <sin ct, 0 <t<n/2c. Then it follows that x can
be estimated from below:

x)zyt) (—r<t<t®),

where
~1 if —r<t<t*—T-—m/2c
sinc(t—(t*—T)) if t*—T—n2c<t<t*-T
Y0=1, if —T<r<t*—n/2
1+sin c(z—1*) if t*—m2c<t<t*.

Integrating (6) over [¢*—T, t*] and taking into account x(t*—T)=0, x(t*)=1, we
conclude
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® 1= J:._ ] x'(tydt=— J:'_ . J i x(t + s)dp(s)dt

0 t*+s *+s
= —J I x(t)dtdu(s) < ——fo I y(Odtdu(s) .
—rJt*—T+s —rJdt*—T+s

Now we estimate the integral I (s)=_|.:,:J_"T+s y(t)dt. For any fixed se[ —r, 0], the interval
[t*—T+s, t* +5] can be decomposed into subintervals on which y has simple primitive
functions and the integrals are easily evaluated. Omitting certain tedious (but elemen-
tary) calculations, we get

1
I)=s+———— (se[—T,0]).
2c ¢
If r<T+mn/2c, then
1 1
I(S)=S+£——COS(S+T)ZS+1—— (SE[—)‘, T’]) .
2 ¢ 2c ¢
If r>T+=/2c, then

1
I(s)=s+l——cos(s+T)_>_s~l~—7t‘—l (seI:—T——n—, -—T])
2c ¢ 2 2

C 4 C

and

)=-T>-1—" 4 1oy m 1 <se —r, —T—21).
2c 2¢ ¢ 2c ¢ 2c

Therefore, by using inequality (8) and [ du=1,

V] 1 1 V]
1< ~j (s+l——>du(S)=——1+j | s |duls)
— 2c ¢ c 2 J_,

follows, contradicting (7). Thus, j‘irlsldy(s)<7t/2 implies stability.

4. Remarks. 1. Gopalsamy [6] used pole location to get the stability region
rj‘lrdy<1r/2 for a special case of (6). In [12] we applied a Razumikhin type tech-
nique (which corresponds to the case k=1 of this paper) to obtain stability regions
for nonautonomous and nonlinear equations. Especially [12] gives the stability re-
gion j‘irlsldu(s)s3/2 for (6). For related results see [7], [15], [16], [20], [21], [22],

[23].

2. Asymptotic stability results can also be obtained by introducing standard
modifications in the above technique. For example, 0<j(1r|s|du(s)<n/2 implies
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asymptotic stability for (6).

3. If (E) is a linear equation and det D(z)=0 is its characteristic equation, then
det D(z) #0 for Re z>0 implies asymptotic stability. The technique of this paper can be
applied for pole location, i.e. to prove that det D(z)#0 for Rez>0. If there is z, with
Re z,>0 and det D(z,) =0, then 'y, ve C", v#0, is a C* solution of (E) on (— o0, ).
The existence of the solution e**'v leads to Problems 1 and 2 with m= 0. The solution
of these problems, especially Lemmas 2 and 4, can be used to get a contradiction
similarly to that of Section 3.

This remark allows us to show that jg,|s|dp(s)=1t/2 also belongs to the stability
region of (6). So, Ig,lsldu(s)Sn/Z implies the stability of the zero solution of (6) by
Theorem 1. The constant 7/2 is the best possible one in this result. However,
j(i,|s|dp(s)sn/2 is not the entire region of stability for (6) whenever (6) is different
from x'(t)= —ax(t—r).

It is also possible to obtain stability results for linear autonomous infinite delay
equations and Volterra equations of convolution type. As an example, for the scalar
equation

x'(t)= —ax(t)— Jt b(t — s)x(s)ds ,
0

where a>0, be C(R,, R,), one can show that a+ (g b(s)ds>0 and {5 sb(s)<m/2 imply
uniform asymptotic stability of the zero solution. This improves certain results of [2],

[41, (8], [13].

4. The motivation of this paper was to consider not only linear but also nonlinear
equations. We illustrate the difficulties on the nonlinear scalar equation

® X'(f)=—a(e""~1),

where «>0. Assume that x is a solution of (9) on [0,2] and —m<x(t)<M for
te[—1,1],m>0, M>0. Then

—eM-1)<x'()<a(l—e™) (te[l1,2]),

(10 B
—a2eM(l—e ™ <x"(t)<a?eMEM—1) (te[l,2]).

It is possible to continue the procedure to get inequalities also for higher derivatives
of x(t). But (10) already shows that the main difficulty here is that the sequences {b;},
{c;} in Problems 1 and 2 become much more complicated than those for (1) and (6).
We can solve Problem 1 corresponding to equation (9) only for m=2. This gives
asymptotic stability of the zero solution of (9) for 0 <a<1+1/e, which is far from
0<a<3/2 proved by Wright [19] and from 0<a<=/2 conjectured by many authors.
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