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Introduction. Let A=(a;;), <; j<. b€ an n x n generalized Cartan matrix, and g the
Kac-Moody algebra over the field C of complex numbers, defined by A4, with simple
roots IT={a,, - -, a,} and simple co-roots IT*={a*|ae T}, where we denote by a*
the co-root of « (cf. [3]). Put af* =a(f*). Associated to g and an arbitrary field F, we
can construct a universal Kac-Moody group G(A4, F), and the Steinberg group St(4, F).
Let K,(4, F) be the kernel of the canonical homomorphism of St(4, F) onto G(4, F)
(cf. Section 2). Matsumoto [4] has given a presentation of K,(4, F) if A is of finite
type. As a natural generalization of his result, we will here give a presentation of K,(4, F)
for arbitrary A.

Let L be the abelian group generated by the symbols c,(u, v) for all aeIT and u, v
in the multiplicative group F™ of F with the following defining relations:

(M1) e (t, u)c (tu, v)=c,(t, uv)c,(u, v)

M2) c,(1,)=1

M3)  cu,v)=c,u™ ", 07"

M4)  c(u,v)=c,(u, (1 —up) with u#1

(MS5) ¢ lu, v"#)=cyu™, v)

(M6)  Copltu, v)= coglt, V)C 5t )

(MT7)  coplt, uv) = cyplt, u)c,4(t, v)
for all o, B IT with a % f and t, u, ve F*, where c¢,g(u, v)=c,(u, v**") = c4(u’*, v). Then we
obtain the following:

THEOREM. K,(4, F)~L.

Our main technique is essentially due to Matsumoto [4]. Sometimes we can restrict
the root parameter a to a subset IT’ of I1. Indeed, we can omit a €Il in generators by
the relation (M5) if there exists f eIl such that af*= —1. For example, it is enough
to choose just one long root aell, say IT'={a}, if 4 is indecomposable and of finite
type (i.e., one of 4,, B,, - - -, G,). In Section 1, we will review the theory of Kac-Moody
groups, and, in section 2, we will introduce the notion of Steinberg groups and K,-
groups. We will study some central extensions of the so-called monomial subgroups
of Kac-Moody groups in Section 3, and, using this, we will establish our main result
stated above and some related results in Section 4. We will present, in Section 5,
some new classes of homologically simply connected Kac-Moody groups. In Section
6, we will give the details of many computations used in the previous sections.
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For elements x, y of a group, [x, y]=xyx~'y~' denotes the commutator of x and
y. For groups G,, G, such that G, acts on G,, we let G, ><G, denote the semidirect
product of G, and G,. We always use 1 as the trivial group. The symbol (- - -} means
the group generated by - - -.

The first author was partially supported by the Alexander von Humboldt
Foundation in 1988-89.

1. Kac-Moody groups. Let A=(a;)); <; j<, be an n x n generalized Cartan matrix,
g the Kac-Moody algebra over C defined by 4, and 4 the root system of g with simple
roots IT={ay, - - -, a,} =4 (cf. [2], [3], [7]). For the set of real roots (cf. [3], [9]), say
A, we choose and fix a Chevalley basis ¢ ={e,|ae 4} (cf. [10], [15]). Using € and
a suitable integrable representation of g, we can construct a universal Kac-Moody

group
G=G(A, F)={exp se,|se F,ae 4"y,

over an arbitrary field F (cf. [12], [14], [16]).

Tits [15] has shown that G has a Steinberg-type presentation, that is, G is the
group generated by x,(s) for all «e 4™ and se F with the following defining relations:

(A) X, (r)x,(s)=x,(r +);

(B)  [xu(r), x4(5)] =[x +jﬂ(Naﬂijrisj) if (Z,00+Z,of)nAc4a™;

(BY) w(u)xpls)wol —1)=xprogu ™),

(©)  hy(uhy(v)=hy(uv)
forall o, Be 4™, r, se F and u, v in the multiplicative group F* of F, where x,(s)=exp se,,
Wa(tt) = x(u)x _ o( — ™ Y)x,(u) and h(u)=w(uyw,(— 1), the product of the right hand side
in (B) is taken over all real roots of the form ix+j8 with i,jeZ., in some fixed
order, the N,,; are certain integers depending only on the structure of g (cf. [10], [14]),
.=t 1 is determined by

(exp ad e,)(exp—ad e_,)(exp ad e,)e; =n,4€p ,

o* is the co-root of a, and f'=f—(Ba*)a.

Let 4, be the set of positive roots defined by II, and put 45 =4"n4,, the set
of positive real roots. Let U be the subgroup of G generated by x,(s) for all xe 47 and
seF, and, for each ael, let V, be the subgroup of G generated by x,(r)xs(s)x,(—r) for
all r, se Fand e 4% \{o}. Put U,=<{x,(s)|s€ F)=G. Then U=U,><V,. Let H be the
subgroup of G generated by A, (u) for all ae 4™ and ue F*. Put B={U, H) =G, then
B=Hv<U. Let N be the subgroup of G generated by w,(u) for all ae 4™ and ue F*,
and S={w,(1)|aeIl}. Then (G, B, N, S) is a Tits system, BanN=H<N, and N/H is
isomorphic to the Weyl group W of g (cf. [12], [15]). Note that W is a Coxeter group,
whose Coxeter matrix M =(m;;); ., j<, is given by m;; =1 and m;;=2 (resp. 3, 4, 6, ©©)
with i#j if a;;a;; is 0 (resp. 1, 2, 3, >4) (cf. [1], [8]).

The structure of Tits system implies G= UNU, called the Bruhat decomposition.
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Using the representation theory, one can easily see that the N-component in this
decomposition is uniquely determined. For g€ G, we denote by v(g) the N-component
of g in the Bruhat decomposition G= UNU. This v is just a well-defined map of G to
N, but not a homomorphism. Sometimes, we call H a maximal torus, and N the
monomial subgroup of G associated with H.

2. Steinberg groups and K,-groups. Let St(4, F) be the group generated by the
symbols X,(s) for all x€ 4™ and se F with the defining relations (A), (B) and (B’), where
x,(s) and w,(u) are replaced by %,(s) and w,(u), respectively. We call St(4, F) the Steinberg
group associated with G. Then there is a canonical homomorphism p of St(4, F) onto
G such that p(%,(s))=x,(s) for all ae 4™ and se F. Put K,(4, F)=Ker p. By Tits [15],
K,(A4, F) is generated by {u, v}, for all u,ve F* and ae 4™, where

{u, vV} = hWh(0)huv) ", A ()= (—1).

Then {u, v}, is central, and

Chdw), hy0)] = {u, v}y = {1, v},

for all a, Be 4™ and u, ve F*. Furthermore,

wa(u)ﬁﬁ(v)wa( - u) = Eﬂ’(naﬂu - ﬂa‘v)ﬁﬁ’(naﬁu - ﬁa‘) -1 ]

hence

where f’=f—(Ba*)a. Therefore, K,(A4, F) is generated by {u, v}, for all u,ve F* and
aell.

Let L be the abelian group generated by the symbols c,(u, v) for all aeIl and
u, ve F* with the defining relations (M1)-(M?7) as in the introduction. Then there is a
homomorphism A of L onto K,(A4, F) such that A(c,(u, v))={u, v}, for all eIl and
u,ve F* (cf. [4], [14]). We will show, in Section 4, that A is an isomorphism. Now the
following proposition is a direct consequence of the relation (B’) (cf. [4], [14]).

PROPOSITION 1. Let a, f€ A™ be linearly independent real roots, and u,ve F*.
(1) W(y(v)=Wgv)i(u)  if af*=Pa*=0.

(2) W)W (w) = W) (WWp(v)  if af*=Pa*=—1.

() (b (wWgv)? =(Wh(0)W,w)*  if af*=-2, Pa*=-—1.

(4) (b (Wg0)> =(p0),w)®  if ap*=-3, Pa*=—1.

3. Some central extensions of N. Let H,, for each «; eI, be the subgroup of H
generated by h,(u) forallue F*. Then H=H, x - -- x H, and H, ~F*. Now we define
a 2-cocycle ¢: Hx H— L by
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é(x, Y)= 1—[ cai(xi: yi) n ca(aj(xi’ yj)

l1<i<n 1<j<is<n

for all

x=(xl:”"xn)’ y=(y1,"',y,,)eH.

Using this & we construct a central extension (H, m)

~

l—L—H " H—1
of H by L, where © denotes the associated homomorphism of A onto H.

PROPOSITION 2. H is the group generated by the symbols ﬁa(u) and z(l) for all a e Il,
ue F* and le L with the following defining relations:

(H1)  hwh,(v)=2(c,(u, v)h,(uv);

(H2) A (w)hy(v) = z(c,pu, V) hy(v)h,(w);

(H3)  2(ly)alls) ==(lyLy):

(H4)  z(Dhy(u)=h(u)z(l)
foralla,Bell,u,veF* andl,, l,,leL.

Let Z be the subgroup of H generated by z(/) for all /e L. Then Z~ L, hence we
identify L with Z.

In the remainder of this section, we will construct some central extension of the
monomial subgroup N by L which is compatible with the extension (H, ) of H. To
do so, we first construct an action of N on H.

PROPOSITION 3. N is the group generated by w,(u) for all o€ Il and ue F* with the
following defining relations:

(N1 w(—w)=w )1

(N2)  w(Dw(1) - =wp(Dwy(1)- - -5

\ = ..q e ~ s —

(N3)  w(Dh)w(—1)=hy(0)h,(0™*");

(N4)  h,()h(v) = hy(uv);

(N5)  h(w)hg(v)=hy(v)h, (1)
for all a, B, ye II with a# B and u, ve F*, where both sides of the equation in (N2) consist
of the product of q symbols as in Proposition 1 with q=2 (resp. 3, 4, 6) if (af*)(fa*)=0
(resp. 1, 2, 3), and h(u)=w(uyw(—1).

Using Propositions 2 and 3, we can confirm that H becomes an N-group by
w,(u)* Hp(v) = Eﬁ(”)ﬁa(l’ N aﬂ‘)cap(u, v)~!

for all «, BeIl and u, ve F* (cf. Section 6.I).
Let W be the group generated by the symbols W, for all a e IT with the following
defining relations:
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(W1) A, hgt=ws;

(W2) Wavflﬂ' o =Wﬂﬁa' o
e s ——
q q

for all «, B, y€IT with a#pB and h,=Ww2, where c=(—1)"", and g=2 (resp. 3, 4, 6) if
(xB*)Ba*)=0 (resp. 1, 2, 3). Put T'= (l?,|oceﬂ)c W, and N*= W< H, where W acts
on H by

Weh=wy(—1)-h
for all aell and he H. Then T is the group generated by h, for all aeIT with the
following defining relations:
(T) hhgh;t=hy forall aell with c=(—1y*

(cf. Section 6.IT). Hence, there is a canonical homomorphism : of T into H such that
(h)=h(—1) for all ae II. Let J* be the subgroup, which is normal in this case, of N*
generated by (y, 1(y)™!) for all ye T, and N=N*/J*. Note that there is a canonical
homomorphism ¢ of N* onto the monomial subgroup N such that ¢(w,)=w,(—1) and
B(h(u)=h,(u) for all «, eIl and ue F* and that J*<Ker$. Hence ¢ induces a
homomorphism, again called ¢, of N onto N. Put w,(u) = ¢ *(h(u))p*(w,) !, where ¢*
is the canonical homomorphism of N* onto N.

PROPOSITION 4. (1) The restriction of ¢* to H is injective, hence we identify H
with ¢*(H).
(2) The group N is a central extension of N by L:

l—L—N_* N

with ¢(W,(u))=w () for all Il and ue F*.
(3) The restriction of ¢ to H coincides with m.

Note that ¢*(W,)=w,(—1) and W, () ™' =Ww(—u).

4. Proof of Theorem. Let St(n+ 1, F)=St(4,, F) be the Steinberg group arising
from SL(n+1,F), and K,(n+1, F)=K,(4,, F) the associated K,-group with the
Steinberg symbol {-, -} (cf. [6]). Then, by Matsumoto [4], K,(2, F) is the group
generated by {u, v} for all u, ve F* with the defining relations (M1)-+(M4), where c, is
replaced by {-,-}. Hence, for each a€ll, there is a canonical homomorphism {, of
K,(2, F) into L such that {,({u, v})=c,(u,v) for all u,veF*. Put M,=Ker(,, and
S, =St(2, F)/M,. Let H, be the subgroup of A generated by /,(u) for all ue F*. Then
there is a canonical monomorphism g, of H, into S,. Let J,={(y, u(y) " )lyeH,><

Hve<S, and
Fa=(H><Sa>l>< Va
Jq
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for each aell, where H acts diagonally on S, by Ayu)-(£,,(s) mod M,)=2%,,(u"*s)
mod M, and hyu)(%,,(s) mod M)=%,,(u”**'s)mod M, for all «,fell, seF and
ue F*, the group J, is normal in A< S, and the action on V, can be defined since V,
is the unipotent radical of a rank one parabolic subgroup of G whose reductive part is
the canonical image of (A< S$))/J,. Note that ﬁ,,(u)-Ma=Ma. Put B=Hrv<U. Then B
can be regarded as a subgroup of B, for each aeIl. Let N, be the subgroup of N
generated by w,(u) for all ue F*. Then N, can also be regarded as a subgroup of P,
naturally. Taking

~

NnP,=N,

for all eIl and

for all a, BeIT with a#f, we let
G=*<(N, P,|aell)

be the amalgamated free product of N and P, for all € IT along their intersections.

Let I' be the subset of G x N consisting of all elements (x, y)e G x N such that
v(x)=¢(y). Then, as described in [4; p.40ff], each P, has a faithful action on I' (cf.
Section 6.III), which is compatible with our amalgamation here. Therefore, G acts on
I'. In particular, L is embedded into G.

On the other hand, there is a natural homomorphism 6 of G onto St(4, F). In the
standard way as in Steinberg [14], all the relations of St(4, F) can be lifted to G using
0~ ! since St(4, F) has an analogous decomposition (cf. [13]) and Ker 0 is central, which
comes from the following:

PROPOSITION 5. If A is a generalized Cartan matrix and F is an infinite field, then
St(A, F) is homologically simply connected (cf. Section 6.1V).

Note that K,(A4, F)=L=0 if Fis a finite field. Hence 6 is an isomorphism, and so
is A. Therefore, we have proved the following result:

THEOREM. K,(A, F)~L.

Sometimes we can restrict the root parameter o to a subset II’ of II. Indeed, we
can omit a € IT in generators by the relation (M5) if there exists € IT such that aff* = — 1.
Let

{K2(3, F) if a;is odd for some 1<k<n;
" |K,(2,F) if a,iseven forall 1<k<n,

for each 1<i<n. Then the Steinberg symbol corresponding to {-, -} is denoted by
{*, *}i. Let J be the subgroup of L, x L, x - - - x L, generated by {u, v}, {v, us}; for
all u,ve F* and 1<i<j<n. Put
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_LyxLyx---xL,
7 .

Ll

Then, the theorem implies the following result:

COROLLARY 1. K,(A4, F)~L'.

We say that a generalized Cartan matrix 4=(a;;); <; j<, 1S simply laced (in terms
of Dynkin diagrams) if g;;=0, —1 for all 1 <i#j<n.

COROLLARY 2. Suppose that A is indecomposable and simply laced. If n> 1, then
KZ(A> F):K2(3a F) .

Hence, we also see the following result, using the fact that every symmetrizable
generalized Cartan matrix (cf. [2]) is obtained from a simply laced generalized Cartan
matrix by foldings in terms of Dynkin diagrams.

COROLLARY 3. Suppose A is symmetrizable. Then, K,(A, F)# 1 for some field F.

COROLLARY 4. Suppose A is indecomposable and of finite type (i.e., one of A,, B,,
C,, D,, Eq, E,, Eg, F,, G;). Then, by Matsumoto [4], we have

Ky2,F) if A=C,(n=1);
K3, F) if A#C,(n>1).

COROLLARY 5. Suppose A is of affine type XV (cf. [2; pp. 44-45]).
(1) Suppose that the tier number r is 1. Then

K2 PerF)  if X{P=CP(z1);
K,(3, F) if X{P#CP(I=1),

where I1(F) is the fundamental ideal of the Witt ring W(F) of F (cf. [11]).
(2) Suppose that the tier number r is 2 or 3. Then

K,2,F) if XP=4P?(1>2);
K,3,F) if XP=DP (=4),EQ,DP .

Ky(4, F)::{
KXY, F)z{

KX, F)Z{

COROLLARY 6. Let

with ae Z . Then
K,2, F) if aiseven,
K,(3, F) if aisodd.

It is also possible to determine the group structure of K,(A, F) in many other cases.

K, (A, F):{
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5. Simply connected Kac-Moody groups. Here we will present some new classes
of homologically simply connected groups. Let

2 -1 -1
A= -2 2 -1
-1 -1 2

Then, for u,ve F*, we obtain

{u’ U_z}ﬂn:{u_l’ U}¢z={u’ v_l}lls':{u_l’ U}¢|={u’ U—l}dl

and {u, v},, =1, which implies {u, v},=1 for all u, ve F* and aeIl. Hence K,(4, F)=1
for all fields F. Furthermore, we obtain the following result:

ExaMPLE 1. Let F be an arbitrary field, and 4=(a;j); <; j<, an n x n generalized
Cartan matrix with a;;=0 unless |i—j|=0, 1 (mod n). Put

dy=1a15a53" " "Gy 1 pGn1 —031a3;" " Ay 1814 .

Then:
(1) {u*4,v},=1 for all u,ve F* and a€ll;
(2) If F=F%, then K,(4, F)=1;
(3) If d, is odd, then K,(A, F) is a d,-torsion group, that is, x?4=1 for all

/\M

FiGURE 1 FIGURE 2

< P

FiGURE 3 FIGURE 4

e

FIGURE 5 FIGURE 6



KAC-MOODY GROUPS 545

xe K,(A, F),

4) Ifd,=]1, then K,(4, F)=1.

This is just a simple example, which we observed at first. In Figure 1, we shall
draw a typical Dynkin diagram in this example, with d,=1.

Similarly we can construct lots of examples of generalized Cartan matrices 4 such
that K,(4, F)=1 for every field F.

ExampPLE 2. Let

2 -1 -1 0 O
-3 2 -1 0 0
-1 -1 2 -1 0
A=10 0 -1 2 -1
o 0 0 -1 2 -1 -1
o 0 0 o0 -1 2 -1
o 0 0 0 -1 -4 2

S o o O
S O © O

with the Dynkin diagram as in Figure 2. Then, K,(4, F)=1 for an arbitrary field F.

ExampPLE 3. Let

2 -1 -1 0 O
-2 2 -1 0 O
-1 -1 2 -2 0
A= 0 0 -1 2 -1
o 0 0 -3 2 -1 -1
0o 0 0 0 -1 2 -1
0o 0 0 0 -1 -2 2

o o o O
o O O O

with the Dynkin diagram as in Figure 3. Then, K,(4, F)=1 for an arbitrary field F.

ExaMPLE 4. Let

2 -1 -1 0 0 O
-2 2 -1 0 0 0
-1 -1 2 -2 0 0
A=]10 0 -3 2 -2 0
0o 0 0 -3 2 -1 -1
o 0 o0 o0 -1 2 -1
o o0 0 0 -1 -2 2

S © © O

with the Dynkin diagram as in Figure 4. Then, K,(4, F)=1 for an arbitrary field F.
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ExaMPLE 5. Let

2 -1 -1 0

-2 2 -1 0
A=

-1 -1 2 =2

0O 0 -1 2

with the Dynkin diagram as in Figure 5. Then, K,(A4, F)=I*(F) for an arbitrary field F,
where I(F) is the fundamental ideal of the Witt ring W(F) of F.

ExXAMPLE 6. Let

2 -1 -1.0 0 0 O
-3 2 -1 0 0 O O
-1 -1 2 -2 0 0 0
A=10 0 -1 2 -1 0 O
o 0 0 -2 2 -1 -1
0o 0 0 0 -1 2 -1

0o 0 0 0 -1 -4 2
with the Dynkin diagram as in Figure 6. Then, K,(4, F)=I*(F) for an arbitrary field F.
ExaMpLE 7. Let meZ. ,, and put
2 -1 -1

A= —m+1 2 -1
-1 -1 2

Then, K,(A, F)=K,(3, F)/K,(3, F)" for an arbitrary field F. Hence, K,(4, F)~Br,(F)
if char F is prime to m, and K,(A, F)~pu,(F) if F is a local field, where Br,(F) is the
m-torsion part of the Brauer group Br(F) of F, while u,(F)={ue F|u™=1} (cf. [5]).

As above, we get a lot of new examples of homologically simply connected groups
which are matrix groups of infinite size.
6. Proofs.
I. Action of Non A. (i) We should first check that the action of N by
Walt)* h(0) = hy(O)h(o™ ey 1, 0) 7
preserves all the relations (H1)-(H4). Note that
wo(1)* c,(u, v)=c,(u, v) .

Hence, (H3) and (H4) are easy.
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(H1):
Wo(t)* (), () = ()t~ Va0 (0™ )y ft, ) ™ eyt v)
= h ()i ((uv) "), (U, V)Cay U™, V)c (™, 0T ), (8, uv) T
= c(u, VY(wy(0)* F(uv)) .
(H2):
Wwalt)* (g(uh(v)) = hg(e)ho(u = )c,p(t, )~ ()™ TVt v) ™"
= h(0)hy(Wh(u™*"v™")cy(u, v)
S (VR TN (TR ) L (A7) IToN (A1) I
= w(t)* (cg,(u, D), (0)5(w)) .

Therefore, w,(f) gives an automorphism of H.
(i) We should, next, check that both sides in the relations (N1)-(NS5) give the
same effect on H. Note that

wil0) h @) =F o et ) and D) o) =F o)t v).

Hence, (N4) and (N5) are easy.
(N1):

Wal1)* (W — 1) b (0) = wo(1) - (A (0) 0™ ey — 8, 1)
= Ey(v)ca(v— ay‘, vay')ca(t’ v Zay‘) - 1C1y(t, U)_ lcay( —t, U)_ 1= Ey(v) .
(N3):
(W Dhgawe(— 1)+ Fiy(0) = (w(Dhg(t) (B (0)hfo ™ Nep(— 1, ) 7Y)
= h0)cg,(u, v)cg(t, 0™ 7) = (hg(uho(u™ ")) hi(v) .

Finally, we check (N2). Let . (resp. #) be the left (resp. right) hand side of the
equation in (N2). If

&L - hv)=h)h o™ 0™)]
and
R b v) = B 0)h (" hgv™2)I

with [, I'’e L, then m, =m’, and m,=m’, by Proposition 1 and (N3). Therefore, it is
enough to show /=/".
(1): Suppose af* =pa*=0 (hence g=2).Then

ho(w)hy(v) = hg(v)h (u)
and

&L hv)=h )b 0™ =R h(v) .
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(2): Suppose af*=pa*= —1 (hence g=3). Then
L hv) =W (Dwp(1)- (2 (o) (0 ™) = w, (1) (@) g0 V(0™ Va0 ™*7")
= wy(1)* (A (0)h 0™ Vaglo™ P Vagv™ g0, v7%)
= w,(1)* () (0™ "o ~*P7))
O ey YOy T ety Tty
LN Ul V7 ey 1 Uy O (R Ly
= hy )b 0PV TP (— 1, P =R hv) .
(3): Suppose af*= —2 and Pa*= —1 (hence g=4). Then
b0 = h(o* ) ,
ﬁﬂ(vk)ﬁﬂ(vm) = ﬁa(vk ™,
and
ho@*g(v™) = hg(0™h (%) .
Put
[ny, ny, n3]= k)" )hyv")c,(— 1, v)™ .
Using the relations above, we see that
wo(1):[ny, ny, ny]=[—n, +2n,—ay*, ny, ny+ns],
and
wg(1):[ny, ny, ny]=[ny, ny—n,—Py*, ny] .

For our purpose, it is enough to check only the parity of the nj-component, which
allows us to consider [n,, n,, n;] taking n,mod 2. Here we denote these two relations
symbolically by

a
[nls ny, n3] _— [nl +d, hy, ny +n3] ’

and
[ny, ny, N3] —ﬂ* [ny, ny+ny+B,n3].
Then
[0, 0,0] — [«, 0, 01— [, x+ B, 0] —— [0, x+ B, o] —— [0, 0, ] ,
and

[0, 0,01 —"- [0, 8, 01— [«, , 0] —— [, @, 0] — [0, &, a] .
Hence we have just confirmed

I=cpu(—1, 0" =1".
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(4): Suppose aff*=—3 and fa*= —1 (hence g=6). Put
(71, 13, 131 =R )R 0" Vag@™)c(— 1, v} .
Then
wo(1):[ny, na, n3]1=[n1, n3, n3]
with ny = —n, +n,—ay*; n,=n,; ns=nn, +ay*n, + (1 4+ ay*)n, +n,, and
w(1):[ny, ny, n3]=[n7, n3, nj

with n{=n,;n%=n,—n,— Py*; n=nn, + By*n, +n;. For the same reason as above,
we can take n; mod 2, and use an anologous symbolical notation. Therefore, it is now
easy to compute:

[0, 0, 0] — [, 0, 0] —— [, @+ B, 0] —— [a+ B, a+ B, B]

P [a+B, B, af+a+B]—2-[0, B, 1 ——10,0,0],
and

[0,0,0] 250, B, 01— [a+B, B, 2B+ 1 — [a+ B, a+B, B
o, a+ B, Bl —2 [, 0, 6] —2 [0, 0, 0],

which leads to /=1"=1. Hence, H is an N-group.

II. Presentation of 7. Let T be the group generated by ¢, for all ae IT with the
defining relations

(T) ttpt; =15  forall a, Bell with c=(—1y*.
Then, t2 (x€ ) is central. For a, BeII, using the relation (T), we see
t9=1 and 2=t; if «f*and a* are odd;
t1=1 if af* is odd and Ba* is even;
[, t5]=1 if af* or Ba* is even.
We here prove that T~T.
Let 6, be an automorphism of T defined by
0,: t,—> 1,1

for all aell with d=0 (resp. —1) if ya* is even (resp. odd). Indeed, one can easily
check that 0, preserves the relation (T). For example, if fa* is even, and if ya* and
yB* are odd, then

Llgte ' =tp,  tppst=t7Y,  getpg =171
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and

O (ttpty V=tot gt T b =t e T gt T = =15t =0.(1)

Note that 02()=t,tt; * for all eIl and te T. For convenience, put c¢(m)=(—1)" and
d(m)=(c(m)—1)/2 for all me Z, where c(m)d(m)= —d(m).
(i) We now show that the 6, (« € II) satisfy the relations corresponding to (W1)
and (W2), where W, is replaced by 6,. (We do not need this part to show T~T.)
(W1):
020,07 H(1)= 1,15 40"t 7 10,(1)t,0 207 7 1 = 14009 ()¢ ;407 = 92407 (1) = 9<0=r) .
(W2): Put [n,, n,]=t,t3't5*. Then we show

(0,05 - +)-[0, 0]=(6,6," - )+ [0, 0] .

q q
Put
"7:010/3 and .@=9ﬂ9a"'.
e — —
q q

If 0,+[ny, n,]=[n',n%], then we write symbolically:

[nlanz:l—a’[nllanlz:] .
Put a=ay* and b=fy*.
(1):  Suppose af* =pa*=0. Then,

Z-[0,0]=[d(ay*), d(By*)]=2-[0,0] .
(2): Suppose af*=pa*= —1. Then

[y, n,] — [d(ay*)+n,—n,, d(ny)]
and

[ny, n,] —2s [y, d(By*)clny) +d(ny) +n,] .
If (a, b)=(0, 0) mod 2, then

[0, 0] = [0, 0] - [0, 0] = [0, 0] ;
{[o, 01 -2 10, 01— [0, 01 -2 [0, 0] .
If (a, b)=(1, 0) mod 2, then

[0,0] 2>[—1,0] L [—1,115 =3, —1]=[1, —1];
{[o, 01 -2 10,0155 11,01 -2 11, —17.
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If (a, b)=(0, 1) mod 2, then

{[0, 0]-%-10,0] 2510, =11 -1, —17;
[0,01-2>10, — 11511, —11-5 1, —17.
If (a, b)=(1, 1) mod 2, then
[0,0] 2>[—1,0]1 -5 [—1,0] > [—2,0];
{[o, 0] -2 10, — 11510, —171-25 [0, —21=[—2,0].
(3): Suppose aff*=—2 and fa*= —1. Then

[ny, n,] s [d(ey*)+ny, n,]
and

[ny, n,] 2 [ny, d(By*) +d(n,) +n,] .
If (a, b)=(0, 0)mod 2, then
[0, 0] -2 [0, 0] -2 [0, 0] - [0, 0] - [0, 0] ;
{[o, 01 -2 10, 01 -2 [0, 01 -2 [0, 0] % [0, 07 .
If (a, b)=(1, 0) mod 2, then
[0,0] - [—1,00 Lo [—1, =115 -2, —11 -5 [—2, —17;
{[O,OJL[O,OJ_“,[—LOJL[—], —11-5[-2,-1].
If (a, b)=(0, 1) mod 2, then
[0, 0] -2 [0, 0] -2~ [0, —11 -5 [0, —171-% [0, —27;
{[0, 0]-2.10, — 11570, —171 -2 [0, —21 %> [0, —2].
If (a, b)=(1, 1) mod 2, then
[0,0] - [—1,0] -5 [—1, =21 5 [—2, —21 -5 [—2, —3];
{[0, 01-5 10, —11-5[—1, =115 -1, =31 -5 [—2, -3].

(4): Suppose af*= —3 and fa*= — 1. Then the situation is very close to the case
(2). The number ¢g=56 is the only difference. In particular, the calculation in (2) implies
0,040,=040,0,. Hence, £ =2A.

In any case, we obtain ¥ =4. Therefore, the 0, (a € IT) satisfy the relation (W2).
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Let W be the Weyl group of g generated by simple reflections o, (x € IT), and / the
length function on W (cf. [1]). Put Q=T x W. Let 1, be a transformation of 2 defined by

t.0) {(Ga(t), 0,0) if /(0,0)>1(0);
U O, 00) i Uo0)<1(0),
and A the transformation group of Q generated by 4, for alla. € I1. Then A2+ (¢, 6)=(1,t, 0).
Hence the subgroup A, of A generated by A2 for all aeIT is isomorphic to 7.
(i) We show that the 1, (xeIT) satisfy the relations corresponding to (W1) and

(W2), where w, is replaced by 4, (cf. [4]).
(W1): The relation

A2A A g2 =250
follows from a simple computation:
0,(11,)=0,102(tt,)=0,(t,))=1,0, (1) .
Let
at()=0,) and a~(2)=04(t1)

for all ze T. Symbolically we write

if a®(f)=1¢".
(W2): We should show
A’a)'ﬂ' ° '(t, 0‘)=ﬂ.ﬁ}~a‘ . '(l, O-)
N et N e
q q

for all (¢, )€ Q. Now we may assume that W is just the subgroup W,, generated by o,
and g, by the theory of general Coxeter groups (cf. [1; Chap. 4, §1, Ex. 3]). Since we
have /13-(1, 0)=(t,, o) together with the relation corresponding to (W1), we may also
assume #=1. Note that

l;llﬁ' = Ay
q q

/15)»;1"'=1/1p/1.,"‘ ,
q q

where
A=AgAg with (ny, n)=(—2,0),(—-2, —2), (—4,2),(0,0)

for
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@B*, pa*)=(0,0), (=1, —1), (=2, =1), (=3, —1),

respectively,
Aa'lﬁ—l' .. ='1"1a'lp' ..
q q
Agthg - =AAghy -,
q q
where

A=Amime  with (n),n5)=(0, —2), (—2,2), (0,0), (0, 0)
for
(@B*, Ba*)=(0,0), (—1, —1),(—=2, =1),(—3, —1),
respectively, and

la—llﬂ-l...___,{",{i}'ﬂ...

q q

/lﬁ_l/la_l' . '=l”iﬂia' -

e i
where
M= with (nfnp=(—2, —2),4,0),(—4,2),(0,0)
for

(aﬂ*’ ﬂa*)=(0’ 0)5(_17 —1),(—2, —l)a(_3a _1),

respectively. Put [n, n,]= 13"
(1) Suppose af*=pa*=0. Then

ot B*([0, 01)=[0, 0]=B ([0, 0]);
a” ([0, 0))=[1, 0]=B"a"([0, 0]);
a* ([0, 01)=[0, 1]1=4"a"([0, 0]);
a” ([0, 0])=[1, 1]=B"a"([0, 0]),

which implies 4,45 = 4,44,.
(2) Suppose af*=pa* = —1. Then it is enough to show the following:

(Xm) @ p ) 'ﬁ+a:)‘[0, 0]=(£+<1+ ) )0[0,005

) —

m 3-m 3-m m
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(Yo (@ B*-- ) -p7a7)[0,0]=(a" ) o f)[0,0]

—_—

3—-m m m 3-m

for all 0<m<3.
Note that

[y, n3) s [y —ng, d(n3)] 5
[ny, 1] = [ny+n,+1,d(n,)] 5
[ny, n,] 25 [y, d(ny) +n,] 5

[ny, ny] 2 [ny, d(ny) +ny +17 .
Then

[0, 0] 25 [0, 01 25 [0, 01 =5 [0, 0]
X =Y + + +
(Xo)=(¥o) [0,01 25 [0, 0125 [0, 01 25 [0, 01,
[0,0] 510,01 25 [0, 01 255 1, 0]

X _ . .
(X4) [0,0] 25 10,1155 =1, =11 25 =1, —2]=[1, 0],

X - - +

(X2) [0,01 250,115 12, — 1125 12, —17,

[0,0] 251,01 2511, —1125 12, —11=[0, 1]

Y,) g+ ot -
[0, 01 25 1o, 01 % [0, 01 25 [0, 17,

[0,0] 251,015 11,01 2511, 0]

{[0,0] 200,015 10, 112512, —1]
(Y,) {

10,0125 10,015 11,01 25 11, 07,

[0,0] 25 [1,0]1 251,01 25 12, 0]

(Y3)=(X3) { - a- -
T A0 510,115 2, 1125 12,0).
Hence, 4,454, = Agd,Ag.
(3) Suppose af*=—2 and Ba*= —1. Then it is enough to show the following:

(X, (@B~ )t B)[0,0]=(B*o* -\ p~w7)[0, 01
m 4-m 4-m m
(Yo (@ B" ) ra”B7)[0,0]=(Ba - )~ -BTa") [0,0]

4-m m m 4-m
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for all 0<m<4.
Note that

[ny, ny] = [ny, n,];
[ny, ] = [ny+1,n,];
ﬂ+
["1’ ”2] —_— ["1, d(n1)+nz] s

[ny 1] 2o [ny, d(ny) +ny 417 .
Then

[0, 03 25 10, 01 <5 [0, 01 2% [0, 0] *%- [0, 0]
Xo)=(Y + + at +
HKo)=(¥o) {[0,01“—40,0]"—»[0,0] 2, 10,01 2% 10, 01,

[0,01-25 [0, 0125 [0, 01 25 [0, 01 “5> [1, 0]
(Xl) { a B+ at '
[0,0]1 - [1,01 25 11, 1155 11,11 25 1, 01,

[0,01 25 10,01 %5 10, 01 25 [0, 17 255 1, 17
(XZ) { a~ B~ at i
[0,0] 1,015 11,01 25 11,01 25 1, —17=[1, 11,

10,0725 10,0125 11,01 25 11, 0125 12, 0]
(Xs) 10,0151, 01 25 11, 01 25 12, 01 25 2, 07,

[0,01 5 10, 1725 10, 1125 10, 11 25 [0, 17
(Y1) [0, 0125 10, 0] 25 [0, 01 25 [0, 01 25 [0, 17,

(¥2) [0, 03510, 01 25 [0, 01 25 [1, 01 25 1, 01,

[0,0]-25 00,1151, 1125 11, 112510, 1]
(¥a) [0, 01510, 012510, 112511, 112510, 17,

[0,0125 10, 1155 11,1155 11, 125512, 1]

{[o, 0125 10,1125 11, 1125 11, 01 25 1, 0]
(Ya)=(X4) {

[0,0] 250,01 251,01 252,01 25 12, 17.

Hence, (A,45)% =(454,).
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(4) Suppose aff*=—3 and fa*= —1. Then it is enough to show the following:

Xm) (@B ) B)[0,0]=(B ™)~ pa”)[0,0];
m 6-m 6-m m
(Yn) (@FB* ) ra”B7)[0,0]=(B"a™ )~ B¥a™)[0, 0]
6—m m T 6—m

for all 0<m<6. Note that
[y, ] =5 [y —ny, d(ny)]
[ny, n,] N [n,+n,+1,d(n,)];
[ny, ;] 25 [y, dlng) + 1,1

[ny, 2] 2o [ny, d(ny) +ny+1] .

Then
[o, OJLEO 015 [0, 0]-’13[0 015 10, OJL[O 015 10,0]
[0, 01 <= 10,012 [0, 01 =5 [0, 07 25 [0, 01 < [0, 01 25 [0, 07,

(Xo) = (Yo)

[0, 07 25 10, 01 2% [0, 0] 25 [o, 015 10,01 25 [0, 01251, 0]

(Xs) [0,0] 251,01 2501, — 11252, —1]1’_.[2,—1]_.[3,—1]L[3,—2]=[1,0],

. [0, 0325 0, 01 25 [0, 07 25 [0, 0 <5 [0, 0] 25 [0, 11 25 [2, — 1]
(X2) [0,0] 251,01 25 1,01 25 11,00 25 01, — 1125 12, — 11 25 12, =17,

[0, 01 254 10, 01 25 [0, 0] 25 [0, 0] 2= [1, 0] £ [1, 0] 25 [2, 0]

X . - . . - .
(X5) [0,0] 251,01 25 11,01 252,00 25 12, 01 25 12, 00 25 12, 07,

(X4)
(0,01 55 01,01 25 [, 00 5 12,00 25 12, 13 55 1, — 13 25 1, —21=03,00,

[0, 0725 [0, 0] 25 1, 0]_'.[1 0] 252,00 252, 1155 14, — 1]

Xs)
[0,01 25 [1,01 25 11,01 55 12,01 25 12, 17 25 14, 17 255 14, 17,

0,00 250,115 -1, —i3 2 -1, =215 1,00 2, -1 25 12, -1
(Y,) o . . 5 " .- B
[0, 0] < [0, 0 2= [0, 0] < [0, 0] = [0, 0] = [0, 0] = [0, 1]=[2, — 11,

[0,01 2510, 115512, = 1125 12, =11 25 13, — 172513, =21 2515, 0] =[1, 0]

{[0 0125 10, 01 25 10, O]L[o 113502, 1125 12,01 25 13,0)
(Y,) {

[0, 015 [0, 0 25 10, 07 =5 [0, 01 25 [0, 01 5 1, 01 2 [1, 07,
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[0,01 2510, 1125 12, 1125 12,00 25 12, 01 25 12, 01 25 12, 0]

(Y3) {[o, 015 10,0125 10,01 55 10,01 25 [0, 1155 12, 11 25 12,01,
10,0125 [0, 112512, - 1125 12,00 25 (3,00 25 (3, — 1125 (4, —11=[2, 1]
(Y4) { at Bt a~ B- a~ B-
10,0155 [0, 01 25 10, 01 25 11,00 25 11,01 25 12,01 25 2, 17,
[0,01 25 10,1125 12, — 1125 2,01 25 13, 01 25 [3, 01 25 (3, 0]
(YS) { at B~ a~ B~ a~ B~
[0, 0] —[0,0] — [0, 1] —[2, —1] —[2,0] — [3,0] —[3,0],
10,0125 [0, 1325 2, =11 25 12,01 25 3,01 25 3,01 < [4, 0]
Ye)=(Xs) {[0, 0125 11,01 25 11,00 55 12,00 25 12, 11 5 14, —11 25 14,00

Hence, (4,45)* =(4,4,)°.
Hence there is a canonical homomorphism  of W onto A such that y(w,)= 4, for
all aeIl. In particular, y gives a homomorphism of T onto A,, and T~T.

III. Action of P, on I'. As a set of generators of P, we take 7,=

{h, u, vT)‘,,(—l)]h~ eH,ueU}. For each element of 7,, we define the action on I' as
follows:

h-(g, i) =($(h)g, hr),
u-(g, A)=(ug, A) ,

wl—1Dg, w(—DA)  if v(w(—1)g)=w—1)¥g);
Wl —1g, A=) if Ww(—1)g)=h,t~ M) .
These give an action of P, on I', which can be confirmed by the fact that P, is the
group generated by 17, with the following defining relations:

(P1) H is a subgroup;

(P2) U is a subgroup;

(P3)  wo(—1)2=h(—1);

(P4)  hy(t)x,()hg()) ™ =x (0" s);

(PS) wa(_ 1)_ lxa(t)wu( - 1)= xa( -t l)i{a(t_ l)ﬁ')az( - 1)_ lxa(_ t l)a

(P6) o — 1) ) — 1) = X, )

(P7) W= 1) hyt)p,(—1)=hy()h(t =)
for all Bell, yed™, y'eds\{a}, seF, and te F*, where y"=y"—(y'a*) (cf. [4;
p. 40ff]). In particular, L acts on I faithfully. Hence, P, acts on I' faithfully, since the
kernel of this action is contained in L.

Wa(_ 1)’(g’ ﬁ)={

IV. Lifting of the relations (A), (B) and (B’). We proceed in the same way as
in Steinberg [14]. Here we should also consider the case where (af*)fa*)>4 with
a, BeIl. If Fis a finite field, then K,(4, F)=L=1, and St(4, F)=G=G. Hence, in this
case, we need not prove anything. From now on, we assume that F is an infinite field.
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Let E be a central extension of G with a homomorphism
V: E-G.
For each xeG, let
C)=y~'(0)={x"e E[Y(x)=x},

and put C=C(1). Now we choose and fix an element ae F* such that c=a?—1#0.
Then, for each a € 4™ and se F, we define x,(s) by

x(s) =Ly, x']
with x’e C(x,(c™'s)) and y’ € C(h,(a)). This definition is independent of the choice of x’
and y'. Put

Waltt) = x, () x _ (—u™ Y x, ()’ ,
and
hu) =w u)w (1) ~" .

Then we will show that the relations (A), (B) and (B’) can be lifted to E using these
‘-symbols. First we see the following two results as in [14].
(1) If heH, WeC(h), aeA™, seF and de F* with hx,(s)h~! = x,(ds), then

W x (syh ~ ' =x,(ds) .
(2) IfweN,weCw), a,yed™, seF and de F* with wx,(s)w ™' =x,(ds), then
Wx,(s)yw' ™t =x,(ds) .

In particular, the relation (B’) can be lifted to E.

For r, se F, and for a, fe 4™ with (Z, ga+Z, f)n A4, let f4(r,s) be the ele-
ment of C defined by
(F) x,(r )’xp(s)’xa(’ )~ l= aﬂ(r , S)Hxia + jﬁ(N apij’ s j),xﬁ(s)/ .

Then we consider the following three conditions.

(Dk)  faplry + 12, )= fap(ry, 8) fap(r2, 5) if m<k;

(BK)  fap(r, s1452)= fop(r, $1) fap(r, 52) if m<k;

(Fk)  fp=1 if m<k,
where m is the cardinality of the set (Z. ,a+ Z. ,f)n 4 of real roots appeared in the
product JT of the right hand side in (F). In fact, 0<k<4 (cf. [10], [14]). By the
definition of f4(r, s), we see that (D0) and (EO) hold and that (F(k— 1)) implies (Dk)
and (Ek). Hence, we would like to show that (Dk) and (Ek) imply (Fk).

(3) Dk and Ek = Fk:
Taking the conjugate, by A, (v) with yeA™ and ve F*, in (F), we obtain f,(r, s)=
Jog(ro™", svP7"). Symbolically, we say:
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Sus(rs s)(y—’v)> Saugrv®”, sP77)

Then
2 ~ Ba
Suglrs ) 200 fplrot, 5028y LT g i )

and f,(r(1—1%), 5)=1, where d=4—(af*)(Ba*). If (xf*)fa*)#4, then, choosing a
suitable element ve F* such that 1 —v?#0, we obtain f,;=1. Suppose (xf*)fa*)=4.
Then (af*, fa*)=(2, 2), (1, 4), (4,1) because of the assumption in (B).

When (aff*, fa*)=(2, 2), we obtain

Juglrs )= £r0?, s0?)

and f,4(r, 5)= fop(rv?, sv?) for all r, se F and ve F*. Then, as in [14], we obtain f,;=1.
When (af*, fa*)=(1, 4), we get

Suslts ) —B2s £ v, s0)

and fy,(r, $)= f,4(rv, sv?). If char F#2, then f4(r, s)= fo)(—r, s) and f,4(2r, s)=1. Hence,
fuyp=1. If char F=2, then, choosing ve F* such that v—v?#0 and 1—v+v?#0, we
obtain

Sap(r(0—02), 8)= fos(r, 5/(0—0?)?) = fo(r, s/0*(1 —0?))
= gty 5/0%) fog(r, 5/(1—0)*)= fop(rv, 8) fog(r(1 —v), 5)= foplr, s) -
Hence, f,;=1.

When (af*, fa*)=(4,1), we can also obtain f,,=1 similarly. We have just
established that (Dk) and (Ek) imply (Fk) for all 0 <k <4. Hence, the relation (B) can
be also lifted to E.

(4) It follows from (FO) that the relation (A) can be lifted to E (cf. [14]).

Therefore, there is a canonical homomorphism y of St(4, F) to E such that
Y(%(s) = x,(sY. Hence, St(4, F) is homologically simply connected.
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