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Introduction. Let A = (aij)1 <ij<n be an n x n generalized Cartan matrix, and g the

Kac-Moody algebra over the field C of complex numbers, defined by A, with simple

roots i7 = {αl5 , απ} and simple co-roots 77* = {α* |αe/7}, where we denote by α*

the co-root of α (cf. [3]). Put α/?* = α(/J*). Associated to g and an arbitrary field F, we

can construct a universal Kac-Moody group G(A, F), and the Steinberg group St(A, F).

Let K2(A, F) be the kernel of the canonical homomorphism of St(A, F) onto G(A, F)

(cf. Section 2). Matsumoto [4] has given a presentation of K2(A, F) if A is of finite

type. As a natural generalization of his result, we will here give a presentation of K2(A, F)

for arbitrary A.

Let L be the abelian group generated by the symbols ca(u, v) for all α e Π and M, V

in the multiplicative group F x of F with the following defining relations:

(M1) cα(ί, u)ca(tu, v) = cα(ί, uv)cju, v)

(M2) c α (l, l)=l
(M3) φ9v) = φ-\v-1)
(M4) cα(w, t;) = cα(w, (1 — u)v) with u φ 1

(M5) cJί^if^φ^Ό)
(M6) cα̂ (ίw, t;) = cα^(ί, v)caβ(u, v)

(M7) cβ/ϊ(ί, MI;) = caβ(t, u)caβ(t, v)

for all oc,βeΠ with α # β and t,u,veFx, where cα/,(u, ι;) = cα(w, ι;α *̂) = cβ{uβ*\ v). Then we

obtain the following:

THEOREM. K2(A, F)~L.

Our main technique is essentially due to Matsumoto [4]. Sometimes we can restrict

the root parameter α to a subset W of Π. Indeed, we can omit αe 77 in generators by

the relation (M5) if there exists βeΠ such that ccβ*= — 1. For example, it is enough

to choose just one long root αei7, say 77' = {α}, if A is indecomposable and of finite

type (i.e., one of An, Bn, , G2). In Section 1, we will review the theory of Kac-Moody

groups, and, in section 2, we will introduce the notion of Steinberg groups and K2-

groups. We will study some central extensions of the so-called monomial subgroups

of Kac-Moody groups in Section 3, and, using this, we will establish our main result

stated above and some related results in Section 4. We will present, in Section 5,

some new classes of homologically simply connected Kac-Moody groups. In Section

6, we will give the details of many computations used in the previous sections.
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For elements x, y of a group, [x, y] = xyx~ιy~1 denotes the commutator of x and

y. For groups Gl9 G2 such that Gx acts on G2, we let GtxG2 denote the semidirect

product of (?! and G2 We always use 1 as the trivial group. The symbol < > means

the group generated by

The first author was partially supported by the Alexander von Humboldt

Foundation in 1988-89.

1. Kac-Moody groups. Let A = (α 0 ) γ < u < „ be an n x n generalized Cartan matrix,

g the Kac-Moody algebra over C defined by A, and A the root system of g with simple

roots J7 = {α1? , αjcz J (cf. [2], [3], [7]). For the set of real roots (cf. [3], [9]), say

Ax\ we choose and fix a Chevalley basis # = {eα |αeA τ e} (cf. [10], [15]). Using <€ and
a suitable integrable representation of g, we can construct a universal Kac-Moody
group

over an arbitrary field F (cf. [12], [14], [16]).
Tits [15] has shown that G has a Steinberg-type presentation, that is, G is the

group generated by xa(s) for all αezl r e and seF with the following defining relations:

(A) xa(r)xa(s) = xa(r + s);

(B) W r ) , ^ ) ] = Π ^ α + ^ ( ^ / ^ ) i f {Z>o* + Z>oβ)nAc:Δr*;
(BO wa(u)xβ(s)wa(-u) = xβ,(ηaβu-βa*s);

(C) ha(u)ha(v) = ha(uv)

for all α, βeAre,r,seFand w, t; in the multiplicative group F* of F, where xa(s) = exp^ α ,

wα(M) = xα(M)x_α( —w~1)xα(w) and ha(u) = waL(u)wa(— 1), the product of the right hand side

in (B) is taken over all real roots of the form ioc+jβ with iJeZ>0 in some fixed

order, the Naβij are certain integers depending only on the structure of g (cf. [10], [14]),

*laβ = ± 1 i s determined by

(exp ad eα)( e xP - ad ^ _ α)(exp ad βα)^ = ηuβeβ.,

α* is the co-root of α, and β' = β — (βa*)oc.

Let zl+ be the set of positive roots defined by Π, and put Aτ+ = AτenA + , the set

of positive real roots. Let U be the subgroup of G generated by xa(s) for all α e J + and

s e F , and, for each αe/7, let Va be the subgroup of G generated by xa(ήxβ(s)xa( — ή for

all r, j G F and β e A Γ

+

e \ {α} . Put J7β = <xα(^) | ̂  e F> c G. Then £/= ί/α x Va. Let // be the

subgroup of G generated by ha(u) for all (xeAre and usFx. Put B=(U, H}^G, then

B=HxU. Let iV be the subgroup of G generated by wa(u) for all oceAτe and ueF*,

and 5'={wα(l)|αe77}. Then (G9B,N9S) is a Tits system, BnN=H^iN, and JV/J/ is

isomorphic to the Weyl group Wof g (cf. [12], [15]). Note that W is SL Coxeter group,

whose Coxeter matrix M=(mίj)1<ij<n is given by mu=\ and w l7 = 2 (resp. 3, 4, 6, oo)

with 19*/ if fl|Λί is 0 (resp. 1, 2, 3, >4) (cf. [1], [8]).

The structure of Tits system implies G=UNU, called the Bruhat decomposition.
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Using the representation theory, one can easily see that the iV-component in this

decomposition is uniquely determined. For g e G, we denote by v(g) the TV-component

of g in the Bruhat decomposition G = UNU. This v is just a well-defined map of G to

N9 but not a homomorphism. Sometimes, we call H a maximal torus, and N the

monomial subgroup of G associated with H.

2. Steinberg groups and K2-groups. Let St(y4, F) be the group generated by the

symbols xa(s) for all oceA™ and seFwith the defining relations (A), (B) and (B'), where

xa(s) and wa(u) are replaced by xΛ(s) and wa(u), respectively. We call St(^, F) the Steinberg

group associated with G. Then there is a canonical homomorphism p of St(̂ 4, F) onto

G such that p(xa(s)) = xΛ{s) for all oceA" and seF. Put K2(A, F) = Kerp. By Tits [15],

K2(A, F) is generated by {u, v}a for all u,veFx and αezl r e, where

Then {M, v}a is central, and

for all α, βeAτe and u,veFx. Furthermore,

wΛ{u)hβ{v)wα( - u) = hβ(ηΛβu ~ βa*v)fiβ,(ηaβu ~ β"*)"x ,

hence

ί, υ}β if w = 1

where β' = β — (βoc*)cc. Therefore, K2(A,F) is generated by {u, v}a for all u,veFx and

αe/7.

Let L be the abelian group generated by the symbols cα(w, υ) for all αe/7 and

U,VEFX with the defining relations (M1)-(M7) as in the introduction. Then there is a

homomorphism λ of L onto #2(,4, F) such that /l(cα(u, t;)) = {M, ι;}α for all αe/7 and

U,VEFX (cf. [4], [14]). We will show, in Section 4, that λ is an isomorphism. Now the

following proposition is a direct consequence of the relation (B') (cf. [4], [14]).

PROPOSITION 1. Let α, βeAτe be linearly independent real roots, and u,veFx.

(1) wa(u)wβ(v) = wβ(v)wa(u) if (xβ * = β<x * = 0 .

(2) wJίu)wtfΌ)wJu) = wβ(v)wa(u)wβ{v) if αj? * = βa * = - 1 .

(3) (wa(u)wβ{v))2 = (wβ(v)wa{u))2 if aβ * = - 2 , jSα * = - 1 .

(4) (wα(w)^(ι;))3 = (wβ(v)wa(u))3 if ccβ * = - 3 , βα * = - 1 .

3. Some central extensions of N. Let //α., for each α£ G Π, be the subgroup of H

generated by ha.(u) for all ueFx. Then / / = //αi x x //Λn and //α. ~Fx. Now we define

a 2-cocycle ξ: HxH-^L by
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,y)= Π cβl(x,,yd Π
ί<i<n l<j<i

for all

Using this ξ, we construct a central extension (//, π)

1 >L > # — J ϊ .1

of H by L, where π denotes the associated homomorphism of H onto //.

PROPOSITION 2. J? w ίAe group generated by the symbols ha(u) and z(l)for all α e 77,

MGfx α«rf / e l w/ίA the following defining relations:

(HI) A>)A>) = z(cα(w,t;))^(Wι;);

(H2) Aα(M^(D) = z(^(w, v))hβ(v)hM

(H3) z(/1)z(/2) = z(/1/2);

(H4) z(/)A-α(W) = A»z(/)

for allθL,βeΠ,u,veFx

Let Z be the subgroup of H generated by z(/) for all leL. Then Z~L, hence we

identify L with Z.

In the remainder of this section, we will construct some central extension of the

monomial subgroup N by L which is compatible with the extension (H, π) of H. To

do so, we first construct an action of N on H.

PROPOSITION 3. N is the group generated by wa(u) for allaeΠ and ueF* with the

following defining relations:

(Nl) wJL-iή^wJίu)-1;

(N2) wa(\)wβ(\)--=wβ(\)wa(\) ;

(N3)

(N4)

(N5) ha(u)hβ(v) = hβ(v)ha(u)

for all α, /?, γ e Π with cnφβ and u,veF*, where both sides of the equation in (N2) consist

of the product of q symbols as in Proposition 1 with q = 2 (resp. 3, 4, 6) if((xβ*)(βoί*) = 0

(resp. 1, 2, 3), and ha(u) = wa{u)wa(-1).

Using Propositions 2 and 3, we can confirm that H becomes an Λf-group by

for all a, βeΠ and u,veFx (cf. Section 6.1).

Let ^ be the group generated by the symbols wa for all α e 77 with the following

defining relations:
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(Wl) hΛwfcι = wc

y-
(W2) wawβ '-=wβwa-

q q

for all α, /?, ye77 with oc^β and Λα = w*, where c = ( - l)yα*, and # = 2 (resp. 3, 4, 6) if

(αj?*)(j8α*) = O (resp. 1, 2, 3). Put T =<Λα|αe77>c= ^ , and N*=WxH, where J^acts

on // by

for all αe/7 and Λe//. Then f is the group generated by ha for all αe/7 with the

following defining relations:

(T) hJίβK
ι=hc

β for all αe/7 with c = (-\)βa*
(cf. Section 6.II). Hence, there is a canonical homomorphism i of Γ into // such that

i(Λα) = Aα(-1) for all oceΠ. Let / * be the subgroup, which is normal in this case, of N*

generated by (>>, ι(y)~ι) for all yeT, and N=N*/J*. Note that there is a canonical

homomorphism φ of TV* onto the monomial subgroup N such that φ(wa) = wa(— 1) and

ΦΦ*{U)) = K(U) f°Γ aU oc,βeΠ and « e F x and that J*aKerφ. Hence 0 induces a

homomorphism, again called φ9 of N onto TV. Put wα(w) = φ*(Λα(M))φ*(vvα)"
1, where φ*

is the canonical homomorphism of N* onto JV.

PROPOSITION 4. (1) ΓAe restriction of φ* to H is injective, hence we identify H

with φ*(H).

(2) The group N is a central extension of N by L:

1 >L >N-*-^N .1

with φ(wa(u)) = wa(u) for all α e Π and ueF*.

(3) The restriction of φ to it coincides with π.

Note that φ*(wa) = wΛ(-1) and wa(u)~1 = wa(-u).

4. Proof of Theorem. Let St(« + 1, F) = St(ΛΠ, F) be the Steinberg group arising

from SX(«+1,F)> and # 2 ( « + l , F) = K2(An, F) the associated A:2-group with the

Steinberg symbol {•, •} (cf. [6]). Then, by Matsumoto [4], K2(2,F) is the group

generated by {u, v} for all u,veFx with the defining relations (M1)-(M4), where ca is

replaced by {• ,•}. Hence, for each αe/7, there is a canonical homomorphism ζa of

K2(2,F) into L such that £α({w, v}) = ca(u, v) for all u,veF*. Put Mα = Kerζα, and

Sα = St(2, F)/Ma. Let # α be the subgroup of H generated by ha(u) for all ueFx. Then

there is a canonical monomorphism μα of //α into Sα. Let Ja = ((y, μa{y)~ι)\yefϊayc:

HxSa and
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for each αe77, where H acts diagonally on Sa by hβ(u)'(xl2(s) modMa) = xί2(uaβ*s)

modM α and hβ(u)-(x21(s)modMa) = x2ί(u~aβ*s)modMΛ for all α,/?e77, seF and

ueFx, the group JΛ is normal in HxSa, and the action on Va can be defined since Va

is the unipotent radical of a rank one parabolic subgroup of G whose reductive part is

the canonical image of (HxSJ/J^. Note that hβ(u)'Ma = Ma. Put B = HtχU. Then B

can be regarded as a subgroup of Pa for each α 6 77. Let Na be the subgroup of N

generated by wa(u) for all ueFx. Then Na can also be regarded as a subgroup of Pa

naturally. Taking

for all oceΠ and

PanPβ =

for all <x, βeΠ with aφβ, we let

be the amalgamated free product of N and Pα for all α e 77 along their intersections.

Let Γ be the subset of G x N consisting of all elements (x, y) e G x N such that

v(x) = φ(y). Then, as described in [4; p.40fϊ], each PΛ has a faithful action on Γ (cf.

Section 6.III), which is compatible with our amalgamation here. Therefore, G acts on

Γ. In particular, L is embedded into G.

On the other hand, there is a natural homomorphism θ of G onto St(^, F). In the

standard way as in Steinberg [14], all the relations of St(A, F) can be lifted to G using

θ~x since St(A, F) has an analogous decomposition (cf. [13]) and Ker θ is central, which

comes from the following:

PROPOSITION 5. If A is a generalized Car tan matrix and F is an infinite field, then

St(Λ, F) is homologίcally simply connected {cf. Section 6.IV).

Note that K2(A, F) = L = 0 if Fis a finite field. Hence θ is an isomorphism, and so

is λ. Therefore, we have proved the following result:

THEOREM. K2(A, F)~L.

Sometimes we can restrict the root parameter α to a subset Π' of 77. Indeed, we

can omit α e 77 in generators by the relation (M5) if there exists β e 77 such that ocβ* = — 1.

Let

(K2(3, F) if aki is odd for some 1 <k<n

\κ2(2, F) if aki is even for all \<k<n,

for each \<i<n. Then the Steinberg symbol corresponding to {•, •} is denoted by

{•, •};. Let J be the subgroup of L1 x L2 x x Ln generated by {w, vaji}i'{v, uaij}j for

all u,veFx and \<i<j<n. Put



KAC-MOODY GROUPS 543

LL1xL2x - xLn

J

Then, the theorem implies the following result:

COROLLARY 1. K2(A, F)~L'.

We say that a generalized Cartan matrix A = (aij)ι<iJ<n is simply laced (in terms

of Dynkin diagrams) if 0y = O, — 1 for all \<iφj<n.

COROLLARY 2. Suppose that A is indecomposable and simply laced. If n>\, then

K2(A,F)^K2(3,F).

Hence, we also see the following result, using the fact that every symmetrizable

generalized Cartan matrix (cf. [2]) is obtained from a simply laced generalized Cartan

matrix by foldings in terms of Dynkin diagrams.

COROLLARY 3. Suppose A is symmetrizable. Then, K2(A, F)Φ\ for some field F.

COROLLARY 4. Suppose A is indecomposable and of finite type (i.e., one ofAn, Bn,

Cn, Dn, E6, EΊ, E8, F 4 , G2). Then, by Matsumoto [4], we have

\K2(2,F) if A = Cn(n>\);
K2(A,F)~<

U 2 ( 3 , F ) if AΦCn(n>\).

COROLLARY 5. Suppose A is of affine type X^ (cf [2; pp. 44-45]).

(1) Suppose that the tier number r is 1. Then

κ JK2(2, F)®I2{F) if
2 ' ' ~\K2(3,F) if

where I(F) is the fundamental ideal of the Witt ring W(F) of F (cf [11]).

(2) Suppose that the tier number r is 2 or 3. Then

r K (Ί F\ if Y^— A^ (1^>Ί\
I r±2\L, Γ ) IJ Λ\ —/i\ \lέLΔ),

COROLLARY 6. Let

2 -a

- 1 2

with aeZ>0. Then

(K2(2, F) if a is even',
K2(A,F)~<

IK2(3,F) if a is odd.

It is also possible to determine the group structure of K2(A, F) in many other cases.
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5. Simply connected Kac-Moody groups. Here we will present some new classes

of homologically simply connected groups. Let

/ 2 - 1 - Γ

A=l - 2 2 - 1 ).
\ - l - 1 2

Then, for «,ueFx,we obtain

and {M, v}aι = 1, which implies {w, v}a— 1 for all u,veFx and oceΠ. Hence K2(Λ, F)= 1

for all fields F. Furthermore, we obtain the following result:

EXAMPLE 1. Let F b e an arbitrary field, and A = (aij)1<ij<n an nxn generalized

Cartan matrix with ^ = 0 unless |/— y' |=0, 1 (mod«). Put

Then:

(1) {udΛ, v}a = 1 for all u,veFx and α e 77;

(2) If F=FdΛ, then K2(A, F)=\;

(3) If dA is odd, then K2(Λ, F) is a dA-torsion group, that is, xdΛ = 1 for all

FIGURE 1 FIGURE 2

FIGURE 3 FIGURE 4

FIGURE 5 FIGURE 6
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xeK2(A9F);
(4) If rfA =1, then K2(A,F)=\.
This is just a simple example, which we observed at first. In Figure 1, we shall

draw a typical Dynkin diagram in this example, with dA = 1.

Similarly we can construct lots of examples of generalized Cartan matrices A such
that K2(A, F) = 1 for every field F.

EXAMPLE 2. Let

/ 2 - 1 - 1

- 3 2 - 1

- 1 - 1 2

A =

0

0

- 1

0

0

0
0

0

0

0

- 1 2 - 1

0

0

0

0

0

0

0

0

2 - 1 - 1
0

0

0 0 0 0 - 1 2 - 1

"\ 0 0 0 0 - 1 - 4 2 /

with the Dynkin diagram as in Figure 2. Then, K2{A, F) = 1 for an arbitrary field F.

EXAMPLE 3. Let

/ 2 - 1 - 1

- 2 2 - 1

0

0

- 1 - 1 2 - 2

0

0

0

0

0

0

0

- 1

0

0

0

2

- 3

0

0

0

0

0

- 1

2

- 1

- 1

0

0

0

0

- 1 - 1

2 - 1

- 2 2

0 \
0
0
0

with the Dynkin diagram as in Figure 3. Then, K2(A, F)=\ for an arbitrary field F.

EXAMPLE 4. Let

(2

- 2

- 1

0

0

0u

- 1

2

- 1

0

0

0

0

- 1

- 1

2

- 3

0

0

0

0

0

- 2

2

- 3

0

0

0

0

0

- 2

2

- 1

- 1

0

0

0

0

- 1

2

- 2

0

0

0

- 1
- 1

2 /

with the Dynkin diagram as in Figure 4. Then, K2{A, F)=\ for an arbitrary field F.
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EXAMPLE 5. Let

(

\

2

-2

- 1

0

- 1

2

- 1

0

- 1

- 1

2

- 1

0

0

- 2

2 J

A =

with the Dynkin diagram as in Figure 5. Then, K2(A, F) = I2(F) for an arbitrary field F,

where I{F) is the fundamental ideal of the Witt ring W(F) of F.

EXAMPLE 6.

with the Dynkin

EXAMPLE 7.

Let

/ 2

A =

- 3

- 1

0

0

0

V 0

- 1

2

- 1

0

0

0

0

diagram as in Figure

- 1

- 1

2

- 1

0

0

0

0

0

- 2

2

- 2

0

0

6. Then, K2

Let meZ>1, and put

A =
/

-

V

2

(m + 1

- 1

- 1

) 2

- 1

0 0

0 0

0 0

- 1 0

2 - 1

- 1 2

- 1 - 4

(A,F) = I

- 1 •
2

0

0

0

0

- 1

- 1

2

2(F)

\

/

for an arbitrary field F.

Then, K2(A,F) = K2(S9F)/K2(3,F)m for an arbitrary field F. Hence, K2(A, F)~Br m (F)

if char F is prime to m, and K2(A, F)~μm(F) if F is a local field, where Brm(F) is the

m-torsion part of the Brauer group Br(F) of F, while μm(F) = {ueF\ um= 1} (cf. [5]).

As above, we get a lot of new examples of homologically simply connected groups

which are matrix groups of infinite size.

6. Proofs.

I. Action of N on H. (i) We should first check that the action of N by

preserves all the relations (H1)-(H4). Note that

Hence, (H3) and (H4) are easy.
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(HI):

= cy(u, v)(wx(ή fϊy(uv)).

(H2):

φ--r, v~^')cxy(u-^, v)cxβ(t, uΓ'cJt, vΓ1

= wx(t) (cβy(u,v)fiy(v)fϊβ(u)).

Therefore, wx(ή gives an automorphism of H.

(ii) We should, next, check that both sides in the relations (N1)-(N5) give the

same effect on H. Note that

and

Hence, (N4) and (N5) are easy.

(Nl):

(N3):

(wx(l)hβ(u)wx(- l)) ίίy(v)M

= Ry{v)cβy{u, v)cβx(u, l Γ « O = (V«)Λα(«

Finally, we check (N2). Let j£? (resp. @) be the left (resp. right) hand side of the
equation in (N2). If

and

with 1,1 eL, then m1 = m'1 and m2=m'2 by Proposition 1 and (N3). Therefore, it is

enough to show /=/' .

(1): Suppose ocβ*=βx* = O (hence q = 2).Then

and

if £ » = fyυtfjΌ - rtfjv ->*)=&- hy(v).
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(2): Suppose <xβ* = βoi*=-l (hence q = 3). Then

<? hy(v) = (wa(l)wβ(l)) ( h ^

v ^

(3): Suppose aβ* = - 2 and /?α* = - 1 (hence ? = 4). Then

and

Put

[*i, n29 n3^=fiy(v

Using the relations above, we see that

and

H>(1) [>I, n29 «3] = [«!, « !-n 2 -βy*, «3] .

For our purpose, it is enough to check only the parity of the Ai3-component, which
allows us to consider [λ2l5 n2, w3] taking /2,-mod 2. Here we denote these two relations
symbolically by

and

Then

[0, 0, 0] — [α, 0, 0] - ^ [α, α + jS, 0] — [0, α + jS, α] - ^ [0, α, α] ,

and

[0, 0, 0] -L+ [0, β, 0] - U [α, β, 0] -ί-> [α, α, 0] - U [0, α, α] .

Hence we have just confirmed
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(4): Suppose αjS* = - 3 and j?α* = - 1 (hence q = 6). Put

Then

with « Ί = — nί+n2 — αy*; nf

2 = n2; n'3 = n1n2 + <xy*n1+(\+0Ly*)n2 + n3, and

with nf[=n1\n2 = n1—n2 — βy:¥\n3 = nιn2-\-βy:¥n2

Jtn3. For the same reason as above,

we can take Πι mod 2, and use an anologous symbolical notation. Therefore, it is now

easy to compute:

[0, 0, 0] - U [α, 0, 0] -?-> [α, α +j8, 0] - U [α + S, α +j8, /?]

- ί-> [α + j», ft α/J + α + jS] - U [0, />, /I] - ? - . [0, 0, 0] ,

and

[0, 0, 0] - ? - . [0, jβ, 0] - ! U [α + /ί, β, αjS +j8] - ? - , [α + jg, α + jS, β]

- ^ [α, α + i8, j8] -?-> [α, 0, α] - U [0, 0, 0] ,

which leads to / = / ' = 1. Hence, H is an TV-group.

II. Presentation of T. Let Γ be the group generated by ta for all αe/7 with the

defining relations

(T) tjβt^ = tc

β forall α, JSG/7 with c = (-\)βa*.

Then, ^ (αe/7) is central. For oc, βeΠ, using the relation (T), we see

t\ = 1 and ί2 = t2 i f α ^ * a n d β α * a r e o d d .

ί« = 1 if α/J* is odd and βα* is even

[ία, ίβ] = 1 if ocβ* or βoc* is even .

We here prove that f ~ Γ.

Let θy be an automorphism of Γ defined by

for all αe/7 with rf=0 (resp. —1) if yα* is even (resp. odd). Indeed, one can easily

check that θy preserves the relation (T). For example, if β<x* is even, and if yoc* and

yβ* are odd, then
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and

θy{tatβt-
ι)=tj Upt Hyh;ι = tj; 't 'tjpt;x = tytβ=tβt;

x=θy(tβ).

Note that θ%(ή = tjt~1 for all αe/7 and teT. For convenience, put c(m) = (- l) m and

d(m) = (c(m)— l)/2 for all meZ, where c(m)d(m)= —d(m).

(i) We now show that the θa (OLEΠ) satisfy the relations corresponding to (Wl)

and (W2), where wa is replaced by ΘΛ. (We do not need this part to show T~ T.)

(Wl):

θ2

aθγθ; 2(t)=tj

(W2): Put [7! ls n2] = tγt"
itn

β

2. Then we show

Put

j; — vjja ana y% = c

If θa [nu «2] = [n'u n'2], then we write symbolically:

[«i,«2]-^^[«ri9«2]

Put α = αy* and b = βy*.

(1): Suppose <χβ* = β(x* = 0. Then,

JSf [0, 0] = [d(ocy *), d(βγ *)] = Λ [0, 0] .

(2): Suppose oιβ* = β<χ*=-1. Then

and

[«1, H2] - ^ [Λ

,fc) = (0,0)mod2, then

, [0, 0] ̂ U [0, 0] -Λ [0, 0] - ^ [0, 0]

' [0, 0] -L+ [0, 0] ̂ U [0, 0] -Λ [0, 0] .

If(α,Z>) = (l,0)mod2, then

[0,0]-^[-1,0] ^ [ - 1 , 1 ] ^ [ - 3 , -1] = [1, - 1 ] ;

[0, 0] J-+ [0, 0] -!U [1, 0] -Λ [1, - 1] .
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If(α,fe) = (0,1)mod2, then

[0, 0] -1+ [0, 0] -L> [0, -1] -^ [1, -1]

[0,0]-Λ[0 f-l]-=U[l, - 1 ] - ^ [ 1 , - 1 ] .

If (α, &) = (!, I)mod2, then

Γ[O, 0] ̂ U [- 1, 0] -L* [-1, 0] -!U [-2, 0]

),0]-^[0, - l ] - ^ [ 0 , - l ] - ^ [ 0 , -2] = [-2,0].

(3): Suppose (xβ* = - 2 and 0α * = - 1 . Then

[wl5 « 2 ] — • [^(αy*)+^i? ^2]

and

If(α,b)=(0,0)mod2, then

, [0, 0] -^ [0, 0] - Λ [0, 0] -Λ. [0, 0] - Λ [0, 0]

I [0, 0] -L> [0, 0] -!U [0, 0] -^ [0, 0] ̂ U [0, 0] .

If(α,fe)=(l,0)mod2, then

' [0, 0] -U [0, 0] -U [-1, 0] -Λ [-1, -1] ̂ U [-2, -1] .

If(α,6)=(0,1)mod2, then

[0, 0] ̂  [0, 0] -?H. [0, - 1 ] - ^ [0, - 1 ] -L* [0, - 2 ]

.[0, 0] -U [0, -1] -?U [0, -1] -U [0, -2] ̂ U [0, -2] .

If(α,b)=(l, I)mod2, then

,0]-^[-l,0]-^[-l, -2]-^[-2, -2]-^[-2, -3];

,0]-^[0, -1]-!U[-1, - l ] _ ^ [ - l , _3]_fU[-2, -3].

(4): Suppose a.β * = — 3 and /Jα * = — 1. Then the situation is very close to the case

(2). The number q = 6 is the only difference. In particular, the calculation in (2) implies

0.0,0. = 0,0,0,. Hence, JS? = Λ.

In any case, we obtain <£ = 0l. Therefore, the θx (α e 77) satisfy the relation (W2).
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Let W be the Weyl group of g generated by simple reflections σa (α e 77), and / the
length function on W(cΐ. [1]). Put Ω= Tx W. Let λa be a transformation of Ω defined by

Uθa(t)9σaσ) if /(σ

l(θ(aσaσ) if /(<τ

and A the transformation group of Ω generated by λa for all α e 77. Then A* *(ί, σ) = (tat, σ).
Hence the subgroup Λo of/I generated by λ\ for all αe77 is isomorphic to T.

(ii) We show that the λΛ (OLEΠ) satisfy the relations corresponding to (Wl) and
(W2), where wa is replaced by λa (cf. [4]).

(Wl): The relation

follows from a simple computation:

Let

<x+(ή = θa(ή and o

for all te T. Symbolically we write

/-=!•/'

(W2): We should show

for all (t, σ) G Ω. NOW we may assume that W is just the subgroup WΛβ generated by σα

and σβ by the theory of general Coxeter groups (cf. [1; Chap. 4, §1, Ex. 3]). Since we
have λγ *(1, σ) = (ty, σ) together with the relation corresponding to (Wl), we may also
assume / = 1. Note that

^ α Λ β ' ' ' = λλaλβ '

a ' ' ' —λλβλa'

where

λ = λ*ϊλf with («1?«2) = (-2,0),(-2, -2), (-4, 2), (0,0)

for



respectively,

where

for
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),0),(-l,-1), (-2,-1), (-3,-1),

λ λ~ι' ' ' —λ'λ λ '

4 4

Λ ft /̂» " " * = Λ Λft/ί/y

with (π'lf «'2)=(0, -2), (-2, 2), (0,0), (0,0)

(aβ*, 0α )=(O, 0), ( - 1 , -1), (-2, - 1), (-3, - 1 ) ,

553

respectively, and

λx λβ — λ λxλβ

λβ λχ • λ

where

for

" = λ"x'λγ with (n'i «5) = (-2, -2), (4, 0), (-4, 2), (0,0)

(«^*,j9α )=(0,0),(-l , - l ) , ( - 2 , - l ) , ( - 3 , - 1 ) ,

respectively. Put [ni,«2] = ί ϊ ' ί 2 2

(1) Suppose aβ*=βot* = O. Then

« + Γ([0, 0]) = [0,0] = i3+α+([0, 0])

which implies λaλβ = λβλa.
(2) Suppose (xβ* = βoc*=

(XJ (a~β

— 1. Then it is enough to show the following:

α+) [0, 0] =(0 + α+ •)(• • α"/?-) [0, 0]

3-m 3 —m m
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(Ym) (α + j3+ )( jg-α-)-[Q? 0 ]=(/Γ *~ •)(; -*+β+Π0, 0]

3 — m m m 3 — m

for allθ<m<3.
Note that

Then

1, Φ2)]

[0, 0] - ^ [0, 0] ^ > [0, 0] - ^ [1, 0]

r [0,0] - ^ [0, 0] ^ > [0, 1] ̂ > [2, -1]

( X 2 ) 1 [0,0] ^ [ 0 , 1 ] - ^ [ 2 , - 1 ] ^ [ 2 , - 1 ] ,

[0, 0] ^ [1, 0] -C [1, -1] -C [2, - 1] = [0, 1]

( Y l ) 1 [o, o] -C [o, o] -^ [o, o] ̂  [0, l ] ,

0, 0] - ^ [1, 0] -^> [1,0] ^ * [2,0]

[0, 0] ^ [0, 1] ^ [2, -1] - C [2, 0] .

Hence, λaλβλa = λβλaλβ.

(3) Suppose αjS*= — 2 and /fa*= — 1. Then it is enough to show the following:

(XJ ( α - r )(; α + r ) [0, 0] = (β+a+"-)(: 'β-oc-) [0, 0]
m 4—m 4—m m

(Ym) ( α + ^ + )( α-j3-)-[0,0] = pΓoΓ χ )8+α+) [0, 0]

4-m m m 4-m
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for all 0<m<4.
Note that

Then

( X o ) = ( Y o )

( Y z )

( Y ί )

[0,

[0,

[0,

0]

0]

0]

-^[0,

^ [ 0 ,

0]

0]

0]

^[ 0 ,

^>[0,

0]

0]

0]

-^[0,

^ [ 0 ,

0]

0]

0]

^ [ 0 , 0]

0],

0]

[0, 0] ^ > [0, 0] - ^ [0, 0] ^ [0, 1] - ^ [1, 1]
(X )

[0,

[0,

[0,

[0,

[0,

[0,

[0,

[0,

[0,

0]

0]

0]

0]

0]

0]

0]

0]

0]

^ [ 0 ,

^ [ 0 ,

^ [ 0 ,

^>[0,

^>[0,

0]

0]

1]

0]

1]

0]

1]

0]

1]

^[ 1 ,

^>D,

^ [ 0 ,

^ [ 0 ,

A[0,

^ [ 1 ,

^>[0,

^>[1,

0]-^- [1,0] -^[2,0]

0]^-[2,0]-^>[2,0],

l]^[0,l]^[0,l]

0] ̂ [0, 0] -^> [0, 1] ,

1] 2^. [1,0]-=^[1,0]

0]^[l,0]-^>[l,0],

l]i^[l,l]J^[l,l]

1]^>[1, 1]-^>[1,1],

l]i^[l,l]-^[2,l]

Hence,
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(4) Suppose α/?*= — 3 and /?α*= — 1. Then it is enough to show the following:

• ;)(; α+j5+) [O, 0] = (β+oc + ' ' )(*' ' Γ α ~ H 0 , 0]

6 — m m

),0]=(iS-α- )( rα + ) [0,0]
6 — m m m 6 — m

for all 0<m<6. Note that

(XJ

(YJ

(α

(«

m

+ r

•x

•x

• α β
6 — m

• α-/Γ

Then

Γ [0, 0] -^> [0, 0] ̂ [0, 0] ̂ [0,0] -^ [0, 0] -̂ * [0, 0] ̂ > [0,0]
(X

n
) = (Y

n
) J

o/ o/ |[-
0i0
-]^[0,0]^->[0,0]^[0,0]-^[0,0]^U[0,0]^->[0,0],

r[0, 0] -^> [0, 0] ̂ [0, 0] ̂ > [0, 0] -^ [0, 0] -^> [0, 0] -^ [1, 0]

( X l )
 I 0 0 ̂  1 0 -^ 1 -1

 α+
 2 -1 ̂ > 2 -1

 α+
 3 - 1 '

+

r [0, 0] -^ [0, 0] -^ [0, 0] -^> [0, 0] -^ [0, 0] -^> [0, 1] -^ [2, - 1]

[0, 0] ̂ [0, 0] -̂ - [0, 0] ̂ > [0, 0] -^ [1, 0] -^> [1, 0] ̂ > [2, 0]

(X
3
)

[0,0]^> [1,0] •-^•[1,0] - ^ P , 0 ] -

[0,0] -C [0,0] -C [0,0] -C [0, 1] - ^ [2, -1] il>'[2,0] ^ * [3,0]

Γ
[0, 0] ̂-> [0, 0] ̂ > [1, 0] -ίU [1,0] -^ [2, 0] -ίU [2, 1] — [4, -1]

(X
5
) \ a- β- a" β- a" β +

l[0, 0] —^ [1, 0] —-+ [1, 0] —-+ [2, 0] —•> [2, 1] —> [4, -1] —* [4, -1] ,

f
[0,0]-^[0, l]-^*[-l, -l]-^>[-l, -2]^[l,0]-^*[l, -1]^>[2, -1]

fYi) \ - «
+
 β+ β-

l[0, 0] ̂-> [0, 0] -ί-> [0, 0] -̂ -> [0, 0] -^ [0, 0] — > [0, 0] -^ [0, 1] = [2, - 1] ,

0,0]-^[0, 1]^>[2,-1]^>[2,-1]^[3,-l]-^>[3, -2] -^> [5, 0] = [l, 0]

0, 0] ̂ [0, 0] -^ [0, 0] -^ [0, 0] -^> [0, 0] -^ [1, 0] -^> [1, 0] ,
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[0,0] -ί^ [0, 1] - ^ [2, -1] - C [2,0] ̂  [2,0] - ^ [2,0] - ^ [2,0]
(Y ) <

l[0, 0] - ^ [0, 0] -^> [0, 0] -^> [0, 0] - ^ [0, 1] - ^ [2, -1] - ^ [2, 0]

r [ 0 , 0 ] - ^ [ 0 , 1 ] ^ [2, - l ] -

l [ 0 0 ] ^ [0,0] ^ [ 0 , 0 ] ^ [ 1 , 0 ] ^ [ 1 , 0 ] ^ [ 2 , 0 ] ^ [ 2 , 1 ] ,

[0, 0] - C [0, 1] ̂ > [2, -1] ̂ * [2, 0] ̂  [3, 0] ̂  [3,0] - C [3,0]

— [0,1] ^ [ 2 , - 1 ] ^ [ 2 , 0 ] ^ [ 3 , 0 ] -^[3,0] ,
fL"."J—-L«. U

I [0,0] - ^ [ 0 , 0 ]

Hence, (λaλβ)
3 = (λβλf.

Hence there is a canonical homomorphism φ of W onto A such that ψ(wa) = Aα for
all α e 77. In particular, ^ gives a homomorphism of Γ onto Ao, and Γ~ Γ.

III. Action of Pa on Γ. As a set of generators of Pa, we take Γα =
{/Γ, M, wα( — 1 ) | Λ G H , wet/}. For each element of Ta, we define the action on Γ as
follows:

l(wα(-1)0, ha(Γ ι)n) if

These give an action of Pa on Γ, which can be confirmed by the fact that Pa is the
group generated by Ta with the following defining relations:

(PI) H is a subgroup;
(P2) U is a subgroup;
(P3) H>α(-l)2 = Λα(-l);
(P4) K^ήx^R^r^x^s);
(P5) w i - i ) - 1 χ i θ w α ( - i ) = ^ ( - ^ 1 ) % " > α ( - i ) " 1 ^ ( - ί " 1 ) ;
(P6) n ) α ( - l ) - 1 x > R ( - l ) = x / ^ ) ;
(P7) v v α ( - 1 ) - 1 ^ ) ^ - 1 ) = hβ(ήha(ΓΛβ*)

for all j3e/7, yeΛ1?, y'e^'JXla}, .seF, and ί e Γ , where y" = y'-(y'α*)α (cf. [4;
p. 40ff]). In particular, L acts on Γ faithfully. Hence, PΛ acts on Γ faithfully, since the
kernel of this action is contained in L.

IV. Lifting of the relations (A), (B) and (B'). We proceed in the same way as
in Steinberg [14]. Here we should also consider the case where (α/?*X/?α*)>4 with
α, βeΠ. If Fis a finite field, then K2(A, F) = L= 1, and St(Λ, F) = G = G. Hence, in this
case, we need not prove anything. From now on, we assume that F is an infinite field.
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Let E be a central extension of G with a homomorphism

φ.E^G.

For each xeG, let

and put C=C(1). Now we choose and fix an element aeF* such that c = a2 —1#0.

Then, for each αezl r e and seF, we define x ^ ) ' by

with x' e C(xα(c" 1j1)) and y e C(ha(a)). This definition is independent of the choice of x'

and / . Put

and

Then we will show that the relations (A), (B) and (B') can be lifted to E using these

'-symbols. First we see the following two results as in [14].

(1) IfheH, Λ'eC(Λ), <xeAτe, s e F a n d deFx with hxa(s)h~Λ = xa(ds), then

h'xa(syh'-ι=xa(ds)'.

(2) IfweN, w'eC(w), oc,γeAr\ .se^Fand deF* with wxa(s)w~1=xγ(ds), then

w'xa{s)'w'-1=xy{ds)'.

In particular, the relation (B') can be lifted to E.

For r,seF, and for ot9βeAre with (Z>oα + Z>ojff) n zl c=zΓe, let /α/r, s) be the ele-

ment of C defined by

(F) xa{r)'xβ{s)fxa{r)'-' =faβ(r, s)Y\xia

Then we consider the following three conditions.

(DA:) faβ(r1+r2,s) = faβ(rus)faβ(r2,s) if m<k;

(Ek) faβ{r, sι + s2) = faβ(r, sx)f^{r, s2) if m < k

(F*) / ^ = 1 if m<k,

where w is the cardinality of the set (Z>o0L + Z>oβ)nA of real roots appeared in the

product Π of Λe right hand side in (F). In fact, 0 < & < 4 (cf. [10], [14]). By the

definition of faβ(r, s), we see that (DO) and (E0) hold and that (F(k-1)) implies (DA:)

and (Efc). Hence, we would like to show that (DA:) and (E&) imply (FA:).

(3) DA:andEA:=>FA::

Taking the conjugate, by hγ(v)' with yeAτc and veFx, in (F), we obtain faβ(r, s) =

faβ(rvay*, svβγ*). Symbolically, we say:
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Then

fjr, s) J*?L fΛβ(rv\ sf) i ^ α Utf, s)

and faβ{r{\-v\s)=\, where d=4-(aβ*)(βa*). If (ajS*X/?a*)#4, then, choosing a

suitable element u e f x such that \—vd=£0, we obtain / α / 3 = l . Suppose (αj8*X/?α*) = 4.

Then (αβ*, 0α*) = (2, 2), (1, 4), (4,1) because of the assumption in (B).

When (α/ϊ*,.j8α*) = (2, 2), we obtain

and /α/r, s) = faβ(rv2, sv2) for all r, 5 6 F and u e P * . Then, as in [14], we obtain faβ=l.

When (αj8*, j8α*) = (l, 4), we get

and /α/?(r, s) = / α / M sv2). If char F^2, then /^r , 5) = / α / - r , 5) and faβ(2r, s)= 1. Hence,

/ α / ? =l. If char F=2, then, choosing ι;eFx such that u - υ 2 / 0 and 1— v + v2φ0, we

obtain

Λ ^ ( Φ ~ v2), s) = faβ(r, S/(Ό- v2)2) = faβ(r, s/v2(l -1;2))

= f«β(r, s/v2)faβ(r, 5/(1 - υ)2) = faβ(rv, s)faβ(r(\ - v), s) = /α/?(r, s ) .

Hence, faβ=l.

When (αjS*, j8α*) = (4, 1), we can also obtain faβ=\ similarly. We have just

established that (DA:) and (Έk) imply (FA:) for all 0<A:<4. Hence, the relation (B) can

be also lifted to E.

(4) It follows from (FO) that the relation (A) can be lifted to E (cf. [14]).

Therefore, there is a canonical homomorphism φ of St(A, F) to E such that

φ(xa(s)) = xa(s)'. Hence, St(A, F) is homologically simply connected.
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