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Introduction. This paper is a continuation of [14]. A compact complex surface

is in class VΠ0 if it is minimal and if its first Betti number bx is equal to one. We know

many examples of surfaces of class VII0 (VΠ0 surfaces, for short) with the second Betti

number b2 positive [2]-[8], [15]-[18]. They are minimal surfaces with global spherical

shells [7]. Any minimal surface with a global spherical shell is a VΠ0 surface

diffeomorphic to a blown-up primary Hopf surface and it is obtained as a smooth

deformation of certain singular rational surfaces [7], [15], [16], [17]. Some of them

have been characterized as VΠ0 surfaces with certain kinds of curves on them [1], [13],

[14]. For instance, a hyperbolic (or parabolic) Inoue surface is characterized as a VΠ0

surface with a pair of cycles of rational curves (or a pair of a smooth elliptic curve and

a cycle of rational curves). Any VII0 surface with b2 positive which we know so far

has a global spherical shell and b2 (possibly singular) rational curves, and a cycle of

rational curves (possibly with branches). So it might not be too bold to pose the following

conjecture:

CONJECTURE 1. For an arbitrary VII0 surface with b2 positive the following three

conditions are equivalent.

(1) // has a cycle of rational curves.

(2) It has at least b2 rational curves.

(3) It contains a global spherical shell.

The implications from (3) to the others and from (2) to (1) are known (see (3.4)).

The implication from (2) to (3) was conjectured by Masahide Kato. When (2) is true,

the surface is referred to as a special VII0 surface. The main purpose of this article is

to study special VII0 surfaces and to give supporting evidences for the conjecture of

Kato. This might be viewed as a step towards an affirmative solution of the conjecture

of Kato. The consequences of this article were announced in [13, II]. See also [18].

The main consequences of this article are as follows: Let S be a VΠ0 surface with

a cycle C of rational curves. Then the deformation functor of S is unobstructed and

the cycle C is deformed into a nonsingular elliptic curve in a suitable smooth family of

deformations of the surface S. If a small deformation of S has a smooth elliptic curve

which is an extension (a deformation) of the cycle C, it is isomorphic to either a blown-up

parabolic Inoue surface or (generically) a blown-up primary Hopf surface. We see:
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THEOREM. Any VII0 surface with a cycle of rational curves is a global analytic

deformation of {hence is diffeomorphic to) a blown-up primary Hopf surface.

If moreover S is special, that is, if S has at least b2 (possibly singular) rational
curves, then S has exactly b2 rational curves and the weighted dual graph of the curves
is completely determined. More precisely we show:

THEOREM. Let S be a special VII0 surface. Then the weighted dual graph of all the

curves on S is the same as that of the dual graph of the maximal reduced curve on a

minimal surface with a global spherical shell.

The above theorems support Conjecture 1 and the conjecture of Kato. Except in
some particular cases discussed in (2.1), S has a unique cycle of rational curves
with nonempty branches, and the maximal reduced curve of S is connected. Thus the
dual graph of curves is one of (3.8), (3.9), (4.2) and (4.11), which we call global spherical
graphs. See also [4, pp. 144, 145], [15, (3.2)]. In view of these consequences, we are led
to the following more precise conjectures.

CONJECTURE 2 (Existence). Let A be an arbitrary global spherical graph with n

vertices, U a strongly pseudoconvex open surface whose maximal curve has A as its

weighted dual graph (or more precisely let U be a germ of a neighborhood of the maximal

curve). Then there exists a minimal surface with b2 equal to n containing a global spherical

shell whose maximal curve ( = the union of the n curves) has an open neighborhood

isomorphic to U.

CONJECTURE 3 (Uniqueness). If two special VΠ0 surfaces with equal positive b2

are isomorphic to each other on sufficiently small neighborhoods of their maximal curves,

then they are isomorphic globally. The local isomorphism near the maximal curves extends

to a global one.

Conjecture 2 will be discussed in a forthcoming article (part III in preparation).
This article is organized as follows: In Section 1, we recall some basic facts from

[10] and [14] and verify two vanishing theorems for obstructions H2(S, Θs) and
H2(S, Θs( — logQ), (1.2), (1.3). It follows from this that any cycle of rational curves
on a VΠ0 surface S can be deformed into a smooth elliptic curve by deforming S, (1.4),
(1.5). This also proves the existence, unique up to permutation, of a sort of an
"orthonormal" basis (referred to as a canonical basis) of H2(S, Z) which serves as a
fundamental tool in subsequent study.

In Section 2, we study expressions of cohomology classes of rational curves on S
in terms of the canonical basis of H2(S, Z).

In Sections 3-5, we study dual graphs of curves on a special VII0 surface with b2

positive. Then we see that S has exactly b2 rational curves and at least a cycle of rational
curves. We give a complete list of dual graphs of b2 curves when S has a unique cycle
of rational curves with at least a branch, see (3.8), (3.9), (4.2), (4.11). When a special
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VII0 surface S has a cycle C with no branches, then S is either a half Inoue surface

(6.1), or C 2 = 0, or the surface S has another cycle of rational curves. See [1], [14, §6,

(8.1), (10.3)] for the last two cases. See also (2.1) and (6.3) in this article. In Section 5,

we construct minimal surfaces with global spherical shells so as to show that an arbit-

rary dual graph in the above list really appears on special VΠ0 surfaces. See Figure

5.4and(5.7)-(5.14).

In Section 6, we give a numerical characterization of Inoue surfaces with b2

positive. More precisely, we see that a VII0 surface S is isomorphic to an Inoue surface

with b2 positive if and only if the.Dloussky number Dl(5) of S (roughly speaking, the

sum of (— 1) times the self-intersection numbers of all the curves on 5) is equal to the

possible maximum value 3b2(S).
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NOTATION. We use the usual notation in analytic geometry or the same notation

as in [14]. In addition to these, we use the following:

S, S*, X, Y compact complex surfaces.

b2(C) the number of irreducible components of a divisor C.

cx(D) the first Chern class in H\S, Z) of D e HX(S, 0 | ) .

D~E c1(D) = c1(E) for D, EeH\S, Of}.

Ai9Bi9It see(2.9)-(2.10).

L,,Mj see (2.4), (4.1).

Ut see (4.1), (4.6).

E#F see (5.7).

1. Smoothing a cycle of rational curves by deforming surfaces. First we recall

some basic facts from [10] and [14].

(1.1) LEMMA. Let S be a VΠ 0 surface with b2>0. Then

(1.1.1) h%S, Ωl) = 0 (<7 = 0, 2), h\S, Q\) = b2,

(1.1.2) h°(S,mKs) = 0 for m>0,

(1.1.3) KsE^0, —E2^0for an effective divisor E on S. Moreover E2 = 0 if and only

ifE=0inH2(S,R\

(1.1.4) S has no meromorphic functions except constants and h°(S, L ) ^ 1 for any line

bundle L on S.
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See [10, I, p. 755 & II, p. 683] or [14, (2.5), (12.1)] for the proofs.

(1.2) THEOREM. Let S be a VII0 surface with b2>0. Then H2(S, Θs) = 0.

PROOF. Assume the contrary to derive a contradiction. By Serre duality,

H°(S, Ωs(Ks))=£0. Let D be the maximal effective divisor of S such that

/ / % S , O £ ( A : S - Z > ) ) # 0 and let ω be a nonzero element of // 0(S, ί2l(Λ:5-Z>)). By

definition, zero(ω) is isolated.

(1.2.1) LEMMA. The following is exact:

where f(a) = aω, g(b) = b A ω.

PROOF. Clearly/is injective. Take b e Ker g. Then b A ω = 0. Hence b = hω locally

for a germ A of a meromorphic function. Then pole(Λ) is contained in isolated zero(ω),

whence h is holomorphic. Hence b is contained in Im/. q.e.d.

We continue the proof of (1.2). Let H: = Coker g. Then supp(//) consists of isolat-

ed points, so that H9(S9 H) = 0 for any q>0. Therefore by taking the Euler-Poincare

characteristics, we see by (1.1)

b2 = - χ(S9 β | ) = - χ(S, -Ks + D)- χ(S, 2KS - D) + χ(S, H)

Therefore by -Kj = b2, we have, b2 + 3KsD-D2 + h°(S, 77) = 0. By (1.1.3), we have

KsD^0, - Z ) 2 ^ 0 , so that 6 2 = 0, KsD = D2 = h°(S, H) = 0. This contradicts the

assumption b2 > 0. q.e.d.

(1.3) THEOREM. Let S be a VΠ0 surface with a cycle C of rational curves, and let

E be a reduced effective divisor containing C. Then H2(S, Θs( — \ogE)) = 0.

PROOF. If S has another cycle or an elliptic curve, then the reduced effective

maximal divisor D of S is anticanonical [14, (2.8)+ (2.12)+ (6.1)+ (6.11)]. Hence

h2(S, <9 s(-logD))^h°(S, &s) = 0. From this, the assertion of (1.3) for general Efollows

immediately. So we may assume that S has a unique cycle C and no elliptic curves. We

apply an argument similar to the proof of (1.2). We assume H2(S, Θs( — \ogE))Φ0 to

derive a contradiction. By Serre duality, H°(S, Ωl(\ogE)(Ks))^0. Let D be the max-

imal effective divisor of S such that H°(S,Ω$(}ogE)(Ks — D))ΦQ. Take ω # 0 in

H°(S9 Ωg(log E)(KS — D)). Then ω has isolated zeroes. As in (1.2) we have an exact

sequence

where f(a) = aω, g(b) = b ACO. Let F (resp. H) be Coker/(resp. Coker g). We see that

supp(//) is finite so that Hq(S9 H) = 0 for q>0. We consider exact sequences
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S,F)

(1.3.1) -+H\S, -

->H2(S, -KS + D)^H2(S, flέ(logE))^H2(S

0-#°(S, F)^H°(S, 2KS + E-D)^H°(S, H)

(1.3.2) -+H\S,F)^H\S,

-+H\S, F)-+H2(S,

(1.3.3) LEMMA. h1(S,Ωi

s(logE)) = b2-b2(E) + δ(Q where δ(Q equals 1 or 0

according as C 2 = 0 or C 2 <0.

PROOF OF (1.3.3). By [14, (3.3)] the following is exact:

where E is the normalization of E. Let δ(Q=h°(S, Ωi(logQ). Then h°(S, Ω|(log£"))=

δ(Q where δ(Q = 1 or 0 according as C 2 = 0 or C 2 < 0 by [14, (3.3), (3.4)]. q.e.d.

Now we continue the proof of (1.3). We see A°(5, F ) g l , Λ2(S, -Ks + D)^l by

(1.1) and (1.3.2). From (1.3.1)-(1.3.3) it follows that

\S,F)-2

^-χ(S, -Ks+D)-χ(S,2Ks + E-D)-3

^ 2b2 + 3KSD - 3KsE/2 - D2 - £ 2/2+DE - 3 ,

by <5(C)^1. Therefore by (1.1), 4^b2(E)+(Ks

Let £ = C + H , H=YjλHλ with i/Λ irreducible. Since (XS + C)®OS = OC is the

dualising sheaf of C, we have (KS + C)C=O. Therefore

ft2(£)+(KSE + E 2)/2 = b2(C) + CH + b2(H) + (KSH + H 2)/2 = b2(Q + CH+Σ HXHV.
λ<v

Hence 4^ft2(Q. Take an unramified fivefold covering S* of 5. Then S* is a VΠ0

surface with a cycle C* of rational curves, C* being the pull-back of C. Moreover,

//2(S*, <9 s,(-log£*))^0 for the pull-back E* of E. Hence by the same argument as

above we have 4^ft2(C*). However since b2(C*) = 5b2(C)^5, this is a contradiction.

q.e.d.

(1.4) THEOREM. Let S be a VII0 surface with a cycle C of rational curves, and let

E= C+Hbea reduced divisor containing C. Then there is a smooth proper family π: £f->A

with π-flat divisors <£ and Jtf of Ί? such that
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(1.4.1) (srO9vO9jro)=(s,c9H)9

(1.4.2) 3tft = H for a n y t e A ,

(1.4.3) w(: = π ^ ) : %>-±A is a versal deformation of C.

PROOF. Let U be a strongly pseudoconverx open neighborhood of C in S. We

prove that the canonical homomorphism

(1A4) Hι(S9 θ£-logH))^H\U9 θυ)

is surjective. By [14, (4.3)], Hι(U9θυ) = H\C9θΌ®Oc) = H\C9Jc)9 where Jc =

<9S/<9S( —logC). Consider exact sequences

(1.4.5) 0

(1.4.6)

where L: = <95(-log//)/<95(-log£). It is clear that supρ(/c/L) = C n H. Hence the

homomorphism H1(C9L)-+H\C9JC) is surjective. We have H2{S, Θs(-\ogE)) = 0 by

(1.3), whence H^Θsi-logH))^ Hι(C,L) is surjective. Hence (1.4.4) is surjective.

This proves that the logarithmic deformation functor of (S, H) realizes any deformation

of U near C (see [9], [12]). q.e.d.

From [14, (12.3) or (12.5)] and (1.4) we infer:

(1.5) THEOREM. Let S be a VΠ0 surface with a cycle C of rational curves. Then

there is a smooth proper family π: £f-*A over a unit disc A with a π-flat Car tier divisor

Ή such that

(1.5.1) ( ^ o , ^ o ) = (S,C),

(1.5.2) £ft is a blown-up primary Hopf surface with a nonsingular elliptic curve ζ€x (t φ0).

PROOF. If H^S, Z) = i+H^C, Z), then the same argument as in [14, (12.3)] applies

because the assumption on the existence of E with EC>0 is used only for showing

H^S, Z) = i*H1(C, Z). So we are done in this case. If H^S, Z ) ^ ^ / / 1 ( C , Z), then S

is isomorphic to a half Inoue surface by [14, (9.2)], whence the assertion is true as is

well-known. See also (6.4). q.e.d.

(1.6) COROLLARY. An arbitrary VΠ0 surface with a cycle of rational curves is a

global deformation of (hence dijfeomorphic to) a blown-up primary Hopf surface.

(1.7) COROLLARY. Let S be a VII0 surface with a cycle C of rational curves with

C 2 < 0 . Suppose that S is not a half Inoue surface. Then there exist complex line bundles

Lj on S (1 ̂ j^ri) such that

(1.7.1) Ej: = c^Lj) (1 g / g Λ ) is a Z-basis of H2(S, Z),

(1.7.2) KsLj=-l9 LjLk=-δjk,
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(1.7.3) C = ~{Lr+! + n ( | )/ ^ ^ ,

wΛere n = b2(S).

PROOF. By (1.5), a general deformation ^ of S is a blown-up primary Hopf

surface. Since S and £ft are diffeomorphic, by pulling back to S the total transforms

of they-th ( - l)-curves on £ft9 we have a Z-basis Ei (1 5 ^ « ) of //2(S, Z) such that

(1.7.4) * ^ = - l , EjEk=-δjk,

(1.7.5) C = - ( £ Γ + 1 + ••+£„), As = £ 1 + + £ l l in H2(S, Z).

Since S is not a half Inoue surface, we have 0 < - C2 <n by [14, (9.3)]. Hence 0<r<n.

Therefore by choosing suitable line bundles Ls (1 tkjύn) with cx(Lj) = Ej9 we have (1.7.2)

and (1.7.3) q.e.d.

(1.8) REMARK. When S is a half Inoue surface, the assertion in (1.7) is true with

(1.7.3) replaced by

(1.8.1) C = - ( L r + 1 + +LM) + F 2 , Ks = Lί+"^Ln in H\S,Oξ),

where F2 is a line bundle of order two.

2. (Co)homology classes of curves.

(2.1) Let S be a VII0 surface with a cycle C of rational curves. First we notice

6 2 >0. Indeed, if ft2 = 0, then there are only elliptic curves but no rational curves on S

by [10, II, p. 699]. If S has an elliptic curve, then S is a parabolic Inoue surface by

[14, (7.1)]. If S has a cycle D of rational curves distinct from C, then S is a hyperbolic

Inoue surface by [14, (8.1)]. If C 2 = 0, then S is an exceptional compactification of an

affine line bundle over an elliptic curve by [1]. If 6 2 (Q = ̂ 2> a n d if C 2 <0, then S is a

half Inoue surface by [14, (9.2)]. If C2S -b2, then C2= -b2 and S is a half Inoue

surface by [14, (9.3)]. Under one of these additional assumptions, the structure of S is

in any case completely known. In particular, they all contain a global spherical shell

[7]. So we may exclude these cases in subsequent study. Summarizing these, we obtain

(and make) the following:

(2.2) PROPOSITION-ASSUMPTION. Let She a VII0 surface with a cycle C of rational

curves. Assume that S is isomorphic to none of the above surfaces. Then,

(2.2.1) S has no curves of positive genus and no cycles of rational curves other than C,

(2.2.2) 6 2 > - C 2 > 0 , b2>b2(Q,

(2.2.3) //1(5,Z) = //1(C,Z) = Z , H'iS, C*) = H\C, C*) = C* ,

where the isomorphisms are induced from the natural inclusion of C into S,

(2.2.4) any unramified finite covering π: S'^>S is cyclic and π*C is a unique cycle of
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rational curves on S'.

See [14, (2.13), (9.2)] for (2.2.3) and (2.2.4).

In what follows, we assume that (2.2.1)-(2.2.4) are true. See (2.13). Let s =

bi(Q> n = b2(S)9 and let r and Lt (l^i^ή) be the same as in (1.7). We note 0 < r < «

by (2.2.2).

(2.3) LEMMA. Let L be a line bundle on S. Suppose that L~a1L1 + +anLn

andaγ+- +an>$. Then H°(S, L) = 0.

PROOF. Suppose H°(S,L)Φ0. Then there is an effective divisor D such that

[Z)] = L. By (1.1) we have KSD^O. By (1.7), we get KSD = KSL= - ( ^ H - + αn)<0,

which is absurd. q.e.d.

(2.4) LEMMA. Let L1: = £ i e / L h L = LI-\-F, FeH1(S, C*) for a nonempty subset

Iof\_l, ή\. Then we have:

(2.4.1) lfIΦ\\,n\ then H%S, L) = 0for any q.

(2.4.2) IfL®Oc = Oc, then /=[l,r], andF=OS,KS-L + C=OS.

(2.4.3) IfLCi = 0for any irreducible component C£ of C, then / = [ 1 , r].

PROOF. #%S; L) = 0by(2.3).If//[l,rc],thenΛ2(S, L) = h°(S, Ks-L) = 0by(23).

Hence by the Riemann-Roch theorem, h\S, L)= -χ(S, L)= -(-KsL + L2)/2 = 0,

whence (2.4.1). Suppose L®OC = OC. Then 0 = LC=L 7 C= -#(/n [r+ 1, «]). Therefore

/is a subset of [1, r]. Hence Hq(S, L) = 0 for any q by (2.2.2) and (2.4.1). By the exact

sequence

0 - # % S , L - Q - / / % S , L)^H°(C, Oc)

-+H1(S, L-Q-+H\S, L)-+Hι(C, Oc)

-+H\S, L-Q^H2(S, L)->0,

we see H2(S, L-Q = H\C, OC) = C. Since Ks-L + C=L{lr]-LI-F, we have

KS-L + C=OS, / = [ l , r ] , F = O S by (2.3). This proves (2.4.2). If LC—0 for any

irreducible component Cf of C, then L c is contained in //^C, C*). By (2.2.3), there

exists GGH\S, C*) such that Gc = Lc. Hence (L-G)®OC = Oc, whence L-G = KS + C,

F=G, / = [ 1 , r] by (2.4.2). This proves (2.4.3). q.e.d.

(2.5) LEMMA. Let D be a nonsingular rational curve. Suppose D^a1L1 +

- +anLn. Then there exists a unique at such that at=\ or — 2, «7 = 0 or — 1 for jψi.

PROOF. By (1.7.2) we see 0 = A:sZ) + /)2-f-2 = 2 - ^ = 1 (ai + ak). Hence af + at = 2

for a unique /, and aj + aj = 0 ΐov jφi. q.e.d.

(2.6) LEMMA. Let D be a nonsingular rational curve which is not contained in the

cycle C. Then D~Li — Lιfor some /e[l, ri\ and / c [ l , ή] with iφl.
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PROOF. Let E=C+D. Then by (1.4) there is a proper smooth family π: Sf-+Δ

over a unit disc A with J-flat divisors ^ and 2 such that (^, if, ̂ ) 0 = (5, C, /)), S)t = D

for any /, and 5 ,̂ is a blown-up primary Hopf surface with a smooth elliptic curve <€t

for ί/0. Since any primary Hopf surface has at most elliptic curves which are

homologically trivial, D = @t is a proper transform of a (—l)-curve by repeated

blowing-ups. This implies that D~Li — Lι for some / and /with iφL (Geometrically D

is on Sft a proper transform of the /-th (— l)-curve on which they-th blowing-ups (jel)

are repeated.) q.e.d.

(2.7) LEMMA. Let Dί and D2 be distinct nonsingular rational curves such that

Dj-L^-Lj. (*jφlj9j=l9 2). Then a^(x2.

PROOF. If a1 = α2, then D1D2= — \— #{IX nI 2)<0, which is absurd. q.e.d.

(2.8) LEMMA. Let S be a {not necessarily minimal) surface with b1 = l having a

cycle C of rational curves, and let Cx (l^i^s) be all the irreducible components of C.

Suppose that s^2 and for some 2 ^ / ^ r ,

(2.8.1) Ci^Li-Lm-LA'i

(2.8.2) Ct~ t
k=r+l

where we do not require Ct to be in the cyclic order. Then we have aik= ± 1.

PROOF. If s = l, then (2.8.2) is vacuous and any irreducible component C of C

is of the form (2.8.1) so that there is nothing to prove. We assume s>l. Suppose by

(2.5) that there is an irreducible component C of C of the form —2Li — Lι for some

/ and /, hence of the type (2.8.2). Since s^3, there is an irreducible component C"

of C with CC"=\. Then C" is not of the form ~2Lj-Lj because (-2L,-

L / ) (-2L j -L J )^0 . Hence C"~Lk-Lj for some k and /with kφJ.We have,

1 = C'C" = - 2LiLk - LkLj + 2LtLj

Therefore either kφi, kel, iφj, InJ=0 or k — U kφl, iφJ, #(lnJ)=l. In either case,

C" is of the form (2.8.2). In the first case, C + C"~ -2Li-LI^{k]-LJ. In the second

case, C' + C" Li-2Lj-Ll\{j}-LjX{j}, where {j} = InJ. In either case, C ( 2 ): =

C' + C"~-2La-LA for some α e [ r + l , « ] and ̂ c=[r+l,/2] with aφA. If ̂ ^4, then

there exists an irreducible component C " of C different from C and C" with C'"C{2) =

1. Then by the same argument as above, C" is of the form (2.8.2) and

Ci3): = Ci2) + C'"~-2Lb-LB for some 6e[r+l,/ι] and 5 c [ r + l , « ] with bφB. By

repeating the same argument, we eventually obtain a straight chain C(s ~l) ofs — l rational

curves contained in C such that C(s~l)~ -2Le — LE for some ee\r+\,ή\ and

Ea[r+\,ή] WiίheφE.

Since C is connected, C{s~l) meets one of Q (\<^i^l). However C ( s "°Q^0 by
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(2.8.1). This is a contradiction. q.e.d.

(2.9) LEMMA. Let S be a VΠ0 surface with a cycle C of rational curves. Assume

{Ks + CγiL-2 and s: = b2(Q^2. Let C, be an irreducible component of C. Then there

exist i and I such that C J~Li — Lv

PROOF. Let L = Ks + C = L[Ur]. Then Lc = (Ks + Q(g)Oc is the dualizing sheaf of

C so that Lc is trivial. Hence LCf = 0 for any irreducible component Ct of C. By (2.5),

this shows that by suitable indexing for Lj9

(2.9.1) Q-Lt-Lw-L^

(2.9.2) C£~ Σ

where /^r. Since C = — L [ Γ + 1 n], we see that YJ\ = ίCi is a linear combination of Li

( r + l ^ / ^ / i ) . Hence /=0 or /^2. If /^2, then (2.9) follows from (2.8). So suppose

/=0 to derive a contradiction. If /=0, then LxCι = 0 for any / by r>0, hence Ks — L1 +

C~0 by (2.4.3). This implies that (Ks + Q2= - 1 , which contradicts the assumption.

q.e d.

NOTATION. By (2.9), we write C^L. — L^ for a subset Λf of [l,/ι]\{/} Let

Af

i = Ainlr-\-l9ri]9 Bi = Air\[r+\,s~], and ^ = ̂ ^ [ 5 + 1, ή\.

(2.10) LEMMA. Suppose (Ks + Q2^-2 and s\ = b2{C)^2. Then s^r^2. By

suitable indexing for L} (Lr = L0), we have

(2.10.1) Ci~Li-Li_ι-LB-Lli (lgigr)

(2.10.2) Ci~Li-LB-LIi (r+l^i^s)

(2.10.3) l.nlk = 0 for iφk and Ix u u/ s = [>+1, ή] .

PROOF. We use the same notation as in the proof of (2.9). We have 1^.2 by the

proof of (2.9). Since Q + +C, has no terms of L{ ( l g / ^ r ) , the set [1,/] is

decomposed into a disjoint union of Ru , RN such that

(2.10.4) j(Rk) = Rk (l^k^N)

(2.10.5) no Rk is decomposed into proper subsets with the property (2.10.4) where

j(Rk) = {j(ί); ieRk} and//) is defined in (2.9.1).

By suitable indexing for Lp we may assume /*i = [l,r / ] ( r r ^ / ^ r ) . Let L' = LRί.

Then LfCi = 0 for any ie [ l , j] by (2.9.1), (2.9.2) and (2.10.4). Hence by (2.4.3), we get

Λ1 = [ l , r ] , r = r' = /^2, iV=l. This shows that we may assume j(i) = i— 1 (1^/^r) by

suitable indexing for L7 , where we may viewy'(l) = 0 = r. Hence in particular, s^r. The

assertions (2.10.1) and (2.10.2) are thus proved. (2.10.3) is clear from (1.7). q.e.d.

(2.11) LEMMA. Let the assumptions and notation be the same as in (2.10). Assume
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s>r. Then there is je[r + 1, s] with Bj = 0.

PROOF. By (2.10), r^2. First we show the following:

(2.11.1) SUBLEMMA. There exist ye|> + 1, s], and i, £e[ l , s ] such that CiCj =
CjCk=\, CjC^O (lφi,j\ k\ and that B^Bk contains].

PROOF OF (2.11.1). Since s > r, there is a connected subcurve C" = Ch + + Cjrn

of C such that jke[r+l,s] and that C"(C1+ + Q = 2. We may assume
CjkCjk + i = l (\^k^m—\), and Cj.Cjk = 0 (otherwise). Hence there exist iλ and i2 in
[l,r] such that ChCh = CjmCi2=\, CjkCi = 0 (otherwise). Let C3~L}-LA. (l^j^s).
Since Ahn[l, r] = 0 by (2.10.2), ChCiχ = \ implies that Ailsju Aiχϊ\Ah = 0.

We now prove that there exists j a (l^a^m) such that both Ajm_ι and AJΛ + i contain
j a , where 70

 = ίi a n d 7 m + i = ί2 If ^ j 2 contains yl5 then we can take α = l . If Aj2φjl9

then y47l 972 by CjιCJ2=\. By repeating this argument, we either obtain α (^m— 1) such
that Ajk_χ3jk (l^fc^α) and Au + ί3ja, or we have Ajk3jk+ί, Ajk + ίφjk for any
A: (gm— 1). In the second case, since CjmCh = \9 we have either ^4Jm9/2

 o r Ai23jm. Since
^ j m π [1, r] = 0 by (2.10.2), we have ^4i2 97m. Hence we may take α = m. (2.11.1) is proved
by taking i=jΛ-ί9j=ja and fc=Λ+1.

The following is easy to see:

(2.11.2) SUBLEMMA. (i) /Le[r+l,s] if and only if λeAi for exactly two i

(ii) λφ\_r+1, 51] z/αmsf o«/y if λeA xfor a unique i (l^i^s).

Next we prove:

(2.11.3) SUBLEMMA. Let ίj, k be the same as in (2.11.1). Suppose B^0. Then
there exist lu , lm in B3 such that

AjΠAlh = {lh+1}, Clh~Llh-Llh + ί-LA>h {lZhZm),

where lm+1 = lu A'lh = Alh\{lh+1}, lhφi,j,k, and ^ / h n [ l , r] = 0 .

PROOF OF (2.11.3). Take lx from Ajn[r+l9s]. Then l^ΦUk. Indeed, if lί = i9

then Bt contains j by (2.11.1), and #(Bi(\Bj)=l by C{C3= 1, hence Q + Cj 2L V -L J

for some v and J. By deforming *S, we obtain a cycle C*, one of whose irreducible
component is Q + Cj 2LV-Lj homologically. This is absurd by (2.8). If lx =k, then
by the same argument we derive a contradiction. Hence lγΦU k, and Bjφi, k.

Hence CjCh=0, so that -LA.Lu-LAχL3 + LA.LM=§. By (2.11.2) and by
jεAiΓiAfr we have Ah$j. Hence {l2} = Ajr\All for some /2G[r+l,5"], since
Ah n [1, r] = 0 by (2.10.2). Clearly / 2 ^/ l 5 /, k. We note7^ylΓ2 by (2.11.2). By CjCh = 0,
we have #(̂ 4jn Ah) = 1. Hence A3 n^4/2 = {/J or {/3}, where l3φlί9 /2, ί, fc. Repeating this
argument, we eventually obtain lί9 ,lmeAjΓi[r+l,s] such that (2.11.3) holds.

q.e.d.
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(2.11.4) SUBLEMMA. Suppose BjΦ0. Let Cλ be an irreducible component of C

with CλClh = 1. Then λ = lh_1 or λeBlh.

PROOF. By the proof of (2.11.3), we have Bjφi, k and lhφi, k. Thus CjClh = 0,

whence λφj. Supose λφlh_1. Then since lheAjΠAlh l ? we have lhφAλ by (2.11.2) so

that

1 = CλClh = (Lλ - LAλ)(Llh - LAlh) = - LλLAlh + LAλLAlh.

Thus λeAlhn[r+l9s]( = Blh) and AλnAlh = 0 by v4/hn[l, r] = 0 . q.e.d.

(2.11.5) SUBLEMMA. Let j be the same as in (2.11.1). Then B} = 0.

PROOF. We prove this by induction on δ(S):=s-r= s(S)-r(S) = b2(Q + (A:s +

Q2. If s = r+\, then Bs = 0 by (2.10) and sφBs. Next we assume that s>r+l and

that (2.11.5) is true for δ(S)^s — r—\. Assume B}φ0 to derive a contradiction. By

(2.11.3), we choose lh. Suppose CλCh = 1. By (2.11.4), we may assume λ = lm or λeBh.

in = lm9then Ch +Cλ~ Llm-Lh-LΛ for some AAfXeBh,thenCh + Ck~Lh-Ll2-LA,

for some A'. By deforming S suitably, we have a (not necessarily minimal) surface £ft

with b^Sf^ = 1 and a cycle %>t = %>[ + (C— CZl — CA), ̂  being a nonsingular rational curve

for t φ 0, <g'o = Cfl + CA. In this situation, CΛ (1 ̂  A ̂  r) survives on Sfv However if λ = lm

(resp. λeBh), then there is no irreducible component of c€t homologically equivalent
to LU — LΛ. (resp. Lλ — LΛ) for any A'. This implies that the index sets Bj and [l,s]

are changed into £, \{/i} and [l,^]\{/i} (resp. Bj\{λ}) and [1, J ] \ { A } ) on Sfv If

λΦUk (resp. /I = /), then Cfi = Cfk = 1, C/ίf ί = C. Q = 0 (resp. Cβ't = Cfk = 1, Cfx = 0)

on «Ŝ f for lΦi9k9λ9lί9 and the condition in (2.11.1) for Sft is satisfied. The case

λ = k is similar. We note δ(Sft) = s — r— 1 <^(5'). By the induction hypothesis on Sft9

either ^ X l / J or ̂ -\{A} is empty. This implies # ( ^ ) = 1 , which contradicts (2.11.3).

q.e.d.

(2.12) LEMMA. Let D3 be irreducible curves not contained in C.

(2.12.1) Suppose Dj~Lj-Lkj (l^j^l.l^kj^m). Then l^m-l. If l=m-\, then

Dj_ίDj= 1 (l^j^m— 1), and DtDj= — 2bVj (iφj± 1) by suitable indexing, and moreover

either D1^Lι-Lm and Dj^Lj-LJ_ί ( 2 ^ y ^ m - l ) or Dj~Lj-Lj+1 ( 1 ^ / ^ m - l ) .

(2.12.2) Supposse Dj~Lj-Lkj (2^/g/, λ^k^m). Then /gw+1. 7/7=/w or m+1,

/Λβ« Dj_1Dj= 1 (2<Ξy'^/), A ̂ j ^ -2δ 0 . (/#7± 1) 6y suitable indexing. Ifl=m+l, then

Dj-Lj-Lj.

Note that each of the two cases in (2.12.1) l=m—\ as well as those in (2.11.2)

l=m is reduced to the other by suitable indexing for Lj.

PROOF OF (2.12.1). If there is a pair of / and j such that k x = k^ then /),•£>,. <0,

which is absurd. Hence kiφkj for /// so that l^m. If l=m and k{Φkj for /^y, then
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D1 + + A ~ 0 which contradicts (2.2) by [14, (2.10)].

Assume l=m-\. Let {kί9 • ,*m-i} = [l,/w]\{α}. Then Z>!+ +Dι~La-Lm

whence mΦa. We have

Hence Σi<jDiDj = m-2. This shows that Z ) ^ +Dι is connected by (2.2.1). Take

mutually distinct j , λ, v, μ e [ l , / ] . Then Dλ + Dv + Dμ~Lj-Lj, where # / = # / ^ 3 ,

InJ=0. Hence

This shows that Z ^ + + A is a straight chain, that is, Z>7_i/>7= 1 ( 2 ^ * ^ / ) ,

DtDj= —2δij (otherwise) by suitable indexing. Then if \<a<m— 1, then we have

ka = a-1 by £> f l-i/) f l= 1, while Λ;α = tf + 1 by DaDa+1 = 1. This is absurd. Consequently

α = 1 o r m - 1 . The rest is clear.

PROOF OF (2.12.2). By the same argument as above, k{Φk^ for iΦj, and / ^ m + 1.

If l=m+ 1 or m, then Σi<jDiDj = l-2. It follows that Z>2+ +Dι is a connected

straight chain of ( - 2)-curves, that is, Dj_1Dj= 1 (2<Ξyg:/), A />/= ~ 2 ^ ϋ (otherwise) by

suitable indexing. One sees readily that if / = m + l , then Dj~Lj — Li_ι (2-ζj^l). If

l=m, then either Dj^Lj-Lj.1 (2^j<.l) or Dj~Lj-Lj+ί ( 2 ^ / ^ / - 1 ) and Z)z~

Lι — L1; q.e.d.

(2.13) DEFINITION. A reduced connected divisor Z) is called a branch of the cycle

C if CD = 1 and if D has no components common with C.

In the rest of this section, we consider the case where C has at least a branch, for

instance, and a nonsingular rational curve D with CD— I. If a VΠ0 surface has a cycle

of rational curves with branches, then it satisfies the conditions (2.2.1)-(2.2.4).

(2.14) LEMMA. Let S be a VΠ0 surface with a rational curve C with a node.

Suppose that there is a nonsingular rational curve D with CD = 1. Then by indexing Lj

suitably, we have

C=-{L2+ •••+£„), D~L2-LX.

PROOF. By (1.7) we may assume

C = - ( L r + 1 + + L π ) , Ks = Lί+ +Ln, l

Assume that D^a1Lι + +anLn with CD=\. Then we have 1 = CD = ar+ί + +

an. By (2.5), (ar + 1, , tfn) = (l, 0, , 0) up to permutation. Since D2^ - 2 , there is a

nonzero α,- (lf^/gr). We may assume axΦ0. Since L x C = 0 , we get r = l by (2.4.3).

Thus D~LX-Lγ (2^ig/i) . q.e.d.

(2.15) LEMMA. Le/ S be a VΠ0 surface with a cycle C=C1 + C2 of two rational
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curves. If (Ks + Cγ"ζ —2 and if there is a nonsingular rational curve D with C1Z) = O,

C2D — 1, then by indexing L3 suitably, we have

C=-(L3+ •+£„), C.-L.-Lz-L^ C2~L2-LX-L5,

as well as either D~Li — L2 and iel, or D~Li — L1—L2 and ieJ, where / n / = 0 ,

PROOF. By (2.9), we may set C1^L1-Lr, C2~L2-Lr for some /' and J' such

that 1 φΓ,2φJ\ Since CXC2 = 2, we have 2= -LιLJ-L2LI, + LΓLr. Hence 1 eJ\ 2eΓ

and ΓnJf = 0. By setting /=/'\{2}, J=J'\{\}, we obtain the expressions for C1

and C2.

Let L = LX+L2. Then LfC1 = Z/C2 = 0. Hence r = 2 and /u J = [ 3 , «] by (2.4.3). Let

D be a nonsingular rational curve with C2D= 1. By (2.6), we have D^Li~LΛ for some

i and Λ. By (2.7), z^3. By Q Z ^ O , C2D= 1, we have

(2.15.1)

(2.15.2)

From (2.15.1) + (2.15.2) and i e /u /, it follows that (L, + L j ) ^ = 1 + (L7 + L^L,. = 0.

Thus LjLΛ = LjLΛ = 0, whence IπΛ = Jr\Λ = 0. Consequently, A is a subset of {1, 2}.

If Λ = {1}, then

C2Z) = (L2 - L t - L j m - L,) = - 1 - LtLj ^0 ,

which is absurd. Hence A = {2} or {1, 2}. The rest is clear by (2.15.1) and (2.15.2).

q.e.d.

(2.16) EXAMPLES. Let S be a VII0 surface with b2 = 2 or 3 containing a global

spherical shell. Suppose that there is a cycle C=C1-\- + C r with a branch

Z) r + 1 + +Z)fc2 on S. Then by [4], [8], [15], [16] the dual graph of curves on S is

given in Figure 2.16 below.

In Figure 2.16, a black vertex (resp. a white vertex) denotes a rational curve with

a node (resp. a nonsingular rational curve). An edge stands for transversal intersection

at a point, while a double edge stands for transversal intersection at two distinct points.

Each integer below a vertex denotes the self-intersection number of the corresponding

curve.

By (2.6), (2.14) and (2.15) we can express the curves Cf and D3 in terms of a

canonical basis Lί9 L2 (and L3) as follows:

(2.16.1) C=-Lί9D2~L1-L2,

(2.16.2) C = - L 1 - L 2 , / ) 2 - L 1 - L 3 , Z ) 3 - L 2 - L 1 ,

(2.16.3) C 1 ^ L 1 - L 2 , C 2 ^ L 2 - L 1 - L 3 , i ) 3 - L 3 - L 1 - L 2 ,

(2.16.4) C 1 - L 1 - L 2 - L 3 , C2~L2-Lλ , D3~L3-L2 .
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The cycle C consists of two rational curves C1 and C2 in (2.16.3) and (2.16.4),

while the cycle consists of a single rational curve with a node in (2.16.1) and (2.16.2).

We note that the two cases in (2.15) are really possible as (2.16.3) and (2.16.4) show

and that (2.16.1) —(2.16.4) exhaust all the possible dual graphs of b2 (^3) curves on

special VII0 surfaces.

- 2 - 2 - 2 - 2 - 2 - 3 - 3 - 3 - 2 - 2

(2.17) LEMMA. Let S be a VII0 surface with a cycle C=CX+ - +CS ofs rational

curves ($^3). Suppose that (Ks + C)2 ^ — 2 and that there is a nonsingular rational curve

D with ChD=l and CjD = 0 (jφh). We choose a canonical basis Lj subject to

(2.10.1)-(2.10.3). Let D~La-LΛ andoce^ for some α, A and /. Then

(2.17.1) l ^ λ ^ r , l ^ / ^ r and Λc=[l,r],

[l,r] if l=h,

(2.17.2) A= [A,/-I] if

[A, r]u[l,/-l] if l^i

(2.17.3) If A = [\, r], then D is a unique irreducible branch of C.

PROOF. By (2.6), let D~La-LΛ. Then α ^ s + 1 , and α<M by (2.7). Thus

\=CD=—L[r+1 n](La — LΛ)=\+L[r+ln]LΛ, whence [ r + 1 , ή] nA = 0. Therefore A is

a nonempty subset of [ l , r ] . There is a unique Ae[l,s] such that ChD=l. Then

C ; D = 0 for any jφh.

We now prove 1 ̂  A rg r. Suppose r+\^hi^s. Since CΛZ) = 1 and A ̂  A a [1, r], we

have

1 = (^Λ ~~ LBh — LIh)(La — LΛ) = — Z,αL/h + LBhLΛ .

Hence αe/Λ and BhnA = 0. By (2.10.3), α^/y O'^A). Since CjD = 0 (jφh), we have

LΛCj = LaCj-DCj=-LaLI.-DCj = O. On the other hand, LΛCh = LΛ(Lh~LBh) = 0.

Therefore Λ = [l, r] by (2.4.3). Let π: *S"-^5 be an unramified double covering of S,

and let π % = L}-f L}', ^ C — C + Cy, π*D = D' + D". Then L} and L}' (\<.j^ή) form

a canonical basis of H2(S', Z). Moreover,

71 U — x-ίr-4.1 Mi Lj\rΛ_Λ nΛ , A c - — 7Γ Λ c — J

Hence Λ^ + π*C=L[ 1 > r ] + L['1 tΓ]. We may assume D'C'h = Df'C^ = l. By the same argu-

ment as above, letting D' ~L'a-L'j-Lj, we get Li-hL^L}! r] + L'{lr], whence (D')2 =

-2r-\. This is absurd because (D')2 = D2= -r-1, and r>0. Thus l^A^r.

Suppose l>r next. Then by CtD = ̂  and (2.10), we have
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0 = (L, - LBι - Lh)(La -LΛ)=- LaLh + LBιLΛ = 1 ,

which is absurd. Thus we complete the proof of (2.17.1).

Assume /=A. Then αe/ Λ . By ChD= 1, we have 1 = - LaLIh — LhLΛ + LBhLΛ. Hence

LΛCh = 0 and LΛ(Lh — LBh — LIh) = 0. Since α e /Λ, we see that /, (/ ̂  A) does not contain α.

Therefore for JΦ A,

By (2.4.3), we have Λ = [ l , r ] .

Assume next A</:gr. Then from ChZ)=l it follows that AGΛ, h—\φΛ and

£ Λ nΛ = 0 . (Here if A=l , then h-lφΛ means r<M ) By C/> = 0 for A + l ^ / g / - l ,

we have j — XeΛΊϊand only ifjeΛ. This implies that /I contains [A, /— 1]. Similarly,

j-leΛ if and only if jeΛ for / + l ^ / g r or l g y g A - l . Hence Λ = [A,/-1]. If

A>/, then Λ = [A, r ] u [ l , /— 1] by the same argument. This completes the proof of

(2.17.2).

Finally we prove (2.17.3). Assume that D~La — L{1 r ] and that there is another

irreducible curve D' with C D ' = 1 . Then by (2.17.1), we see that D'~Lβ-LΓ for a

nonempty subset Γ of [1, r] . Hence DD' = Ln r]LΓ= - # ( Γ ) < 0 , which is absurd.

q.e.d.

(2.18) COROLLARY. Leί S be a VΠ0 surface with a cycle C of rational curves.

Then for any irreducible component C{ofC (1 ̂ i^r), there exists at most one irreducible

branch D of C with CJ)= 1.

PROOF. We assume (Ks + C)2<^ - 3 and b2(C)^3. Suppose that there exist two

irreducible curves D, D' such that DCh = D'Ch=\. Then by (2.17), we see that D~La-LΛ,

D'~Lβ-LΓ for some α, βe\_s+ 1, ri], and Λ, Γ c [ l , r ] , By (2.17.2), ΛnΓ contains A,

whence DP' = LΛLΓ<Q, This is absurd. If (Ks + Q2^-2 or ό 2 (C)^2, then take a

triple covering S* of S. By the above, any irreducible component Cf of the pull-back

C* of C has at most one irreducible branch, hence so does any irreducible component

of C. q.e.d

3. Dual graphs of curves (1).

(3.1) LEMMA. Suppose that there exist a positive integer m, an effective divisor

D and a flat line bundle F such that mKs + D = mF. Then Dτed is connected, and Dred

contains a cycle of rational curves.

PROOF. Suppose m = 1, Fφ Os. Then pa(D) = (KSD + D2)/2 + 1 = 1, whence by [ 14,

(2.7)], Dτed contains a cycle C of rational curves. Let E be a connected component of

D containing C. Consider the exact sequence
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0->H°(S, F-D)^H°(S, F)-+H°(D, OD(F))

-+H\S, F-D)-+H\S, F)-+H\D, OD(F))

By (2.2) and [14, (2.10)], we have H°(S,F) = 0 and H°(S, - F ) = 0. Hence
h2(S9F) = h°(S,Ks-F) = h°(S,-D) = 0. By the Riemann-Roch theorem, we have
H\S,F) = 0. Hence h\D, OD(F)) = h2(S, F-D) = h°(S, Ks + D-F)=\. Let E be a
connected component of Dred with £ " n C = 0 . Then E is simply connected by (2.2).
Therefore the line bundle F is trivial on a small neighborhood of E. Hence
H1(D\ OD(F)) = H1(D\OD) = 0 for any divisor D' with supp(D') = Ef. Hence
H1(D, OD(F)) = H1(E, OE(F)) for some E^D with Ered connected. Now consider the
exact sequence

0^H°(S, F-E)->H°(S, F)->H°(E, OE(F))

TTI/O Z7 rp\ . Z J Γ I / O J7λ v Z_Γ 1 ί Ί7 SΛ ί T?\\

->//2(5, F-E)->H2(S, F)->0 .

Hence h°(S, -D + E) = h°(S, Ks + E-F) = h2(S, F-E) = h1(E,OE(F))=\. This shows
that D= -D" + E for an effective D". Hence E=D, D" = 0 and Dred is connected.

Assume next m=\ and F=OS. It follows easily from [14, (2.6)] that A 1(#D) = 2.

Let £ be a connected component of D, ETQd containing a cycle of rational curves. If
h\OE) = \, then /z1(OG)=l for G\ = D-E. By [14, (2.3)], G contains an elliptic curve
or a cycle of rational curves, a contradiction to (2.2). Hence hΐ(OE) = 2. Therefore
A°(5, Ks + E) = h2(S, - £ ) = 1 by [14, (2.8)], whence -Z) + £ is effective (or zero). This
shows that E=D9 and D is connected.

Next we consider the case m > 1. Consider an m-fold cyclic covering
X={(ζ,x)e-Ks + F;ζm = d(x)} of S where f (resp. φ:)) is the fiber coordinate of
— Â s + F(resp. a defining equation for D). Take a minimal resolution Y of singularities
of Jf. Let Z be the minimal model of Y. Then by the same argument as in [14, (12.4)]
we can show that Y is a surface with b1 = \ and Kγ = — H+ G for an effective H and a
flat line bundle G on F, and that Z is a VII0 surface with Kz= —FT + G' for an effective
Hr and a flat line bundle G' on Z. By the above argument in the case m= 1, it follows
that H' is connected.

Let A be an exceptional curve on Y with Λ2 = — 1. If A is contained in //, then the
number of connected components of//is stable in blowing A down. If A is not contained
in //, then by KYA = — 1, we have HA = 1. Hence the number of connected components
of H is stable in blowing A down. Since H' is connected, so is H. Hence the image D
of H is also connected. It follows from the proof of [14, (12.4)] that D r e d contains a
cycle of rational curves. q.e.d.

(3.2) LEMMA. Suppose that mKs + D = Gfor an effective divisor D and a flat line
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bundle G. If an irreducible curve E intersects D r e d, then E is contained in Dreά. In particular,
if E2^ — 3, then E is contained in Z)red.

PROOF. If E is not contained in £>red and if E intersects Z)red, then DE>0. But
~DE=mKsE^09 which is absurd. If E2<> - 3 , then KSE^ 1, whence ED<0 Hence E
is contained in D. q.e.d.

(3.3) DEFINITION. A VII0 surface S with b2>0 is said to be special if 5 has at
least b2 rational curves.

By [14, (3.5)], any special VII0 surface has exactly b2 rational curves. Any VII0

surface with a global spherical shell is special. See [4], [8], [16] as well as (5.2).

(3.4) LEMMA. An arbitrary special VII0 surface has a cycle of rational curves.

PROOF. By (2.2), there exist no elliptic curves and no cycles C of rational curves
with C 2 = 0. Hence the intersection matrix (CtC) is negative definite by [14, (2.10)],
where C, (/= 1, , b2) are all rational curves on S. Hence C, is a β-basis of H2(S, Q).
Thus there exist a positive integer m, an effective divisor D and a flat line bundle
FeHι(S, C*)( = C*) such that mKs= -D + Fin H\S, Of). Hence by (3.1), Dτed con-
tains a cycle of rational curves. q.e.d.

In the rest of § 3 and § 4 throughout, we always assume that S is a special VII0 sur-
face satisfying (2.2.1) —(2.2.4).

(3.5) LEMMA. Let E be a connected effective divisor such that E~Lk — LΛ for
some k ̂  s + 1 and A a [ 1, r]. Let D be a reduced {possibly reducible) curve which contains
none of E and the irreducible components of C. If D~Lj — Lk — LJ for j^.s+\, then

andAnJ=0.

PROOF. Let D = D\+D'2+ +D'm with D\ irreducible. Then we may assume
D\^Li — LA. for some i^s+ 1 with iφk. By assumption, there exists D\ with keAt. We
may assume k = s+\ and i=s + 2. Suppose ED = 0. Then Ep[ = 0. Hence
D1: = D'i~Ls+2-Ls+1-LJι for J^c:/, and JΛnAΦ0. Then by C Z ^ O , we have
/ 1 n [ r + l , « ] = 0 so that 0 / / i < = [ l , r ] and CZ)1=0. We also see that there exist no
irreducible curves Df^Li — Ls+1— Lr for /^s + 3. Indeed, otherwise, we have /' <= [ 1, r]
by the same argument as above, whence D'D1=L2

+ι—#(J'n/1)<0. If an irreducible
curve D2 not contained in C meets Z)l9 then /)1Z)2=1, CD2 = Q, D2^Li — Ls+2~LJl

for some ẑ .y + 3 and ^ ^ [ ^ r L «ΛnΛ = 0 i Moreover, Z>2 is a unique irreducible
curve meeting D1, because, if Z>' meets Z^, then D'~Lp — Ls+2 — Lr for somep (^5 + 3),
/ 'c:[ l ,r] and D'D2^ — \, therefore D' = D2. Now we may assume i = s + 3 and
D2~Ls + 3 — Ls+2 — Lj2. If there exists an irreducible curve Z>3 (ΦD^ Cf) meeting Z)2,
then D3~Lj — Ls+3 — Lj3 for somey^^ + 4 by (2.7), and D3 is a unique irreducible curve
other than Dλ which intersects D2.

Repeating this argument, we obtain irreducible curves Z)2, * , Dm such that (by
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indexing suitably), Dj^Lj+s+ι—Lj+s — LJ. (2<^j^m) and CDj = 0, where Jp is a subset

of [ 1, r] with JpnJq = 0(pΦq\ and there exist no irreducible curves meeting Dx + hDm.

In particular, C(D1 + +/)m) = 0. Hence there exist no connected divisors containing

both C and D1. However, since D\f^ — 3 by JγΦ0, Dx is contained in a connected

numerical antipluricanonical divisor which contains C by (3.2). This is absurd.

Consequently ED = 1 and A n / = 0 . q.e.d.

(3.6) THEOREM. Let S be a special VII0 surface with a cycle C=Cί + - - +CS

of rational curves. Then r = s.

PROOF. We assume first (Ks + C)2^ — 2 and s^2. By (2.10) we take a canonical

basis Lj subject to (2.10.1) —(2.10.3). Assume s>r to derive a contradiction. By (2.11)

there exists an irreducible component Cj (r+l^j^s) of C such that Bj = 0 and

Ci~LJ — Lι. with Ijd[s+l9ri]. Since S is special, there exists an irreducible curve

Dk~Lk-LAk for any kelj by (2.7). Then

CDk= -L[r+Un](Lk-LAk)=\+L[r+Un]LAk .

Suppose CZ)k=l. Then [r+\,ή]nAk = 0, whence Ahcz[l9r]. Hence CjDk=l, which

contradicts (2.17.1). Therefore, CDk = 0 and #{Ak n [r + 1 , ή]) = 1. Hence C/>k = 0 so that

j;φ Ak and #(/,-n Ak) = 1. Let {k1} = I}ny4k = [r + 1 , ή] ni4k. Then Dk~Lk-Lk>-LAk where

^^: = y4k\{fc'} is a subset of [1, r]. By indexing suitably, we have a subset {fcl5 , fcm}

of /y such that Dk.~Lki-Lki + 1-LAk {λ^i^m) with CZ)fc. = 0, where km + 1=ku

Let D' be an irreducible curve different from Dki, Cj (1 g/^m, 1 ̂ j^s). Then by

C D ' ^ 1 , we have either D'~Lk-Lk-LAk (ke[s+l,ή]9kfe[r+l9ri]9A'k<z[l9r]) or

Z)'~ Lk-LAk (ke[s+ 1, «], ^ c [ l , r]), where ^ ^ ^ by (2.7). In the first case, k'^kh

because D'Dk._χ <0 if k' = kt. In either case, D'Dk. = 0 for any /. Since Z)fc.'s do not form

a cycle of rational curves by (2.2), there exists / such that Dk.Dki + i=0 or DknιDkί = 0.

Hence there exists i such that A'k.Φ0 and (Z)fc.)
2g - 3 . By (3.1) and (3.4), Dki is con-

tained in a connected divisor containing C. However as was shown above, CDk. = 0 and

no curves except Dkj meet Dki, which is absurd.

Hence r = s if (k s + C ) 2 ^ - 2 and s^2. If (Λ:s + C) 2 = - 1 or s = l , then take an

unramified double covering S* of S, and the pull-back C* of C. Then

(Λ:S, + C * ) 2 = 2(Λ:S + C ) 2 , b2(C*) = 2b2(Q, whence 2r = 2s. q.e.d.

(3.7) COROLLARY. Let S be a special VII0 surface with a cycle C of rational

curves. Then

(3.7.1) (Ks + Q2=-b2(Q and b2(Q-C2 = b2(S),

(3.7.2) Ci~Li-Li_1-LIi (lg/SΌ w (2.10), C^iC—l, QC^O (iφjj±\ mod r),

Ck+r = Ckfor any k.
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PROOF. Clear from (3.6).

(3.8) THEOREM. Let S be a special VII0 surface with a rational curve C with a

node. If C has an irreducible branch Z)2, then by suitably indexing the remaining curves

Dj (3 ̂ j^ri) and a canonical basis L} (1 ̂ j^n), we have

C=-(L2+••

where n = b2(S). The dual graph ofn curves is as in Figure 3.8, where a black vertex (resp.

a white vertex) stands for C (resp. Dj).

-(/ϊ-1) - 2 - 2 - 2 - 2

FIGURE 3.8

PROOF OF (3.8). By (2.14), we have C= - ( L 2 + -+Ln) and D2~L2-L1. Let

3^/^w) be the remaining irreducible curves on S. Let D' be one of them. Then

= 0 by (2.18). Therefore Df~Lj-Lk or L,— Lx-L2 fory^3, &^2.

(3.8.1) SUBLEMMA. D' ̂  L 7 - Lfc /or .swme7, fc.

PROOF OF (3.8.1) Otherwise, we may assume D3~L3-L1-L2. Then there exists

no irreducible curve D" ~L} — Lγ — L2 with D" φDz. Hence we may assume Dj~Lj—Lhj

(4^j^n,2>Skj^n). By indexing suitably, Dj^Lj-Lj_1 (4<Lj^n) by (2.12.2). Since

Z)3Z)4=1, the curve Z)3 + Z>4+ +Dn is connected but (C+D2)(D3+ •+/)„) = 0.

This contradicts / ) 3 = — 3 by (3.2). Consequently Df~Lj—Lk. q.e.d.

We continue the proof of (3.8). Now assume Dj~Lj — Lkj (3 ̂ 7^/1, l^k^ή) by

(3.8.1). Hence again by (2.12.2), we have, by indexing suitably, D}~ Lj—L7 _ l 5 Z)7_ iD,- = 1

and DjDk = 0 (kφj,j± 1). q.e.d.

(3.9) THEOREM. Le/ S be a special VII0 surface with a cycle C=Cι + C2 of two

rational curves. IfS has an irreducible curve D3 with C2D3 = 1, then by indexing suitably,

we have one of the following cases:

(3 .9 .1) Cί~L1 — L2 — £ [ 3 , i ] , C2~L2 — Lx — L [ Z + l f + m _ 2 ] ,

DJ-LJ-LJ

(3.9.2) C1^Lι — L2

j j j , Dι+1~Lι+ί-Lι-Lι ,

(3.9.3) Ci~Lί-L2, C^L^L.-L^,

D3~L3-L1-L2, Dj-Lj-Lj.

(3.9.4) C^LX-L2-L{3in^ C2~L2-L19
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where /,m,/i^3 and b2(S) equals l+m-2 or n, CίDι+ί equals 1 (resp. 0) in (3.9.1)
(resp. (3.9.2)). The dual graph ofb2 curves are as in Figure 3.9.

(m-3)(m-2)

- 2

(i)

(ί-2)

0 — 0 — 0 — • —0
•n - 3 - 2 - 2

(«-3)

(iii) (n£3)

FIGURE

o==o—
-n -2

3.9

(iv)

d-2)

(ϋ)

—0— •—0

- 2 - 2

(«-2)

(π^3)

PROOF OF (3.9). The proof is divided into several cases.
Case 1. First we consider the case where C has two irreducible branches. By

(2.18), we may assume that there exist two irreducible curves D and D' with
C1D = C 2/) /=l and 7)7)'= 0. We are able to apply (2.15) by (3.6). With the notation
in (2.15), we may assume

^ 1 '**' *-'\ *-Ί. 1~Ί 9 2 '<x'' 2 1 — J 5 r^/ k — 1 ' />*' 3 — 2 '

=[3,Ai], 7 n 7 = 0 , 3e7,

by indexing suitably. So by letting C?= -/ and C\=—m, we may assume A; = / + l ,
7=[3, /] and / = [ / + 1 , / + m - 2 ] . Let /)" be an irreducible curve different from D, D'
and not contained in C. Then by (2.18) we have CγD" = C2D" = 0, DD" ^ 0, and D'D" ^ 0.
Hence D"~L3-Lk. for some ky We note that ^ e [ 3 , /] (resp. [/+1, l+m-2~]) if and
only if/e[4, /] (resp. [/+2, /+w —2]). Since 5" is special, we may suitably re-index and
assume

in view of (2.12.2). Let D3 = D', Dι+ί=D. It is easy to see that DιDι+ι = Dj_1Dj=\
(4^/g/), C2D3 = Dj_1Dj=\ ( /+2^/^/+m-2) and A ^ j = - 2 δ v (otherwise). This is
(3.9.1). The dual graph of n curves is as in Figure 3.9 (i).

Next we consider the case where C has a unique branch with C1Z) = 0 and C2D= 1.
By (2.15), we may assume C1~L1—L2 — LI and C2^L2 — L1 — LJ. We have either
D~Li-L2 or D^Li~Lί-L2.

Case 2. Consider the case D^Li — L2. Let Cf=— / and C 2 = — w. Then
#(/) = /-2, #{J) = m-2. By (2.15), we have ze/, /£/, 7u7=[3, «] and InJ=0. So we
may assume i = 3, 7=[3, /] and «7=[/+l, l+m — 2]. Let 7)' be an irreducible curve
different from Z>, C l 9 C2. Then by Cf7)' = 0 and DD'^0, we have D'~L}-Lk-LA for
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somey (^4), k (^3) and Λc{l,2}. Notice that if Λ = {2}, then k = 3 by ZλD'^0, a
contradiction to C2D' = 0. Therefore the following three cases are possible:

Case 2-1. There exists an irreducible curve D' ~Lj—L3 — L1—L2 for some jel.
Case 2-2. There exists an irreducible curve D'~Lj-Lk-Lι for some kel and

JeJ.
Case 2-3. Any irreducible curve D' different D, Cx and C2 satisfies D' ~Lj — Lk

for some j and /:.
Case 2-1. We show that this is impossible. We may assume D' = D4~L4 — L3 —

L1—L2 and 4 ̂  /. First we assume Z>" ~Lj — Lk — L1 fory e / and /: e /. Hence by D'D" ^ 0
we may assume 7 = /+1 and k = 4. Then an irreducible curve G (ΦD,D',D", Q) is
homologically equivalent to Lp-Lq for some /?, # (^4), where peI (resp. /?e/) if and
only if qel (resp. #e/). Since <?/4 by GZ>"^0, we may assume Dp~Lp — Lkp

(5^/?^/, S^kp^l). This is impossible by (2.12). Thus we see that D" (ΦD, D\ Q is
equivalent to Lp — Lq (#^4), where pel (resp. /?e/) if and only if qel (resp.
qef). Consequently, D'D = D"D = 0, whence C+D + D' is contained in no connected
divisor. This contradicts (3.1), (3.2) and (D')2= - 4 .

Case 2-2. We may assume Dr~Lι+ι—Lι — L1. By Case 2-1, for any irreducible
curve D" different from D, D' and Ch we have D" ~Lp — Lq for some p and q. Here
qφl because if # = /, then D"D' = —1. By CfZ)" = 0, we have /?e/ (resp. /?e/) if and
only if qel (resp. geJ). Hence by (2.12.2), we may assume that the remaining curves
are Dj^Lj-Lj_1 (4<>j<>l or / + 2 ^ / g / + m - 2 ) . We set D3 = D and Dι + 1=D\ which
is (3.9.2). The dual graph of n curves is as in Figure 3.9 (ii).

Case 2-3. By CD' = 0, we have D'~Lj-Lk with j^4, fc^3. Let n = b2(S). By
applying (2.12.2) to Dj~Lj-Lkj (4^j^n,3^kj^n), we may assume Dj~Lj — Lj_ι

(4^j^n). By CιDj = 09 we have ye/ (resp. ye/) if and only if y— 1 el (resp. y-1 e/).
Hence /=[3, ή] and J—0. This is (3.9.4). The dual graph of n curves is as in Figure
3.9 (iv).

Case 3. Finally we consider the case where C1~L1—L2 — LI, C2~L2 — L1—LJ

and D~L3-L1-L2 with 3e/. It follows from ^ ' = 0 that D'~Lj-Lk. for any
irreducible curve D' (ΦD, Q , where 4^y^«, Z^k^n and n = b2(S). By (2J2.2), we
may assume D} ~ L, ~Lj-\ ( 4 ^7 ̂  Ό Since j e J if and only if y - 1 e 7, we see that /= 0
and /=[3,72]. This is (3.9.3). The dual graph of n curves is as in Figure 3.9 (iii).

q.e.d.

4. Dual graphs of curves (2).

(4.1) NOTATION. Assume r ^ 3 . Let Mj = Lj (r+ 1 ίkjίkn) and n = b2(S). Define
Lj (JeZ) by Lj+mr = Lj (meZ, l^y^r). Notice that LtMj = 09 Lr+ι=Lu Lr+1ΦMX

from now on. We write LI = YjieI Lh Mj = ΣjeJ Mj9 C£ ~ Lf — Lf _ x — M/f (1 g /g r) for a
subset / (resp. subsets J and /t) of [1, r] (resp. [r+ 1, «]). For an irreducible curve D}

not contained in C, we write D^Mj — ̂ . — Mj. (r+ 1 ίkjikn). For a subset 7 of [1, r]
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and μ<v<μ + r, we write 7=[μ, v— 1] if the images of / and [μ,v- l ] in Z\rZ

coincide. See (4.4), (4.5).

(4.2) THEOREM. Let S be a special VII0 surface with a cycle C=C1+ + CΓ of

r rational curves (r^3). Suppose that there is a unique irreducible curve Dr+1 such that

D r + 1 C = 1. Assume Dr+ίC1 = \. Then by suitable indexing, we have

Ct ~ Lt — Li _ x , Dj ~ Mj — Mj_1 (otherwise) ,

where vm+1 = 1 <vm< <vx ^ 1 +r, jk = ik- 1 (l^fc^w) α«J im = r+ 1

(i) (m=l,p1 = n-

- 2

- 2

- P m - 2 - 2 - 2

. —o—o— •-
qm - 3

- 2

- 2 - 2 - q .
O - 2

P.-3

2

Pi-3

- P i

(ii) ( m ^ ^ v ^ r + l ^ ^ S , ^ ^

FIGURE 4.2
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A proof of (4.2) is given in (4.3)-(4.10). We notice that Ci_1Ci = Dj_1Dj=l

(zeZ, r + l ^ / ^ / i ) . The dual graph of n curves in (4.2) is as in Figure 4.2, where

Λ = - C ; f c = Λ - i - / k + 3 ^ 3 ( 1 ^ B 4 fc=-0?k = vk-vk + 1 + 2£3 (l^Λ^/w-l),

4 m = - / ) r

2

+ 1 + l=v m -v m + 1 + 2 = 3.

(4.3) By (2.17), let Dr+ί~Mr+ί-LΛ for a subset /I of [ l ,r] . By (2.17) and

Dr+1C1 = \,vre have A — [ 1, a — 1 ] with αgr4-1. In this paragraph we consider the case

A = [1, r]. By (2.17.3), we have D'C=0 for any irreducible curve D'(ΦDr+l9 Cx). Hence

Df~Mj — Mk — Lj for some subset / of [1, r]. Suppose 7 / 0 to derive a contradiction.

By £>r+1Z)'§:0, we have k = r+\. Hence in view of (3.5), we have Dr+1D'=l and

7n[l,r] = 0 . This is absurd. Therefore 7 = 0 . Let D} be the irreducible curves

(r + 2^/=«). Then Dj~Mj-Mkj (r + 2^j<Ln, r+X^k^ή). By (2.12.2), we have

Dj_1Dj= 1 and Dj~Mj-Mj_1 (r + 2^/^/i) by indexing suitably. Let Ci^Li-Li_1-

Mj. (1^/gr). By /)Γ + 1C 1 = 1, we get r + l e / ^ By CtD~Q (r + 2^j=n), we see that

j—leli if and only ify'e/j. Hence 71 = [r+l,«] and 7f = 0 (2^/gr). This completes

the proof of (4.2) in this case. The dual graph of « curves is as in Figure 4.2 (i), where

m=\, q1=r + 2, v 1 =r+l.

In (4.4)-(4.10) we consider the case yl = [l, a— 1], r+ 1 e/fl and 1 <αgr. See (2.17).

(4.4) LEMMA. Let D' be a reduced {possibly reducible) curve which contains none

of Dr+ί and the irreducible components Ct of C. Suppose that D'~Mj — Mk — Lj for

J^U, r]9 and thatjelv, kelμfor some μ^v^μ + r. Then J=[μ, v— 1], J n [ l , a—Y\ =

0 . In particular, if μ = v, then J=0.

PROOF. First consider the case μ = v. We have

Hence λ = J if and only if λ— 1 eJ for any λe[l, r]. This shows 7 = 0 or / = [ 1 , r].

If 7=[ l , r ] , then Dr+ίD
f = (Mr+1-L[Ua.1])(Mj-Mk-L[Ur])=-Mr+,][!,-a+I.

Hence & = r + l and α = 2. By (3.5), if k = r+\, then Z>r+1Z>'=l and 7 n [ l , α - l ] = 0 ,

which is a contradiction. Thus we have J=0.

Next we consider the case μ < v < μ + r. We have

O = CVZ)'=1-(LV-LV_1)L J, 0 = ς i / ) ' = - l - ( L μ - L M _ 1 ) L J .

Hence vφJ,v—\eJ, μeJ and μ — 1 ̂  7. By CλD' = 0, we have λ e J if and only if Λ. — 1 e /

for μ</l<v or v<λ<μ + r. This implies that /=[μ, v— 1]. If A: = r+1, then

- l ] = 0 b y (3.5). If kφr+\, then 7n[l, a-1] = 0 by /),+ !/)'^0. q.e.d.

(4.5) LEMMA. L̂ / Z)' and D" be irreducible curves different from Dr+1, Cy Suppose

that D^Mi-Mj-L^ Ώr~Mk-Mx-Lj andD'φD", where μ<v<μ + r, β<oc<β + r,

ielv9jelμ, kela, lelβ9 /=[μ, v-1] and J=[β, α - 1]. Then ίnJ=0.
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PROOF. Suppose InJφ0 to derive a contradiction. By

we have (Mf — Mj)(Mk — M ί)>0. We have three possibilities:

Case 1. i = lj=k, #(/n/)=l or 2. We have v = j8, μ = oc (mod r), /=[μ, v-1],

and /=[v, μ + r— 1]. Hence InJ=0 and D'D" = 2, which is absurd.

Case 2. i=ljφk, #(/n/) = 1, D'D" = 0. We may assume β = v, hence /=[μ, v-1]

and/=[v, α—1]. From#(/n/)= 1 it follows that α — 1 = μ + rand/u,/=[l, r]. However

(/u7)n[ l ,a- l ] = 0 by applying (4.4) to Dr+1 and /)' + £". But [ l , α - l ] # 0 , a

contradiction.

Case 3. iφl,j=k, #(/n/)= 1, D'D" = 0. This case is clearly reduced to Case 2.

q.e.d.

(4.6) Let Dj-Mj-Lu.-Mj. (r + 2^j^n). Then by CD,= 0, we have #(Γ,)= 1,

so we let Tj={kJ) for some fc^r+l. Let N={ie[r + 2,«]; I>?^ -3} = {ιl9 i2, '' ,

iw_2, /m-i}. We let Gk = Dik~Mik-Mjk — LJk for some nonempty 7fc c [ l , r]. In view of

(4.4), we may assume Jk = [βk9 vfc—1], /fc6/Vk and./fce/μk for some μk^vk<μk + r. Let

Gm = Dr + u im = r + l , μ m = l , vm = α and 7m = [ l , έ ϊ - l ] . In view of (4.4) and (4.5),

Ju •• , / m are mutually disjoint. Hence we may assume v m + 1 = μ m = 1 <vm^μO T_ 1<

(4.7) LEMMA. / A =

PROOF. Suppose IλΦ0 for some /l^v^ (l5^£^m). Let Dj^Mj — Mkj — Lu. for

;e/A . lfkjElμ for μ^A<μ + r, we have (/^[μ, A- l ] in view of (4.4). If £//#0, then

^j552^*? vfc~ 1] f°Γ some A:, whence A = vfc, a contradiction. Hence Uj=0, μ = λ, k}elk

and Dj~Mj—Mkj. However by applying (2.12) to Dj forye/Λ, we infer a contradiction.

Hence/Λ = 0 . q.e.d.

(4.8) LEMMA. μk = vk + ί and Jk = \yk + U vk—Y] (l^k^

PROOF. Assume vb<μb_1 for some 2^b^m to derive a contradiction. Let

, ^/ = Σ ί e / A and Dj = ΣieJD, We note 7uJ=[r +

(4.8.1) SUBLEMMA. Assume iφr+ 1. Then ieI{resp.jeJ) if and only ifk.eKresp.

kjEJ).

PROOF OF (4.8.1). It suffices to prove that if iel (resp. jeJ) then k^I (resp.

kjβJ). \{jΦik for any k^m— 1 and if jelλ, then kjβlλ. Hence iίjΦik, theny'e/(resp.

jeJ) if and only if k}el (resp. kjeJ). Suppose j e Iλ for λ^vb. Then if j=ik for some A:

(1 ^k-^rn— 1), we have Uj = Jk = [μk, vk— 1] fory'e/Vk and kjSlμk. Hence A = vk^vft and

kjθIμkc:L lΐjeIλΦ0 for A^v fc+1, then 2^vb_x in view of (4.7). If j=ik for some A:,

then Uj=[μk, vk-l],7*G/Vk and ^ 6/μk. Since vk = A^vb_ l9 we have μk^μ ί,_i^v ί,_1 + 1

by the assumption. Hence kjβl^aJ. q.e.d.
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We continue the proof of (4.8). Notice /, JΦ0. By (4.8.1), for any pair of/e/and

jeJ, we have

DtDj ^ (Mt - Mk)(Mj - Mk) = 0 ,

which shows DιDJ = Q. The curve Dj (resp. Dj) contains Dr+1 (resp. Gb_i) and

G ^ _ ! ^ - 3 . Since £) Γ + 1 C=1 and both Gk ( l ^ ^ m - 1 ) and C are contained in a

numerical antipluricanonical divisor by (3.1) and (3.2), both Dr+1 and Gb-i are in one

and the same connected divisor on S. However this contradicts Z)/Z)J = O. Consequently,

q.e.d.

(4.9) LEMMA. By suitable indexing, we have Dj_ x Z), = 1, D}~Aίj — Mj_ί — Lυ.

PROOF. We define formally D'r+1: = Mr+1 — Lί and D'J\ =

^j^n). Then Z)JZ)} = Z)ίZ)J for any i,j. By the same argument as in (2.12), we have

kt Φ kj for / Φj. Then D'r+2 + + D'n + 0. Because, otherwise, Dr+2, , Dn form a cycle

of rational curves, contradicting (2.2). Hence there exists b ( > r + l ) such that

{kr+2, '' , kn} = [r+\, ή]\{b} and therefore

D'r+1+D'r+2+'-+D'H~Mb-Ll9

D\D'S.

Consequently, Yti<jD'iD'j = Yji<.DiDj = n-r-\. We also notice A +i(Λ +2+ ' ' +

Dn) = (Mr+1—L1)(Mb — Mr + 1)=\. It is shown by the same argument as in (2.12) that

A +i+ ' *' + Aι i s a connected straight chain, that is, by suitable indexing, we get

Dj.^j^l (r + 2^/gn). It follows that

A + i ^ A / r + 1 - L u r + 1 , DΓMi-M^.γ-Lυ. (r + 2^/^/f). q.e.d.

(4.10) LEMMA. /« /λe .sαm^ notation as in (4.9), we Λαve / m </ m -i< * * * </'i,

/Vk = [/k, ifc-i — 1] (1 ̂ k^m) andIλ = 0 (otherwise), where io=n+\, iw = r + l .

PROOF. By the definition in (4.6) and by (2.17), im = r+1 is contained in IVm = Ia

We also see /fce/Vk (1 f^k^m- 1). Since CλDj = 0 for jΦik, we havey 6/Λ if and only if

j— 1 elλ. For 2-^k^m, we define /k as follows: If ik^ip for any /? (1 ̂ p^m— 1), then

/ f c :=«+l . Otherwise, /fc:=min{/p; /k</p, l ^ / ? ^ m - l } . Then we see that IVk contains

[^4—1] but not 4. By C V k /\ = 0, we have vkeUlk and v k -l^ί/ / k . If lk = ip, then

^ik = ̂ p = [v p + i,v J,-l] by (4.8), whence vk = vp + 1, k=p+l, lk = ik-ί and /„,</„_!<

•••</*!. Thus /Vk contains [ιk, 4-i — Π (2^k^m— 1). On the other hand, /Vl contains

[/1 5Λ]. by CVίDj = 0 for any ix^j ^n. Thus the union of /Vk (lgfc^w) contains

[/ m ,/ m _ 1 -l]u[/ m _ 1 ,/ m _ 2 -l]u u[z1,A2] = [r+l,A2]. This shows by (2.10.3) and

(3.6) that /Vk = [/fc, /fc-i-1] and Iλ = 0 for A^vk. q.e.d.
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Let pk=-C2

Vk, qk= -Dfk and qm= -Z)?m+1. Then pk, qk^3. By (4.6)-(4.10) we
have the expressions for curves in (4.2). The dual graph turns out to be as in Figure 4.2
(i) (m= 1) or Figure 4.2 (ii) (m^2). This completes the proof of (4.2).

(4.11) THEOREM. Let S be a special VΠ0 surface with a cycle C of rational curves.
Suppose that there are d (^2) irreducible curves meeting C. Then the union Q) of all the
curves on S is connected, and the complement of the cycle C in <3 consists of d connected
{straight) chains of rational curves. More precisely, there exist a set of integers s(l), m(l),
i(l), v(k, /), i(k, l)J(K I) (1 Sl^d, 1 ̂ k^m(l)) and a canonical basis Lx (l^i^r), Mj

1 ̂ j^n) ofH2(S, Z) such that

\=s(\)<s(2)< - - <s(d)<r+\=s(d+l),

s(k) < v(m(k), k) < v(m(k)-1, k) < < v(l, k) gs(k +1),

i(k)<i(m(k)-1, k)< </(I, k)^7(0, k)

i(l) = i(m(l\ /) = 7(0, /-1)+ 1, i(k, l) = KK

and such that (by suitable indexing)

(4.11.1) Cι~Li-Li^-Mli (L0 = Lr,

DΓM}-Mj_,-LVj

where

l,Q] (i = v(M), = 0 (otherwise),

Uj = lv(k+l,l),v(k,l)-l] (j = i(k,l)), = 0 (otherwise).

(4.11.2) The intersection numbers among curves are given by,

Cs(l)Dw=l, while CtDj = 0 ((i,j)ϊ(s(D,i(t))),

C A + 1 = 1, while QCj = 0 (i Φj, j ± 1),

DjDj+1 = 1 (i(l)^j^i(l+1)-2), DtDj=0 (otherwise, iΦj).

(4.11.3) Let ^ ί = Σ^</ 1) )" 1^ and ̂ ι = Σ%^iCf Then we have C=<^+ • +<€»
3> = C + 3)ι+ • • • +2>d. Moreover ̂ i-^ (resp. !&,) is a connected curve containing Cs(l)

(resp. Di(l)) subject to <€&x = \ andV^J=δiJ.1 ((i,j)Φ(d, 1)).
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( 4 . 1 1 . 4 ) ( - 2 2 2 )

= (2, •• ,2,pu2, •• ,pk,2, •••,2,pk+ι, •• , pm, 2, , 2 ) ,

(4.11.5) (-Df(l),

= fo.-1, V ^ _ 2 , g m _,, 2, , ft, 2, , 2, ft-!, , gj, 2, , 2),

(Λ,-3) (ft-3) (Pi-3)

=-C 2

( M ) =;(k-l,Q-ί(fc,0+3^3 (l^fc^ * J ) j

i
m: = m(0 αn<i A(/): = s(/+1)—v(l,/). ΓΛe wίβgeri p t , ft, m α«rf A(0 ί/epenrf o« /. The
dual graph ofn curves is as in Figure 4.11.

Q/+D Ml) qk — l (/m-3 C5{

- 2 I - 2 - 2 - p j - Λ - 2 - 2 - p k + 1 - p m - 2 - 2

- 2 - 2 -<?! -ίϊfc-! - 2 - 2 - f t - f t , - ! - 2 - 2

i - 3

FIGURE 4.11

The dual graphs thus obtained are among dual graphs of curves on surfaces with
global spherical shells. See [15, (3.2)]. In (4.12)-(4.18) below, we prove (4.11).

(4.12) For simplicity we consider the case where there are exactly two irreducible
curves D and E such that CD = CE=\. A similar argument proves (4.11) in the case
where there are three or more irreducible curves meeting C By (2.18), we may assume
CXD=\ and CU + 1E=\ for \<u^r. Then by (2.17) we have

Ci^Li — Li.ι — MI., Z > ~ M r + 1 - L [ 1 ) f l _ 1 ] , E~MR + ί — L[u + lfU+b__X]

for some R (^ r +1) and a, b ̂  2, where Lo = Lr.

(4.13) LEMMA. Let D' be a reduced {possibly reducible) curve which contains none
of D, E and Ci ( lg/^r) . Suppose that D'~Mj-Mk-Lj for j,k^r+l and Ja[\,r~]
and that jelv9 kεlμ and μ<Ξv<μ + r. Then /=[μ,v-l], /n[ l ,α-l] = 0 and
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PROOF. One sees / = [μ, v-1] in the same manner as in (4.4). By (3.5), if k-r + 1
(or resp. Λ+l), then 7 n [ l , α - l ] = 0 (resp. / n [ > + l , u + b-1] = 0 ) . The other
assertions are clear. q.e.d.

(4.14) LEMMA. Let D', D" be irreducible curves different from D9 E, Ci. Suppose
that D'ΦD'\ D'~Mi-Mi-L1 andD"-M^M^Lj. Then InJ=0.

PROOF. The same as in (4.5). q.e.d.

For convenience, we employ the following notation:

DΓMJ-Mk-Lυ. if ye/v

Ej~Mj-Mkj-LUj if ye/v

Let Gk (1 ̂ k^m-1) and Hk (1 Sk^l-1) be all the irreducible curves on S such that
Gfc = Z)ik, Hk = Eik, UikΦ0 and UtίΦ0. We note l/ίkc:[α, w]. Indeed, t/ίk = [μ, v-1],
where Gk~Miu — Mjk — Lυ., ikelv and jkelμ. Since lgv—lgw, C/ik is contained in
[β, u] by (4.13). Similarly ^c=[w + 6, r]. Hence we may assume

E. We note C/, = 0 for jφik, ϊk.

(4.15) LEMMA, v ^ μ , . ! (l£k£m), v'k = μ'k_1 (l^fc^/), t/ίk = [Vjk+1, vfc-1]

PROOF. The same as in (4.8). q.e.d.

(4.16) LEMMA. DpEq = 0.

PROOF. We note Iλ = 0 for λ Φ vk (1 ̂  k ̂  m) and A Φ vk (1 g A: <; /) in view of (4.7).
Let ^=U2<λ<ii+i^ a n ( ^ ^ = U « + 2<λ<r + î A F i r s t we show that /?e/ (resp. peJ) if and
only if &pe/^resp. kpeJ). If pΦίk, i'k9 then by CλDp = 0, we see /?e/A if and only if
kpeIλ, whence pel if and only if kpeI. lfp = ik, then k<m, and C/p = [μk, vfc — 1], /?eIVk

and kpElμk = IVk+l. Hence kpel. If p = ikeJ, then one sees /:pe7 similarly. Now assume
that DpΦD and £ „ / £ . Since UipnUt,q = 0 by (4.14), we have i ) ^ = (Mp-M f c p)x
(Mq — Mkq), whence DpEq = 0. Since r-h 1 e/α, i?+1 elu+b, kpel and A:̂  e/, we have by
(4.13) DEq = Mr+1(Mq-Mkq) = 0, DpE=(Mp-Mkp)MR + l=0. q.e.d.

(4.17) LEMMA. i?y indexing suitably, we have
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h'k = K, fk -1] (1 ̂  k ^ / ) , wA/fe /A = 0 (otherwise)

and

PROOF. First we let j o : = R a n d / 0 : = «. Since DpEq = 0, we can apply the same

argument as in (4.8) and (4.9) to £ p e / £ > p and J^^E^ Hence we infer the above

expressions for Dp Ep Gk and Hk. In the same manner as in (4.10), we can show that

IVk (1 <^k^m) (resp. ίVk (1 ̂ k^l)) contains [ιk, ik-x — 1] (resp. [ιk, 4_χ]), whence the

union of Iv. and IVk (1 ̂ j^m, 1 t^k^l) contains [i'p, / p . i - l ] and [ι^, i^-i —1] for any

/? and #, hence it contains [r + 1 , ή]. This proves /Vk = [/k, zk _ x — 1 ] and IVk = [/k, i'k _ x — 1 ] .

q.e.d.

(4.18) Compare (4.17) with (4.11) by setting

I I + 1 , j(3) = r + l ,

) = vfc, v(fe,2) = v k,

Thus we complete the proof of the first half of (4.11). The rest is easy to check. Since

the argument in the general case is similar, we omit the details.

(4.19) PROBLEM. IS a VII0 surface special if it has a cycle of rational curves?

Does the equality r = s in (3.6) hold?

5. Surfaces with global spherical shells.

(5.1) DEFINITION (cf. [7]). A nonempty subset Σ of a compact complex surface

S is called a global spherical shell if

(5.1.1) risisomorphictoashell5'€ = {xGC2; 1 —ε< || x || < 1 +ε} for some ε ( 0 < ε < l ) ,

(5.1.2) the complement of Σ in S is connected.

(5.2) THEOREM (Ma. Kato, see also [4], [8]). Any surface with a global spherical

shell is special.

PROOF. We freely use the notation in [7, pp. 47^49, 54, 55]. Let X be a minimal

surface with a global spherical shell. Then X is constructed as follows (cf. [7, p. 55]):

Let σ: Zf^Bε be a finite succession of blowing-ups, and ΛΓ = σ~ 1(Sε). Let ζ: Bε-+Z% \N'
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be an embedding of Bε, Dε the image of Bε, N": = ζ(Sε\ and K: = ζ(B_ε\ where
Bc={xeC2; || J C | | < 1 + C } , Sc = {xeC2; 1 -c< || x || < l + c } . Let #0 be the mapping
go = ζ°σ: Zf-+Zf and let g' = gO\N'' Then A îs isomorphic to a quotient space Zs/g' with
E: = Z*\K. We may identify gf0, £, #' and N" with g, Eθ9 N_λ and No in [7, p. 47].
We see b1(X)=l, b2(X) = b2(X\Σ) = b2(Zf) (see [7, p. 47]). Let n = b2{X) (>0). By
[7, Lemma 1 (ii)], there is a unique fixed point O* of g0 in Zf. Since b2(Zf) = n, the
maximal compact analytic subset A of dimension one consists of n rational curves, say,
A = Aί-\- -' +An. The curve A is with normal crossing. Hence there are at most two
A/s passing through 0*, say, Ax and A2. Hence by [7, Lemma 1], there is a large
integer /such that gι

0(Zf)nAj = 0 for 3^j^n. Let / s ^ ^ u ^ u uEt^i9 Z=EuζBε

(by identifying Nι.1 with i?ε as in [7, p. 48]). Then we have natural mappings/: E^X
and h = gι

0\ Z-+Zf. Since Z and Z* are strongly pseudoconvex manifolds with their
boundaries 5Z and dZ* standard spheres, the Remmert reduction Rem: Z->B (resp.
σ = Remε: Zf^>Bε) is a finite succession of blowing-ups of an open ball B (resp. Bε).
The open balls B and i?ε are naturally isomorphic near their boundaries (by the mapping
induced from Λ), hence isomorphic globally. Hence h is a finite succession of blowing-ups
of Z*. Hence we have proper transforms [Aj] of Aj on Z. By the choice of /, lAj]'s
(3^j^n) are contained in E. Thus we have n — 2 curves Dj\ =f([Aj']) (3^jf^n) on X.
Hence the cardinality pr(X) of the set of rational curves on Xis not less than b2(X) — 2.
Consider an unramified triple covering X* of X. Then X* contains a global spherical
shell. Hence b1(X*) = \ and pr(X*)^b2(X*)-2. Since pr(X*) = 3pr(X) and b2(X*) =
3b2(X)9 we have pr(X)^b2(X).By a theorem of Kato [14, (3.5)], we have pr(X) = b2(X).

q.e.d.

(5.3) THEOREM (cf. [7], [16]). Any minimal surface with a global spherical shell
is a (global) deformation of a blown-up primary Hopf surface.

PROOF. By (5.2), the surface is special. Hence it has a cycle of rational curves.
Hence by (1.6), it is a (global) deformation of a blown-up primary Hopf surface.

q.e.d.

In view of (5.2), either the dual graph of b2 rational curves on a surface with a
global spherical shell is one of (3.8), (3.9), (4.2) and (4.11), or the surface is one of the
well-understood surfaces (2.1). We now prove the converse:

(5.4) THEOREM. Let Γ be one of the weighted dual graphs with n vertices in (3.8),
(3.9), (4.2) and (4.11). Then there exists a special VII0 surface with b2 = n, having Γ as
the weighted dual graph for n rational curves on it.

We prove this in (5.7)—(5.12) below by constructing a minimal surface with a global
spherical shell which has the desired property. See Figure 5.4 (ii), (iv), (vi), (viii) and (xii).
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(5.5) DEFINITION (cf. [15], [16]). A quadruple (X, Al9 Al9 φ) is said to be

admissible if A" is a nonsingular rational surface, Ak is a nonsingular rational curve

with A* = l9 A\=—\, A1A2 = 0 and φ is an isomorphism of Ax onto A2.

The quadruple is said to be minimal if any (— l)-rational curve meets either A ι or A2.

(5.6) THEOREM. Let (X9 Al9 Al9 φ) be a minimal admissible quadruple. Then there

exists a proper flat family π : Zf^Δ over the disc such that

(5.6.1) £fo = X modulo φ with a double curve A = A2 =

(5.6.2) Sft (t^O) is a VΠ0 surface with a global spherical shell,

(5.6.3) there exists an open neighborhood°U of C in £f such that &?\°ll is Δ-isomorphic

See [16, (4.2)] and [17] for the proof.

(5.7) In the remainder of §5, we apply (5.6) to a suitable minimal admissible

quadruple so as to construct a special VII0 surface with a desired graph. Let

[Xθ9 Xί9 X2~\ be the homogeneous coordinate of P2 with /?0 = [1,0, 0] and lk =

{Xk = 0}.

There is an («+ l)-fold blowing-up σ: X^P2 such that

1 +DH, ^ = [/<>] ,

A2 = \, A2=-\, D2 = E2=-2, F2=-(n-l),

where [//] stands for a proper transform of H, Ek the k-th (— l)-curve (1 ̂ k^n+ 1)

(that is, the (—l)-curve arising from the λ>th blowing-up) and the dual graph of

these curves is as in Figure 5.4 (i), where we denote the points A^v^F^ and A2nE

by two α's. Let φ be an isomorphism of Aί onto A2 with φ(A1 nF1) = A2nE.

Consider a proper flat family π : 6f^>Δ in (5.6) for the quadruple (X, Aί9 A2, φ).

By a suitable choice of π (cf. [16, (4.2)]), we have π-flat divisors 3f and $ of £f such

that @t = D2 + D3+ - +Dn for any t, S0 = E-\-F1 and δt is a rational curve with a

node {tφϋ). This can be checked as follows: 9* is a complex manifold of dimension

three and is covered with open charts Vλ near the double curve C (cf. (5.6), [16, (4.2)]).

Let V be one of Vλ and let W\ = V n ̂ 0 . Then by the construction of the family Sf9 the

normalization W of W consists of two connected components Wί and W2. Then Wk

is an open chart in the normalization X of <Ŝ 0 such that

V={(x,y,z,t);xy = t}, W= {(x, y, z) xy = 0} , ^ = {(x, z x)} , W2 = {(y, z 2)} ,

where the projection π (resp. the isomorphism ^) is given by π(x, j ; , z,t) = t

(resp. φ{z1) = z2). The chart ^ (resp. W2) is embedded into Fby (x, j , z, t) = {x9 0, z1 ? 0)

(resp. = (0, y9 z2, 0)). Moreover the curvees A1 and ^ 2 (resp. Fx and £") of X are defined
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on Wγ (resp. on W2) by

Then the divisor $ of if is locally just {xy = t, z = 0} in V. One sees readily
that So has a unique singular point (0,0,0,0) in V and that St (t^0) is smooth
in V. Since E and Fx meet transversally at a point ( = : q) different from p (cf.
(5.6.3)), &t {tφϋ) is a rational curve with a node #.

(5.7.1) LEMMA. ff^E+FJ2 for tφO.

PROOF. Let / : ^>if^ be the normalization. Then from the exact sequence
, we infer

, -f**0)-2χ(X, Ox)

q.e.d.

Since i 1(5^ ί)=l and 6 2 ( ^ ) = /i by [16, (3.4)], the curves Z)k (lgifc^Λ-1)
and <ff are all the irreducible rational curves on ift (ίφO). As was shown above,
we have D%=—2 and S'f=— (n— 1), whence ^ is minimal. Thus <9̂ f is a special
VΠ0 surface with the dual graph of b2 ( = n) curves as in Figure 5.4 (ii), which
is the dual graph in Figure 3.8.

It is now clear how to get in general a graph on ift from a dual graph of
curves for a (minimal) admissible quadruple (X, Au A2, φ).

In what follow, we use the following notation: If we are given a π-flat
divisor a of if such that ^ 0 = ̂ ! + --+Br for Bi irreducible, while Λt (tφO)
is irreducible, then we write &t = B1#B2#' §Br. By a straightforward generalization of
(5.7.1), we get {B,#- #5 r)

2 = (5 1 + +Br)\

(5.8) There is an («+ l)-fold blowing-up σ: X^P2 such that

C2

2=-m, F2=-(l~2),

where n — lΛ-m — 2, /, m^3, and the dual graph of these curves is as in Figure 5.4 (iii).

We take an isomorphism ψ of A1 onto A2

which is indicated by two α's. This means that
such that φ(A1 nFι) = A2n

^(α) = α, when α is viewed as
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an intersection of curves denoted by two vertices connected by the edge α.
Therefore by the rule for deducing Figure 5.4 (ii) from Figure 5.4 (i), we

obtain a dual graph of n curves on £ft {tφϋ) as in Figure 5.4 (iv), where
C1: = B#F1, Cj=-l, C2

2=-m, D2=-2. The dual graph for m^3 is as in
Figure 3.9 (i), while we obtain the graph in Figure 3.9 (iv) by taking m = 2.

(5.9) There is an (n+ l)-fold blowing-up σ: X^P2 such that

1 +DH,

B2=-2, B2=-3, Cl=-m, F2=-(/-2),

where n — lΛ-m — 2^ /,/w^3, and the dual graph of these curves is as in Figure
5.4 (v). Hence by the rule in (5.7), we have a dual graph of n curves on Sft

(ίφO) as in Figure 5.4 (vi), where C1:^B1§F1 , Dι+1: = B2#F2 , C\= - / , C\= -m,
Df+1 = - 3 , Dj= - 2 (jΦl+ 1). This is the graph in Figure 3.9 (ii).

(5.10) There is an (Λ+ l)-fold blowing-up σ: Z-^P2 such that

Z)2=-3, Ff=-(«-2),

and the dual graph of these curves is as in Figure 5.4 (vii). Therefore by the rule
in (5.7), we obtain a dual graph of n curves on Sft (tφO) as in Figure 5.4 (viii),
where C2: = B#Fl9 C 2 = - 2 , C2

2=-n, Z ) | = - 3 , D2=-2 (kφ3). This is the graph
in Figure 3.9 (iii).

(5.11) Next we construct the graph in Figure 4.2. There is a two dimensional
torus embedding Y with the following one dimensional orbits

A2 = \, F 2 = - l , F 2 =

and

m qkf
k=ί j = O j=O
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D'=Σ "Ϋ LESk+j] , ^ =[/ 0 ] , Fk = Uk] , H=EN ,
k = 0 j = 0

The self-intersection numbers of [Ej] are

ίESk^V=-pk + i(OSkύm-l), [ ^ . J 2 - - ^ (1 £*£/*-1),

[ £ Λ m - i ] 2 = -(qm~ 1), lEj]2=-2 (otherwise)

(-C;2) = O1,2, 'y,29p2, - ,pm,2, •• >2)

(ί i-3) ( 9 B I - 3 )

(-£>; 2) = ( 2 ^ ^ 2 , 9 l , 2 ^ ̂ 2 , ?2, " , qm-l9 2 , ^ 2 , ? J ,

(Pi-3) (p 2-3) (pw-3)

where pi9 q&3, Ro = 0, So = 2, Rk = Σ\=l<J>i + <li-A)+Pι» a n d S* = Σi = i (/>. + ?*-
4)+ 2. We note that N=Sm-1, S k-1 =Rk + qk-3, and Λ λ-1 =Sk.x + pk-3. The dual
graph of the above curves is as in Figure 5.4 (ix).

Moreover, we blow up at H successively to get the dual graph of curves
as in Figure 5.4 (x), where B2=-2, C)=-l (l^J^a-1% A\=-\. By using
an isomorphism φ of Ax onto A2 such that φ(AιnF2) = A2rιB, we consider a
proper flat family π'.Sf-^Δ in (5.6). Let Ca: = B#F2, Ca+X\ = [E{\9 Ca+2: =
lEPι']9 -9Cr: = lEN_1']9Dr+ι: = lERm-1']9' 9Dn: = lE2']9 C': = C β + 1 + + Cr and
ry: = Dr+1+--+Dn. Then C= C1 + + Cα + C" is a cycle of rational curves and Z);

is the longest branch of C. Thus we obtain Figure 4.2 (ii) for α = l + r — v t > 0 . The
construction of Figure 4.2 (i) is similar. We omit the details.

(5.12) Finally we construct Figure 4.11. Since no new argument is neces-
sary, we only give a sketch of the construction. We start with Y in (5.11). Continue
to blow Y up over the previous centers. Eventually we obtain (by choosing a
suitable process) a rational surface X with a graph of curves given as in Figure 5.4
(xϊ),where Al = l9 A

2

2=-l, Bl = Bl = B2=-2.
Consider a minimal admissible quadruple (X, Aί9 A2, φ) such that φ(Aιr\F2) =

B2nA2 (resp. BnA2) and φ(A1nFi) = A2nBί (resp. ΦBnA2). Then on Sfx (tΦO),
we have a graph as in Figure 5.4 (xii). The graph has a unique cycle with d branches.
Since (Λ1#F1)

2 = Λ f - l g - 3 and (B*)2^-2, the surface Sft (/#0) is minimal.
By computing the self-intersection numbers of these curves, we see that Figure 5.4
(xii) is one of the graphs in Figure 4.11. We note that an arbitrary graph in Figure
4.11 is constructed in this way.

This completes the proof of (5.6).

(5.13) Here we take again the torus embedding Y in (5.11). With the nota-
tion in (5.11) we define A2 = H=EN and consider a minimal admissible quadruple
(Y9 Al9 A29 φ) such that φ(A1 nF1) = ̂ 2 n[E Λ m _ 1 ] and φ(A, nF2) = >42n[£ iV_1].
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Then by (5.6), we have two cycles A and B of rational curves of £ft (/#0) such that

= (Pi- 2'"_'> 2,' P2> . Pm> 2 , " " "» 2) ,

(?i-3) (9.-3)

= (2, •••,2, ί!, 2, , 2, ?2, , ίm_l5 2, , 2, ήrj .

(Pi-3) Xp^) ( p . - 3 )

The surface ^ (ί^O) is isomorphic to a hyperbolic Inoue surface by [14,

(8.1)].

Parabolic Inoue surfaces and exceptional compactifications SΛtβtλ appear as

£ft (t^=0) by taking the following Y and various φ (see [16, p. 349]):

Y\(C*)2 = At+F2 + C + A2 + Fl9 A2 = En+1, C = Σ [ ^ ] ,

Fk = UA, A*=l9 A2

2=-U LEk-]2=-2, F\=-n, F2

2 = Q.

(5.14) We take again the torus embedding Y in (5.11) and set A2 = H=EN.

Then we choose a minimal admissible quadruple (Y,Aί9A2,φ) such that

φ(A1 niΓ

1) = v42n[J£'N_1] and ιA(^in^2) = ^ 2 n [ ^ Λ w - i ] Then we have a unique

cycle C on 9>t (/#0). The cycle C has no branches and is given as

where ( [ ^ - ! ] # Λ ) 2 = ~ 3 (resp. -(/? m +l)) for <?m>3 (resp. qm = 3) and

F 2 ) 2 = -(ςr m -1) . Hence (-C?) is equal to

(/?1?2, ',2,p2, ,/?m, 2, ,2, 3, 2, •• ,2, ^ 1 ? -,qm-l929 2 , ^ w -

or

(/?i9 2, -• , 2,/?2, -pm-l9 2, , 2, /? m +l, 2, , 2,^ 1 ? , qm-u 2, , 2).

( ^ i - 3 Γ (9--1-3) ( P i - 3 ) (/7m-2)

This is the self-dual cycle (see (6.3)). If C is irreducible and if D' = 0, then

we have a rational curve C#F1#F2 with a node with (C # Fx # F2)
2 = (C 4- Fx +•

F2)
2= — 1. The surface «5̂ f (ί^O) is in any case a half Inoue surface by (6.2).

6. Inoue surfaces with positive b2.

(6.1) THEOREM. Let S be a special VΠ0 surface with a unique cycle C of

rational curves. Assume C2<0 and that C has no branches. Then S is isomorphic

to a half Inoue surface.
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PROOF. Let D be a divisor such that mKs + D = 0 in H2(S, Z) for some
meZ with m>0. By (3.1) and the assumption, we have Dτcd = C. Hence
D = YjiniCi. Then (Z)-mQC ί =-m(K s + C)Ci = O, whence D = mC because (QCj) is
negative definite. Hence b2(S)=-Kj=-C2. It follows from [14, (9.3)] the S is
isomorphic to a half Inoue surface. q.e.d.

(6.2) COROLLARY (cf. [15]). Let S be a minimal surface with a global
spherical shell. If S has a unique cycle C without branches and with C 2 <0, then
S is isomorphic to a half Inoue surface.

(6.3) PROPOSITION. Let C=Cί+ +Cn be the unique cycle of rational
curves on the surface in (6.1) or (6.2). If n=\, then C 2 = —1. If n^.2, then there
exist integers pj (^3) (1 gy^/+ 1), qj (^3) (1 £j^l) such that

PROOF. Although this follows also from (6.1) or (6.2), we give a direct proof
by using (1.5), (1.7), and (1.8). If n=\, then C2= -b2(S)= -n= - 1 . Assume
n^2. By applying (1.8) we have a canonical basis L, (l^j^n) of H2(S, Z) such
that

Ks = L[1,n], C= —L [ l f j ] + F 2 ~ —L [ 1 ? n ],

where F2 is a flat line bundle of order two. Assume C^L} — LB. for some
5j c:[l,/ι]\{/}. Then by modifying [14, (6.8)] slightly, we have a canonical basis
{Nj9Mj ( 1 ^ / ^ Λ ) } of H\S*,Z) for an unramified double covering S* of S
such that

π*Cj=Cj+C'j, CJ-NJ-NJ^-M,;, Cj-MJ-MJ^-N,-; .

Since the involution i of 5* transforms C} into CJ for any j , we have ι*Mj = Nj9

ι*Nj = Mp Γj = η ( = :/,), and Cj^Lj-Lj_1-Llj (λ^j^ή) on S and n*Lj = Mj + Nj.
We define 1 =v1 <v 2 < <vm^n by / V k # 0 , /and /Vlu u/Vm = [l,w]. Hence C V k ^
Lvk-^vk-i-^/V k, C A - L A - L A _ ! (otherwise), where /Vk = [jSk, Λ + i - 1 ] {aZjnZ)
and βχ<β2< ''' < βm.We define vkand βk(keZ)by vk+m = vk9 βk+m = βk. For simplicity,
we further assume CV.CV. = O for / # / . Then by CVkCλ=\ (^ = v k ± l ) and CV kC λ = 0
(2/v fe, v k + l ) , we see \_βk, βk+1 — l ] = [vik, vjk + 1 —1] for someyk (1 ̂ k^m). Hence there
is an I (O^l^m— 1) such that βk = vk+ι for any A:. I f/>0, then by CV kCV l + k = 0, we have
vk = v2l+ί+k mod «, whence ra = 2 / + 1 ^ 3 . Letting qj: = vj+ι — vj + 2, pk: = vk+ι + ί —
vk+ι + 2 (1^7^/, l^fc^/-hl), we have (6.3) with /^ l . If Cv.CVj.= l for some i andy,
then we can prove (6.3) with some/?k or qs equal to 3 similarly. If/=0, then Cγ ~ — 2Lf — Lι

and we can prove (by indexing suitably)

C 1 - - 2 L B - L [ 2 t l l _ 1 ] , CJ-LJ-LJ-!.
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whence

(n-3)
q.e.d.

(6.4) THEOREM (cf. [7], [19]). Any Inoue surface with b2>0 contains a global
spherical shell.

PROOF. Let S be a hyperbolic Inoue surface, and let A and B be cycles
of rational curves on S. Then Zykel(/1) and Zykel(i?) are given by [14, (6.8)].
For any pair of sequences

, 2 , - - - , 2 )

we have as in (5.13) a proper flat family π: 5^-»J over the unit disc A such that
5^ has two cycles A and B of rational curves with Zykel(A) = seq, Zykel(2?) =
seq*. By [14, (8.1)], Sft (ί#0) is a hyperbolic Inoue surface isomorphic to
S above. By (5.6), ^ t contains a global spherical shell, hence so does S. The same
argument applies to a half Inoue surface (resp. a parabolic Inoue surface) by
using (6.2), (6.3) and (5.14) (resp. (5.1) and [14, (7.1)]). See also (5.13), [7] or [19]
for parabolic Inoue surfaces. q.e.d.

(6.5) DEFINITION. Let 5 be a VII0 surface with b2>0. The Dloussky
number of S is defined as

Ό\(S): = - X D2 + 2 # (rational curves with nodes)
D

with D running through all irreducible curves on S (see [4, p. 43]).

(6.6) LEMMA (cf. [4], [16]). Let S be a special VII0 surface with a cycle
C with branches. Then Ό\(S) = 3b2(S)-d~YJ

d

l7=1 λ(l).

PROOF. Clear from (3.8), (3.9), (4.2) and (4.11). q.e.d.

(6.7) THEOREM. Let S be a VΠ0 surface with b2>0. Then Ό\(S)^3b2(S),
with the equality holding if and only if S is an Inoue surface with b2>0.

PROOF. It suffices to prove the assertion when S has no rational curves with
nodes, by taking an unramified double covering of S if necessary. Let M be the
reduced effective maximal divisor on S. Then b2(M)^b2(S) and M is with normal
crossing. By [14, §4] we have an exact sequence
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We see JM=®D^M^DΦ) v̂ ith D ranging over all the irreducible components
D of M. Hence h°(M,JM) = 0 and h\M, JM) = Ό\(S)-b2(M). We also have
H2(S,Θs(-logM))^2 by [11], and h2(S,Θs) = 0 by (1.2). On the other hand,
h°(S, Θs)^2 by [11] and χ(S, Θs)= -2b2 so that hx(S9 Θs)^ 2b2 + 2. This shows

Ό\(S) ^ b2(M) + 2b2(S) + 4 S 3b2(S) + 4 .

This inequality holds for any VΠ0 surface. So we take an unramified fivefold
covering S* of S. Let M* be the pullback of M. Then M * is clearly the reduced
effective maximal divisor of S*. Hence

DIGS*) S b2(M*) + 2b2(S*) + 4 ̂  3b2(S*) + 4

so that 501(5)^\5b2(S) + 4. Therefore Όl(S)£3b2(S). If moreover 01(5) =
3^(5), then Ό\(S*) = 3b2(S*). Hence 15fc2(5')^562(M)+10*2(5ί) + 4. This implies
b2(S) = b2(M), that is, 5 is special. By (6.6), Ό\(S) < 3b2(S) if S satisfies (2.2).
Consequently, 5 is either an Inoue surface with b2 > 0 or an exceptional compactifi-
cation of an affine bundle (cf. [1] and (2.1)). However in the second case, 01(5) =
2b2(S)<3b2(S). It is easy to check that any Inoue surface with b2>0 satisfies
Ό\(S) = 3b2(S) (see [5], [6]). . q.e.d.
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