ON SURFACES OF CLASS VII WITH CURVES, II

Dedicated to Professor Friedrich Hirzebruch on his sixtieth birthday

Iku Nakamura

(Received February 25, 1989)

Introduction. This paper is a continuation of [14]. A compact complex surface is in class VII_{0} if it is minimal and if its first Betti number b_{1} is equal to one. We know many examples of surfaces of class $\mathrm{VII}_{0}\left(\mathrm{VII}_{0}\right.$ surfaces, for short) with the second Betti number b_{2} positive [2]-[8], [15]-[18]. They are minimal surfaces with global spherical shells [7]. Any minimal surface with a global spherical shell is a VII_{0} surface diffeomorphic to a blown-up primary Hopf surface and it is obtained as a smooth deformation of certain singular rational surfaces [7], [15], [16], [17]. Some of them have been characterized as VII_{0} surfaces with certain kinds of curves on them [1], [13], [14]. For instance, a hyperbolic (or parabolic) Inoue surface is characterized as a VII ${ }_{0}$ surface with a pair of cycles of rational curves (or a pair of a smooth elliptic curve and a cycle of rational curves). Any VII_{0} surface with b_{2} positive which we know so far has a global spherical shell and b_{2} (possibly singular) rational curves, and a cycle of rational curves (possibly with branches). So it might not be too bold to pose the following conjecture:

Conjecture 1. For an arbitrary VII_{0} surface with b_{2} positive the following three conditions are equivalent.
(1) It has a cycle of rational curves.
(2) It has at least b_{2} rational curves.
(3) It contains a global spherical shell.

The implications from (3) to the others and from (2) to (1) are known (see (3.4)). The implication from (2) to (3) was conjectured by Masahide Kato. When (2) is true, the surface is referred to as a special VII_{0} surface. The main purpose of this article is to study special VII_{0} surfaces and to give supporting evidences for the conjecture of Kato. This might be viewed as a step towards an affirmative solution of the conjecture of Kato. The consequences of this article were announced in [13, II]. See also [18].

The main consequences of this article are as follows: Let S be a VII_{0} surface with a cycle C of rational curves. Then the deformation functor of S is unobstructed and the cycle C is deformed into a nonsingular elliptic curve in a suitable smooth family of deformations of the surface S. If a small deformation of S has a smooth elliptic curve which is an extension (a deformation) of the cycle C, it is isomorphic to either a blown-up parabolic Inoue surface or (generically) a blown-up primary Hopf surface. We see:

Theorem. Any VII_{0} surface with a cycle of rational curves is a global analytic deformation of (hence is diffeomorphic to) a blown-up primary Hopf surface.

If moreover S is special, that is, if S has at least b_{2} (possibly singular) rational curves, then S has exactly b_{2} rational curves and the weighted dual graph of the curves is completely determined. More precisely we show:

Theorem. Let S be a special VII_{0} surface. Then the weighted dual graph of all the curves on S is the same as that of the dual graph of the maximal reduced curve on a minimal surface with a global spherical shell.

The above theorems support Conjecture 1 and the conjecture of Kato. Except in some particular cases discussed in (2.1), S has a unique cycle of rational curves with nonempty branches, and the maximal reduced curve of S is connected. Thus the dual graph of curves is one of (3.8), (3.9), (4.2) and (4.11), which we call global spherical graphs. See also [4, pp. 144, 145], [15, (3.2)]. In view of these consequences, we are led to the following more precise conjectures.

Conjecture 2 (Existence). Let Δ be an arbitrary global spherical graph with n vertices, U a strongly pseudoconvex open surface whose maximal curve has Δ as its weighted dual graph (or more precisely let U be a germ of a neighborhood of the maximal curve). Then there exists a minimal surface with b_{2} equal to n containing a global spherical shell whose maximal curve ($=$ the union of the n curves) has an open neighborhood isomorphic to U.

Conjecture 3 (Uniqueness). If two special VII_{0} surfaces with equal positive b_{2} are isomorphic to each other on sufficiently small neighborhoods of their maximal curves, then they are isomorphic globally. The local isomorphism near the maximal curves extends to a global one.

Conjecture 2 will be discussed in a forthcoming article (part III in preparation).
This article is organized as follows: In Section 1, we recall some basic facts from [10] and [14] and verify two vanishing theorems for obstructions $H^{2}\left(S, \Theta_{\mathrm{S}}\right)$ and $H^{2}\left(S, \Theta_{\mathrm{S}}(-\log C)\right),(1.2),(1.3)$. It follows from this that any cycle of rational curves on a VII ${ }_{0}$ surface S can be deformed into a smooth elliptic curve by deforming S, (1.4), (1.5). This also proves the existence, unique up to permutation, of a sort of an "orthonormal" basis (referred to as a canonical basis) of $H^{2}(S, Z)$ which serves as a fundamental tool in subsequent study.

In Section 2, we study expressions of cohomology classes of rational curves on S in terms of the canonical basis of $H^{2}(S, Z)$.

In Sections 3-5, we study dual graphs of curves on a special VII_{0} surface with b_{2} positive. Then we see that S has exactly b_{2} rational curves and at least a cycle of rational curves. We give a complete list of dual graphs of b_{2} curves when S has a unique cycle of rational curves with at least a branch, see (3.8), (3.9), (4.2), (4.11). When a special

VII $_{0}$ surface S has a cycle C with no branches, then S is either a half Inoue surface (6.1), or $C^{2}=0$, or the surface S has another cycle of rational curves. See [1], [14, §6, (8.1), (10.3)] for the last two cases. See also (2.1) and (6.3) in this article. In Section 5, we construct minimal surfaces with global spherical shells so as to show that an arbitrary dual graph in the above list really appears on special VII $_{0}$ surfaces. See Figure 5.4 and (5.7)-(5.14).

In Section 6, we give a numerical characterization of Inoue surfaces with b_{2} positive. More precisely, we see that a VII_{0} surface S is isomorphic to an Inoue surface with b_{2} positive if and only if the. Dloussky number $\mathrm{Dl}(S)$ of S (roughly speaking, the sum of (-1) times the self-intersection numbers of all the curves on S) is equal to the possible maximum value $3 b_{2}(S)$.

Acknowledgement. The study in this article was started during the author's stay at Bonn University SFB 40 Theoretische Mathematik, and Max Planck Institut für Mathematik in 1981-1982. He is grateful to Professor F. Hirzebruch and others at both Bonn University and Max Planck Institut for their hospitality. He is also grateful to Professor G. Barthel for his constant encouragement and interest in the subject.

Notation. We use the usual notation in analytic geometry or the same notation as in [14]. In addition to these, we use the following:
S, S^{*}, X, Y compact complex surfaces.
$b_{2}(C) \quad$ the number of irreducible components of a divisor C.
$c_{1}(D) \quad$ the first Chern class in $H^{2}(S, Z)$ of $D \in H^{1}\left(S, O_{S}^{*}\right)$.
$D \sim E \quad c_{1}(D)=c_{1}(E)$ for $D, E \in H^{1}\left(S, O_{S}^{*}\right)$.
$[a, b] \quad:=\{k \in Z ; a \leqq k \leqq b\}$.
$A_{i}, B_{i}, I_{i} \quad$ see (2.9)-(2.10).
$L_{I}, M_{J} \quad$ see (2.4), (4.1).
$U_{i} \quad$ see (4.1), (4.6).
$E \# F$ see (5.7).

1. Smoothing a cycle of rational curves by deforming surfaces. First we recall some basic facts from [10] and [14].
(1.1) Lemma. Let S be $a \mathrm{VII}_{0}$ surface with $b_{2}>0$. Then
(1.1.1) $h^{q}\left(S, \Omega_{S}^{1}\right)=0(q=0,2), h^{1}\left(S, \Omega_{S}^{1}\right)=b_{2}$,
(1.1.2) $\quad h^{0}\left(S, m K_{S}\right)=0$ for $m>0$,
(1.1.3) $K_{S} E \geqq 0,-E^{2} \geqq 0$ for an effective divisor E on S. Moreover $E^{2}=0$ if and only if $E=0$ in $H^{2}(S, R)$,
(1.1.4) S has no meromorphic functions except constants and $h^{0}(S, L) \leqq 1$ for any line bundle L on S.

See [10, I, p. 755 \& II, p. 683] or [14, (2.5), (12.1)] for the proofs.
(1.2) Theorem. Let S be a VII_{0} surface with $b_{2}>0$. Then $H^{2}\left(S, \Theta_{S}\right)=0$.

Proof. Assume the contrary to derive a contradiction. By Serre duality, $H^{0}\left(S, \Omega_{S}^{1}\left(K_{S}\right)\right) \neq 0$. Let D be the maximal effective divisor of S such that $H^{0}\left(S, \Omega_{S}^{1}\left(K_{S}-D\right)\right) \neq 0$ and let ω be a nonzero element of $H^{0}\left(S, \Omega_{S}^{1}\left(K_{S}-D\right)\right)$. By definition, zero (ω) is isolated.
(1.2.1) Lemma. The following is exact:

$$
0 \rightarrow O_{s}\left(-K_{S}+D\right) \rightarrow \underset{f}{\Omega_{s}}{ }_{g}^{1} O_{s}\left(2 K_{s}-D\right)
$$

where $f(a)=a \omega, g(b)=b \wedge \omega$.
Proof. Clearly f is injective. Take $b \in \operatorname{Ker} g$. Then $b \wedge \omega=0$. Hence $b=h \omega$ locally for a germ h of a meromorphic function. Then pole (h) is contained in isolated zero (ω), whence h is holomorphic. Hence b is contained in $\operatorname{Im} f$. q.e.d.

We continue the proof of (1.2). Let $H:=$ Coker g. Then $\operatorname{supp}(H)$ consists of isolated points, so that $H^{q}(S, H)=0$ for any $q>0$. Therefore by taking the Euler-Poincaré characteristics, we see by (1.1)

$$
\begin{aligned}
b_{2} & =-\chi\left(S, \Omega_{S}^{1}\right)=-\chi\left(S,-K_{S}+D\right)-\chi\left(S, 2 K_{S}-D\right)+\chi(S, H) \\
& =-2 \chi\left(S,-K_{S}+D\right)+h^{0}(S, H)=-2 K_{S}^{2}+3 K_{S} D-D^{2}+h^{0}(S, H) .
\end{aligned}
$$

Therefore by $-K_{S}^{2}=b_{2}$, we have, $b_{2}+3 K_{S} D-D^{2}+h^{0}(S, H)=0$. By (1.1.3), we have $K_{\mathrm{s}} D \geqq 0,-D^{2} \geqq 0$, so that $b_{2}=0, K_{S} D=D^{2}=h^{0}(S, H)=0$. This contradicts the assumption $b_{2}>0$.
q.e.d.
(1.3) Theorem. Let S be a VII_{0} surface with a cycle C of rational curves, and let E be a reduced effective divisor containing C. Then $H^{2}\left(S, \Theta_{S}(-\log E)\right)=0$.

Proof. If S has another cycle or an elliptic curve, then the reduced effective maximal divisor D of S is anticanonical $[14,(2.8)+(2.12)+(6.1)+(6.11)]$. Hence $h^{2}\left(S, \Theta_{S}(-\log D)\right) \leqq h^{0}\left(S, \Omega_{S}^{1}\right)=0$. From this, the assertion of (1.3) for general E follows immediately. So we may assume that S has a unique cycle C and no elliptic curves. We apply an argument similar to the proof of (1.2). We assume $H^{2}\left(S, \Theta_{S}(-\log E)\right) \neq 0$ to derive a contradiction. By Serre duality, $H^{0}\left(S, \Omega_{S}^{1}(\log E)\left(K_{S}\right)\right) \neq 0$. Let D be the maximal effective divisor of S such that $H^{0}\left(S, \Omega_{S}^{1}(\log E)\left(K_{S}-D\right)\right) \neq 0$. Take $\omega \neq 0$ in $H^{0}\left(S, \Omega_{S}^{1}(\log E)\left(K_{S}-D\right)\right.$). Then ω has isolated zeroes. As in (1.2) we have an exact sequence

$$
0 \rightarrow O_{S}\left(-K_{S}+D\right) \xrightarrow{f} \Omega_{S}^{1}(\log E) \xrightarrow{g} \Omega_{S}^{2}\left(E+K_{S}-D\right) \cong O_{S}\left(2 K_{S}+E-D\right),
$$

where $f(a)=a \omega, g(b)=b \wedge \omega$. Let F (resp. H) be Coker f (resp. Coker g). We see that $\operatorname{supp}(H)$ is finite so that $H^{q}(S, H)=0$ for $q>0$. We consider exact sequences

$$
\begin{align*}
0 & \rightarrow H^{0}\left(S,-K_{S}+D\right) \rightarrow H^{0}\left(S, \Omega_{S}^{1}(\log E)\right) \rightarrow H^{0}(S, F) \\
& \rightarrow H^{1}\left(S,-K_{S}+D\right) \rightarrow H^{1}\left(S, \Omega_{S}^{1}(\log E)\right) \rightarrow H^{1}(S, F) \tag{1.3.1}\\
& \rightarrow H^{2}\left(S,-K_{S}+D\right) \rightarrow H^{2}\left(S, \Omega_{S}^{1}(\log E)\right) \rightarrow H^{2}(S, F) \rightarrow 0 \\
0 & \rightarrow H^{0}(S, F) \rightarrow H^{0}\left(S, 2 K_{S}+E-D\right) \rightarrow H^{0}(S, H) \\
& \rightarrow H^{1}(S, F) \rightarrow H^{1}\left(S, 2 K_{S}+E-D\right) \rightarrow 0 \tag{1.3.2}\\
& \rightarrow H^{2}(S, F) \rightarrow H^{2}\left(S, 2 K_{S}+E-D\right) \rightarrow 0 .
\end{align*}
$$

(1.3.3) Lemma. $\quad h^{1}\left(S, \Omega_{S}^{1}(\log E)\right)=b_{2}-b_{2}(E)+\delta(C)$ where $\delta(C)$ equals 1 or 0 according as $C^{2}=0$ or $C^{2}<0$.

Proof of (1.3.3). By [14, (3.3)] the following is exact:

$$
0 \rightarrow H^{0}\left(S, \Omega_{S}^{1}(\log E)\right) \rightarrow H^{0}\left(\tilde{E}, O_{\tilde{E}}\right) \rightarrow H^{1}\left(S, \Omega_{S}^{1}\right) \rightarrow H^{1}\left(S, \Omega_{S}^{1}(\log E)\right) \rightarrow 0,
$$

where \tilde{E} is the normalization of E. Let $\delta(C)=h^{0}\left(S, \Omega_{S}^{1}(\log C)\right)$. Then $h^{0}\left(S, \Omega_{S}^{1}(\log E)\right)=$ $\delta(C)$ where $\delta(C)=1$ or 0 according as $C^{2}=0$ or $C^{2}<0$ by [14, (3.3), (3.4)]. q.e.d.

Now we continue the proof of (1.3). We see $h^{0}(S, F) \leqq 1, h^{2}\left(S,-K_{S}+D\right) \leqq 1$ by (1.1) and (1.3.2). From (1.3.1)-(1.3.3) it follows that

$$
\begin{aligned}
b_{2}-b_{2}(E)+\delta(C) & \geqq h^{1}\left(S,-K_{S}+D\right)+h^{1}(S, F)-2 \\
& \geqq h^{1}\left(S,-K_{S}+D\right)+h^{1}\left(S, 2 K_{S}+E-D\right)+h^{0}(S, H)-3 \\
& \geqq-\chi\left(S,-K_{S}+D\right)-\chi\left(S, 2 K_{S}+E-D\right)-3 \\
& \geqq 2 b_{2}+3 K_{S} D-3 K_{S} E / 2-D^{2}-E^{2} / 2+D E-3, \\
4 \geqq b_{2}(E)+\left(K_{S} E\right. & \left.+E^{2}\right) / 2-\left(K_{S}+E-D / 2\right)^{2}+2 K_{S} D-3 D^{2} / 4
\end{aligned}
$$

by $\delta(C) \leqq 1$. Therefore by $(1.1), 4 \geqq b_{2}(E)+\left(K_{S} E+E^{2}\right) / 2$.
Let $E=C+H, H=\sum_{\lambda} H_{\lambda}$ with H_{λ} irreducible. Since $\left(K_{S}+C\right) \otimes O_{S} \cong O_{C}$ is the dualising sheaf of C, we have $\left(K_{S}+C\right) C=0$. Therefore

$$
b_{2}(E)+\left(K_{S} E+E^{2}\right) / 2=b_{2}(C)+C H+b_{2}(H)+\left(K_{S} H+H^{2}\right) / 2=b_{2}(C)+C H+\sum_{\lambda<v} H_{\lambda} H_{v} .
$$

Hence $4 \geqq b_{2}(C)$. Take an unramified fivefold covering S^{*} of S. Then S^{*} is a VII_{0} surface with a cycle C^{*} of rational curves, C^{*} being the pull-back of C. Moreover, $H^{2}\left(S^{*}, \Theta_{S^{*}}\left(-\log E^{*}\right)\right) \neq 0$ for the pull-back E^{*} of E. Hence by the same argument as above we have $4 \geqq b_{2}\left(C^{*}\right)$. However since $b_{2}\left(C^{*}\right)=5 b_{2}(C) \geqq 5$, this is a contradiction.
q.e.d.
(1.4) Theorem. Let S be a VII_{0} surface with a cycle C of rational curves, and let $E=C+H$ be a reduced divisor containing C. Then there is a smooth proper family $\pi: \mathscr{S} \rightarrow \Delta$ with π-flat divisors \mathscr{C} and \mathscr{H} of \mathscr{S} such that
(1.4.1) $\quad\left(\mathscr{S}_{0}, \mathscr{C}_{0}, \mathscr{H}_{0}\right) \cong(S, C, H)$,
(1.4.2) $\mathscr{H}_{t}=H \quad$ for any $t \in \Delta$,
(1.4.3) $\quad \varpi\left(:=\pi_{\mid \mathscr{C}}\right): \mathscr{C} \rightarrow \Delta$ is a versal deformation of C.

Proof. Let U be a strongly pseudoconverx open neighborhood of C in S. We prove that the canonical homomorphism

$$
\begin{equation*}
H^{1}\left(S, \Theta_{S}(-\log H)\right) \rightarrow H^{1}\left(U, \Theta_{U}\right) \tag{1.4.4}
\end{equation*}
$$

is surjective. By $[14,(4.3)], H^{1}\left(U, \Theta_{U}\right) \cong H^{1}\left(C, \Theta_{U} \otimes O_{C}\right) \cong H^{1}\left(C, J_{C}\right)$, where $J_{C}=$ $\Theta_{S} / \Theta_{S}(-\log C)$. Consider exact sequences

$$
\begin{gather*}
0 \rightarrow \Theta_{S}(-\log E) \rightarrow \Theta_{S}(-\log H) \rightarrow L \rightarrow 0, \tag{1.4.5}\\
0 \rightarrow L \rightarrow J_{C} \rightarrow J_{C} / L \rightarrow 0,
\end{gather*}
$$

where $L:=\Theta_{S}(-\log H) / \Theta_{S}(-\log E)$. It is clear that $\operatorname{supp}\left(J_{C} / L\right)=C \cap H$. Hence the homomorphism $H^{1}(C, L) \rightarrow H^{1}\left(C, J_{C}\right)$ is surjective. We have $H^{2}\left(S, \Theta_{S}(-\log E)\right)=0$ by (1.3), whence $H^{1}\left(S, \Theta_{S}(-\log H)\right) \rightarrow H^{1}(C, L)$ is surjective. Hence (1.4.4) is surjective. This proves that the logarithmic deformation functor of (S, H) realizes any deformation of U near C (see [9], [12]). q.e.d.

From [14, (12.3) or (12.5)] and (1.4) we infer:
(1.5) Theorem. Let S be a VII_{0} surface with a cycle C of rational curves. Then there is a smooth proper family $\pi: \mathscr{S} \rightarrow \Delta$ over a unit disc Δ with a π-flat Cartier divisor \mathscr{C} such that

$$
\begin{equation*}
\left(\mathscr{S}_{0}, \mathscr{C}_{0}\right) \cong(S, C), \tag{1.5.1}
\end{equation*}
$$

(1.5.2) \mathscr{S}_{t} is a blown-up primary Hopf surface with a nonsingular elliptic curve $\mathscr{C}_{t}(t \neq 0)$.

Proof. If $H_{1}(S, Z)=i_{*} H_{1}(C, Z)$, then the same argument as in [14, (12.3)] applies because the assumption on the existence of E with $E C>0$ is used only for showing $H_{1}(S, Z)=i_{*} H_{1}(C, Z)$. So we are done in this case. If $H_{1}(S, Z) \neq i_{*} H_{1}(C, Z)$, then S is isomorphic to a half Inoue surface by [14, (9.2)], whence the assertion is true as is well-known. See also (6.4).
q.e.d.
(1.6) Corollary. An arbitrary VII_{0} surface with a cycle of rational curves is a global deformation of (hence diffeomorphic to) a blown-up primary Hopf surface.
(1.7) Corollary. Let S be a VII_{0} surface with a cycle C of rational curves with $C^{2}<0$. Suppose that S is not a half Inoue surface. Then there exist complex line bundles L_{j} on $S(1 \leqq j \leqq n)$ such that
(1.7.1) $\quad E_{j}:=c_{1}\left(L_{j}\right) \quad(1 \leqq j \leqq n)$ is a Z-basis of $H^{2}(S, Z)$,
(1.7.2) $\quad K_{S} L_{j}=-1, \quad L_{j} L_{k}=-\delta_{j k}$,
(1.7.3) $C=-\left(L_{r+1}+\cdots+L_{n}\right), K_{S}=L_{1}+\cdots+L_{n}$ in $H^{1}\left(S, O_{S}^{*}\right)$ for some $1 \leqq r \leqq n-1$, where $n=b_{2}(S)$.

Proof. By (1.5), a general deformation \mathscr{S}_{t} of S is a blown-up primary Hopf surface. Since S and \mathscr{S}_{t} are diffeomorphic, by pulling back to S the total transforms of the j-th (-1)-curves on \mathscr{S}_{t}, we have a \boldsymbol{Z}-basis $E_{j}(1 \leqq j \leqq n)$ of $H^{2}(S, Z)$ such that

$$
\begin{gather*}
K_{S} E_{j}=-1, \quad E_{j} E_{k}=-\delta_{j k}, \tag{1.7.4}\\
C=-\left(E_{r+1}+\cdots+E_{n}\right), \quad K_{S}=E_{1}+\cdots+E_{n} \quad \text { in } H^{2}(S, Z) . \tag{1.7.5}
\end{gather*}
$$

Since S is not a half Inoue surface, we have $0<-C^{2}<n$ by [14, (9.3)]. Hence $0<r<n$. Therefore by choosing suitable line bundles $L_{j}(1 \leqq j \leqq n)$ with $c_{1}\left(L_{j}\right)=E_{j}$, we have (1.7.2) and (1.7.3)
q.e.d.
(1.8) Remark. When S is a half Inoue surface, the assertion in (1.7) is true with (1.7.3) replaced by

$$
\begin{equation*}
C=-\left(L_{r+1}+\cdots+L_{n}\right)+F_{2}, \quad K_{S}=L_{1}+\cdots+L_{n} \quad \text { in } \quad H^{1}\left(S, O_{S}^{*}\right) \tag{1.8.1}
\end{equation*}
$$

where F_{2} is a line bundle of order two.

2. (Co)homology classes of curves.

(2.1) Let S be a VII_{0} surface with a cycle C of rational curves. First we notice $b_{2}>0$. Indeed, if $b_{2}=0$, then there are only elliptic curves but no rational curves on S by [10, II, p. 699]. If S has an elliptic curve, then S is a parabolic Inoue surface by [14, (7.1)]. If S has a cycle D of rational curves distinct from C, then S is a hyperbolic Inoue surface by $[14,(8.1)]$. If $C^{2}=0$, then S is an exceptional compactification of an affine line bundle over an elliptic curve by [1]. If $b_{2}(C)=b_{2}$, and if $C^{2}<0$, then S is a half Inoue surface by $[14,(9.2)]$. If $C^{2} \leqq-b_{2}$, then $C^{2}=-b_{2}$ and S is a half Inoue surface by $[14,(9.3)]$. Under one of these additional assumptions, the structure of S is in any case completely known. In particular, they all contain a global spherical shell [7]. So we may exclude these cases in subsequent study. Summarizing these, we obtain (and make) the following:
(2.2) Proposition-Assumption. Let S be $a \mathrm{VII}_{0}$ surface with a cycle C of rational curves. Assume that S is isomorphic to none of the above surfaces. Then,
(2.2.1) S has no curves of positive genus and no cycles of rational curves other than C,
(2.2.2) $\quad b_{2}>-C^{2}>0, \quad b_{2}>b_{2}(C)$,
$(2.2 .3) \quad H_{1}(S, Z) \cong H_{1}(C, \boldsymbol{Z}) \cong \boldsymbol{Z}, \quad H^{1}\left(S, C^{*}\right) \cong H^{1}\left(C, C^{*}\right) \cong C^{*}$,
where the isomorphisms are induced from the natural inclusion of C into S,
(2.2.4) any unramified finite covering $\pi: S^{\prime} \rightarrow S$ is cyclic and $\pi^{*} C$ is a unique cycle of
rational curves on S^{\prime}.
See [14, (2.13), (9.2)] for (2.2.3) and (2.2.4).
In what follows, we assume that (2.2.1)-(2.2.4) are true. See (2.13). Let $s=$ $b_{2}(C), n=b_{2}(S)$, and let r and $L_{i}(1 \leqq i \leqq n)$ be the same as in (1.7). We note $0<r<n$ by (2.2.2).
(2.3) Lemma. Let L be a line bundle on S. Suppose that $L \sim a_{1} L_{1}+\cdots+a_{n} L_{n}$ and $a_{1}+\cdots+a_{n}>0$. Then $H^{0}(S, L)=0$.

Proof. Suppose $H^{0}(S, L) \neq 0$. Then there is an effective divisor D such that $[D]=L$. By (1.1) we have $K_{S} D \geqq 0$. By (1.7), we get $K_{S} D=K_{S} L=-\left(a_{1}+\cdots+a_{n}\right)<0$, which is absurd.
q.e.d.
(2.4) Lemma. Let $L_{I}:=\sum_{i \in I} L_{i}, L=L_{I}+F, F \in H^{1}\left(S, C^{*}\right)$ for a nonempty subset I of $[1, n]$. Then we have:
(2.4.1) If $I \neq[1, n]$, then $H^{q}(S, L)=0$ for any q.
(2.4.2) If $L \otimes O_{C}=O_{C}$, then $I=[1, r]$, and $F=O_{S}, K_{S}-L+C=O_{S}$.
(2.4.3) If $L C_{i}=0$ for any irreducible component C_{i} of C, then $I=[1, r]$.

Proof. $\quad H^{0}(S, L)=0$ by (2.3). If $I \neq[1, n]$, then $h^{2}(S, L)=h^{0}\left(S, K_{S}-L\right)=0$ by (2.3). Hence by the Riemann-Roch theorem, $h^{1}(S, L)=-\chi(S, L)=-\left(-K_{S} L+L^{2}\right) / 2=0$, whence (2.4.1). Suppose $L \otimes O_{C}=O_{C}$. Then $0=L C=L_{I} C=-\#(I \cap[r+1, n])$. Therefore I is a subset of $[1, r]$. Hence $H^{q}(S, L)=0$ for any q by (2.2.2) and (2.4.1). By the exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}(S, L-C) \rightarrow H^{0}(S, L) \rightarrow H^{0}\left(C, O_{C}\right) \\
& \rightarrow H^{1}(S, L-C) \rightarrow H^{1}(S, L) \rightarrow H^{1}\left(C, O_{C}\right) \\
& \rightarrow H^{2}(S, L-C) \rightarrow H^{2}(S, L) \rightarrow 0
\end{aligned}
$$

we see $H^{2}(S, L-C) \cong H^{1}\left(C, O_{C}\right) \cong C$. Since $K_{S}-L+C=L_{[1, r]}-L_{I}-F$, we have $K_{S}-L+C=O_{S}, I=[1, r], F=O_{S}$ by (2.3). This proves (2.4.2). If $L C_{i}=0$ for any irreducible component C_{i} of C, then L_{C} is contained in $H^{1}\left(C, C^{*}\right)$. By (2.2.3), there exists $G \in H^{1}\left(S, C^{*}\right)$ such that $G_{C}=L_{C}$. Hence $(L-G) \otimes O_{C}=O_{C}$, whence $L-G=K_{s}+C$, $F=G, I=[1, r]$ by (2.4.2). This proves (2.4.3).
q.e.d.
(2.5) Lemma. Let D be a nonsingular rational curve. Suppose $D \sim a_{1} L_{1}+$ $\cdots+a_{n} L_{n}$. Then there exists a unique a_{i} such that $a_{i}=1$ or $-2, a_{j}=0$ or -1 for $j \neq i$.

Proof. By (1.7.2) we see $0=K_{S} D+D^{2}+2=2-\sum_{k=1}^{n}\left(a_{k}^{2}+a_{k}\right)$. Hence $a_{i}^{2}+a_{i}=2$ for a unique i, and $a_{j}^{2}+a_{j}=0$ for $j \neq i$.
q.e.d.
(2.6) Lemma. Let D be a nonsingular rational curve which is not contained in the cycle C. Then $D \sim L_{i}-L_{I}$ for some $i \in[1, n]$ and $I \subset[1, n]$ with $i \notin I$.

Proof. Let $E=C+D$. Then by (1.4) there is a proper smooth family $\pi: \mathscr{P} \rightarrow \Delta$ over a unit disc Δ with Δ-flat divisors \mathscr{C} and \mathscr{D} such that $(\mathscr{S}, \mathscr{C}, \mathscr{D})_{0}=(S, C, D), \mathscr{D}_{t}=D$ for any t, and \mathscr{S}_{t} is a blown-up primary Hopf surface with a smooth elliptic curve \mathscr{C}_{t} for $t \neq 0$. Since any primary Hopf surface has at most elliptic curves which are homologically trivial, $D=\mathscr{D}_{t}$ is a proper transform of a (-1)-curve by repeated blowing-ups. This implies that $D \sim L_{i}-L_{I}$ for some i and I with $i \notin I$. (Geometrically D is on \mathscr{S}_{t} a proper transform of the i-th (-1)-curve on which the j-th blowing-ups $(j \in I)$ are repeated.)
q.e.d.
(2.7) Lemma. Let D_{1} and D_{2} be distinct nonsingular rational curves such that $D_{j} \sim L_{\alpha_{j}}-L_{I_{j}}\left(\alpha_{j} \notin I_{j}, j=1,2\right)$. Then $\alpha_{1} \neq \alpha_{2}$.

Proof. If $\alpha_{1}=\alpha_{2}$, then $D_{1} D_{2}=-1-\#\left(I_{1} \cap I_{2}\right)<0$, which is absurd. q.e.d.
(2.8) Lemma. Let S be a (not necessarily minimal) surface with $b_{1}=1$ having a cycle C of rational curves, and let $C_{i}(1 \leqq i \leqq s)$ be all the irreducible components of C. Suppose that $s \geqq 2$ and for some $2 \leqq l \leqq r$,

$$
\begin{gather*}
C_{i} \sim L_{i}-L_{j(i)}-L_{A_{i}^{\prime}}\left(1 \leqq i \leqq l, j(i) \in[1, r], A_{i}^{\prime} \subset[r+1, n]\right), \tag{2.8.1}\\
C_{i} \sim \sum_{k=r+1}^{n} a_{i k} L_{k} \quad(l+1 \leqq i \leqq s), \tag{2.8.2}
\end{gather*}
$$

where we do not require C_{i} to be in the cyclic order. Then we have $a_{i k}= \pm 1$.
Proof. If $s=l$, then (2.8.2) is vacuous and any irreducible component C^{\prime} of C is of the form (2.8.1) so that there is nothing to prove. We assume $s>l$. Suppose by (2.5) that there is an irreducible component C^{\prime} of C of the form $-2 L_{i}-L_{I}$ for some i and I, hence of the type (2.8.2). Since $s \geqq 3$, there is an irreducible component $C^{\prime \prime}$ of C with $C^{\prime} C^{\prime \prime}=1$. Then $C^{\prime \prime}$ is not of the form $-2 L_{j}-L_{J}$ because $\left(-2 L_{i}-\right.$ $\left.L_{I}\right)\left(-2 L_{j}-L_{J}\right) \leqq 0$. Hence $C^{\prime \prime} \sim L_{k}-L_{J}$ for some k and J with $k \notin J$. We have,

$$
1=C^{\prime} C^{\prime \prime}=-2 L_{i} L_{k}-L_{k} L_{I}+2 L_{i} L_{J}+L_{I} L_{J}
$$

Therefore either $k \neq i, k \in I, i \notin J, I \cap J=\varnothing$ or $k=i, k \notin I, i \notin J, \#(I \cap J)=1$. In either case, $C^{\prime \prime}$ is of the form (2.8.2). In the first case, $C^{\prime}+C^{\prime \prime} \sim-2 L_{i}-L_{I \backslash\{k\}}-L_{J}$. In the second case, $C^{\prime}+C^{\prime \prime} \sim-L_{i}-2 L_{j}-L_{I \backslash\{j\}}-L_{J \backslash\{j\}}$, where $\{j\}=I \cap J$. In either case, $C^{(2)}:=$ $C^{\prime}+C^{\prime \prime} \sim-2 L_{a}-L_{A}$ for some $a \in[r+1, n]$ and $A \subset[r+1, n]$ with $a \notin A$. If $s \geqq 4$, then there exists an irreducible component $C^{\prime \prime \prime}$ of C different from C^{\prime} and $C^{\prime \prime}$ with $C^{\prime \prime \prime} C^{(2)}=$ 1. Then by the same argument as above, $C^{\prime \prime \prime}$ is of the form (2.8.2) and $C^{(3)}:=C^{(2)}+C^{\prime \prime \prime} \sim-2 L_{b}-L_{B}$ for some $b \in[r+1, n]$ and $B \subset[r+1, n]$ with $b \notin B$. By repeating the same argument, we eventually obtain a straight chain $C^{(s-l)}$ of $s-l$ rational curves contained in C such that $C^{(s-l)} \sim-2 L_{e}-L_{E}$ for some $e \in[r+1, n]$ and $E \subset[r+1, n]$ with $e \notin E$.

Since C is connected, $C^{(s-l)}$ meets one of $C_{i}(1 \leqq i \leqq l)$. However $C^{(s-l)} C_{i} \leqq 0$ by
(2.8.1). This is a contradiction.
q.e.d.
(2.9) Lemma. Let S be $a \mathrm{VII}_{0}$ surface with a cycle C of rational curves. Assume $\left(K_{S}+C\right)^{2} \leqq-2$ and $s:=b_{2}(C) \geqq 2$. Let C_{j} be an irreducible component of C. Then there exist i and I such that $C_{j} \sim L_{i}-L_{I}$.

Proof. Let $L=K_{S}+C=L_{[1, r]}$. Then $L_{C}=\left(K_{S}+C\right) \otimes O_{C}$ is the dualizing sheaf of C so that L_{C} is trivial. Hence $L C_{i}=0$ for any irreducible component C_{i} of C. By (2.5), this shows that by suitable indexing for L_{j},

$$
\begin{gather*}
C_{i} \sim L_{i}-L_{j(i)}-L_{A_{i}^{\prime}} \quad\left(1 \leqq i \leqq l, j(i) \in[1, r], A_{i}^{\prime} \subset[r+1, n]\right), \tag{2.9.1}\\
C_{i} \sim \sum_{k=r+1}^{n} a_{i k} L_{k} \quad(l+1 \leqq i \leqq s), \tag{2.9.2}
\end{gather*}
$$

where $l \leqq r$. Since $C=-L_{[r+1, n]}$, we see that $\sum_{i=1}^{l} C_{i}$ is a linear combination of L_{j} $(r+1 \leqq j \leqq n)$. Hence $l=0$ or $l \geqq 2$. If $l \geqq 2$, then (2.9) follows from (2.8). So suppose $l=0$ to derive a contradiction. If $l=0$, then $L_{1} C_{i}=0$ for any i by $r>0$, hence $K_{S}-L_{1}+$ $C \sim 0$ by (2.4.3). This implies that $\left(K_{S}+C\right)^{2}=-1$, which contradicts the assumption. q.e.d.

Notation. By (2.9), we write $C_{i} \sim L_{i}-L_{A_{i}}$ for a subset A_{i} of $[1, n] \backslash\{i\}$. Let $A_{i}^{\prime}=A_{i} \cap[r+1, n], B_{i}=A_{i} \cap[r+1, s]$, and $I_{i}=A_{i} \cap[s+1, n]$.
(2.10) Lemma. Suppose $\left(K_{S}+C\right)^{2} \leqq-2$ and $s:=b_{2}(C) \geqq 2$. Then $s \geqq r \geqq 2$. By suitable indexing for $L_{j}\left(L_{r}=L_{0}\right)$, we have

$$
\begin{gather*}
C_{i} \sim L_{i}-L_{i-1}-L_{B_{i}}-L_{I_{i}} \quad(1 \leqq i \leqq r) \tag{2.10.1}\\
C_{i} \sim L_{i}-L_{B_{i}}-L_{I_{i}} \quad(r+1 \leqq i \leqq s) \tag{2.10.2}
\end{gather*}
$$

$$
\begin{equation*}
I_{i} \cap I_{k}=\varnothing \quad \text { for } \quad i \neq k \quad \text { and } \quad I_{1} \cup \cdots \cup I_{s}=[s+1, n] . \tag{2.10.3}
\end{equation*}
$$

Proof. We use the same notation as in the proof of (2.9). We have $l \geqq 2$ by the proof of (2.9). Since $C_{1}+\cdots+C_{l}$ has no terms of $L_{i}(1 \leqq i \leqq r)$, the set [1,l] is decomposed into a disjoint union of R_{1}, \cdots, R_{N} such that

$$
\begin{equation*}
j\left(R_{k}\right)=R_{k} \quad(1 \leqq k \leqq N) \tag{2.10.4}
\end{equation*}
$$

(2.10.5) no R_{k} is decomposed into proper subsets with the property (2.10.4) where $j\left(R_{k}\right)=\left\{j(i) ; i \in R_{k}\right\}$ and $j(i)$ is defined in (2.9.1).

By suitable indexing for L_{j}, we may assume $R_{1}=\left[1, r^{\prime}\right]\left(r^{\prime} \leqq l \leqq r\right)$. Let $L^{\prime}=L_{R_{1}}$. Then $L^{\prime} C_{i}=0$ for any $i \in[1, s]$ by (2.9.1), (2.9.2) and (2.10.4). Hence by (2.4.3), we get $R_{1}=[1, r], r=r^{\prime}=l \geqq 2, N=1$. This shows that we may assume $j(i)=i-1(1 \leqq i \leqq r)$ by suitable indexing for L_{j}, where we may view $j(1)=0=r$. Hence in particular, $s \geqq r$. The assertions (2.10.1) and (2.10.2) are thus proved. (2.10.3) is clear from (1.7). q.e.d.
(2.11) Lemma. Let the assumptions and notation be the same as in (2.10). Assume
$s>r$. Then there is $j \in[r+1, s]$ with $B_{j}=\varnothing$.
Proof. By (2.10), $r \geqq 2$. First we show the following:
(2.11.1) Sublemma. There exist $j \in[r+1, s]$, and $i, k \in[1, s]$ such that $C_{i} C_{j}=$ $C_{j} C_{k}=1, C_{j} C_{l}=0(l \neq i, j, k)$, and that $B_{i} \cap B_{k}$ contains j.

Proof of (2.11.1). Since $s>r$, there is a connected subcurve $C^{\prime \prime}=C_{j_{1}}+\cdots+C_{j_{m}}$ of C such that $j_{k} \in[r+1, s]$ and that $C^{\prime \prime}\left(C_{1}+\cdots+C_{r}\right)=2$. We may assume $C_{j_{k}} C_{j_{k+1}}=1(1 \leqq k \leqq m-1)$, and $C_{j_{i}} C_{j_{k}}=0$ (otherwise). Hence there exist i_{1} and i_{2} in $[1, r]$ such that $C_{j_{1}} C_{i_{1}}=C_{j_{m}} C_{i_{2}}=1, C_{j_{k}} C_{i}=0$ (otherwise). Let $C_{j} \sim L_{j}-L_{A_{j}}(1 \leqq j \leqq s)$. Since $A_{j_{1}} \cap[1, r]=\varnothing$ by (2.10.2), $C_{j_{1}} C_{i_{1}}=1$ implies that $A_{i_{1}} \ni j_{1}, A_{i_{1}} \cap A_{j_{1}}=\varnothing$.

We now prove that there exists $j_{\alpha}(1 \leqq \alpha \leqq m)$ such that both $A_{j_{\alpha-1}}$ and $A_{j_{\alpha+1}}$ contain j_{α}, where $j_{0}=i_{1}$ and $j_{m+1}=i_{2}$. If $A_{j_{2}}$ contains j_{1}, then we can take $\alpha=1$. If $A_{j_{2}} \nexists j_{1}$, then $A_{j_{1}} \ni j_{2}$ by $C_{j_{1}} C_{j_{2}}=1$. By repeating this argument, we either obtain $\alpha(\leqq m-1)$ such that $A_{j_{k-1}} \ni j_{k}(1 \leqq k \leqq \alpha)$ and $A_{j_{\alpha+1}} \ni j_{\alpha}$, or we have $A_{j_{k}} \ni j_{k+1}, A_{j_{k+1}} \nexists j_{k}$ for any $k(\leqq m-1)$. In the second case, since $C_{j_{m}} C_{i_{2}}=1$, we have either $A_{j_{m}} \ni i_{2}$ or $A_{i_{2}} \ni j_{m}$. Since $A_{j_{m}} \cap[1, r]=\varnothing$ by (2.10.2), we have $A_{i_{2}} \ni j_{m}$. Hence we may take $\alpha=m$. (2.11.1) is proved by taking $i=j_{\alpha-1}, j=j_{\alpha}$ and $k=j_{\alpha+1}$.

The following is easy to see:
(2.11.2) Sublemma. (i) $\lambda \in[r+1, s]$ if and only if $\lambda \in A_{i}$ for exactly two i $(1 \leqq i \leqq s)$.
(ii) $\lambda \notin[r+1, s]$ if and only if $\lambda \in A_{i}$ for a unique $i(1 \leqq i \leqq s)$.

Next we prove:
(2.11.3) Sublemma. Let i, j, k be the same as in (2.11.1). Suppose $B_{j} \neq \varnothing$. Then there exist l_{1}, \cdots, l_{m} in B_{j} such that

$$
A_{j} \cap A_{l_{h}}=\left\{l_{h+1}\right\}, \quad C_{l_{h}} \sim L_{l_{h}}-L_{l_{h+1}}-L_{A_{l_{h}}^{\prime}} \quad(1 \leqq h \leqq m),
$$

where $l_{m+1}=l_{1}, A_{l_{h}}^{\prime}=A_{l_{h}} \backslash\left\{l_{h+1}\right\}, l_{h} \neq i, j, k$, and $A_{l_{h}} \cap[1, r]=\varnothing$.
Proof of (2.11.3). Take l_{1} from $A_{j} \cap[r+1, s]$. Then $l_{1} \neq i, k$. Indeed, if $l_{1}=i$, then B_{i} contains j by (2.11.1), and $\#\left(B_{i} \cap B_{j}\right)=1$ by $C_{i} C_{j}=1$, hence $C_{i}+C_{j} \sim-2 L_{v}-L_{J}$ for some v and J. By deforming S, we obtain a cycle C^{*}, one of whose irreducible component is $C_{i}+C_{j} \sim-2 L_{v}-L_{J}$ homologically. This is absurd by (2.8). If $l_{1}=k$, then by the same argument we derive a contradiction. Hence $l_{1} \neq i, k$, and $B_{j} \nexists i, k$.

Hence $C_{j} C_{l_{1}}=0$, so that $-L_{A_{j}} L_{l_{1}}-L_{A_{l_{1}}} L_{j}+L_{A_{j}} L_{A_{l_{1}}}=0$. By (2.11.2) and by $j \in A_{i} \cap A_{k}$, we have $A_{l_{1}} \nexists j$. Hence $\left\{l_{2}\right\}=A_{j} \cap A_{l_{1}}$ for some $l_{2} \in[r+1, s]$, since $A_{l_{1}} \cap[1, r]=\varnothing$ by (2.10.2). Clearly $l_{2} \neq l_{1}, i, k$. We note $j \notin A_{l_{2}}$ by (2.11.2). By $C_{j} C_{l_{2}}=0$, we have $\#\left(A_{j} \cap A_{l_{2}}\right)=1$. Hence $A_{j} \cap A_{l_{2}}=\left\{l_{1}\right\}$ or $\left\{l_{3}\right\}$, where $l_{3} \neq l_{1}, l_{2}, i, k$. Repeating this argument, we eventually obtain $l_{1}, \cdots, l_{m} \in A_{j} \cap[r+1, s]$ such that (2.11.3) holds.
q.e.d.
(2.11.4) Sublemma. Suppose $B_{j} \neq \varnothing$. Let C_{λ} be an irreducible component of C with $C_{\lambda} C_{l_{h}}=1$. Then $\lambda=l_{h-1}$ or $\lambda \in B_{l_{h}}$.

Proof. By the proof of (2.11.3), we have $B_{j} \nexists i, k$ and $l_{h} \neq i, k$. Thus $C_{j} C_{l_{h}}=0$, whence $\lambda \neq j$. Supose $\lambda \neq l_{h-1}$. Then since $l_{h} \in A_{j} \cap A_{l_{h-1}}$, we have $l_{h} \notin A_{\lambda}$ by (2.11.2) so that

$$
1=C_{\lambda} C_{l_{h}}=\left(L_{\lambda}-L_{A_{\lambda}}\right)\left(L_{l_{h}}-L_{A_{l_{h}}}\right)=-L_{\lambda} L_{A_{l_{h}}}+L_{A_{\lambda}} L_{A_{l_{h}}} .
$$

Thus $\lambda \in A_{l_{h}} \cap[r+1, s]\left(=B_{l_{h}}\right)$ and $A_{\lambda} \cap A_{l_{h}}=\varnothing$ by $A_{l_{h}} \cap[1, r]=\varnothing$.
q.e.d.
(2.11.5) Sublemma. Let j be the same as in (2.11.1). Then $B_{j}=\varnothing$.

Proof. We prove this by induction on $\delta(S):=s-r=s(S)-r(S)=b_{2}(C)+\left(K_{S}+\right.$ $C)^{2}$. If $s=r+1$, then $B_{s}=\varnothing$ by (2.10) and $s \notin B_{s}$. Next we assume that $s>r+1$ and that (2.11.5) is true for $\delta(S) \leqq s-r-1$. Assume $B_{j} \neq \varnothing$ to derive a contradiction. By (2.11.3), we choose l_{h}. Suppose $C_{\lambda} C_{l_{1}}=1$. By (2.11.4), we may assume $\lambda=l_{m}$ or $\lambda \in B_{l_{1}}$. If $\lambda=l_{m}$, then $C_{l_{1}}+C_{\lambda} \sim L_{l_{m}}-L_{l_{2}}-L_{\Lambda}$ for some Λ. If $\lambda \in B_{l_{1}}$, then $C_{l_{1}}+C_{\lambda} \sim L_{l_{1}}-L_{l_{2}}-L_{\Lambda^{\prime}}$ for some Λ^{\prime}. By deforming S suitably, we have a (not necessarily minimal) surface \mathscr{S}_{t} with $b_{1}\left(\mathscr{S}_{t}\right)=1$ and a cycle $\mathscr{C}_{t}=\mathscr{C}_{t}^{\prime}+\left(C-C_{l_{1}}-C_{\lambda}\right), \mathscr{C}_{t}^{\prime}$ being a nonsingular rational curve for $t \neq 0, \mathscr{C}_{0}^{\prime}=C_{l_{1}}+C_{\lambda}$. In this situation, $C_{h}(1 \leqq h \leqq r)$ survives on \mathscr{S}_{t}. However if $\lambda=l_{m}$ (resp. $\lambda \in B_{l_{1}}$), then there is no irreducible component of \mathscr{C}_{t} homologically equivalent to $L_{l_{1}}-L_{\Lambda^{\prime}}\left(\right.$ resp. $L_{\lambda}-L_{\Lambda^{\prime}}$) for any Λ^{\prime}. This implies that the index sets B_{j} and $[1, s]$ are changed into $B_{j} \backslash\left\{l_{1}\right\}$ and $[1, s] \backslash\left\{l_{1}\right\}$ (resp. $B_{j} \backslash\{\lambda\}$) and $[1, s] \backslash\{\lambda\}$) on \mathscr{S}_{i}. If $\lambda \neq i, k($ resp. $\lambda=i)$, then $C_{j} C_{i}=C_{j} C_{k}=1, C_{j} \mathscr{C}_{t}^{\prime}=C_{j} C_{l}=0\left(\right.$ resp. $\left.C_{j} \mathscr{C}_{t}^{\prime}=C_{j} C_{k}=1, C_{j} C_{l}=0\right)$ on \mathscr{S}_{t} for $l \neq i, k, \lambda, l_{1}$, and the condition in (2.11.1) for \mathscr{S}_{t} is satisfied. The case $\lambda=k$ is similar. We note $\delta\left(\mathscr{S}_{t}\right)=s-r-1<\delta(S)$. By the induction hypothesis on \mathscr{S}_{t}, either $B_{j} \backslash\left\{l_{1}\right\}$ or $B_{j} \backslash\{\lambda\}$ is empty. This implies $\#\left(B_{j}\right)=1$, which contradicts (2.11.3). q.e.d.
(2.12) Lemma. Let D_{j} be irreducible curves not contained in C.
(2.12.1) Suppose $D_{j} \sim L_{j}-L_{k_{j}}\left(1 \leqq j \leqq l, 1 \leqq k_{j} \leqq m\right)$. Then $l \leqq m-1$. If $l=m-1$, then $D_{j-1} D_{j}=1(2 \leqq j \leqq m-1)$, and $D_{i} D_{j}=-2 \delta_{i j}(i \neq j \pm 1)$ by suitable indexing, and moreover either $D_{1} \sim L_{1}-L_{m}$ and $D_{j} \sim L_{j}-L_{j-1}(2 \leqq j \leqq m-1)$ or $D_{j} \sim L_{j}-L_{j+1}(1 \leqq j \leqq m-1)$.
(2.12.2) Supposse $D_{j} \sim L_{j}-L_{k_{j}}\left(2 \leqq j \leqq l, 1 \leqq k_{j} \leqq m\right)$. Then $l \leqq m+1$. If $l=m$ or $m+1$, then $D_{j-1} D_{j}=1(2 \leqq j \leqq l), D_{i} D_{j}=-2 \delta_{i j}(i \neq j \pm 1)$ by suitable indexing. If $l=m+1$, then $D_{j} \sim L_{j}-L_{j-1}(2 \leqq j \leqq l)$. If $l=m$, then either $D_{j} \sim L_{j}-L_{j-1}(2 \leqq j \leqq l)$ or $D_{j} \sim L_{j}-L_{j+1}$ $(2 \leqq j \leqq l-1)$ and $D_{l} \sim L_{l}-L_{1}$.

Note that each of the two cases in (2.12.1) $l=m-1$ as well as those in (2.11.2) $l=m$ is reduced to the other by suitable indexing for L_{j}.

Proof of (2.12.1). If there is a pair of i and j such that $k_{i}=k_{j}$, then $D_{i} D_{j}<0$, which is absurd. Hence $k_{i} \neq k_{j}$ for $i \neq j$ so that $l \leqq m$. If $l=m$ and $k_{i} \neq k_{j}$ for $i \neq j$, then
$D_{1}+\cdots+D_{l} \sim 0$ which contradicts (2.2) by [14, (2.10)].
Assume $l=m-1$. Let $\left\{k_{1}, \cdots, k_{m-1}\right\}=[1, m] \backslash\{a\}$. Then $D_{1}+\cdots+D_{l} \sim L_{a}-L_{m}$ whence $m \neq a$. We have

$$
-2=\left(D_{1}+\cdots+D_{l}\right)^{2}=-2(m-1)+2 \sum_{i<j} D_{i} D_{j}
$$

Hence $\sum_{i<j} D_{i} D_{j}=m-2$. This shows that $D_{1}+\cdots+D_{l}$ is connected by (2.2.1). Take mutually distinct $j, \lambda, v, \mu \in[1, l]$. Then $D_{\lambda}+D_{v}+D_{\mu} \sim L_{I}-L_{J}$, where $\# I=\# J \leqq 3$, $I \cap J=\varnothing$. Hence

$$
D_{j}\left(D_{\lambda}+D_{v}+D_{\mu}\right)=\left(L_{j}-L_{k_{j}}\right)\left(L_{I}-L_{J}\right) \leqq-L_{j} L_{J}-L_{k_{j}} L_{I} \leqq 2 .
$$

This shows that $D_{1}+\cdots+D_{l}$ is a straight chain, that is, $D_{j-1} D_{j}=1(2 \leqq j \leqq l)$, $D_{i} D_{j}=-2 \delta_{i j}$ (otherwise) by suitable indexing. Then if $1<a<m-1$, then we have $k_{a}=a-1$ by $D_{a-1} D_{a}=1$, while $k_{a}=a+1$ by $D_{a} D_{a+1}=1$. This is absurd. Consequently $a=1$ or $m-1$. The rest is clear.

Proof of (2.12.2). By the same argument as above, $k_{i} \neq k_{j}$ for $i \neq j$, and $l \leqq m+1$. If $l=m+1$ or m, then $\sum_{i<j} D_{i} D_{j}=l-2$. It follows that $D_{2}+\cdots+D_{l}$ is a connected straight chain of (-2)-curves, that is, $D_{j-1} D_{j}=1(2 \leqq j \leqq l), D_{i} D_{j}=-2 \delta_{i j}$ (otherwise) by suitable indexing. One sees readily that if $l=m+1$, then $D_{j} \sim L_{j}-L_{j-1}(2 \leqq j \leqq l)$. If $l=m$, then either $D_{j} \sim L_{j}-L_{j-1}(2 \leqq j \leqq l)$ or $D_{j} \sim L_{j}-L_{j+1}(2 \leqq j \leqq l-1)$ and $D_{l} \sim$ $L_{1}-L_{1}$:
(2.13) Definition. A reduced connected divisor D is called a branch of the cycle C if $C D=1$ and if D has no components common with C.

In the rest of this section, we consider the case where C has at least a branch, for instance, and a nonsingular rational curve D with $C D=1$. If $a \mathrm{VII}_{0}$ surface has a cycle of rational curves with branches, then it satisfies the conditions (2.2.1)-(2.2.4).
(2.14) Lemma. Let S be $a \mathrm{VII}_{0}$ surface with a rational curve C with a node. Suppose that there is a nonsingular rational curve D with $C D=1$. Then by indexing L_{j} suitably, we have

$$
C=-\left(L_{2}+\cdots+L_{n}\right), \quad D \sim L_{2}-L_{1} .
$$

Proof. By (1.7) we may assume

$$
C=-\left(L_{r+1}+\cdots+L_{n}\right), \quad K_{S}=L_{1}+\cdots+L_{n}, \quad 1 \leqq r \leqq n-1 .
$$

Assume that $D \sim a_{1} L_{1}+\cdots+a_{n} L_{n}$ with $C D=1$. Then we have $1=C D=a_{r+1}+\cdots+$ a_{n}. $\mathrm{By}(2.5),\left(a_{r+1}, \cdots, a_{n}\right)=(1,0, \cdots, 0)$ up to permutation. Since $D^{2} \leqq-2$, there is a nonzero $a_{j}(1 \leqq j \leqq r)$. We may assume $a_{1} \neq 0$. Since $L_{1} C=0$, we get $r=1$ by (2.4.3). Thus $D \sim L_{i}-L_{1}(2 \leqq i \leqq n)$.
(2.15) Lemma. Let S be a VII_{0} surface with a cycle $C=C_{1}+C_{2}$ of two rational
curves. If $\left(K_{S}+C\right)^{2} \leqq-2$ and if there is a nonsingular rational curve D with $C_{1} D=0$, $C_{2} D=1$, then by indexing L_{j} suitably. we have

$$
C=-\left(L_{3}+\cdots+L_{n}\right), \quad C_{1} \sim L_{1}-L_{2}-L_{I}, \quad C_{2} \sim L_{2}-L_{1}-L_{J},
$$

as well as either $D \sim L_{i}-L_{2}$ and $i \in I$, or $D \sim L_{i}-L_{1}-L_{2}$ and $i \in J$, where $I \cap J=\varnothing$, $I \cup J=[3, n], n=b_{2}(S)$.

Proof. By (2.9), we may set $C_{1} \sim L_{1}-L_{I^{\prime}}, C_{2} \sim L_{2}-L_{J^{\prime}}$ for some I^{\prime} and J^{\prime} such that $1 \notin I^{\prime}, 2 \notin J^{\prime}$, Since $C_{1} C_{2}=2$, we have $2=-L_{1} L_{J^{\prime}}-L_{2} L_{I^{\prime}}+L_{I^{\prime}} L_{J^{\prime}}$. Hence $1 \in J^{\prime}, 2 \in I^{\prime}$ and $I^{\prime} \cap J^{\prime}=\varnothing$. By setting $I=I^{\prime} \backslash\{2\}, J=J^{\prime} \backslash\{1\}$, we obtain the expressions for C_{1} and C_{2}.

Let $L^{\prime}=L_{1}+L_{2}$. Then $L^{\prime} C_{1}=L^{\prime} C_{2}=0$. Hence $r=2$ and $I \cup J=[3, n]$ by (2.4.3). Let D be a nonsingular rational curve with $C_{2} D=1$. By (2.6), we have $D \sim L_{i}-L_{\Lambda}$ for some i and Λ. By (2.7), $i \geqq 3$. By $C_{1} D=0, C_{2} D=1$, we have

$$
\begin{align*}
& -L_{i} L_{I}-L_{1} L_{\Lambda}+L_{2} L_{\Lambda}+L_{I} L_{\Lambda}=0 \tag{2.15.1}\\
& -L_{i} L_{J}+L_{1} L_{\Lambda}-L_{2} L_{\Lambda}+L_{J} L_{\Lambda}=1 \tag{2.15.2}
\end{align*}
$$

From (2.15.1) + (2.15.2) and $i \in I \cup J$, it follows that $\left(L_{I}+L_{J}\right) L_{\Lambda}=1+\left(L_{I}+L_{J}\right) L_{i}=0$. Thus $L_{I} L_{\Lambda}=L_{J} L_{\Lambda}=0$, whence $I \cap \Lambda=J \cap \Lambda=\varnothing$. Consequently, Λ is a subset of $\{1,2\}$. If $\Lambda=\{1\}$, then

$$
C_{2} D=\left(L_{2}-L_{1}-L_{J}\right)\left(L_{i}-L_{1}\right)=-1-L_{i} L_{J} \leqq 0,
$$

which is absurd. Hence $\Lambda=\{2\}$ or $\{1,2\}$. The rest is clear by (2.15.1) and (2.15.2). q.e.d.
(2.16) Examples. Let S be a VII_{0} surface with $b_{2}=2$ or 3 containing a global spherical shell. Suppose that there is a cycle $C=C_{1}+\cdots+C_{r}$ with a branch $D_{r+1}+\cdots+D_{b_{2}}$ on S. Then by [4], [8], [15], [16] the dual graph of curves on S is given in Figure 2.16 below.

In Figure 2.16, a black vertex (resp. a white vertex) denotes a rational curve with a node (resp. a nonsingular rational curve). An edge stands for transversal intersection at a point, while a double edge stands for transversal intersection at two distinct points. Each integer below a vertex denotes the self-intersection number of the corresponding curve.

By (2.6), (2.14) and (2.15) we can express the curves C_{i} and D_{j} in terms of a canonical basis L_{1}, L_{2} (and L_{3}) as follows:

$$
\begin{align*}
& C=-L_{1}, D_{2} \sim L_{1}-L_{2}, \tag{2.16.1}\\
& C=-L_{1}-L_{2}, D_{2} \sim L_{1}-L_{3}, D_{3} \sim L_{2}-L_{1}, \tag{2.16.2}\\
& C_{1} \sim L_{1}-L_{2}, C_{2} \sim L_{2}-L_{1}-L_{3}, D_{3} \sim L_{3}-L_{1}-L_{2}, \tag{2.16.3}\\
& C_{1} \sim L_{1}-L_{2}-L_{3}, C_{2} \sim L_{2}-L_{1}, D_{3} \sim L_{3}-L_{2} . \tag{2.16.4}
\end{align*}
$$

The cycle C consists of two rational curves C_{1} and C_{2} in (2.16.3) and (2.16.4), while the cycle consists of a single rational curve with a node in (2.16.1) and (2.16.2). We note that the two cases in (2.15) are really possible as (2.16.3) and (2.16.4) show and that (2.16.1)-(2.16.4) exhaust all the possible dual graphs of $b_{2}(\leqq 3)$ curves on special VII_{0} surfaces.

(2.17) Lemma. Let S be a VII_{0} surface with a cycle $C=C_{1}+\cdots+C_{s}$ of s rational curves ($s \geqq 3$). Suppose that $\left(K_{S}+C\right)^{2} \leqq-2$ and that there is a nonsingular rational curve D with $C_{h} D=1$ and $C_{j} D=0(j \neq h)$. We choose a canonical basis L_{j} subject to (2.10.1)-(2.10.3). Let $D \sim L_{\alpha}-L_{\Lambda}$ and $\alpha \in I_{l}$ for some α, Λ and l. Then
(2.17.1) $1 \leqq h \leqq r, 1 \leqq l \leqq r$ and $\Lambda \subset[1, r]$,
(2.17.2) $\Lambda= \begin{cases}{[1, r]} & \text { if } l=h, \\ {[h, l-1]} & \text { if } h<l \leqq r, \\ {[h, r] \cup[1, l-1]} & \text { if } 1 \leqq l<h ;\end{cases}$
(2.17.3) If $\Lambda=[1, r]$, then D is a unique irreducible branch of C.

Proof. By (2.6), let $D \sim L_{\alpha}-L_{\Lambda}$. Then $\alpha \geqq s+1$, and $\alpha \notin \Lambda$ by (2.7). Thus $1=C D=-L_{[r+1, n]}\left(L_{\alpha}-L_{\Lambda}\right)=1+L_{[r+1, n]} L_{\Lambda}$, whence $[r+1, n] \cap \Lambda=\varnothing$. Therefore Λ is a nonempty subset of $[1, r]$. There is a unique $h \in[1, s]$ such that $C_{h} D=1$. Then $C_{j} D=0$ for any $j \neq h$.

We now prove $1 \leqq h \leqq r$. Suppose $r+1 \leqq h \leqq s$. Since $C_{h} D=1$ and $h \notin \Lambda \subset[1, r]$, we have

$$
1=\left(L_{h}-L_{B_{h}}-L_{I_{h}}\right)\left(L_{\alpha}-L_{A}\right)=-L_{\alpha} L_{I_{h}}+L_{B_{h}} L_{\Lambda} .
$$

Hence $\alpha \in I_{h}$ and $B_{h} \cap \Lambda=\varnothing$. By (2.10.3), $\alpha \notin I_{j}(j \neq h)$. Since $C_{j} D=0(j \neq h)$, we have $L_{A} C_{j}=L_{\alpha} C_{j}-D C_{j}=-L_{\alpha} L_{I_{j}}-D C_{j}=0$. On the other hand, $L_{A} C_{h}=L_{A}\left(L_{h}-L_{B_{h}}\right)=0$. Therefore $\Lambda=[1, r]$ by (2.4.3). Let $\pi: S^{\prime} \rightarrow S$ be an unramified double covering of S, and let $\pi^{*} L_{j}=L_{j}^{\prime}+L_{j}^{\prime \prime}, \pi^{*} C_{j}=C_{j}^{\prime}+C_{j}^{\prime \prime}, \pi^{*} D=D^{\prime}+D^{\prime \prime}$. Then L_{j}^{\prime} and $L_{j}^{\prime \prime}(1 \leqq j \leqq n)$ form a canonical basis of $H^{2}\left(S^{\prime}, \boldsymbol{Z}\right)$. Moreover,

$$
\pi^{*} C=-L_{[r+1, n]}^{\prime}-L_{[r+1, n]}^{\prime \prime}, \quad K_{S^{\prime}}=\pi^{*} K_{S}=L_{[1, n]}^{\prime}+L_{[1, n]}^{\prime \prime} .
$$

Hence $K_{S^{\prime}}+\pi^{*} C=L_{[1, r]}^{\prime}+L_{[1, r]}^{\prime \prime}$. We may assume $D^{\prime} C_{h}^{\prime}=D^{\prime \prime} C_{h}^{\prime \prime}=1$. By the same argument as above, letting $D^{\prime} \sim L_{\alpha}^{\prime}-L_{I}^{\prime}-L_{J}^{\prime \prime}$, we get $L_{I}^{\prime}+L_{J}^{\prime \prime}=L_{[1, r]}^{\prime}+L_{[1, r]}^{\prime \prime}$, whence $\left(D^{\prime}\right)^{2}=$ $-2 r-1$. This is absurd because $\left(D^{\prime}\right)^{2}=D^{2}=-r-1$, and $r>0$. Thus $1 \leqq h \leqq r$.

Suppose $l>r$ next. Then by $C_{l} D=0$ and (2.10), we have

$$
0=\left(L_{l}-L_{B_{l}}-L_{I_{l}}\right)\left(L_{\alpha}-L_{A}\right)=-L_{\alpha} L_{I_{l}}+L_{B_{l}} L_{A}=1,
$$

which is absurd. Thus we complete the proof of (2.17.1).
Assume $l=h$. Then $\alpha \in I_{h}$. By $C_{h} D=1$, we have $1=-L_{\alpha} L_{I_{h}}-L_{h} L_{\Lambda}+L_{B_{h}} L_{\Lambda}$. Hence $L_{A} C_{h}=0$ and $L_{A}\left(L_{h}-L_{B_{h}}-L_{I_{h}}\right)=0$. Since $\alpha \in I_{h}$, we see that $I_{j}(j \neq h)$ does not contain α. Therefore for $j \neq h$,

$$
L_{\Lambda} C_{j}=\left(L_{\Lambda}+D\right) C_{j}=L_{\alpha}\left(L_{j}-L_{B_{j}}-L_{I_{j}}\right)=-L_{\alpha} L_{I_{j}}=0 .
$$

By (2.4.3), we have $\Lambda=[1, r]$.
Assume next $h<l \leqq r$. Then from $C_{h} D=1$ it follows that $h \in \Lambda, h-1 \notin \Lambda$ and $B_{h} \cap \Lambda=\varnothing$. (Here if $h=1$, then $h-1 \notin \Lambda$ means $r \notin \Lambda$.) By $C_{j} D=0$ for $h+1 \leqq j \leqq l-1$, we have $j-1 \in \Lambda$ if and only if $j \in \Lambda$. This implies that Λ contains [$h, l-1$]. Similarly, $j-1 \in \Lambda$ if and only if $j \in \Lambda$ for $l+1 \leqq j \leqq r$ or $1 \leqq j \leqq h-1$. Hence $\Lambda=[h, l-1]$. If $h>l$, then $\Lambda=[h, r] \cup[1, l-1]$ by the same argument. This completes the proof of (2.17.2).

Finally we prove (2.17.3). Assume that $D \sim L_{\alpha}-L_{[1, r]}$ and that there is another irreducible curve D^{\prime} with $C D^{\prime}=1$. Then by (2.17.1), we see that $D^{\prime} \sim L_{\beta}-L_{\Gamma}$ for a nonempty subset Γ of $[1, r]$. Hence $D D^{\prime}=L_{[1, r]} L_{\Gamma}=-\#(\Gamma)<0$, which is absurd.
q.e.d.
(2.18) Corollary. Let S be a VII_{0} surface with a cycle C of rational curves. Then for any irreducible component C_{i} of $C(1 \leqq i \leqq r)$, there exists at most one irreducible branch D of C with $C_{i} D=1$.

Proof. We assume $\left(K_{S}+C\right)^{2} \leqq-3$ and $b_{2}(C) \geqq 3$. Suppose that there exist two irreducible curves D, D^{\prime} such that $D C_{h}=D^{\prime} C_{h}=1$. Then by (2.17), we see that $D \sim L_{\alpha}-L_{A}$, $D^{\prime} \sim L_{\beta}-L_{\Gamma}$ for some $\alpha, \beta \in[s+1, n]$, and $\Lambda, \Gamma \subset[1, r]$. By (2.17.2), $\Lambda \cap \Gamma$ contains h, whence $D D^{\prime}=L_{A} L_{\Gamma}<0$. This is absurd. If $\left(K_{S}+C\right)^{2} \geqq-2$ or $b_{2}(C) \leqq 2$, then take a triple covering S^{*} of S. By the above, any irreducible component C_{i}^{*} of the pull-back C^{*} of C has at most one irreducible branch, hence so does any irreducible component of C. q.e.d

3. Dual graphs of curves (1).

(3.1) Lemma. Suppose that there exist a positive integer m, an effective divisor D and a flat line bundle F such that $m K_{s}+D=m F$. Then $D_{\text {red }}$ is connected, and $D_{\text {red }}$ contains a cycle of rational curves.

Proof. Suppose $m=1, F \neq O_{s}$. Then $p_{a}(D)=\left(K_{S} D+D^{2}\right) / 2+1=1$, whence by [14, (2.7)], $D_{\text {red }}$ contains a cycle C of rational curves. Let E be a connected component of D containing C. Consider the exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}(S, F-D) \rightarrow H^{0}(S, F) \rightarrow H^{0}\left(D, O_{D}(F)\right) \\
& \rightarrow H^{1}(S, F-D) \rightarrow H^{1}(S, F) \rightarrow H^{1}\left(D, O_{D}(F)\right) \\
& \rightarrow H^{2}(S, F-D) \rightarrow H^{2}(S, F) \rightarrow 0 .
\end{aligned}
$$

By (2.2) and $[14,(2.10)]$, we have $H^{0}(S, F)=0$ and $H^{0}(S,-F)=0$. Hence $h^{2}(S, F)=h^{0}\left(S, K_{S}-F\right)=h^{0}(S,-D)=0$. By the Riemann-Roch theorem, we have $H^{1}(S, F)=0$. Hence $h^{1}\left(D, O_{D}(F)\right)=h^{2}(S, F-D)=h^{0}\left(S, K_{S}+D-F\right)=1$. Let E^{\prime} be a connected component of $D_{\text {red }}$ with $E^{\prime} \cap C=\varnothing$. Then E^{\prime} is simply connected by (2.2). Therefore the line bundle F is trivial on a small neighborhood of E^{\prime}. Hence $H^{1}\left(D^{\prime}, O_{D^{\prime}}(F)\right) \cong H^{1}\left(D^{\prime}, O_{D^{\prime}}\right)=0$ for any divisor D^{\prime} with $\operatorname{supp}\left(D^{\prime}\right)=E^{\prime}$. Hence $H^{1}\left(D, O_{D}(F)\right) \cong H^{1}\left(E, O_{E}(F)\right)$ for some $E \leqq D$ with $E_{\text {red }}$ connected. Now consider the exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}(S, F-E) \rightarrow H^{0}(S, F) \rightarrow H^{0}\left(E, O_{E}(F)\right) \\
& \rightarrow H^{1}(S, F-E) \rightarrow H^{1}(S, F) \rightarrow H^{1}\left(E, O_{E}(F)\right) \\
& \rightarrow H^{2}(S, F-E) \rightarrow H^{2}(S, F) \rightarrow 0 .
\end{aligned}
$$

Hence $h^{0}(S,-D+E)=h^{0}\left(S, K_{S}+E-F\right)=h^{2}(S, F-E)=h^{1}\left(E, O_{E}(F)\right)=1$. This shows that $D=-D^{\prime \prime}+E$ for an effective $D^{\prime \prime}$. Hence $E=D, D^{\prime \prime}=0$ and $D_{\text {red }}$ is connected.

Assume next $m=1$ and $F=O_{S}$. It follows easily from [14, (2.6)] that $h^{1}\left(O_{D}\right)=2$. Let E be a connected component of $D, E_{\text {red }}$ containing a cycle of rational curves. If $h^{1}\left(O_{E}\right)=1$, then $h^{1}\left(O_{G}\right)=1$ for $G:=D-E$. By $[14,(2.3)], G$ contains an elliptic curve or a cycle of rational curves, a contradiction to (2.2). Hence $h^{1}\left(O_{E}\right)=2$. Therefore $h^{0}\left(S, K_{S}+E\right)=h^{2}(S,-E)=1$ by $[14,(2.8)]$, whence $-D+E$ is effective (or zero). This shows that $E=D$, and D is connected.

Next we consider the case $m>1$. Consider an m-fold cyclic covering $X=\left\{(\zeta, x) \in-K_{S}+F ; \zeta^{m}=d(x)\right\}$ of S where ζ (resp. $d(x)$) is the fiber coordinate of $-K_{S}+F$ (resp. a defining equation for D). Take a minimal resolution Y of singularities of X. Let Z be the minimal model of Y. Then by the same argument as in [14, (12.4)] we can show that Y is a surface with $b_{1}=1$ and $K_{Y}=-H+G$ for an effective H and a flat line bundle G on Y, and that Z is a VII_{0} surface with $K_{Z}=-H^{\prime}+G^{\prime}$ for an effective H^{\prime} and a flat line bundle G^{\prime} on Z. By the above argument in the case $m=1$, it follows that H^{\prime} is connected.

Let A be an exceptional curve on Y with $A^{2}=-1$. If A is contained in H, then the number of connected components of H is stable in blowing A down. If A is not contained in H, then by $K_{Y} A=-1$, we have $H A=1$. Hence the number of connected components of H is stable in blowing A down. Since H^{\prime} is connected, so is H. Hence the image D of H is also connected. It follows from the proof of [14, (12.4)] that $D_{\text {red }}$ contains a cycle of rational curves.
q.e.d.
(3.2) Lemma. Suppose that $m K_{S}+D=G$ for an effective divisor D and a flat line
bundle G. If an irreducible curve E intersects D_{red}, then E is contained in D_{red}. In particular, if $E^{2} \leqq-3$, then E is contained in $D_{\text {red }}$.

Proof. If E is not contained in $D_{\text {red }}$ and if E intersects $D_{\text {red }}$, then $D E>0$. But $-D E=m K_{S} E \geqq 0$, which is absurd. If $E^{2} \leqq-3$, then $K_{S} E \geqq 1$, whence $E D<0$ Hence E is contained in D.
q.e.d.
(3.3) Definition. A VII surface S with $b_{2}>0$ is said to be special if S has at least b_{2} rational curves.

By [14, (3.5)], any special VII_{0} surface has exactly b_{2} rational curves. Any VII_{0} surface with a global spherical shell is special. See [4], [8], [16] as well as (5.2).
(3.4) Lemma. An arbitrary special VII_{0} surface has a cycle of rational curves.

Proof. By (2.2), there exist no elliptic curves and no cycles C of rational curves with $C^{2}=0$. Hence the intersection matrix $\left(C_{i} C_{j}\right)$ is negative definite by $[14,(2.10)]$, where $C_{j}\left(j=1, \cdots, b_{2}\right)$ are all rational curves on S. Hence C_{j} is a \boldsymbol{Q}-basis of $H^{2}(S, \boldsymbol{Q})$. Thus there exist a positive integer m, an effective divisor D and a flat line bundle $F \in H^{1}\left(S, C^{*}\right)\left(\cong C^{*}\right)$ such that $m K_{S}=-D+F$ in $H^{1}\left(S, O_{S}^{*}\right)$. Hence by (3.1), $D_{\text {red }}$ contains a cycle of rational curves. q.e.d.

In the rest of $\S 3$ and $\S 4$ throughout, we always assume that S is a special VII_{0} surface satisfying (2.2.1)-(2.2.4).
(3.5) Lemma. Let E be a connected effective divisor such that $E \sim L_{k}-L_{\Lambda}$ for some $k \geqq s+1$ and $\Lambda \subset[1, r]$. Let D be a reduced (possibly reducible) curve which contains none of E and the irreducible components of C. If $D \sim L_{j}-L_{k}-L_{J}$ for $j \geqq s+1$, then $E D=1, J \subset[1, r]$ and $\Lambda \cap J=\varnothing$.

Proof. Let $D=D_{1}^{\prime}+D_{2}^{\prime}+\cdots+D_{m}^{\prime}$ with D_{i}^{\prime} irreducible. Then we may assume $D_{i}^{\prime} \sim L_{i}-L_{A_{i}}$ for some $i \geqq s+1$ with $i \neq k$. By assumption, there exists D_{i}^{\prime} with $k \in A_{i}$. We may assume $k=s+1$ and $i=s+2$. Suppose $E D=0$. Then $E D_{i}^{\prime}=0$. Hence $D_{1}:=D_{i}^{\prime} \sim L_{s+2}-L_{s+1}-L_{J_{1}}$ for $J_{1} \subset J$, and $J_{1} \cap \Lambda \neq \varnothing$. Then by $C D_{1} \geqq 0$, we have $J_{1} \cap[r+1, n]=\varnothing$ so that $\varnothing \neq J_{1} \subset[1, r]$ and $C D_{1}=0$. We also see that there exist no irreducible curves $D^{\prime} \sim L_{i}-L_{s+1}-L_{J^{\prime}}$ for $i \geqq s+3$. Indeed, otherwise, we have $J^{\prime} \subset[1, r]$ by the same argument as above, whence $D^{\prime} D_{1}=L_{s+1}^{2}-\#\left(J^{\prime} \cap J_{1}\right)<0$. If an irreducible curve D_{2} not contained in C meets D_{1}, then $D_{1} D_{2}=1, C D_{2}=0, D_{2} \sim L_{i}-L_{s+2}-L_{J_{2}}$ for some $i \geqq s+3$ and $J_{2} \subset[1, r], J_{1} \cap J_{2}=\varnothing$. Moreover, D_{2} is a unique irreducible curve meeting D_{1}, because, if D^{\prime} meets D_{1}, then $D^{\prime} \sim L_{p}-L_{s+2}-L_{J^{\prime}}$ for some $p(\geqq s+3)$, $J^{\prime} \subset[1, r]$ and $D^{\prime} D_{2} \leqq-1$, therefore $D^{\prime}=D_{2}$. Now we may assume $i=s+3$ and $D_{2} \sim L_{s+3}-L_{s+2}-L_{J_{2}}$. If there exists an irreducible curve $D_{3}\left(\neq D_{1}, C_{i}\right)$ meeting D_{2}, then $D_{3} \sim L_{j}-L_{s+3}-L_{J_{3}}$ for some $j \geqq s+4$ by (2.7), and D_{3} is a unique irreducible curve other than D_{1} which intersects D_{2}.

Repeating this argument, we obtain irreducible curves D_{2}, \cdots, D_{m} such that (by
indexing suitably), $D_{j} \sim L_{j+s+1}-L_{j+s}-L_{J_{j}}(2 \leqq j \leqq m)$ and $C D_{j}=0$, where J_{p} is a subset of $[1, r]$ with $J_{p} \cap J_{q}=\varnothing(p \neq q)$, and there exist no irreducible curves meeting $D_{1}+\cdots+D_{m}$. In particular, $C\left(D_{1}+\cdots+D_{m}\right)=0$. Hence there exist no connected divisors containing both C and D_{1}. However, since $D_{1}^{2} \leqq-3$ by $J_{1} \neq \varnothing, D_{1}$ is contained in a connected numerical antipluricanonical divisor which contains C by (3.2). This is absurd. Consequently $E D=1$ and $\Lambda \cap J=\varnothing$.
q.e.d.
(3.6) Theorem. Let S be a special VII_{0} surface with a cycle $C=C_{1}+\cdots+C_{s}$ of rational curves. Then $r=s$.

Proof. We assume first $\left(K_{S}+C\right)^{2} \leqq-2$ and $s \geqq 2$. By (2.10) we take a canonical basis L_{j} subject to (2.10.1)-(2.10.3). Assume $s>r$ to derive a contradiction. By (2.11) there exists an irreducible component $C_{j}(r+1 \leqq j \leqq s)$ of C such that $B_{j}=\varnothing$ and $C_{j} \sim L_{j}-L_{I_{j}}$ with $I_{j} \subset[s+1, n]$. Since S is special, there exists an irreducible curve $D_{k} \sim L_{k}-L_{A_{k}}$ for any $k \in I_{j}$ by (2.7). Then

$$
\begin{gathered}
C_{j} D_{k}=\left(L_{j}-L_{I_{j}}\right)\left(L_{k}-L_{A_{k}}\right)=1-L_{j} L_{A_{k}}+L_{I_{j}} L_{A_{k}} \\
C D_{k}=-L_{[r+1, n]}\left(L_{k}-L_{A_{k}}\right)=1+L_{[r+1, n]} L_{A_{k}} .
\end{gathered}
$$

Suppose $C D_{k}=1$. Then $[r+1, n] \cap A_{k}=\varnothing$, whence $A_{k} \subset[1, r]$. Hence $C_{j} D_{k}=1$, which contradicts (2.17.1). Therefore, $C D_{k}=0$ and $\#\left(A_{k} \cap[r+1, n]\right)=1$. Hence $C_{j} D_{k}=0$ so that $j \notin A_{k}$ and $\#\left(I_{j} \cap A_{k}\right)=1$. Let $\left\{k^{\prime}\right\}=I_{j} \cap A_{k}=[r+1, n] \cap A_{k}$. Then $D_{k} \sim L_{k}-L_{k^{\prime}}-L_{A_{k}^{\prime}}$ where $A_{k}^{\prime}:=A_{k} \backslash\left\{k^{\prime}\right\}$ is a subset of $[1, r]$. By indexing suitably, we have a subset $\left\{k_{1}, \cdots, k_{m}\right\}$ of I_{j} such that $D_{k_{i}} \sim L_{k_{i}}-L_{k_{i+1}}-L_{A k_{i}}(1 \leqq i \leqq m)$ with $C D_{k_{i}}=0$, where $k_{m+1}=k_{1}$, $A_{k_{i}}^{\prime} \subset[1, r]$.

Let D^{\prime} be an irreducible curve different from $D_{k_{i}}, C_{j}(1 \leqq i \leqq m, 1 \leqq j \leqq s)$. Then by $C D^{\prime} \leqq 1$, we have either $D^{\prime} \sim L_{k}-L_{k^{\prime}}-L_{A_{k}^{\prime}}\left(k \in[s+1, n], k^{\prime} \in[r+1, n], A_{k}^{\prime} \subset[1, r]\right)$ or $D^{\prime} \sim L_{k}-L_{A_{k}}\left(k \in[s+1, n], A_{k} \subset[1, r]\right)$, where $k \neq k_{i}$ by (2.7). In the first case, $k^{\prime} \neq k_{i}$, because $D^{\prime} D_{k_{i-1}}<0$ if $k^{\prime}=k_{i}$. In either case, $D^{\prime} D_{k_{i}}=0$ for any i. Since $D_{k_{i}}$'s do not form a cycle of rational curves by (2.2), there exists i such that $D_{k_{i}} D_{k_{i+1}}=0$ or $D_{k_{m}} D_{k_{1}}=0$. Hence there exists i such that $A_{k_{i}}^{\prime} \neq \varnothing$ and $\left(D_{k_{i}}\right)^{2} \leqq-3$. By (3.1) and (3.4), $D_{k_{i}}$ is contained in a connected divisor containing C. However as was shown above, $C D_{k_{i}}=0$ and no curves except $D_{k_{j}}$ meet $D_{k_{i}}$, which is absurd.

Hence $r=s$ if $\left(K_{S}+C\right)^{2} \leqq-2$ and $s \geqq 2$. If $\left(K_{S}+C\right)^{2}=-1$ or $s=1$, then take an unramified double covering S^{*} of S, and the pull-back C^{*} of C. Then $\left(K_{S^{*}}+C^{*}\right)^{2}=2\left(K_{S}+C\right)^{2}, b_{2}\left(C^{*}\right)=2 b_{2}(C)$, whence $2 r=2 s$.
q.e.d.
(3.7) Corollary. Let S be a special VII_{0} surface with a cycle C of rational curves. Then

$$
\begin{equation*}
\left(K_{S}+C\right)^{2}=-b_{2}(C) \quad \text { and } \quad b_{2}(C)-C^{2}=b_{2}(S) \tag{3.7.1}
\end{equation*}
$$

(3.7.2) $C_{i} \sim L_{i}-L_{i-1}-L_{I_{i}}(1 \leqq i \leqq r)$ in (2.10), $C_{i-1} C_{i}=1, C_{i} C_{j}=0(i \neq j, j \pm 1 \bmod r)$, where $C_{k+r}=C_{k}$ for any k.

Proof. Clear from (3.6).
(3.8) Theorem. Let S be a special VII_{0} surface with a rational curve C with a node. If C has an irreducible branch D_{2}, then by suitably indexing the remaining curves $D_{j}(3 \leqq j \leqq n)$ and a canonical basis $L_{j}(1 \leqq j \leqq n)$, we have

$$
C=-\left(L_{2}+\cdots+L_{n}\right), \quad D_{j} \sim L_{j}-L_{j-1} \quad(2 \leqq j \leqq n),
$$

where $n=b_{2}(S)$. The dual graph of n curves is as in Figure 3.8, where a black vertex (resp. a white vertex) stands for C (resp. D_{j}).

Figure 3.8
Proof of (3.8). By (2.14), we have $C=-\left(L_{2}+\cdots+L_{n}\right)$ and $D_{2} \sim L_{2}-L_{1}$. Let $D_{j}(3 \leqq j \leqq n)$ be the remaining irreducible curves on S. Let D^{\prime} be one of them. Then $D^{\prime} C=0$ by (2.18). Therefore $D^{\prime} \sim L_{j}-L_{k}$ or $L_{j}-L_{1}-L_{2}$ for $j \geqq 3, k \geqq 2$.
(3.8.1) Sublemma. $D^{\prime} \sim L_{j}-L_{k}$ for some j, k.

Proof of (3.8.1) Otherwise, we may assume $D_{3} \sim L_{3}-L_{1}-L_{2}$. Then there exists no irreducible curve $D^{\prime \prime} \sim L_{j}-L_{1}-L_{2}$ with $D^{\prime \prime} \neq D_{3}$. Hence we may assume $D_{j} \sim L_{j}-L_{k_{j}}$ ($4 \leqq j \leqq n, 3 \leqq k_{j} \leqq n$). By indexing suitably, $D_{j} \sim L_{j}-L_{j-1}(4 \leqq j \leqq n)$ by (2.12.2). Since $D_{3} D_{4}=1$, the curve $D_{3}+D_{4}+\cdots+D_{n}$ is connected but $\left(C+D_{2}\right)\left(D_{3}+\cdots+D_{n}\right)=0$. This contradicts $D_{3}^{2}=-3$ by (3.2). Consequently $D^{\prime} \sim L_{j}-L_{k}$. q.e.d.

We continue the proof of (3.8). Now assume $D_{j} \sim L_{j}-L_{k_{j}}\left(3 \leqq j \leqq n, 2 \leqq k_{j} \leqq n\right)$ by (3.8.1). Hence again by (2.12.2), we have, by indexing suitably, $D_{j} \sim L_{j}-L_{j-1}, D_{j-1} D_{j}=1$ $(3 \leqq j \leqq n)$ and $D_{j} D_{k}=0(k \neq j, j \pm 1)$.
q.e.d.
(3.9) Theorem. Let S be a special VII_{0} surface with a cycle $C=C_{1}+C_{2}$ of two rational curves. If S has an irreducible curve D_{3} with $C_{2} D_{3}=1$, then by indexing suitably, we have one of the following cases:

$$
\begin{align*}
& C_{1} \sim L_{1}-L_{2}-L_{[3, l]}, \quad C_{2} \sim L_{2}-L_{1}-L_{[l+1, l+m-2]}, \tag{3.9.1}\\
& D_{j} \sim L_{j}-L_{j-1}(3 \leqq j \leqq l+m-2, j \neq l+1), \quad D_{l+1} \sim L_{l+1}-L_{1}, \\
& C_{1} \sim L_{1}-L_{2}-L_{[3, l]}, \quad C_{2} \sim L_{2}-L_{1}-L_{[l+1, l+m-2]}, \tag{3.9.2}\\
& D_{j} \sim L_{j}-L_{j-1}(3 \leqq j \leqq l+m-2, j \neq l+1), \quad D_{l+1} \sim L_{l+1}-L_{l}-L_{1}, \\
& C_{1} \sim L_{1}-L_{2}, \quad C_{2} \sim L_{2}-L_{1}-L_{[3, n]}, \tag{3.9.3}\\
& D_{3} \sim L_{3}-L_{1}-L_{2}, \quad D_{j} \sim L_{j}-L_{j-1}(4 \leqq j \leqq n), \\
& C_{1} \sim L_{1}-L_{2}-L_{[3, n]}, \quad C_{2} \sim L_{2}-L_{1}, \quad D_{j} \sim L_{j}-L_{j-1}(3 \leqq j \leqq n), \tag{3.9.4}
\end{align*}
$$

where $l, m, n \geqq 3$ and $b_{2}(S)$ equals $l+m-2$ or $n, C_{1} D_{l+1}$ equals 1 (resp. 0) in (3.9.1) (resp. (3.9.2)). The dual graph of b_{2} curves are as in Figure 3.9.

Figure 3.9

Proof of (3.9). The proof is divided into several cases.
Case 1. First we consider the case where C has two irreducible branches. By (2.18), we may assume that there exist two irreducible curves D and D^{\prime} with $C_{1} D=C_{2} D^{\prime}=1$ and $D D^{\prime}=0$. We are able to apply (2.15) by (3.6). With the notation in (2.15), we may assume

$$
\begin{gathered}
C_{1} \sim L_{1}-L_{2}-L_{I}, \quad C_{2} \sim L_{2}-L_{1}-L_{J}, \quad D \sim L_{k}-L_{1}, \quad D^{\prime} \sim L_{3}-L_{2}, \\
I \cup J=[3, n], \quad I \cap J=\varnothing, \quad 3 \in I, \quad k \in J
\end{gathered}
$$

by indexing suitably. So by letting $C_{1}^{2}=-l$ and $C_{2}^{2}=-m$, we may assume $k=l+1$, $I=[3, l]$ and $J=[l+1, l+m-2]$. Let $D^{\prime \prime}$ be an irreducible curve different from D, D^{\prime} and not contained in C. Then by (2.18) we have $C_{1} D^{\prime \prime}=C_{2} D^{\prime \prime}=0, D D^{\prime \prime} \geqq 0$, and $D^{\prime} D^{\prime \prime} \geqq 0$. Hence $D^{\prime \prime} \sim L_{j}-L_{k_{j}}$ for some k_{j}. We note that $k_{j} \in[3, l]$ (resp. $[l+1, l+m-2]$) if and only if $j \in[4, l]$ (resp. $[l+2, l+m-2]$). Since S is special, we may suitably re-index and assume

$$
D^{\prime \prime}=D_{j} \sim L_{j}-L_{j-1} \quad(4 \leqq j \leqq l+m-2, j \neq l+1)
$$

in view of (2.12.2). Let $D_{3}=D^{\prime}, D_{l+1}=D$. It is easy to see that $D_{1} D_{l+1}=D_{j-1} D_{j}=1$ $(4 \leqq j \leqq l), C_{2} D_{3}=D_{j-1} D_{j}=1(l+2 \leqq j \leqq l+m-2)$ and $D_{i} D_{j}=-2 \delta_{i j}$ (otherwise). This is (3.9.1). The dual graph of n curves is as in Figure 3.9 (i).

Next we consider the case where C has a unique branch with $C_{1} D=0$ and $C_{2} D=1$. By (2.15), we may assume $C_{1} \sim L_{1}-L_{2}-L_{I}$ and $C_{2} \sim L_{2}-L_{1}-L_{J}$. We have either $D \sim L_{i}-L_{2}$ or $D \sim L_{i}-L_{1}-L_{2}$.

Case 2. Consider the case $D \sim L_{i}-L_{2}$. Let $C_{1}^{2}=-l$ and $C_{2}^{2}=-m$. Then $\#(I)=l-2$, \#(J) $=m-2$. By (2.15), we have $i \in I, i \notin J, I \cup J=[3, n]$ and $I \cap J=\varnothing$. So we may assume $i=3, I=[3, l]$ and $J=[l+1, l+m-2]$. Let D^{\prime} be an irreducible curve different from D, C_{1}, C_{2}. Then by $C_{i} D^{\prime}=0$ and $D D^{\prime} \geqq 0$, we have $D^{\prime} \sim L_{j}-L_{k}-L_{A}$ for
some $j(\geqq 4), k(\geqq 3)$ and $\Lambda \subset\{1,2\}$. Notice that if $\Lambda=\{2\}$, then $k=3$ by $D D^{\prime} \geqq 0$, a contradiction to $C_{2} D^{\prime}=0$. Therefore the following three cases are possible:

Case 2-1. There exists an irreducible curve $D^{\prime} \sim L_{j}-L_{3}-L_{1}-L_{2}$ for some $j \in I$.
Case 2-2. There exists an irreducible curve $D^{\prime} \sim L_{j}-L_{k}-L_{1}$ for some $k \in I$ and $j \in J$.

Case 2-3. Any irreducible curve D^{\prime} different D, C_{1} and C_{2} satisfies $D^{\prime} \sim L_{j}-L_{k}$ for some j and k.

Case 2-1. We show that this is impossible. We may assume $D^{\prime}=D_{4} \sim L_{4}-L_{3}-$ $L_{1}-L_{2}$ and $4 \leqq l$. First we assume $D^{\prime \prime} \sim L_{j}-L_{k}-L_{1}$ for $j \in J$ and $k \in I$. Hence by $D^{\prime} D^{\prime \prime} \geqq 0$ we may assume $j=l+1$ and $k=4$. Then an irreducible curve $G\left(\neq D, D^{\prime}, D^{\prime \prime}, C_{i}\right)$ is homologically equivalent to $L_{p}-L_{q}$ for some $p, q(\geqq 4)$, where $p \in I$ (resp. $p \in J$) if and only if $q \in I$ (resp. $q \in J$). Since $q \neq 4$ by $G D^{\prime \prime} \geqq 0$, we may assume $D_{p} \sim L_{p}-L_{k_{p}}$ ($5 \leqq p \leqq l, 5 \leqq k_{p} \leqq l$). This is impossible by (2.12). Thus we see that $D^{\prime \prime}\left(\neq D, D^{\prime}, C_{i}\right)$ is equivalent to $L_{p}-L_{q}(q \geqq 4)$, where $p \in I$ (resp. $\left.p \in J\right)$ if and only if $q \in I$ (resp. $q \in J$). Consequently, $D^{\prime} D=D^{\prime \prime} D=0$, whence $C+D+D^{\prime}$ is contained in no connected divisor. This contradicts (3.1), (3.2) and $\left(D^{\prime}\right)^{2}=-4$.

Case 2-2. We may assume $D^{\prime} \sim L_{l+1}-L_{l}-L_{1}$. By Case 2-1, for any irreducible curve $D^{\prime \prime}$ different from D, D^{\prime} and C_{i}, we have $D^{\prime \prime} \sim L_{p}-L_{q}$ for some p and q. Here $q \neq l$ because if $q=l$, then $D^{\prime \prime} D^{\prime}=-1$. By $C_{i} D^{\prime \prime}=0$, we have $p \in I$ (resp. $p \in J$) if and only if $q \in I$ (resp. $q \in J$). Hence by (2.12.2), we may assume that the remaining curves are $D_{j} \sim L_{j}-L_{j-1}(4 \leqq j \leqq l$ or $l+2 \leqq j \leqq l+m-2)$. We set $D_{3}=D$ and $D_{l+1}=D^{\prime}$, which is (3.9.2). The dual graph of n curves is as in Figure 3.9 (ii).

Case 2-3. By $C D^{\prime}=0$, we have $D^{\prime} \sim L_{j}-L_{k}$ with $j \geqq 4, k \geqq 3$. Let $n=b_{2}(S)$. By applying (2.12.2) to $D_{j} \sim L_{j}-L_{k_{j}}\left(4 \leqq j \leqq n, 3 \leqq k_{j} \leqq n\right)$, we may assume $D_{j} \sim L_{j}-L_{j-1}$ ($4 \leqq j \leqq n$). By $C_{i} D_{j}=0$, we have $j \in I$ (resp. $j \in J$) if and only if $j-1 \in I$ (resp. $j-1 \in J$). Hence $I=[3, n]$ and $J=\varnothing$. This is (3.9.4). The dual graph of n curves is as in Figure 3.9 (iv).

Case 3. Finally we consider the case where $C_{1} \sim L_{1}-L_{2}-L_{I}, C_{2} \sim L_{2}-L_{1}-L_{J}$ and $D \sim L_{3}-L_{1}-L_{2}$ with $3 \in J$. It follows from $C_{i} D^{\prime}=0$ that $D^{\prime} \sim L_{j}-L_{k_{j}}$ for any irreducible curve $D^{\prime}\left(\neq D, C_{i}\right)$, where $4 \leqq j \leqq n, 3 \leqq k_{j} \leqq n$ and $n=b_{2}(S)$. By (2.12.2), we may assume $D_{j} \sim L_{j}-L_{j-1}(4 \leqq j \leqq n)$. Since $j \in J$ if and only if $j-1 \in J$, we see that $I=\varnothing$ and $J=[3, n]$. This is (3.9.3). The dual graph of n curves is as in Figure 3.9 (iii).
q.e.d.

4. Dual graphs of curves (2).

(4.1) Notation. Assume $r \geqq 3$. Let $M_{j}=L_{j}(r+1 \leqq j \leqq n)$ and $n=b_{2}(S)$. Define $L_{j}(j \in Z)$ by $L_{j+m r}=L_{j}(m \in Z, 1 \leqq j \leqq r)$. Notice that $L_{i} M_{j}=0, L_{r+1}=L_{1}, L_{r+1} \neq M_{1}$ from now on. We write $L_{I}=\sum_{i \in I} L_{i}, M_{J}=\sum_{j \in J} M_{j}, C_{i} \sim L_{i}-L_{i-1}-M_{I_{i}}(1 \leqq i \leqq r)$ for a subset I (resp. subsets J and I_{i}) of $[1, r]$ (resp. $[r+1, n]$). For an irreducible curve D_{j} not contained in C, we write $D_{j} \sim M_{j}-L_{U_{j}}-M_{I_{j}}(r+1 \leqq j \leqq n)$. For a subset J of $[1, r]$
and $\mu<v<\mu+r$, we write $J=[\mu, v-1]$ if the images of J and $[\mu, v-1]$ in $Z / r \boldsymbol{Z}$ coincide. See (4.4), (4.5).
(4.2) Theorem. Let S be a special VII_{0} surface with a cycle $C=C_{1}+\cdots+C_{r}$ of r rational curves $(r \geqq 3)$. Suppose that there is a unique irreducible curve D_{r+1} such that $D_{r+1} C=1$. Assume $D_{r+1} C_{1}=1$. Then by suitable indexing, we have

$$
\begin{array}{lr}
C=-M_{[r+1, n]}, \quad K_{S}=L_{[1, r]}+M_{[r+1, n]}, \\
C_{v_{k}} \sim L_{v_{k}}-L_{v_{k}-1}-M_{\left[i_{k}, j_{k}-1\right]} & (1 \leqq k \leqq m), \\
D_{r+1} \sim M_{r+1}-L_{\left[v_{m+1}, v_{m}-1\right]} & \\
D_{i_{k}} \sim M_{i_{k}}-M_{j_{k}}-L_{\left[v_{k+1}, v_{k}-1\right]} & (1 \leqq k \leqq m-1) \\
C_{i} \sim L_{i}-L_{i-1}, \quad D_{j} \sim M_{j}-M_{j-1} & (\text { otherwise }),
\end{array}
$$

where $v_{m+1}=1<v_{m}<\cdots<v_{1} \leqq 1+r, j_{k}=i_{k}-1(1 \leqq k \leqq m)$ and $i_{m}=r+1<i_{m-1}<\cdots<$ $i_{1} \leqq j_{0}=n$.

(i) $\left(m=1, p_{1}=n-r+2, q_{1}=v_{1}+1 \leqq r+2\right)$

(ii) $\quad\left(m \geqq 2, v_{1} \leqq r+1, p_{k} \geqq 3, q_{k} \geqq 3\right)$

Figure 4.2

A proof of (4.2) is given in (4.3)-(4.10). We notice that $C_{i-1} C_{i}=D_{j-1} D_{j}=1$ ($i \in \boldsymbol{Z}, r+1 \leqq j \leqq n$). The dual graph of n curves in (4.2) is as in Figure 4.2, where $p_{k}=-C_{v_{k}}^{2}=j_{k-1}-i_{k}+3 \geqq 3 \quad(1 \leqq k \leqq m), \quad q_{k}=-D_{i_{k}}^{2}=v_{k}-v_{k+1}+2 \geqq 3 \quad(1 \leqq k \leqq m-1)$, $q_{m}=-D_{r+1}^{2}+1=v_{m}-v_{m+1}+2 \geqq 3$.
(4.3) By (2.17), let $D_{r+1} \sim M_{r+1}-L_{A}$ for a subset Λ of [1,r]. By (2.17) and $D_{r+1} C_{1}=1$, we have $\Lambda=[1, a-1]$ with $a \leqq r+1$. In this paragraph we consider the case $\Lambda=[1, r]$. By (2.17.3), we have $D^{\prime} C=0$ for any irreducible curve $D^{\prime}\left(\neq D_{r+1}, C_{1}\right)$. Hence $D^{\prime} \sim M_{j}-M_{k}-L_{I}$ for some subset I of $[1, r]$. Suppose $I \neq \varnothing$ to derive a contradiction. By $D_{r+1} D^{\prime} \geqq 0$, we have $k=r+1$. Hence in view of (3.5), we have $D_{r+1} D^{\prime}=1$ and $I n[1, r]=\varnothing$. This is absurd. Therefore $I=\varnothing$. Let D_{j} be the irreducible curves $(r+2 \leqq j \leqq n)$. Then $D_{j} \sim M_{j}-M_{k_{j}}\left(r+2 \leqq j \leqq n, r+1 \leqq k_{j} \leqq n\right)$. By (2.12.2), we have $D_{j-1} D_{j}=1$ and $D_{j} \sim M_{j}-M_{j-1}(r+2 \leqq j \leqq n)$ by indexing suitably. Let $C_{i} \sim L_{i}-L_{i-1}-$ $M_{I_{i}}(1 \leqq i \leqq r)$. By $D_{r+1} C_{1}=1$, we get $r+1 \in I_{1}$. By $C_{i} D_{j}=0(r+2 \leqq j \leqq n)$, we see that $j-1 \in I_{i}$ if and only if $j \in I_{i}$. Hence $I_{1}=[r+1, n]$ and $I_{i}=\varnothing(2 \leqq i \leqq r)$. This completes the proof of (4.2) in this case. The dual graph of n curves is as in Figure 4.2 (i), where $m=1, q_{1}=r+2, v_{1}=r+1$.

In (4.4)-(4.10) we consider the case $\Lambda=[1, a-1], r+1 \in I_{a}$ and $1<a \leqq r$. See (2.17).
(4.4) Lemma. Let D^{\prime} be a reduced (possibly reducible) curve which contains none of D_{r+1} and the irreducible components C_{i} of C. Suppose that $D^{\prime} \sim M_{j}-M_{k}-L_{J}$ for $J \subset[1, r]$, and that $j \in I_{v}, k \in I_{\mu}$ for some $\mu \leqq \nu \leqq \mu+r$. Then $J=[\mu, v-1], J \cap[1, a-1]=$ \varnothing. In particular, if $\mu=v$, then $J=\varnothing$.

Proof. First consider the case $\mu=v$. We have

$$
\begin{aligned}
& 0=C_{v} D^{\prime}=\left(L_{v}-L_{v-1}-M_{I_{v}}\right)\left(M_{j}-M_{k}-L_{J}\right)=\left(L_{v}-L_{v-1}\right)\left(-L_{J}\right), \\
& 0=C_{\lambda} D^{\prime}=\left(L_{\lambda}-L_{\lambda-1}-M_{I_{\lambda}}\right)\left(M_{j}-M_{k}-L_{J}\right)=\left(L_{\lambda}-L_{\lambda-1}\right)\left(-L_{J}\right) .
\end{aligned}
$$

Hence $\lambda=J$ if and only if $\lambda-1 \in J$ for any $\lambda \in[1, r]$. This shows $J=\varnothing$ or $J=[1, r]$. If $J=[1, r]$, then $D_{r+1} D^{\prime}=\left(M_{r+1}-L_{[1, a-1]}\right)\left(M_{j}-M_{k}-L_{[1, r]}\right)=-M_{r+1} M_{k}-a+1$. Hence $k=r+1$ and $a=2$. By (3.5), if $k=r+1$, then $D_{r+1}^{\prime} D^{\prime}=1$ and $J \cap[1, a-1]=\varnothing$, which is a contradiction. Thus we have $J=\varnothing$.

Next we consider the case $\mu<\nu<\mu+r$. We have

$$
0=C_{v} D^{\prime}=1-\left(L_{v}-L_{v-1}\right) L_{J}, \quad 0=C_{\mu} D^{\prime}=-1-\left(L_{\mu}-L_{\mu-1}\right) L_{J} .
$$

Hence $v \notin J, v-1 \in J, \mu \in J$ and $\mu-1 \notin J$. By $C_{\lambda} D^{\prime}=0$, we have $\lambda \in J$ if and only if $\lambda-1 \in J$ for $\mu<\lambda<v$ or $v<\lambda<\mu+r$. This implies that $J=[\mu, v-1]$. If $k=r+1$, then $J \cap[1, a-1]=\varnothing$ by (3.5). If $k \neq r+1$, then $J \cap[1, a-1]=\varnothing$ by $D_{r+1} D^{\prime} \geqq 0$. q.e.d.
(4.5) Lemma. Let D^{\prime} and $D^{\prime \prime}$ be irreducible curves different from D_{r+1}, C_{j}. Suppose that $D^{\prime} \sim M_{i}-M_{j}-L_{I}, D^{\prime \prime} \sim M_{k}-M_{I}-L_{J}$ and $D^{\prime} \neq D^{\prime \prime}$, where $\mu<v<\mu+r, \beta<\alpha<\beta+r$, $i \in I_{v}, j \in I_{\mu}, k \in I_{\alpha}, l \in I_{\beta}, I=[\mu, v-1]$ and $J=[\beta, \alpha-1]$. Then $I \cap J=\varnothing$.

Proof. Suppose $I \cap J \neq \varnothing$ to derive a contradiction. By

$$
0 \leqq D^{\prime} D^{\prime \prime}=\left(M_{i}-M_{j}\right)\left(M_{k}-M_{l}\right)-\#(I \cap J),
$$

we have $\left(M_{i}-M_{j}\right)\left(M_{k}-M_{l}\right)>0$. We have three possibilities:
Case 1. $i=l, j=k, \#(I \cap J)=1$ or 2 . We have $v=\beta, \mu=\alpha(\bmod r), I=[\mu, v-1]$, and $J=[v, \mu+r-1]$. Hence $I \cap J=\varnothing$ and $D^{\prime} D^{\prime \prime}=2$, which is absurd.

Case 2. $i=l, j \neq k, \#(I \cap J)=1, D^{\prime} D^{\prime \prime}=0$. We may assume $\beta=v$, hence $I=[\mu, v-1]$ and $J=[v, \alpha-1]$. From $\#(I \cap J)=1$ it follows that $\alpha-1=\mu+r$ and $I \cup J=[1, r]$. However $(I \cup J) \cap[1, a-1]=\varnothing$ by applying (4.4) to D_{r+1} and $D^{\prime}+D^{\prime \prime}$. But $[1, a-1] \neq \varnothing$, a contradiction.

Case 3. $i \neq l, j=k, \#(I \cap J)=1, D^{\prime} D^{\prime \prime}=0$. This case is clearly reduced to Case 2.
q.e.d.
(4.6) Let $D_{j} \sim M_{j}-L_{U_{j}}-M_{T_{j}}(r+2 \leqq j \leqq n)$. Then by $C D_{j}=0$, we have $\#\left(T_{j}\right)=1$, so we let $T_{j}=\left\{k_{j}\right\}$ for some $k_{j} \geqq r+1$. Let $N=\left\{i \in[r+2, n] ; D_{i}^{2} \leqq-3\right\}=\left\{i_{1}, i_{2}, \cdots\right.$, $\left.i_{m-2}, i_{m-1}\right\}$. We let $G_{k}=D_{i_{k}} \sim M_{i_{k}}-M_{j_{k}}-L_{J_{k}}$ for some nonempty $J_{k} \subset[1, r]$. In view of (4.4), we may assume $J_{k}=\left[\mu_{k}, v_{k}-1\right], i_{k} \in I_{v_{k}}$ and $j_{k} \in I_{\mu_{k}}$ for some $\mu_{k} \leqq v_{k}<\mu_{k}+r$. Let $G_{m}=D_{r+1}, i_{m}=r+1, \mu_{m}=1, v_{m}=a$ and $J_{m}=[1, a-1]$. In view of (4.4) and (4.5), J_{1}, \cdots, J_{m} are mutually disjoint. Hence we may assume $v_{m+1}=\mu_{m}=1<v_{m} \leqq \mu_{m-1}<$ $v_{m-1} \leqq \cdots \leqq \mu_{2}<v_{2} \leqq \mu_{1}<v_{1} \leqq r+1$.
(4.7) Lemma. $I_{\lambda}=\varnothing$ for $\lambda \neq v_{k}(1 \leqq k \leqq m)$.

Proof. Suppose $I_{\lambda} \neq \varnothing$ for some $\lambda \neq v_{k}(1 \leqq k \leqq m)$. Let $D_{j} \sim M_{j}-M_{k_{j}}-L_{U_{j}}$ for $j \in I_{\lambda}$. If $k_{j} \in I_{\mu}$ for $\mu \leqq \lambda<\mu+r$, we have $U_{j}=[\mu, \lambda-1]$ in view of (4.4). If $U_{j} \neq \varnothing$, then $U_{j}=\left[\mu_{k}, v_{k}-1\right]$ for some k, whence $\lambda=v_{k}$, a contradiction. Hence $U_{j}=\varnothing, \mu=\lambda, k_{j} \in I_{\lambda}$ and $D_{j} \sim M_{j}-M_{k_{j}}$. However by applying (2.12) to D_{j} for $j \in I_{\lambda}$, we infer a contradiction. Hence $I_{\lambda}=\varnothing$.
q.e.d.
(4.8) Lemma. $\mu_{k}=v_{k+1}$ and $J_{k}=\left[v_{k+1}, v_{k}-1\right](1 \leqq k \leqq m)$.

Proof. Assume $v_{b}<\mu_{b-1}$ for some $2 \leqq b \leqq m$ to derive a contradiction. Let $I=\bigcup_{1 \leqq \lambda \leqq v_{b}} I_{\lambda}, J=\bigcup_{v_{b}+1 \leqq \lambda \leqq r} I_{\lambda}, D_{I}=\sum_{i \in I} D_{i}$ and $D_{J}=\sum_{i \in J} D_{i}$. We note $I \cup J=[r+$ $1, n]$.
(4.8.1) Sublemma. Assume $i \neq r+1$. Then $i \in I(r e s p . j \in J)$ if and only if $k_{i} \in I$ (resp. $\left.k_{j} \in J\right)$.

Proof of (4.8.1). It suffices to prove that if $i \in I$ (resp. $j \in J$) then $k_{i} \in I$ (resp. $k_{j} \in J$). If $j \neq i_{k}$ for any $k \leqq m-1$ and if $j \in I_{\lambda}$, then $k_{j} \in I_{\lambda}$. Hence if $j \neq i_{k}$, then $j \in I$ (resp. $j \in J$) if and only if $k_{j} \in I$ (resp. $k_{j} \in J$). Suppose $j \in I_{\lambda}$ for $\lambda \leqq v_{b}$. Then if $j=i_{k}$ for some k $(1 \leqq k \leqq m-1)$, we have $U_{j}=J_{k}=\left[\mu_{k}, v_{k}-1\right]$ for $j \in I_{v_{k}}$ and $k_{j} \in I_{\mu_{k}}$. Hence $\lambda=v_{k} \leqq v_{b}$ and $k_{j} \in I_{\mu_{k}} \subset I$. If $j \in I_{\lambda} \neq \varnothing$ for $\lambda \geqq v_{b}+1$, then $\lambda \geqq v_{b-1}$ in view of (4.7). If $j=i_{k}$ for some k, then $U_{j}=\left[\mu_{k}, v_{k}-1\right], j \in I_{v_{k}}$ and $k_{j} \in I_{\mu_{k}}$. Since $v_{k}=\lambda \geqq v_{b-1}$, we have $\mu_{k} \geqq \mu_{b-1} \geqq v_{b-1}+1$ by the assumption. Hence $k_{j} \in I_{\mu_{k}} \subset J$.
q.e.d.

We continue the proof of (4.8). Notice $I, J \neq \varnothing$. By (4.8.1), for any pair of $i \in I$ and $j \in J$, we have

$$
D_{i} D_{j} \leqq\left(M_{i}-M_{k_{i}}\right)\left(M_{j}-M_{k_{j}}\right)=0,
$$

which shows $D_{I} D_{J}=0$. The curve D_{I} (resp. D_{J}) contains D_{r+1} (resp. G_{b-1}) and $G_{b-1}^{2} \leqq-3$. Since $D_{r+1} C=1$ and both $G_{k}(1 \leqq k \leqq m-1)$ and C are contained in a numerical antipluricanonical divisor by (3.1) and (3.2), both D_{r+1} and G_{b-1} are in one and the same connected divisor on S. However this contradicts $D_{I} D_{J}=0$. Consequently, $\mu_{k}=v_{k+1}$ and $J_{k}=\left[v_{k+1}, v_{k}-1\right](1 \leqq k \leqq m)$. q.e.d.
(4.9) Lemma. By suitable indexing, we have $D_{j-1} D_{j}=1, D_{j} \sim M_{j}-M_{j-1}-L_{U_{j}}$ $(r+2 \leqq j \leqq n)$.

Proof. We define formally $D_{r+1}^{\prime}:=M_{r+1}-L_{1}$ and $D_{j}^{\prime}:=D_{j}+L_{U_{j}}=M_{j}-M_{k_{j}}$ $(r+2 \leqq j \leqq n)$. Then $D_{i}^{\prime} D_{j}^{\prime}=D_{i} D_{j}$ for any i, j. By the same argument as in (2.12), we have $k_{i} \neq k_{j}$ for $i \neq j$. Then $D_{r+2}^{\prime}+\cdots+D_{n}^{\prime} \nsim 0$. Because, otherwise, D_{r+2}, \cdots, D_{n} form a cycle of rational curves, contradicting (2.2). Hence there exists $b(>r+1)$ such that $\left\{k_{r+2}, \cdots, k_{n}\right\}=[r+1, n] \backslash\{b\}$ and therefore

$$
\begin{gathered}
D_{r+1}^{\prime}+D_{r+2}^{\prime}+\cdots+D_{n}^{\prime} \sim M_{b}-L_{1} \\
-2=\left(D_{r+1}^{\prime}+\cdots+D_{n}^{\prime}\right)^{2}=-2(n-r)+2 \sum_{i<j} D_{i}^{\prime} D_{j}^{\prime}
\end{gathered}
$$

Consequently, $\sum_{i<j} D_{i}^{\prime} D_{j}^{\prime}=\sum_{i<j} D_{i} D_{j}=n-r-1$. We also notice $D_{r+1}\left(D_{r+2}+\cdots+\right.$ $\left.D_{n}\right)=\left(M_{r+1}-L_{1}\right)\left(M_{b}-M_{r+1}\right)=1$. It is shown by the same argument as in (2.12) that $D_{r+1}+\cdots+D_{n}$ is a connected straight chain, that is, by suitable indexing, we get $D_{j-1} D_{j}=1(r+2 \leqq j \leqq n)$. It follows that

$$
D_{r+1} \sim M_{r+1}-L_{U_{r+1}}, \quad D_{j} \sim M_{j}-M_{j-1}-L_{U_{j}} \quad(r+2 \leqq j \leqq n) . \quad \text { q.e.d. }
$$

(4.10) Lemma. In the same notation as in (4.9), we have $i_{m}<i_{m-1}<\cdots<i_{1}$, $I_{v_{k}}=\left[i_{k}, i_{k-1}-1\right](1 \leqq k \leqq m)$ and $I_{\lambda}=\varnothing$ (otherwise), where $i_{0}=n+1, i_{m}=r+1$.

Proof. By the definition in (4.6) and by (2.17), $i_{m}=r+1$ is contained in $I_{v_{m}}=I_{a}$. We also see $i_{k} \in I_{v_{k}}(1 \leqq k \leqq m-1)$. Since $C_{\lambda} D_{j}=0$ for $j \neq i_{k}$, we have $j \in I_{\lambda}$ if and only if $j-1 \in I_{\lambda}$. For $2 \leqq k \leqq m$, we define l_{k} as follows: If $i_{k} \geqq i_{p}$ for any $p(1 \leqq p \leqq m-1$), then $l_{k}:=n+1$. Otherwise, $l_{k}:=\min \left\{i_{p} ; i_{k}<i_{p}, 1 \leqq p \leqq m-1\right\}$. Then we see that $I_{v_{k}}$ contains [$\left.i_{k}, l_{k}-1\right]$ but not l_{k}. By $C_{v_{k}} D_{l_{k}}=0$, we have $v_{k} \in U_{l_{k}}$ and $v_{k}-1 \notin U_{l_{k}}$. If $l_{k}=i_{p}$, then $U_{l_{k}}=J_{p}=\left[v_{p+1}, v_{p}-1\right]$ by (4.8), whence $v_{k}=v_{p+1}, k=p+1, l_{k}=i_{k-1}$ and $i_{m}<i_{m-1}<$ $\cdots<i_{1}$. Thus $I_{v_{k}}$ contains $\left[i_{k}, i_{k-1}-1\right](2 \leqq k \leqq m-1)$. On the other hand, $I_{v_{1}}$ contains [$\left.i_{1}, n\right]$ by $C_{v_{1}} D_{j}=0$ for any $i_{1} \leqq j \leqq n$. Thus the union of $I_{v_{k}}(1 \leqq k \leqq m)$ contains $\left[i_{m}, i_{m-1}-1\right] \cup\left[i_{m-1}, i_{m-2}-1\right] \cup \cdots \cup\left[i_{1}, n\right]=[r+1, n]$. This shows by (2.10.3) and (3.6) that $I_{v_{k}}=\left[i_{k}, i_{k-1}-1\right]$ and $I_{\lambda}=\varnothing$ for $\lambda \neq v_{k}$. q.e.d.

Let $p_{k}=-C_{v_{k}}^{2}, q_{k}=-D_{i_{k}}^{2}$ and $q_{m}=-D_{i_{m}}^{2}+1$. Then $p_{k}, q_{k} \geqq 3$. By (4.6)-(4.10) we have the expressions for curves in (4.2). The dual graph turns out to be as in Figure 4.2 (i) ($m=1$) or Figure 4.2 (ii) ($m \geqq 2$). This completes the proof of (4.2).
(4.11) Theorem. Let S be a special VII_{0} surface with a cycle C of rational curves. Suppose that there are $d(\geqq 2)$ irreducible curves meeting C. Then the union \mathscr{D} of all the curves on S is connected, and the complement of the cycle C in \mathscr{D} consists of d connected (straight) chains of rational curves. More precisely, there exist a set of integers $s(l), m(l)$, $i(l), v(k, l), i(k, l), j(k, l)(1 \leqq l \leqq d, 1 \leqq k \leqq m(l))$ and a canonical basis $L_{i}(1 \leqq i \leqq r), M_{j}$ $(r+1 \leqq j \leqq n)$ of $H^{2}(S, \boldsymbol{Z})$ such that

$$
\begin{aligned}
& 1=s(1)<s(2)<\cdots<s(d)<r+1=s(d+1), \\
& r+1=i(1)<i(2)<\cdots<i(d)<j(0, d)=n<n+1=i(d+1), \\
& s(k)<v(m(k), k)<v(m(k)-1, k)<\cdots<v(1, k) \leqq s(k+1), \\
& i(k)<i(m(k)-1, k)<\cdots<i(1, k) \leqq j(0, k) \quad(1 \leqq k \leqq d), \\
& i(l)=i(m(l), l)=j(0, l-1)+1, i(k, l)=j(k, l)+1
\end{aligned}
$$

and such that (by suitable indexing)

$$
\begin{align*}
& C_{i} \sim L_{i}-L_{i-1}-M_{I_{i}} \quad\left(L_{0}=L_{r}, 1 \leqq i \leqq r\right), \tag{4.11.1}\\
& D_{i(l)} \sim M_{i(l)}-L_{J_{l}} \quad(1 \leqq l \leqq d), \\
& D_{j} \sim M_{j}-M_{j-1}-L_{U_{j}} \quad(r+1 \leqq j \leqq n, j \neq i(l)),
\end{align*}
$$

where

$$
\begin{aligned}
& I_{i}=[i(k, l), j(k-1, l)] \quad(i=v(k, l)), \quad=\varnothing \quad \text { (otherwise) }, \\
& J_{l}=[s(l), v(m(l), l)-1], \\
& U_{j}=[v(k+1, l), v(k, l)-1] \quad(j=i(k, l)), \quad=\varnothing \quad \text { (otherwise) } .
\end{aligned}
$$

(4.11.2) The intersection numbers among curves are given by,

$$
\begin{array}{lll}
C_{s(l)} D_{i(l)}=1, & \text { while } \quad C_{i} D_{j}=0 & ((i, j) \neq(s(l), i(l))), \\
C_{i} C_{i+1}=1, & \text { while } \quad C_{i} C_{j}=0 & (i \neq j, j \pm 1), \\
D_{j} D_{j+1}=1(i(l) \leqq j \leqq i(l+1)-2), & D_{i} D_{j}=0 \quad(\text { otherwise, } i \neq j) .
\end{array}
$$

(4.11.3) Let $\mathscr{D}_{l}=\sum_{j=i(l)}^{i(l+1)-1} D_{j}$ and $\mathscr{C}_{l}=\sum_{i=s(l)+1}^{s(l+1)} C_{i}$. Then we have $C=\mathscr{C}_{1}+\cdots+\mathscr{C}_{d}$, $\mathscr{D}=C+\mathscr{D}_{1}+\cdots+\mathscr{D}_{d}$. Moreover $\mathscr{C}_{l-1}\left(\right.$ resp. $\left.\mathscr{D}_{l}\right)$ is a connected curve containing $C_{s(l)}$ (resp. $\left.D_{i(l)}\right)$ subject to $\mathscr{C}_{d} \mathscr{D}_{1}=1$ and $\mathscr{C}_{i} \mathscr{D}_{j}=\delta_{i, j-1}((i, j) \neq(d, 1))$.

$$
\begin{align*}
& \left(-C_{s l+1}^{2},-C_{s l+1)-1}^{2}, \cdots,-C_{s(l)+1}^{2}\right) \tag{4.11.4}\\
& \quad=(\underbrace{(2, \cdots, 2}_{\lambda(l)}, p_{1}, 2, \cdots, p_{k}, \underbrace{2, \cdots, 2}_{\left(q_{k}-3\right)}, p_{k+1}, \cdots, p_{m}, \underbrace{2, \cdots, 2)}_{\left(q_{m}-3\right)},
\end{align*}
$$

$$
\begin{align*}
& \left(-D_{i(l)}^{2},-D_{i(l)+1}^{2}, \cdots,-D_{i(l+1)-1}^{2}\right) \tag{4.11.5}\\
& \quad=(q_{m}-1, \underbrace{2, \cdots, 2, q_{m-1}}_{\left(p_{m}-3\right)}, 2, \cdots, q_{k}, \underbrace{2, \cdots, 2, q_{k-1}}_{\left(p_{k}-3\right)}, \cdots, q_{1}, \underbrace{2, \cdots, 2)}_{\left(p_{1}-3\right)},
\end{align*}
$$

where $p_{k}:=p(k, l)=-C_{v(k, l)}^{2}=j(k-1, l)-i(k, l)+3 \geqq 3\left(1 \leqq k \leqq m(\eta), q_{k}:=q(k, l)=-D_{i(k, l)}^{2}=\right.$ $v(k, l)-v(k+1, l)+2 \geqq 3(1 \leqq k \leqq m(l)-1), q_{m}:=q(m(l), l)=1-D_{i(l)}^{2}=v(m(l), l)-s(l)+2 \geqq 3$, $m:=m(l)$ and $\lambda(l):=s(l+1)-v(1, l)$. The integers p_{k}, q_{k}, m and $\lambda(l)$ depend on l. The dual graph of n curves is as in Figure 4.11.

Figure 4.11
The dual graphs thus obtained are among dual graphs of curves on surfaces with global spherical shells. See [15, (3.2)]. In (4.12)-(4.18) below, we prove (4.11).
(4.12) For simplicity we consider the case where there are exactly two irreducible curves D and E such that $C D=C E=1$. A similar argument proves (4.11) in the case where there are three or more irreducible curves meeting C. By (2.18), we may assume $C_{1} D=1$ and $C_{u+1} E=1$ for $1<u \leqq r$. Then by (2.17) we have

$$
C_{i} \sim L_{i}-L_{i-1}-M_{I_{i}}, \quad D \sim M_{r+1}-L_{[1, a-1]}, \quad E \sim M_{R+1}-L_{[u+1, u+b-1]}
$$

for some $R(\geqq r+1)$ and $a, b \geqq 2$, where $L_{0}=L_{r}$.
(4.13) Lemma. Let D^{\prime} be a reduced (possibly reducible) curve which contains none of D, E and $C_{i}(1 \leqq i \leqq r)$. Suppose that $D^{\prime} \sim M_{j}-M_{k}-L_{J}$ for $j, k \geqq r+1$ and $J \subset[1, r]$ and that $j \in I_{v}, k \in I_{\mu}$ and $\mu \leqq v<\mu+r$. Then $J=[\mu, v-1], J \cap[1, a-1]=\varnothing$ and $J \cap[u+1, u+b-1]=\varnothing$.

Proof. One sees $J=[\mu, v-1]$ in the same manner as in (4.4). By (3.5), if $k=r+1$ (or resp. $R+1$), then $J \cap[1, a-1]=\varnothing$ (resp. $J \cap[u+1, u+b-1]=\varnothing$). The other assertions are clear.
q.e.d.
(4.14) Lemma. Let $D^{\prime}, D^{\prime \prime}$ be irreducible curves different from D, E, C_{i}. Suppose that $D^{\prime} \neq D^{\prime \prime}, D^{\prime} \sim M_{i}-M_{j}-L_{I}$ and $D^{\prime \prime} \sim M_{k}-M_{l}-L_{J}$. Then $I \cap J=\varnothing$.

Proof. The same as in (4.5).
q.e.d.

For convenience, we employ the following notation:

$$
\begin{array}{ll}
D_{j} \sim M_{j}-M_{k_{j}}-L_{U_{j}} & \text { if } j \in I_{v}(2 \leqq v \leqq u+1) \\
E_{j} \sim M_{j}-M_{k_{j}}-L_{U_{j}} & \text { if } j \in I_{v}(u+2 \leqq v \leqq r+1) .
\end{array}
$$

Let $G_{k}(1 \leqq k \leqq m-1)$ and $H_{k}(1 \leqq k \leqq l-1)$ be all the irreducible curves on S such that $G_{k}=D_{i_{k}}, H_{k}=E_{i_{k}}, U_{i_{k}} \neq \varnothing$ and $U_{i_{k}} \neq \varnothing$. We note $U_{i_{k}} \subset[a, u]$. Indeed, $U_{i_{k}}=[\mu, v-1]$, where $G_{k} \sim M_{i_{k}}-M_{j_{k}}-L_{U_{i_{k}}}, i_{k} \in I_{v}$ and $j_{k} \in I_{\mu}$. Since $1 \leqq v-1 \leqq u, U_{i_{k}}$ is contained in $[a, u]$ by (4.13). Similarly $U_{i_{k}^{\prime}} \subset[u+b, r]$. Hence we may assume

$$
\begin{aligned}
& U_{i_{k}}=\left[\mu_{k}, v_{k}-1\right], \quad U_{i_{k}}=\left[\mu_{k}^{\prime}, v_{k}^{\prime}-1\right], \\
& a \leqq \mu_{m-1}<v_{m-2} \leqq \mu_{m-2}<\cdots \leqq \mu_{2}<v_{2} \leqq \mu_{1}<v_{1} \leqq u+1, \\
& u+b \leqq \mu_{l-1}^{\prime}<v_{l-2}^{\prime} \leqq \mu_{l-2}^{\prime}<\cdots \leqq \mu_{2}^{\prime}<v_{2}^{\prime} \leqq \mu_{1}^{\prime}<v_{1}^{\prime} \leqq r+1 .
\end{aligned}
$$

We let $v_{m+1}=\mu_{m}=1, v_{m}=a, v_{l+1}^{\prime}=\mu_{l}^{\prime}=u+1, v_{l}^{\prime}=u+b, G_{m}=D_{r+1}=D$ and $H_{l}=E_{R+1}=$ E. We note $U_{j}=\varnothing$ for $j \neq i_{k}, i_{k}^{\prime}$.
(4.15). Lemma. $v_{k}=\mu_{k-1} \quad(1 \leqq k \leqq m), \quad v_{k}^{\prime}=\mu_{k-1}^{\prime} \quad(1 \leqq k \leqq l), \quad U_{i_{k}}=\left[v_{k+1}, v_{k}-1\right]$ $(2 \leqq k \leqq m), U_{i_{k}^{\prime}}=\left[v_{k+1}^{\prime}, v_{k}^{\prime}-1\right](2 \leqq k \leqq l)$.

Proof. The same as in (4.8).
q.e.d.
(4.16) Lemma. $D_{p} E_{q}=0$.

Proof. We note $I_{\lambda}=\varnothing$ for $\lambda \neq v_{k}(1 \leqq k \leqq m)$ and $\lambda \neq v_{k}^{\prime}(1 \leqq k \leqq l)$ in view of (4.7). Let $I=\bigcup_{2 \leqq \lambda \leqq u+1} I_{\lambda}$ and $J=\bigcup_{u+2 \leqq \lambda \leqq r+1} I_{\lambda}$. First we show that $p \in I$ (resp. $p \in J$) if and only if $k_{p} \in I$ (resp. $k_{p} \in J$). If $p \neq i_{k}, i_{k}^{\prime}$, then by $C_{\lambda} D_{p}=0$, we see $p \in I_{\lambda}$ if and only if $k_{p} \in I_{\lambda}$, whence $p \in I$ if and only if $k_{p} \in I$. If $p=i_{k}$, then $k<m$, and $U_{p}=\left[\mu_{k}, v_{k}-1\right], p \in I_{v_{k}}$ and $k_{p} \in I_{\mu_{k}}=I_{v_{k+1}}$. Hence $k_{p} \in I$. If $p=i_{k}^{\prime} \in J$, then one sees $k_{p} \in J$ similarly. Now assume that $D_{p} \neq D$ and $E_{q} \neq E$. Since $U_{i_{p}} \cap U_{i_{q}^{\prime}}=\varnothing$ by (4.14), we have $D_{p} E_{q}=\left(M_{p}-M_{k_{p}}\right) \times$ ($M_{q}-M_{k_{q}}$), whence $D_{p} E_{q}=0$. Since $r+1 \in I_{a}, R+1 \in I_{u+b}, k_{p} \in I$ and $k_{q} \in J$, we have by (4.13) $D E_{q}=M_{r+1}\left(M_{q}-M_{k_{q}}\right)=0, D_{p} E=\left(M_{p}-M_{k_{p}}\right) M_{R+1}=0$. q.e.d.
(4.17) Lemma. By indexing suitably, we have

$$
\begin{aligned}
& D_{j} \sim M_{j}-M_{j-1}\left(j \neq i_{k}, r+1 \leqq j \leqq R\right), \quad E_{j} \sim M_{j}-M_{j-1}\left(j \neq i_{k}^{\prime}, R+1 \leqq j \leqq n\right), \\
& G_{k} \sim M_{i_{k}}-M_{j_{k}}-L_{\left[v_{k+1}, v_{k}-1\right]}(1 \leqq k \leqq m-1), \quad G_{m} \sim M_{i_{m}}-L_{\left[v_{m+1}, v_{m}-1\right]}
\end{aligned}
$$

$$
\begin{aligned}
& H_{k} \sim M_{i_{k}^{\prime}}-M_{j_{k}^{\prime}}-L_{\left[v_{k+1}^{\prime}, v_{k}^{\prime}-1\right]}(1 \leqq k \leqq l-1), \quad H_{l} \sim M_{i_{1}^{\prime}}-L_{\left[v_{l+1}^{\prime}, v_{i}^{\prime}-1\right]}, \\
& C_{i} \sim L_{i}-L_{i-1}-M_{I_{i}}(1 \leqq i \leqq s), \quad I_{v_{k}}=\left[i_{k}, j_{k-1}\right](1 \leqq k \leqq m), \\
& \left.I_{v_{k}^{\prime}}^{\prime}=\left[i_{k}^{\prime}, j_{k-1}^{\prime}\right] \quad(1 \leqq k \leqq l), \quad \text { while } \quad I_{\lambda}=\varnothing \text { (otherwise }\right)
\end{aligned}
$$

and

$$
\begin{array}{ll}
i_{k}=j_{k}+1, & i_{m}=r+1<i_{m-1}<\cdots<i_{1} \leqq j_{0}=R, \\
i_{k}^{\prime}=j_{k}^{\prime}+1, & i_{l}^{\prime}=R+1<i_{l-1}^{\prime}<\cdots<i_{1}^{\prime} \leqq j_{0}^{\prime}=n .
\end{array}
$$

Proof. First we let $j_{0}:=R$ and $j_{0}^{\prime}:=n$. Since $D_{p} E_{q}=0$, we can apply the same argument as in (4.8) and (4.9) to $\sum_{p \in I} D_{p}$ and $\sum_{q \in J} E_{q}$. Hence we infer the above expressions for D_{j}, E_{j}, G_{k} and H_{k}. In the same manner as in (4.10), we can show that $I_{v_{k}}(1 \leqq k \leqq m)$ (resp. $I_{v_{k}}(1 \leqq k \leqq l)$) contains $\left[i_{k}, i_{k-1}-1\right]$ (resp. [$\left.i_{k}^{\prime}, i_{k-1}^{\prime}\right]$), whence the union of $I_{v_{j}}$ and $I_{v_{k}}(1 \leqq j \leqq m, 1 \leqq k \leqq l)$ contains $\left[i_{p}, i_{p-1}-1\right]$ and $\left[i_{q}^{\prime}, i_{q-1}^{\prime}-1\right]$ for any p and q, hence it contains $[r+1, n]$. This proves $I_{v_{k}}=\left[i_{k}, i_{k-1}-1\right]$ and $I_{v_{k}^{\prime}}=\left[i_{k}^{\prime}, i_{k-1}^{\prime}-1\right]$. q.e.d.
(4.18) Compare (4.17) with (4.11) by setting

$$
\begin{aligned}
& m(1)=m, \quad m(2)=l, \quad s(1)=1, \quad s(2)=u+1, \quad s(3)=r+1, \\
& v(m(1), 1)=a, \quad v(m(2), 2)=u+b, \quad v(k, 1)=v_{k}, \quad v(k, 2)=v_{k}^{\prime}, \\
& i(k, 1)=i_{k}, \quad i(k, 2)=i_{k}^{\prime}, \quad j(k, 1)=j_{k}, \quad j(k, 2)=j_{k}^{\prime} .
\end{aligned}
$$

Thus we complete the proof of the first half of (4.11). The rest is easy to check. Since the argument in the general case is similar, we omit the details.
(4.19) Problem. Is a VII_{0} surface special if it has a cycle of rational curves? Does the equality $r=s$ in (3.6) hold?

5. Surfaces with global spherical shells.

(5.1) Definition (cf. [7]). A nonempty subset Σ of a compact complex surface S is called a global spherical shell if
(5.1.1) Σ is isomorphic to a shell $S_{\varepsilon}=\left\{x \in C^{2} ; 1-\varepsilon<\|x\|<1+\varepsilon\right\}$ for some $\varepsilon(0<\varepsilon<1)$,
(5.1.2) the complement of Σ in S is connected.
(5.2) Theorem (Ma. Kato, see also [4], [8]). Any surface with a global spherical shell is special.

Proof. We freely use the notation in [7, pp. 47-49, 54, 55]. Let X be a minimal surface with a global spherical shell. Then X is constructed as follows (cf. [7, p. 55]): Let $\sigma: Z_{\varepsilon}^{*} \rightarrow B_{\varepsilon}$ be a finite succession of blowing-ups, and $N^{\prime}=\sigma^{-1}\left(S_{\varepsilon}\right)$. Let $\zeta: B_{\varepsilon} \rightarrow Z_{\varepsilon}^{*} \backslash N^{\prime}$
be an embedding of $B_{\varepsilon}, D_{\varepsilon}$ the image of $B_{\varepsilon}, N^{\prime \prime}:=\zeta\left(S_{\varepsilon}\right)$, and $K:=\zeta\left(B_{-\varepsilon}\right)$, where $B_{c}=\left\{x \in C^{2} ;\|x\|<1+c\right\}, S_{c}=\left\{x \in C^{2} ; 1-c<\|x\|<1+c\right\}$. Let g_{0} be the mapping $g_{0}=\zeta \circ \sigma: Z_{\varepsilon}^{*} \rightarrow Z_{\varepsilon}^{*}$ and let $g^{\prime}=g_{0 \mid N^{\prime}}$. Then X is isomorphic to a quotient space E / g^{\prime} with $E:=Z_{\varepsilon}^{*} \backslash K$. We may identify g_{0}, E, N^{\prime} and $N^{\prime \prime}$ with g, E_{0}, N_{-1} and N_{0} in [7, p. 47]. We see $b_{1}(X)=1, b_{2}(X)=b_{2}(X \backslash \Sigma)=b_{2}\left(Z_{\varepsilon}^{*}\right)$ (see.[7, p. 47]). Let $n=b_{2}(X)(>0)$. By [7, Lemma 1 (ii)], there is a unique fixed point O^{*} of g_{0} in Z_{ε}^{*}. Since $b_{2}\left(Z_{\varepsilon}^{*}\right)=n$, the maximal compact analytic subset A of dimension one consists of n rational curves, say, $A=A_{1}+\cdots+A_{n}$. The curve A is with normal crossing. Hence there are at most two A_{j} 's passing through O^{*}, say, A_{1} and A_{2}. Hence by [7, Lemma 1], there is a large integer l such that $g_{0}^{l}\left(Z_{\varepsilon}^{*}\right) \cap A_{j}=\varnothing$ for $3 \leqq j \leqq n$. Let $\hat{E}=E_{0} \cup E_{1} \cup \cdots \cup E_{l-1}, \hat{Z}=\hat{E} \cup_{\zeta} B_{\varepsilon}$ (by identifying N_{l-1} with B_{ε} as in [7, p. 48]). Then we have natural mappings $f: \hat{E} \rightarrow X$ and $h=g_{0}^{l}: \hat{Z} \rightarrow Z_{\varepsilon}^{*}$. Since \hat{Z} and Z_{ε}^{*} are strongly pseudoconvex manifolds with their boundaries $\partial \hat{Z}$ and $\partial Z_{\varepsilon}^{*}$ standard spheres, the Remmert reduction Rem : $\hat{Z} \rightarrow B$ (resp. $\sigma=\operatorname{Rem}_{\varepsilon}: Z_{\varepsilon}^{*} \rightarrow B_{\varepsilon}$) is a finite succession of blowing-ups of an open ball B (resp. B_{ε}). The open balls B and B_{ε} are naturally isomorphic near their boundaries (by the mapping induced from h), hence isomorphic globally. Hence h is a finite succession of blowing-ups of Z_{ε}^{*}. Hence we have proper transforms [A_{j}] of A_{j} on \hat{Z}. By the choice of l, $\left[A_{j}\right]$'s ($3 \leqq j \leqq n$) are contained in \hat{E}. Thus we have $n-2$ curves $D_{j}:=f\left(\left[A_{j}\right]\right)(3 \leqq j \leqq n)$ on X. Hence the cardinality $\rho_{r}(X)$ of the set of rational curves on X is not less than $b_{2}(X)-2$. Consider an unramified triple covering X^{*} of X. Then X^{*} contains a global spherical shell. Hence $b_{1}\left(X^{*}\right)=1$ and $\rho_{r}\left(X^{*}\right) \geqq b_{2}\left(X^{*}\right)-2$. Since $\rho_{r}\left(X^{*}\right)=3 \rho_{r}(X)$ and $b_{2}\left(X^{*}\right)=$ $3 b_{2}(X)$, we have $\rho_{r}(X) \geqq b_{2}(X)$. By a theorem of Kato [14, (3.5)], we have $\rho_{r}(X)=b_{2}(X)$. q.e.d.
(5.3) Theorem (cf. [7], [16]). Any minimal surface with a global spherical shell is a (global) deformation of a blown-up primary Hopf surface.

Proof. By (5.2), the surface is special. Hence it has a cycle of rational curves. Hence by (1.6), it is a (global) deformation of a blown-up primary Hopf surface.
q.e.d.

In view of (5.2), either the dual graph of b_{2} rational curves on a surface with a global spherical shell is one of (3.8), (3.9), (4.2) and (4.11), or the surface is one of the well-understood surfaces (2.1). We now prove the converse:
(5.4) Theorem. Let Γ be one of the weighted dual graphs with n vertices in (3.8), (3.9), (4.2) and (4.11). Then there exists a special VII_{0} surface with $b_{2}=n$, having Γ as the weighted dual graph for n rational curves on it.

We prove this in (5.7)-(5.12) below by constructing a minimal surface with a global spherical shell which has the desired property. See Figure 5.4 (ii), (iv), (vi), (viii) and (xii).
(i)
(ii)

(iii)

(iv) $\begin{array}{ccccccc}-2 & -2 & -l & -m & -2 & -2 \\ 0-\cdots & \cdots & -0 & -0 & -0 & - & \cdots\end{array}$
(v)

(vi)

(viii) $\begin{array}{cccccc}-2 & -n & -3 & -2 & -2 \\ & -0 & 0 & - & \cdots & -0 \\ & C_{1} & B \# F_{1} & D_{3} & D_{4} & D_{n}\end{array}$

Figure 5.4
(ix)

(x)

(xi)

where $T^{*}=\underset{B_{1} \# F_{1}}{\bigcirc-\cdots B_{3}}\left(\right.$ resp. \varnothing), $B^{*}=B_{2} \# F_{2}\left(\right.$ resp. $\left.B \# F_{2}\right)$
Figure 5.4 (Continued)
(5.5) Definition (cf. [15], [16]). A quadruple (X, A_{1}, A_{2}, ψ) is said to be admissible if X is a nonsingular rational surface, A_{k} is a nonsingular rational curve with $A_{1}^{2}=1, A_{2}^{2}=-1, A_{1} A_{2}=0$ and ψ is an isomorphism of A_{1} onto A_{2}.

The quadruple is said to be minimal if any (-1)-rational curve meets either A_{1} or A_{2}.
(5.6) Theorem. Let $\left(X, A_{1}, A_{2}, \psi\right)$ be a minimal admissible quadruple. Then there exists a proper flat family $\pi: \mathscr{S} \rightarrow \Delta$ over the disc such that
(5.6.1) $\quad \mathscr{S}_{0} \cong X$ modulo ψ with a double curve $A \cong A_{2}=\psi\left(A_{1}\right)$,
(5.6.2) $\mathscr{S}_{t}(t \neq 0)$ is a VII_{0} surface with a global spherical shell,
(5.6.3) there exists an open neighborhood \mathscr{U} of C in \mathscr{S} such that $\mathscr{S} \backslash \mathscr{U}$ is Δ-isomorphic to $\left(\mathscr{S}_{0} \backslash \mathscr{U}_{0}\right) \times \Delta$.

See [16, (4.2)] and [17] for the proof.
(5.7) In the remainder of $\S 5$, we apply (5.6) to a suitable minimal admissible quadruple so as to construct a special VII_{0} surface with a desired graph. Let [X_{0}, X_{1}, X_{2}] be the homogeneous coordinate of \boldsymbol{P}^{2} with $p_{0}=[1,0,0]$ and $l_{k}=$ $\left\{X_{k}=0\right\}$.

There is an $(n+1)$-fold blowing-up $\sigma: X \rightarrow \boldsymbol{P}^{2}$ such that

$$
\begin{aligned}
& \sigma^{-1}\left(p_{0}\right)=A_{2}+E+D_{2}+D_{3}+\cdots+D_{n}, \quad A_{1}=\left[l_{0}\right], \\
& A_{2}=E_{n+1}, \quad D_{k}=\left[E_{n-k+1}\right](2 \leqq k \leqq n), \quad E=\left[E_{n}\right], \quad F_{1}=\left[l_{1}\right], \\
& A_{1}^{2}=1, \quad A_{2}^{2}=-1, \quad D_{j}^{2}=E^{2}=-2, \quad F_{1}^{2}=-(n-1),
\end{aligned}
$$

where [H] stands for a proper transform of H, E_{k} the k-th (-1)-curve ($1 \leqq k \leqq n+1$) (that is, the (-1)-curve arising from the k-th blowing-up) and the dual graph of these curves is as in Figure 5.4 (i), where we denote the points $A_{1} \cap F_{1}$ and $A_{2} \cap E$ by two α 's. Let ψ be an isomorphism of A_{1} onto A_{2} with $\psi\left(A_{1} \cap F_{1}\right)=A_{2} \cap E$.

Consider a proper flat family $\pi: \mathscr{S} \rightarrow \Delta$ in (5.6) for the quadruple (X, A_{1}, A_{2}, ψ). By a suitable choice of π (cf. [16, (4.2)]), we have π-flat divisors \mathscr{D} and \mathscr{E} of \mathscr{S} such that $\mathscr{D}_{t}=D_{2}+D_{3}+\cdots+D_{n}$ for any $t, \mathscr{E}_{0}=E+F_{1}$ and \mathscr{E}_{t} is a rational curve with a node $(t \neq 0)$. This can be checked as follows: \mathscr{S} is a complex manifold of dimension three and is covered with open charts V^{λ} near the double curve C (cf. (5.6), [16, (4.2)]). Let V be one of V^{λ} and let $W:=V \cap \mathscr{S}_{0}$. Then by the construction of the family \mathscr{S}, the normalization \tilde{W} of W consists of two connected components W_{1} and W_{2}. Then W_{k} is an open chart in the normailzation X of \mathscr{S}_{0} such that

$$
V=\{(x, y, z, t) ; x y=t\}, \quad W=\{(x, y, z) ; x y=0\}, W_{1}=\left\{\left(x, z_{1}\right)\right\}, \quad W_{2}=\left\{\left(y, z_{2}\right)\right\},
$$

where the projection π (resp. the isomorphism ψ) is given by $\pi(x, y, z, t)=t$ (resp. $\psi\left(z_{1}\right)=z_{2}$). The chart W_{1} (resp. W_{2}) is embedded into V by $(x, y, z, t)=\left(x, 0, z_{1}, 0\right)$ (resp. $=\left(0, y, z_{2}, 0\right)$). Moreover the curvees A_{1} and A_{2} (resp. F_{1} and E) of X are defined
on W_{1} (resp. on W_{2}) by

$$
\begin{array}{ll}
A_{1} \cap W_{1}=\{x=0\}, & F_{1} \cap W_{1}=\left\{z_{1}=0\right\} \\
A_{2} \cap W_{2}=\{y=0\}, & E \cap W_{2}=\left\{z_{2}=0\right\}
\end{array}
$$

Then the divisor \mathscr{E} of \mathscr{S} is locally just $\{x y=t, z=0\}$ in V. One sees readily that \mathscr{E}_{0} has a unique singular point $(0,0,0,0)$ in V and that $\mathscr{E}_{t}(t \neq 0)$ is smooth in V. Since E and F_{1} meet transversally at a point $(=: q$) different from p (cf. (5.6.3)), $\mathscr{E}_{t}(t \neq 0)$ is a rational curve with a node q.
(5.7.1) Lemma. $\mathscr{E}_{t}^{2}=\left(E+F_{1}\right)^{2}$ for $t \neq 0$.

Proof. Let $f: X \rightarrow \mathscr{S}_{0}$ be the normalization. Then from the exact sequence $0 \rightarrow O_{\mathscr{S}_{0}} \rightarrow f_{*} O_{X} \rightarrow O_{A} \rightarrow 0$, we infer

$$
\begin{aligned}
\left(E+F_{1}\right)^{2}= & \left(f^{*} \mathscr{E}_{0}\right)^{2}=\chi\left(X, f^{*} \mathscr{E}_{0}\right)+\chi\left(X,-f^{*} \mathscr{E}_{0}\right)-2 \chi\left(X, O_{X}\right) \\
= & \chi\left(\mathscr{S}_{0}, \mathscr{E}_{0}\right)+\chi\left(\mathscr{S}_{0},-\mathscr{E}_{0}\right)-2 \chi\left(\mathscr{S}_{0}, O_{\mathscr{S}_{0}}\right)+\chi\left(A, \mathscr{E}_{0} \otimes O_{A}\right) \\
& +\chi\left(A,-\mathscr{E}_{0} \otimes O_{A}\right)-2 \chi\left(A, O_{A}\right) \\
= & \chi\left(\mathscr{S}_{t}, \mathscr{E}_{t}\right)+\chi\left(S_{t},-\mathscr{E}_{t}\right)-2 \chi\left(\mathscr{S}_{t}, O_{\mathscr{S}_{t}}\right)=\left(\mathscr{E}_{t}^{2}\right)
\end{aligned}
$$

q.e.d.

Since $b_{1}\left(\mathscr{S}_{t}\right)=1$ and $b_{2}\left(\mathscr{S}_{t}\right)=n$ by $[16,(3.4)]$, the curves $D_{k}(1 \leqq k \leqq n-1)$ and \mathscr{E}_{t} are all the irreducible rational curves on $\mathscr{S}_{t}(t \neq 0)$. As was shown above, we have $D_{k}^{2}=-2$ and $\mathscr{E}_{t}^{2}=-(n-1)$, whence \mathscr{S}_{t} is minimal. Thus \mathscr{S}_{t} is a special VII_{0} surface with the dual graph of $b_{2}(=n)$ curves as in Figure 5.4 (ii), which is the dual graph in Figure 3.8.

It is now clear how to get in general a graph on \mathscr{S}_{t} from a dual graph of curves for a (minimal) admissible quadruple $\left(X, A_{1}, A_{2}, \psi\right)$.

In what follow, we use the following notation: If we are given a π-flat divisor \mathscr{B} of \mathscr{S} such that $\mathscr{B}_{0}=B_{1}+\cdots+B_{r}$ for B_{i} irreducible, while $\mathscr{B}_{t}(t \neq 0)$ is irreducible, then we write $\mathscr{B}_{t}=B_{1} \# B_{2} \# \cdots \# B_{r}$. By a straightforward generalization of (5.7.1), we get $\left(B_{1} \# \cdots \# B_{r}\right)^{2}=\left(B_{1}+\cdots+B_{r}\right)^{2}$.
(5.8) There is an $(n+1)$-fold blowing-up $\sigma: X \rightarrow \boldsymbol{P}^{2}$ such that

$$
\begin{aligned}
& \sigma^{-1}\left(p_{0}\right)=A+B+C_{2}+D_{3}+\cdots+D_{n}, \quad A_{1}=\left[l_{0}\right], \quad A_{2}=E_{n+1} \\
& B=\left[E_{n}\right], \quad C_{2}=\left[E_{l-1}\right], \quad D_{j}=\left[E_{l-j+1}\right](3 \leqq j \leqq l) \\
& D_{j}=\left[E_{2 l+m-j-2}\right](l+1 \leqq j \leqq l+m-2), \quad F_{1}=\left[l_{1}\right] \\
& B^{2}=D_{j}^{2}=-2(3 \leqq j \leqq n), \quad C_{2}^{2}=-m, \quad F_{1}^{2}=-(l-2)
\end{aligned}
$$

where $n=l+m-2, l, m \geqq 3$, and the dual graph of these curves is as in Figure 5.4 (iii).
We take an isomorphism ψ of A_{1} onto A_{2} such that $\psi\left(A_{1} \cap F_{1}\right)=A_{2} \cap B$, which is indicated by two α 's. This means that $\psi(\alpha)=\alpha$, when α is viewed as
an intersection of curves denoted by two vertices connected by the edge α.
Therefore by the rule for deducing Figure 5.4 (ii) from Figure 5.4 (i), we obtain a dual graph of n curves on $\mathscr{S}_{t}(t \neq 0)$ as in Figure 5.4 (iv), where $C_{1}:=B \# F_{1}, C_{1}^{2}=-l, C_{2}^{2}=-m, D_{j}^{2}=-2$. The dual graph for $m \geqq 3$ is as in Figure 3.9 (i), while we obtain the graph in Figure 3.9 (iv) by taking $m=2$.
(5.9) There is an ($n+1$)-fold blowing-up $\sigma: X \rightarrow \boldsymbol{P}^{2}$ such that

$$
\begin{aligned}
& \sigma^{-1}\left(p_{0}\right)=A_{2}+B_{1}+B_{2}+C_{2}+D_{3}+D_{4}+\cdots+D_{n}, \\
& A_{1}=\left[l_{0}\right], \quad A_{2}=E_{n+1}, \quad B_{1}=\left[E_{n}\right], \quad B_{2}=\left[E_{n-1}\right], \\
& C_{2}=\left[E_{l-1}\right], \quad F_{k}=\left[l_{k}\right], \quad D_{j}=\left[E_{l-j+1}\right](3 \leqq j \leqq l), \\
& D_{j}=\left[E_{2 l+m-j-2}\right](l+2 \leqq j \leqq l+m-2), \\
& B_{1}^{2}=-2, \quad B_{2}^{2}=-3, \quad C_{2}^{2}=-m, \quad F_{1}^{2}=-(l-2), \quad F_{2}^{2}=0, \\
& D_{j}^{2}=-2(j \neq l+1,3 \leqq j \leqq l+m-2),
\end{aligned}
$$

where $n=l+m-2, l, m \geqq 3$, and the dual graph of these curves is as in Figure 5.4 (v). Hence by the rule in (5.7), we have a dual graph of n curves on \mathscr{S}_{t} $(t \neq 0)$ as in Figure $5.4(\mathrm{vi})$, where $C_{1}:=B_{1} \# F_{1}, D_{l+1}:=B_{2} \# F_{2}, C_{1}^{2}=-l, C_{2}^{2}=-m$, $D_{l+1}^{2}=-3, D_{j}^{2}=-2(j \neq l+1)$. This is the graph in Figure 3.9 (ii).
(5.10) There is an $(n+1)$-fold blowing-up $\sigma: X \rightarrow \boldsymbol{P}^{2}$ such that

$$
\begin{aligned}
& \sigma^{-1}\left(p_{0}\right)=A_{2}+C_{1}+B+D_{3}+\cdots+D_{n}, \quad A_{1}=\left[l_{0}\right], \quad A_{2}=E_{n+1}, \\
& B=\left[E_{n}\right], \quad C_{1}=\left[E_{n-1}\right], \quad D_{k}=\left[E_{n-k+1}\right](3 \leqq k \leqq n), \quad F_{1}=\left[l_{1}\right], \\
& B^{2}=C_{1}^{2}=D_{k}^{2}=-2(4 \leqq k \leqq n), \quad D_{3}^{2}=-3, \quad F_{1}^{2}=-(n-2),
\end{aligned}
$$

and the dual graph of these curves is as in Figure 5.4 (vii). Therefore by the rule in (5.7), we obtain a dual graph of n curves on $\mathscr{S}_{t}(t \neq 0)$ as in Figure 5.4 (viii), where $C_{2}:=B \# F_{1}, C_{1}^{2}=-2, C_{2}^{2}=-n, D_{3}^{2}=-3, D_{k}^{2}=-2(k \neq 3)$. This is the graph in Figure 3.9 (iii).
(5.11) Next we construct the graph in Figure 4.2. There is a two dimensional torus embedding Y with the following one dimensional orbits

$$
\begin{aligned}
& Y \backslash\left(C^{*}\right)^{2}=A_{1}+F_{2}+C^{\prime}+H+D^{\prime}+F_{1}, \\
& A_{1}^{2}=1, \quad F_{1}^{2}=-1, \quad F_{2}^{2}=0, \quad H^{2}=-1,
\end{aligned}
$$

and

$$
C^{\prime}=\left[E_{1}\right]+\sum_{k=1}^{m-1} \sum_{j=0}^{q_{k}-3}\left[E_{R_{k}+j}\right]+\sum_{j=0}^{q_{m}-4}\left[E_{R_{m}+j}\right],
$$

$$
D^{\prime}=\sum_{k=0}^{m} \sum_{j=0}^{p_{k}-3}\left[E_{S_{k}+j}\right], \quad A_{1}=\left[l_{0}\right], \quad F_{k}=\left[l_{k}\right], \quad H=E_{N}
$$

The self-intersection numbers of $\left[E_{j}\right]$ are

$$
\begin{aligned}
& {\left[E_{S_{k}-1}\right]^{2}=-p_{k+1}(0 \leqq k \leqq m-1),\left[E_{R_{k}-1}\right]^{2}=-q_{k}(1 \leqq k \leqq m-1),} \\
& \left.\left[E_{R_{m}-1}\right]^{2}=-\left(q_{m}-1\right),\left[E_{j}\right]^{2}=-2 \text { (otherwise }\right) \\
& \left(-C_{i}^{\prime 2}\right)=(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots, p_{m}, \underbrace{2, \cdots, 2}_{\left(q_{m}-3\right)}) \\
& \left(-D_{j}^{\prime 2}\right)=(\underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \underbrace{2, \cdots, 2}_{\left(p_{2}-3\right)}, q_{2}, \cdots, q_{m-1}, \underbrace{2, \cdots, 2}_{\left(p_{m}-3\right)}, q_{m}),
\end{aligned}
$$

where $p_{i}, q_{i} \geqq 3, R_{0}=0, S_{0}=2, R_{k}=\sum_{i=1}^{k-1}\left(p_{i}+q_{i}-4\right)+p_{k}$, and $S_{k}=\sum_{i=1}^{k}\left(p_{i}+q_{i}-\right.$ 4)+2. We note that $N=S_{m}-1, S_{k}-1=R_{k}+q_{k}-3$, and $R_{k}-1=S_{k-1}+p_{k}-3$. The dual graph of the above curves is as in Figure 5.4 (ix).

Moreover, we blow up at H successively to get the dual graph of curves as in Figure $5.4(\mathrm{x})$, where $B^{2}=-2, C_{j}^{2}=-2(1 \leqq j \leqq a-1), A_{2}^{2}=-1$. By using an isomorphism ψ of A_{1} onto A_{2} such that $\psi\left(A_{1} \cap F_{2}\right)=A_{2} \cap B$, we consider a proper flat family $\pi: \mathscr{S} \rightarrow \Delta$ in (5.6). Let $C_{a}:=B \# F_{2}, C_{a+1}:=\left[E_{1}\right], C_{a+2}:=$ $\left[E_{p_{1}}\right], \cdots, C_{r}:=\left[E_{N-1}\right], D_{r+1}:=\left[E_{R_{m}-1}\right], \cdots, D_{n}:=\left[E_{2}\right], C^{\prime}:=C_{a+1}+\cdots+C_{r}$ and $D^{\prime}:=D_{r+1}+\cdots+D_{n}$. Then $C=C_{1}+\cdots+C_{a}+C^{\prime}$ is a cycle of rational curves and D^{\prime} is the longest branch of C. Thus we obtain Figure 4.2 (ii) for $a=1+r-v_{1}>0$. The construction of Figure 4.2 (i) is similar. We omit the details.
(5.12) Finally we construct Figure 4.11. Since no new argument is necessary, we only give a sketch of the construction. We start with Y in (5.11). Continue to blow Y up over the previous centers. Eventually we obtain (by choosing a suitable process) a rational surface X with a graph of curves given as in Figure 5.4 (xi), where $A_{1}^{2}=1, A_{2}^{2}=-1, B_{1}^{2}=B_{3}^{2}=B^{2}=-2$.

Consider a minimal admissible quadruple $\left(X, A_{1}, A_{2}, \psi\right)$ such that $\psi\left(A_{1} \cap F_{2}\right)=$ $B_{2} \cap A_{2}$ (resp. $B \cap A_{2}$) and $\psi\left(A_{1} \cap F_{1}\right)=A_{2} \cap B_{1}$ (resp. $\neq B \cap A_{2}$). Then on $\mathscr{S}_{t}(t \neq 0)$, we have a graph as in Figure 5.4 (xii). The graph has a unique cycle with d branches. Since $\left(B_{1} \# F_{1}\right)^{2}=B_{1}^{2}-1 \leqq-3$ and $\left(B^{*}\right)^{2} \leqq-2$, the surface $\mathscr{S}_{t}(t \neq 0)$ is minimal. By computing the self-intersection numbers of these curves, we see that Figure 5.4 (xii) is one of the graphs in Figure 4.11. We note that an arbitrary graph in Figure 4.11 is constructed in this way.

This completes the proof of (5.6).
(5.13) Here we take again the torus embedding Y in (5.11). With the notation in (5.11) we define $A_{2}=H=E_{N}$ and consider a minimal admissible quadruple $\left(Y, A_{1}, A_{2}, \psi\right)$ such that $\psi\left(A_{1} \cap F_{1}\right)=A_{2} \cap\left[E_{R_{m}-1}\right]$ and $\psi\left(A_{1} \cap F_{2}\right)=A_{2} \cap\left[E_{N-1}\right]$.

Then by (5.6), we have two cycles A and B of rational curves of $\mathscr{S}_{t}(t \neq 0)$ such that

$$
\begin{aligned}
\left(-A_{i}^{2}\right) & =\left(-\left[E_{1}\right]^{2},-\left[E_{p_{1}}\right]^{2}, \cdots,-\left(\left[E_{N-1}\right] \# F_{2}\right)^{2}\right) \\
& =(p_{1}, \underbrace{, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots, p_{m}, \underbrace{2, \cdots, 2}_{\left(q_{m}-3\right)}), \\
\left(-B_{j}^{2}\right) & =\left(-\left[E_{2}\right]^{2},-\left[E_{3}\right]^{2}, \cdots,-\left(\left[E_{R_{m}-1}\right] \# F_{1}\right)^{2}\right) \\
& =(\underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \underbrace{2, \cdots, 2}_{\left(p_{2}-3\right)}, q_{2}, \cdots, q_{m-1}, \underbrace{2, \cdots, 2}_{\left(p_{m}-3\right)}, q_{m}) .
\end{aligned}
$$

The surface $\mathscr{S}_{t}(t \neq 0)$ is isomorphic to a hyperbolic Inoue surface by [14, (8.1)].

Parabolic Inoue surfaces and exceptional compactifications $S_{n, \beta, \lambda}$ appear as $\mathscr{S}_{t}(t \neq 0)$ by taking the following Y and various ψ (see [16, p. 349]):

$$
\begin{gathered}
Y \backslash\left(C^{*}\right)^{2}=A_{1}+F_{2}+C^{\prime}+A_{2}+F_{1}, \quad A_{2}=E_{n+1}, \quad C^{\prime}=\sum_{k=1}^{n}\left[E_{k}\right] \\
F_{k}=\left[l_{k}\right], \quad A_{1}^{2}=1, \quad A_{2}^{2}=-1, \quad\left[E_{k}\right]^{2}=-2, \quad F_{1}^{2}=-n, \quad F_{2}^{2}=0 .
\end{gathered}
$$

(5.14) We take again the torus embedding Y in (5.11) and set $A_{2}=H=E_{N}$. Then we choose a minimal admissible quadruple $\left(Y, A_{1}, A_{2}, \psi\right)$ such that $\psi\left(A_{1} \cap F_{1}\right)=A_{2} \cap\left[E_{N-1}\right]$ and $\psi\left(A_{1} \cap F_{2}\right)=A_{2} \cap\left[E_{R_{m}-1}\right]$. Then we have a unique cycle C on $\mathscr{S}_{t}(t \neq 0)$. The cycle C has no branches and is given as

$$
C=\left(C^{\prime}-\left[E_{n-1}\right]\right)+\left[E_{N-1}\right] \# F_{1}+\left(D^{\prime}-\left[E_{R_{m}-1}\right]\right)+\left[E_{R_{m}-1}\right] \# F_{2},
$$

where $\left(\left[E_{N-1}\right] \# F_{1}\right)^{2}=-3$ (resp. $-\left(p_{m}+1\right)$) for $q_{m}>3\left(\right.$ resp. $\left.q_{m}=3\right)$ and $\left(\left[E_{R_{m}-1}\right] \#\right.$ $\left.F_{2}\right)^{2}=-\left(q_{m}-1\right)$. Hence $\left(-C_{i}^{2}\right)$ is equal to

$$
(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots, p_{m}, \underbrace{2, \cdots, 2}_{\left(q_{m}-4\right)}, 3, \underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \cdots, q_{m-1}, \underbrace{2, \cdots 2,}_{\left(p_{m}-3\right)} q_{m}-1)
$$

or

$$
(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots p_{m-1}, \underbrace{2, \cdots, 2}_{\left(q_{m-1}-3\right)}, p_{m}+1, \underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \cdots, q_{m-1}, \underbrace{2, \cdots, 2}_{\left(p_{m}-2\right)}) .
$$

This is the self-dual cycle (see (6.3)). If C^{\prime} is irreducible and if $D^{\prime}=\varnothing$, then we have a rational curve $C^{\prime} \# F_{1} \# F_{2}$ with a node with $\left(C^{\prime} \# F_{1} \# F_{2}\right)^{2}=\left(C^{\prime}+F_{1}+\right.$ $\left.F_{2}\right)^{2}=-1$. The surface $\mathscr{S}_{t}(t \neq 0)$ is in any case a half Inoue surface by (6.2).

6. Inoue surfaces with positive b_{2}.

(6.1) Theorem. Let S be a special VII_{0} surface with a unique cycle C of rational curves. Assume $C^{2}<0$ and that C has no branches. Then S is isomorphic to a half Inoue surface.

Proof. Let D be a divisor such that $m K_{S}+D=0$ in $H^{2}(S, Z)$ for some $m \in \boldsymbol{Z}$ with $m>0$. By (3.1) and the assumption, we have $D_{\text {red }}=C$. Hence $D=\sum_{i} n_{i} C_{i}$. Then $(D-m C) C_{i}=-m\left(K_{S}+C\right) C_{i}=0$, whence $D=m C$ because $\left(C_{i} C_{j}\right)$ is negative definite. Hence $b_{2}(S)=-K_{S}^{2}=-C^{2}$. It follows from [14, (9.3)] the S is isomorphic to a half Inoue surface.
q.e.d.
(6.2) Corollary (cf. [15]). Let S be a minimal surface with a global spherical shell. If S has a unique cycle C without branches and with $C^{2}<0$, then S is isomorphic to a half Inoue surface.
(6.3) Proposition. Let $C=C_{1}+\cdots+C_{n}$ be the unique cycle of rational curves on the surface in (6.1) or (6.2). If $n=1$, then $C^{2}=-1$. If $n \geqq 2$, then there exist integers $p_{j}(\geqq 3)(1 \leqq j \leqq l+1), q_{j}(\geqq 3)(1 \leqq j \leqq l)$ such that

$$
\left(-C_{k}^{2}\right)=(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots, p_{l}, \underbrace{2, \cdots, 2}_{\left(q_{l}-3\right)}, p_{l+1}, \underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \cdots, q_{l}, \underbrace{2, \cdots, 2}_{\left(p_{l+1}-3\right)}) .
$$

Proof. Although this follows also from (6.1) or (6.2), we give a direct proof by using (1.5), (1.7), and (1.8). If $n=1$, then $C^{2}=-b_{2}(S)=-n=-1$. Assume $n \geqq 2$. By applying (1.8) we have a canonical basis $L_{j}(1 \leqq j \leqq n)$ of $H^{2}(S, Z)$ such that

$$
K_{S}=L_{[1, n]}, \quad C=-L_{[1, n]}+F_{2} \sim-L_{[1, n]},
$$

where F_{2} is a flat line bundle of order two. Assume $C_{j} \sim L_{j}-L_{B_{j}}$ for some $B_{j} \subset[1, n] \backslash\{j\}$. Then by modifying [14, (6.8)] slightly, we have a canonical basis $\left\{N_{j}, M_{j}(1 \leqq j \leqq n)\right\}$ of $H^{2}\left(S^{*}, Z\right)$ for an unramified double covering S^{*} of S such that

$$
\pi^{*} C_{j}=C_{j}^{\prime}+C_{j}^{\prime \prime}, \quad C_{j}^{\prime} \sim N_{j}-N_{j-1}-M_{I_{j}^{\prime}}, \quad C_{j}^{\prime \prime} \sim M_{j}-M_{j-1}-N_{I_{j}^{\prime \prime}} .
$$

Since the involution \imath of S^{*} transforms C_{j}^{\prime} into $C_{j}^{\prime \prime}$ for any j, we have $\imath^{*} M_{j}=N_{j}$, $\iota^{*} N_{j}=M_{j}, I_{j}^{\prime}=I_{j}^{\prime \prime}\left(=: I_{j}\right)$, and $C_{j} \sim L_{j}-L_{j-1}-L_{I_{j}}(1 \leqq j \leqq n)$ on S and $\pi^{*} L_{j}=M_{j}+N_{j}$. We define $1=v_{1}<v_{2}<\cdots<v_{m} \leqq n$ by $I_{v_{k}} \neq \varnothing, I$ and $I_{v_{1}} \cup \cdots \cup I_{v_{m}}=[1, n]$. Hence $C_{v_{k}} \sim$ $L_{v_{k}}-L_{v_{k}-1}-L_{I_{v_{k}}}, \quad C_{\lambda} \sim L_{\lambda}-L_{\lambda-1} \quad$ (otherwise), where $I_{v_{k}}=\left[\beta_{k}, \beta_{k+1}-1\right](\subset \boldsymbol{Z} / n \boldsymbol{Z})$ and $\beta_{1}<\beta_{2}<\cdots<\beta_{m}$. We define v_{k} and $\beta_{k}(k \in \boldsymbol{Z})$ by $v_{k+m}=v_{k}, \beta_{k+m}=\beta_{k}$. For simplicity, we further assume $C_{v_{i}} C_{v_{j}}=0$ for $i \neq j$. Then by $C_{v_{k}} C_{\lambda}=1 \quad\left(\lambda=v_{k} \pm 1\right)$ and $C_{v_{k}} C_{\lambda}=0$ $\left(\lambda \neq v_{k}, v_{k} \pm 1\right)$, we see $\left[\beta_{k}, \beta_{k+1}-1\right]=\left[v_{j_{k}}, v_{j_{k}+1}-1\right]$ for some $j_{k}(1 \leqq k \leqq m)$. Hence there is an $l(0 \leqq l \leqq m-1)$ such that $\beta_{k}=v_{k+l}$ for any k. If $l>0$, then by $C_{v_{k}} C_{v_{l+k}}=0$, we have $v_{k}=v_{2 l+1+k} \bmod n$, whence $m=2 l+1 \geqq 3$. Letting $q_{j}:=v_{j+1}-v_{j}+2, p_{k}:=v_{k+l+1}-$ $v_{k+l}+2(1 \leqq j \leqq l, 1 \leqq k \leqq l+1)$, we have (6.3) with $l \geqq 1$. If $C_{v_{i}} C_{v_{j}}=1$ for some i and j, then we can prove (6.3) with some p_{k} or q_{j} equal to 3 similarly. If $l=0$, then $C_{1} \sim-2 L_{i}-L_{I}$ and we can prove (by indexing suitably)

$$
C_{1} \sim-2 L_{n}-L_{[2, n-1]}, \quad C_{j} \sim L_{j}-L_{j-1} \quad(2 \leqq j \leqq n),
$$

whence

$$
\left(-C_{k}^{2}\right)=(n+2, \underbrace{2, \cdots, 2}_{(n-3)})=(p_{1}, \underbrace{2, \cdots, 2}_{\left(p_{1}-3\right)}) \quad\left(p_{1}=n+2 \geqq 4\right) .
$$

q.e.d.
(6.4) TheOREM (cf. [7], [19]). Any Inoue surface with $b_{2}>0$ contains a global spherical shell.

Proof. Let S be a hyperbolic Inoue surface, and let A and B be cycles of rational curves on S. Then $\mathrm{Zykel}(A)$ and $\mathrm{Zykel}(B)$ are given by [14, (6.8)]. For any pair of sequences

$$
\begin{aligned}
& \operatorname{seq}=(p_{1}, \underbrace{2, \cdots, 2}_{\left(q_{1}-3\right)}, p_{2}, \cdots, p_{n}, \underbrace{2, \cdots, 2}_{\left(q_{n}-3\right)}) \\
& \text { seq}^{*}=(\underbrace{(2, \cdots, 2}_{\left(p_{1}-3\right)}, q_{1}, \underbrace{2, \cdots, 2}_{\left(p_{2}-3\right)}, q_{2}, \cdots, q_{n-1}, \underbrace{2, \cdots, 2}_{\left(p_{n}-3\right)}, q_{n})
\end{aligned}
$$

we have as in (5.13) a proper flat family $\pi: \mathscr{S} \rightarrow \Delta$ over the unit disc Δ such that \mathscr{S}_{t} has two cycles A and B of rational curves with $\operatorname{Zykel}(\mathrm{A})=\operatorname{seq}, \operatorname{Zykel}(B)=$ seq*. By $[14,(8.1)], \mathscr{S}_{t}(t \neq 0)$ is a hyperbolic Inoue surface isomorphic to S above. By (5.6), \mathscr{S}_{t} contains a global spherical shell, hence so does S. The same argument applies to a half Inoue surface (resp. a parabolic Inoue surface) by using (6.2), (6.3) and (5.14) (resp. (5.1) and [14, (7.1)]). See also (5.13), [7] or [19] for parabolic Inoue surfaces.
(6.5) Definition. Let S be a VII $_{0}$ surface with $b_{2}>0$. The Dloussky number of S is defined as

$$
\mathrm{Dl}(S):=-\sum_{D} D^{2}+2 \#(\text { rational curves with nodes })
$$

with D running through all irreducible curves on S (see [4, p. 43]).
(6.6) Lemma (cf. [4], [16]). Let S be a special VII_{0} surface with a cycle C with branches. Then $\mathrm{Dl}(S)=3 b_{2}(S)-d-\sum_{l=1}^{d} \lambda(l)$.

Proof. Clear from (3.8), (3.9), (4.2) and (4.11).
q.e.d.
(6.7) Theorem. Let S be a VII_{0} surface with $b_{2}>0$. Then $\mathrm{Dl}(S) \leqq 3 b_{2}(S)$, with the equality holding if and only if S is an Inoue surface with $b_{2}>0$.

Proof. It suffices to prove the assertion when S has no rational curves with nodes, by taking an unramified double covering of S if necessary. Let M be the reduced effective maximal divisor on S. Then $b_{2}(M) \leqq b_{2}(S)$ and M is with normal crossing. By $[14, \S 4]$ we have an exact sequence

$$
0 \rightarrow \Theta_{S}(-\log M) \rightarrow \Theta_{S} \rightarrow J_{M} \rightarrow 0
$$

We see $J_{M} \cong \bigoplus_{D \subset M} O_{D}(D)$ with D ranging over all the irreducible components D of M. Hence $h^{0}\left(M, J_{M}\right)=0$ and $h^{1}\left(M, J_{M}\right)=\mathrm{Dl}(S)-b_{2}(M)$. We also have $h^{2}\left(S, \Theta_{S}(-\log M)\right) \leqq 2$ by [11], and $h^{2}\left(S, \Theta_{S}\right)=0$ by (1.2). On the other hand, $h^{0}\left(S, \Theta_{S}\right) \leqq 2$ by [11] and $\chi\left(S, \Theta_{S}\right)=-2 b_{2}$ so that $h^{1}\left(S, \Theta_{S}\right) \leqq 2 b_{2}+2$. This shows

$$
\mathrm{Dl}(S) \leqq b_{2}(M)+2 b_{2}(S)+4 \leqq 3 b_{2}(S)+4
$$

This inequality holds for any VII_{0} surface. So we take an unramified fivefold covering S^{*} of S. Let M^{*} be the pullback of M. Then M^{*} is clearly the reduced effective maximal divisor of S^{*}. Hence

$$
\mathrm{Dl}\left(S^{*}\right) \leqq b_{2}\left(M^{*}\right)+2 b_{2}\left(S^{*}\right)+4 \leqq 3 b_{2}\left(S^{*}\right)+4
$$

so that $5 \mathrm{Dl}(S) \leqq 15 b_{2}(S)+4$. Therefore $\mathrm{Dl}(S) \leqq 3 b_{2}(S)$. If moreover $\mathrm{Dl}(S)=$ $3 b_{2}(S)$, then $\mathrm{Dl}\left(S^{*}\right)=3 b_{2}\left(S^{*}\right)$. Hence $15 b_{2}(S) \leqq 5 b_{2}(M)+10 b_{2}(S)+4$. This implies $b_{2}(S)=b_{2}(M)$, that is, S is special. By (6.6), $\mathrm{Dl}(S)<3 b_{2}(S)$ if S satisfies (2.2). Consequently, S is either an Inoue surface with $b_{2}>0$ or an exceptional compactification of an affine bundle (cf. [1] and (2.1)). However in the second case, $\mathrm{Dl}(S)=$ $2 b_{2}(S)<3 b_{2}(S)$. It is easy to check that any Inoue surface with $b_{2}>0$ satisfies $\mathrm{Dl}(S)=3 b_{2}(S)$ (see [5], [6]). q.e.d.

References

[1] I. Enoki, Surfaces of class VII $_{0}$ with curves, Tôhoku Math. J. 33 (1981), 453-492.
[2] G. Dloussky, Sur les surfaces compactes de la classe VII_{0} contenant une coquille sphérique globale, C. R. Acad. Sci. Paris Ser. I. Math., 292 (1981), 727-730.
[3] G. Dloussky, Sur les courbes et champs de vecteurs globaux des surfaces analytiques de la classe VII $_{0}$ admettant une coquille sphérique globale, C. R. Acad. Sci. Paris, 295 (1982), 111-114.
[4] G. Dloussky, Structure des surfaces de Kato, Mem. Soc. Math. France, (N.S.) 14 (1984).
[5] M. Inoue, New surfaces with no meromorphic functions, Proc. Internat. Congr. Math., Vancouver, 1974, Vol. 1, Canadian Math. Soc., 1975, pp. 423-426 (1974).
[6] M. Inoue, New surfaces with no meromorphic functions, II, Complex Analysis and Algebraic Geometry (Baily and Shioda eds.), Iwanami Shoten, Tokyo and Cambridge Univ. Press, Cambridge, 1977, pp. 91-106.
[7] Ma. Kato, Compact complex manifolds containing "global spherical shells", I, Proc. Internat. Sympos. Algebraic Geometry, (M. Nagata, ed.), Kyoto, 1977, Kinokuniya, Tokyo, pp. 45-84.
[8] Ma. Kato, On a certain class of non-algebraic non-Kähler compact complex manifolds, Recent progress of algebraic geometry in Japan (M. Nagata, ed.), North-Holland Mathematics Studies, no. 71, Kinokuniya, Tokyo and North-Holland, Amsterdam and New York, 1977, pp. 28-50.
[9] Y. Kawamata, On deformations of compactifiable complex manifolds, Math. Ann. 235(1978), 247-265.
[10] K. Kodaira, On the structure of compact complex analytic surfaces, I-IV, Amer. J. Math. 86 (1964), 751-798; 88 (1966), 682-721; 90 (1968), 55-83; 90 (1968), 1048-1066.
[11] V. A. Karasnov, Compact complex manifolds without meromorphic functions, Math. Notes. 17 (1975), 69-71.
[12] H. Laufer, Versal deformation for two dimensional pseudoconvex manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 7 (1980), 511-521.
[13] I. Nakamura, On surfaces of class VII $_{0}$ with curves, Proc. Japan Acad. Ser. A 58 (1982), 380-383 (1982); II 62 (1986), 406-409.
[14] I. Nakamura, On surfaces of class VII_{0} with curves, Invent. Math. 78 (1984), 393-443.
[15] I. Nakamura, On surfaces of class VII $_{0}$ with global spherical shells. Proc. Japan Acad. Ser. A 59 (1983), 29-32.
[16] I. Nakamura, VII_{0} surfaces and a duality of cusp singularities, Classification of Algebraic and Analytic Manifolds, Progr. Math. 39, Birkhäuser, Boston 1983, pp. 333-378.
[18] I. Nakamura, Towards classification of non-kählerian complex surfaces, Sugaku Expos. Vol. 2, Amer. Math. Soc., Providence, Rhode Island, 1989, 209-229.
[19] T. Oda, Torus embeddings and applications (based on joint work with Katsuya Miyake), Tata Inst. Fund. Res. Lectures on Math. and Phys., no. 58, Springer-Verlag, Berlin, Heidelberg, New York, 1978.

Department of Mathematics
College of General Education
Hokkaido University
Sapporo 060
JAPAN

