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VARIETIES WHOSE SURFACE SECTIONS ARE ELLIPTIC
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Introduction. Let A" be a complex projective manifold of dimension n. Let L be
a very ample line bundle on X. Let S be the intersection of n — 2 general members of
\L\. Assume, moreover, that S is an elliptic surface of Kodaira dimension κ{S)=l and
that (X, L) is not a scroll over a surface. By [20], we know that there exists a reduction
(X\ L) of (X, L) such that Kx, + {n-l)L is very ample. Moreover, Kx. + {n-2)L is
semi-ample and any smooth surface S", which is the intersection of n — 2 general members
of \L'\ is a minimal model, with κ(Sf)>0 (see [9], [13], [19]). Let p: X-+C be the
morphism associated to \N(Kx. + (n — 2)L')\ for N»0. N is chosen so that C = p(X') is
normal and p has connected fibres. It follows that dim C= 1. We restrict ourselves to
varieties of dimension «>4, since the case « = 3 has been considered by the first author
in [2]. Note that the general fibre of p is a del Pezzo manifold of degree d, where
3<d<&. We classify X' in the cases d=3, 4, 7, 8. Since we have only partial results for
d=5, 6 those will not be included here.

The paper is organized as follows. In Section 0, we give some background material
and state, without proof, some of the needed results. In Section 1, we prove the results
used later in the paper. In Section 2 we classify the possible singular fibres of the
morphism p3: X'3-»C in the case d=3, 4, 7, 8. In Sections 3 through 6 we analyze the
structure of X' for these values of d.
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0. Notation and background material. Throughout this paper we let X be an
irreducible complex projective manifold of dimension n, and L a very ample line bundle
over X.

(0.1) Let L be a line bundle over X. We say that L is nef'ύ cl(L)'[_C~]>0, for
all effective curves C on X. We say that a nef line bundle L is big if c1(L)n>0. We say
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that L is spanned if Bs | L |, the base locus of | L |, is empty. We say that L is semiample

if there exists an m > 0 such that Bs | mL |, the base locus of | mL |, is empty.

(0.2) NA/B is the normal bundle of A in B9 and NA/BfC is its restriction to C.

(0.3) Let (X, L) be a polarized manifold. A reduction of (X L) is a polarized

manifold (Xf, L) such that:

(a) there exists a morphism π: ^-> X' expressing X as Z ' with a finite set F

in X' blown up.

(b) L = π*(L / )- [π" 1 ( i Γ ) ] , or equivalently, Kx + (n-l)L = π*{Kx, + (n-l)L').

(0.4) Let L be a line bundle over X.LetAu - , An_2 be general members of the

linear system | L | and let ^ = Π i < j < « - Λ τ ^ e n d i m A ^ ί . We have the following

descending chain Xz>Xn~1 => =>X3 =DZ 2, and we will often denote X2 by S and L x,

by Lh and when no ambiguity exists, only by L.

(0.5) The following theorems ([20, (2.1)] and [19, (4.5), (5.1)]) play a major role

in this paper. The first one is stated for smooth varieties, but it also remains true for

varieties with "mild singularities".

(0.5.1) THEOREM. Let L be a very ample line bundle on an n-dimensional complex

projectίve manifold X with n>3. Assume that Kx + (n—\)L is nef and big. Then there

exists a unique minimal reduction (X\ L) of(X, L) such that Kx, + (n — \)L is very ample.

(0.5.2) THEOREM. Let L be an ample and spanned line bundle on an n-dimensional

complex projective manifold X with n>2. Assume that Kx 4- (n — \)L is nef and big. Then

there exists a unique minimal reduction (X\L) of(X,L) such that Kx, + (n—\)L' is

ample. Ifh°(N(Kx + (n-2)L))Φ0for some ΛΓ>0, then Kx, + (n-2)L' is semi-ample, and

any smooth surface Sr, which is the intersection of n — 2 general members of\L'\, is a

minimal model of non-negative Kodaira dimension.

For the convenience of the reader, we recall the following definitions (see [8, (1.0)]).

(0.6) A rung of a polarized manifold (X, L) is an irreducible reduced member of

\L\. A rung D is said to be regular if the homomorphism Γ(X, L)^Γ(D, LD) is a

surjection. A ladder of (X, L) is a sequence of subvarieties X= Xnz>Xn~ί=> ••• ZDX3ZD

X2 3X 1 of X, with dim Xi = i, such that each X1 is a rung of (Xi+\ Lχi+1)- The ladder

is said to be regular if each rung is regular. Note that d—DL L(n times) = L2'L2

where L2 is the restriction of L to a 2-dimensional rung X2.

(0.7) By Fr with r > 0 we denote the r-th Hirzebruch surface, i.e. the unique

P1 -bundle π : Fr-*Pι over P 1 with a section E satisfying EΈ= -r. For r > 1 we let Fr

denote the normal surface obtained from Fr by contracting E and let πι: Fr-+Fr be the

contraction map. Given a line bundle L on FΓ, the pullback of L to Fr is of the form
rΓ\ f°Γ some integer a, where/is a fibre of π.

1. General Results.

(1.0) Throughout this paper, unless otherwise specified, X will denote a complex
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projective manifold of dimension n. Let L be a very ample line bundle on X. Assume

that the intersection of n — 2 general members of | L \ is an elliptic surface S of Kodaira

dimension κ(S)= 1 and that (X, L) is not a scroll over a surface. Then (see [13], [19])

there is a reduction (X', L) oϊ{X, L) such that Kx. + (n — 2)L is semi-ample. Let/?: X-+C

be the morphism associated to the linear system | N{KX. + (n — 2)L) | for 7V»0. Choose TV

big enough so that C=p(X') is normal and the fibres of/? are connected. It is clear that

for XnGILχi +11 we havepx.t: Xrι->C. From now on we denotep χ ι i by pv Whenever it

is clear from the context we will write p instead of pt.

(1.1) LEMMA. Under the above assumptions dim C= 1.

PROOF. We note that κ(S')=l. The elliptic fibration map on S' extends to X'

giving the map/?: X'^C. Hence by [19, (0.3.2)] it follows that d i m C = 1. •

(1.2) LEMMA. L is locally very ample with respect to p.

PFOOF. Kx. + (n— \)L is very ample for n>3 (see [20]). Moreover we have

Kx> + (n — 2)L' = p*(M) for some ample line bundle M on C. Hence Kx. + (n—1)1/=

p*(M) + U, or equivalently, L is locally very ample with respect to /?. •

(1.3) REMARK. Let Fn~1 denote a general fibre of/?. Then there exists a smooth

regular ladder of (Fn~\ L).

(1.4) REMARK. Since (Fn~ \ L) has a ladder it follows easily (see [8, (1.0)]), that

d = ( L f

F n ~ ί ) n ~ 1 = ( L /

F n - 2 ) n ~ 2 = -" = ( ^ - 0 " " ' = ••• = ( L ' F 2 ) \ w h e r e ( £ ^ - 0 " - ' = ^ - , -

• Lfn-i (« —/ times). But F 2 is a smooth del Pezzo surface. Hence 1 <d<9.

(1.5) LEMMA. Let p: X'-+C be as in (1.0) W d= deg L ^

(i) 3 <d<4, if dim X'>S;

(ϋ) 3<d<5, //dimZr = 6, 7;

(iii) 3 < d < 6 , if dim Xf = 5;

(iv)

PROOF. By (1.4) we know that 1 <d<9. If d= 1, it follows that Bs | LFn-, |, the

base locus of | L^n-i |, is nonempty which contradicts (1.2). Hence d= 1 cannot occur.

Since L is locally very ample with respect to p,d = 2 cannot occur either. The rest

follows from [8]. •

(1.6) LEMMA. /?*(£') is a vector bundle of rank d+n — 2 over C, where d=

deg L'Fn-1 and n = dim X'.

PROOF. By (1.3)

0->ΘFn-ι->LFn-ι^>Lf

Fn-2-+0.

Moreover h\Fn~\ ^ - 0 = 0. Hence h°{Fn~\ L') = h°(Fn-\ L r )+1 or more generally
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Thus we have

h°(Fn-\ L') = h°(F\

Noting that L'F2 = - Kp2 and using the Riemann-Roch theorem we conclude that

ho(L'F2) = d+l, where d = KF2-KF2, whence fι°(LFn-i) = d + n — 2. Hence in a neighbour-

hood of a smooth fibre, pJ,L'Fn-χ) is locally free of rank d + n — 2, and since Cis smooth

it follows that pJ^L') is everywhere torsion free of rank d + n-2. •

2. The possible singular fibres of p3 : X' -• C. Let Fbe a general fibre of/?3 : X'-+C.

Note that (i% Z/) is a del Pezzo surface and that L is locally very ample with respct to

/?3, see (1.2). Hence 3<deg L'F<9. Since the degree is preserved by flat maps, it follows

that 3 <deg L'Γ<9, where Γ is a possible singular fibre ofp3. Let S' be a general element

of I L I, and let y = Γ n 5". Note that y is a possible singular fibre of p2 : S'->C. Moreover,

S' is an elliptic surface with no multiple fibres (see [2]). Hence the possible types for

y are: lb with 1 < b < 9 , II, III, IV and I? with 6 = 0, 1 (see [14, (6.2)]).

(2.0.0) REMARK. Let Γ = £ Γα and let 5" e | L |. If γ is one of the following types

Ib with \<b<9, III, IV and I? with b = 0, 1, then the general element of | L ' | cannot

pass through a possible singular point of a component Γα of a singular fibre. This

follows, since γa is smooth and Γa (=>/) is a local complete intersection,

(2.0.1) LEMMA. Let Γ = ΣΓa denote a possible reducible fibre ofp3, Lety = ΓnS'

with S' a general member of\L'\. Ifγ is one of the types lb with 2<b<9, III, IV and If

with b = 0,\, then either Γa^Fr with r>0 or Fr with r>\.

PROOF. Note that if γ is of one of the types lb with 2 < b < 9, III, IV, then γ =

Or else γ = y° + γ1+y2 + y3 + 2y*+ ••• +2y 4 + ί > with & = 0, 1, where ya are smooth

rational curves in both cases (see [14, (6.2)]. Also yα = Γ α n 5 " is ample on Γα. Hence

Γa^Fr with r>0 or Fr with r > 1 (see [17, (0.6.1)]). •

(2.0.2) LEMMA. Let Γ = Σ Γα denote a possible reducible fibre ofp^IfF^n Γβ is

nonempty and ifL'-Γa Γβ= 1, then Γa and Γβ meet transversely in a smooth rational curve

B.

PROOF. Let B=ΓanΓβ. Since L'B is very ample and L'B= 1, it follows that B is

a linear P1. Hence B is a smooth rational curve. Therefore the intersection of ΓΛ and

Γβ is transverse. Also note that B e | [Γ x]Γo |. Hence B is a Car tier divisor on Γα and Γ*. •

Since B = Γ"nΓβ, L' B = L'Ta-Γp = γa-γβ, and yα / is either 1 or 2, it follows that

L B is either 1 or 2.

(2.0.3) REMARK. If Γα and Γ^ meet transversely, then
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(2.0.3.1) NB = NBIΓo@NB/n.

Moreover, since (Kx. + L')B = Θβ and L'B = d with d= 1 or 2, it follows that Kx,-B= - d.

Therefore from the adjunction formula and (2.0.3.1) we have

(2.0.3.2) deg NB = deg NB/Γo + deg NB/n = -

We also have for oc^β

(2.0.3.3) NB/Γa = /

(2.0.4) LEMMA. Let Γ\ Γβ, B and L be as in (2.0.1) and (2.0.2).

(i) If Γ α ^ P 2 , then \_B~\ = Θp2(e) with e=l or 2. Moreover, we cannot have

(ii) If Γ^Fr, then π?([£]) = a [ £ + r / ] , π?(Z/) = /?[£ + r/] for some a,beZ.
Moreover, r= 1 ifL'-B= 1, andr=\ or 2 if L'*B = 2.

(iii) // Γ α s F Γ , ίλew 1/ = [£ + kf] with k>r+\ and [B] = [α£ + (d + ar-ak)f],

where d=L' B.

PROOF, (i) follows from d= L'-B = Q,2(α) Q,2(e) = αe and the fact that rf= 1 or 2. For

the remaining see ([18, (1.4)]).

(ii) Note that if N is a line bundle on Fn then πf(N) = α[£ + rf] for some α e Z ,

see (0.7). Moreover, if M is another line bundle on Fr, then ΛΓ M=πf(iV) π5c(M) =

( 4 £ + r/]) (b[£ + r/]) = αfcr. Thus d = L/ Γα Γ^ = L ^ [Γ^]Γ« = αftr. Whence r = l or r = 2,

since d= 1 or 2.

(iii) Note that since II is ample, L' = [£ + /c/] with k>r+\. Moreover,

[5] = [aE + ί>/] for some a,beZ. Hence by d = L' JS = [£ 4- fc/] [α£ + b/] = - ar + fe -h αfc,

we have b = d-\-ar — ak.

(2.0.5) REMARK. If Γ ^ F 2 , then degL^ = 2α2 with aeZ. Hence Z^ has even
degree. Moreover, (deg L'Γ)β is the square of an integer.

In (2.1) through (2.4) we classify possible types of singular fibres.

(2.1) The case deg L'Γ = 3.

(2.1.1) CLAIM. Γ has at most two components.

PROOF. It is easy to see that in this case the only possible types for γ are I 1 ? I 2 ,

I 3 , II, III, IV. If γ is of type I 3 , i.e. y = yo + / + y 2 , then Γ = Σ f = 0 Γ α . By (2.0.1) we

have either Γa^Fr with r > 0 or F r with r>\. Note that 3 = degZ^. Since L is very

ample on Γα, and deg Lr«= 1 for 0 < α < 2 , it follows that Γa^P2 for each α. By (2.0.4),

(i) this cannot happen. Similarly type IV is ruled out. This proves the claim.

(2.1.2) CLAIM. If y is type I 2 or III, then either Γ = P2 + F0 or Γ = P2 + F2.

PROOF. If γ is of type I 2 or III, i.e. y = γ° + y1 with y ° 7 1 = 2 then Γ = Γ° + Γ\ and
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by (2.0.1) Γα^Fr9 r>0 or F r, r> 1. We choose a generic S'e\L'\ such that Sr meets Γ°

and Γ 1 respectively in y° and y1. Since deg L'Γ = 3, if follows that on Γ 1 say, deg L'Γi = 1

and deg LΓo = 2. HenceT1 ^P2. Moreover since L is very ample on Γ°, it follows that

Γ° is either F o or F2. This proves the claim.

Since we need an explicit description of L' and B on each component in eventual

proofs, we have the following remark.

(2.1.3) REMARK, (i) Let B=Γ°nΓ1 in (2.1.2). Note that on Γ 1^/* 2, Be

(ii) Suppose γ is of type I 2, in (2.1.2).

If Γ° = F0, then L = [ £ + / ] . Using (KΓ + L')Fo = ΘF0 and the adjunction formula

we have NFolx.= - [ £ + / ] . Note that 5 is an effective divisor in Fo. Hence

2/?α(J?)-2 = £ (K + β), where K = KFo. Using L\B = 2 we get B=E+f. We observe that

the curve B cannot be irreducible, for otherwise P2 and Fo would intersect transversely

and therefore by (2.0.3.3) we get a contradiction.

If Γ° = F 2 , then πί(L') = [£ + 2/]. We also have Np2lx,= -L. A similar reasoning

gives π:f(B) = E + 2f, and thus B — 2f, where/denotes the ruling of the quadric cone F 2 .

(iii) Suppose γ is of type III, in (2.1.2). Let B=Γ° n Γ1. Note that Γ° and Γ 1 are

tangent along B since L'-B = L'-Γa-Γβ = ya yβ = 2p. Let B = Bτed. Note that L' 5 = l .

If Γ° = F0, then L' = [ £ + / ] , NFo/x, = - [ £ + / ] and either 5 = £ or 5=/.
If Γ° = F2, then π?(Z/) = [£ + 2/], iV/r2/;r = - L and 5=/, where/denotes the ruling

of the quadric cone F2.

(2.1.4) CLAIM. Let Γ be as in (2.1.2). Neither of the two types of Γ can occur.

PROOF. Let Γ = P2 + F0 and suppose that γ = Γ n S' is of type I 2 . By (2.1.3) on F o,

B = E+f. As we have observed in (2.1.3) (ii), B is reducible. Consider the component/

of B. Note that/is a smooth rational curve satisfying

(2.1.4.1) iv/=-l

Hence/is not numerically effective (nef for short).

(2.1.4.a) If /?+[/] is an extremal ray then, since/is not nef by [15, (3.3)] it

follows that the contraction morphism Φ: X'-+ Y associated to the extremal ray /?+[/]

has a three dimensional image. Note that dim Φ(Fo) = 0 or 1 and dim Φ(/) = 0 in each

case. Note also that/is contained in the other component, P2, of Γ. Hence dim Φ(P2) = 0.

This contradicts the list in [15, (3.3)].

(2.1.4.b) If R+lfl is not an extremal ray it follows (see [15, (1.4)]) that for an

arbitrary positive ε, there exist a finite number r of rational curves / l5 ,lrmX' such

that

(2.1.4.2) f
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in NE(X'), where a,eR+ and CeNEε(X', L). We choose ε< 1. Since K' + L' is nef and
(K' + L')'f=0 from (2.1.4.2) it follows that

(2.1.4.3) /=Σ>A

Using (2.1.4.1) and (2.1.4.3) we conclude that F 0 / f<0 for some i. Let Φ f: Z'-> Γbe the
contraction morphism associated to the extremal ray /?+[/J. As we have seen previously,
Y has a three-dimensional image and dim Φi(F0) = 0 or 1.

(2.1.4.1)!) Let dim φ.(Fo) = 0. Hence/(c=F0) is contracted by Φh and thus [/]e
^ + M Note that /is a smooth rational curve with [/] = b[/J for some beR+. Thus
/?+[/] = /?+[/J. Note that/is also contained in the other component, P 2 , of Γ. Hence
dimΦi(P2) = 0. Either case contradicts [15, (3.1), (3.3)].

(2.1.4.b2) If dim Φi(F0)= 1, either Φι{f) = yεYoτ Φi(f) = P1.
If Φi{f) — y, then [/]e/?+[/;]. As in (2.1.4.^) we get a contradiction.
If φ.(f) = p\ then Φ ^ H J / , where E denotes the other ruling of Fo. Thus

[£]e/?+[/j]. Replacing/by E in (2.1.4.^), again we get a contradiction.
Let Γ = P2 + F0 and suppose that y = ΓnS" is of type III. Note that F0 B= - 1 ,

where 5 is as in (2.1.3) (iii). Suppose that on Fo, 5=/(or E).
(2.1.4.c) If /?+[/?] is an extremal ray, then since B is not nef, the same proof as

in (2.1.4.a) with / replaced by B rules out this case.
(2.1.4.d) If /?+[5] is not an extremal ray then as in (2ΛΛ.b), f=Yj

r

i=1aili and
Fo li<0 for some /. Let Φ f: X'-*Y be the contraction morphism associated to the
extremal ray /?+[/,]. As seen earlier, Y has a three-dimensional image and dim Φi(F0) = Q
or 1.

(2.1.4^0 Let dim Φί(JFo) = 0. Hence/(c=F0) is contracted by Φf. B u t / c P 2 , and
thus dim Φί(P2) = 0. In either case this contradicts [15, (3.1), (3.3)].

(2.1.4.d2) If dim Φί(F0)= 1, either Φi(f) = yeY or Φi(f) = P1.
If Φi(f) = y, then as in (2.1.4^) we get a contradiction.
If Φι (/) = P 1 , then Fo is smoothly contracted by Φt. Hence Yis a smooth threefold

and there is a morphism p': F-> C such that Φf op' =p. Let L" = {Φ^{L + Fo). Note that
Φι(Γ) = P2 and (Lp2)

2 = 3. But there are no line bundles of self-intersection 3 on P 2 .
Hence this case is also ruled out.

Let Γ = P2 + F2. If y = ΓnS" is of type I2, then by (2.1.3) (ii) on F2, B=2f, where
/is the ruling of the quadric cone F2. Now F2'f= — 1. On the other hand, if y = ΓnSf

is of type III, then F2-B= - \=F2 f.
(2.1.4.e) If /?+[/] is an extremal ray, then since/is not nef, it follows that the

contraction morphism Φ associated to the extremal ray /?+[/] has a three-dimensional
image and dim Φ(F2) = 0. Hence dim Φ(P2) = 0 or 1. But as is well known, dim Φ(P2) — 1
is impossible. Thus dim Φ(P2) = 0. This contradicts [15, (3.3)].

(2.1.4.f) If R+IΩ is not an extremal ray, then [/] = fc[/J as in (2.1.4.b2). And
again we have a contradiction.
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(2.1.5) Suppose γ is of type I x or II. Since y is irreducible, L' is ample and y = ΓnS',

where Sf is a generic element of | L |, we conclude that Γ is irreducible and reduced.

•
(2.2) The case deg Z^ = 4.

(2.2.1) CLAIM. Γ has at most two components.

PROOF. In this case the possible types for y are lb with 1 < 6 < 4 , II, III, IV. Since

two adjacent components of Γ necessarily have deg Lf

Γ<x= 1, type I 4 is impossible, as in

(2.1.1) as also are type I 3 and type IV. This proves the claim.

(2.2.2) CLAIM. If y is of type I 2 or III, then either Γ = F2 + F2, or Γ = F2 + FOi or

PROOF. If y is of type I 2 or III, then Γ = Γ° + Γ1. Since 4 = deg L'Γ0 + deg L'Γι, we

have either i) deg L^0 = 2 = deg L'Γί or ii) d e g Z ^ 0 = l and degZ^i = 3 (and vice versa).

Using these numerical data, (2.0.4) and (2.0.5), it is easy to see that the possibilities for

Γ in i) are: F2 + F2, or F2 + Fo, or Fo + Fo, and in ii) P 2 + F r for r > 0 . Using

3 = deg L'= — r-f 2/c, with fc>r+1 we have r = 1. This proves our claim.

As in (2.1.3) we need the following remark.

(2.2.3) REMARK, (i) Suppose γ is of type I 2 , in (2.2.2).

If Γ = F2 + F2, then as in (2.1.3) (ii), we have π*(L') = [£ + 2/], Np2/X,= -L' and

B = 2f, where / denotes the ruling of the quadric cone F2.

If r = F2 + F0, then on F o , L = [ £ + / ] , NFo/x,= - [ £ + / ] , and B = E+f; while on

F2,B = 2f

If r = F0 + F0, then L' = [ £ + / ] and NFo/Γ = - [ £ + / ] as seen in (2.1.3) (ii). Note

that £ is an effective divisor in Fo. Hence 2pa(B) - 2 = B-(K + B\ where K = KFo. Using

L-B = 2 we get B = £ + / .

If Γ = P 2 + FΓ, then using 3 = deg L^, we have L'Fι = \β + 2/]. From (A:*, + L')Γα = ^ α

and the adjunction formula we have NFi/x>= — [ £ + / ] . Moreover on Fu J5 = £ + / a n d

o n ? 2 , Λ = /1 + /2.

(ii) Suppose y is of type III, in (2.2.2). Let B=Γ°nΓ1. Note that Γ° and Γ 1 are

tangent along B, since L' B = Lf'Γa'Γβ = y"-yβ = 2p. Let B = Bred. Note that Z/ 5 = 1. As in

(i) we can calculate L'Γ<X and NΓΛjX.. So we only need to compute B.

If Γ = F2 + F2, then 5 = / , where/denotes the ruling of F2. If Γ = F2 + F0, then on

F o , either 5 = ^ , or 5 = / ; while on F2, B=f If Γ = F0 + F0, then either 5 = £ , or 5 = / .

If Γ = P2 + FU then on /\, either 5 = £ , or 5 = / ; while on P 2 , 5 = / . Note that B = E

cannot occur, for if it did, then B = 2B and we have pa(B) = 0 in P2 and pa(B) =—2inFί.

(2.2.4) CLAIM. Let Γ be as in (2.2.2). None of the types of Γ can occur.

PROOF. Let Γ = F2 + F2. Reasoning as in (2.1.4), we rule out this possibility.
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Let Γ = F2 + F0. Suppose that γ is of type I 2 . By (2.2.3) (i), B = 2f on F2. Now

F2f= — 1. On the other hand, if y is of type III, then F2Έ= — 1 =F2 f. Reasoning as

in (2.1.4.e), (2.1 Af), we get a contradiction.

Let Γ = P2 + F1. If y is of type I 2 , then B=E+f on Ft. Moreover Fί-f= - 1 . This

is ruled out as in the case Γ = P2 + F0 and y is of type I 2 in (2.1.4).

If Γ = P 2 + FX and y is of type III, then this is ruled out as in the case Γ = P2 + F0

and y is of type III in (2.1.4).

The case Γ = F0 + F0 is ruled out similarly.

If γ is of type lλ or II, then Γ is irreducible and reduced as seen in (2.1.5). •

(2.3) The case deg Z^ = 8.

CLAIM. Γ has at most three components.

PROOF. We will show that either Γ = Fo + Fx + Fx or Γ is as in Table 1. Note that

the only possible types for y are lb with 1 < 6 < 8 , II, III, IV and I? with 6 = 0, 1.

(2.3.1) If y is of type lb with 6 < 6 < 8 , then Γ = £ * : * Γ α . Since Σ α I o d e β L r « = 8

and L is ample, we necessarily have two adjacent components of Γ, say Γa and Γβ with

deg L'Γa= 1 = d e g L ^ , and this cannot happen by (2.0.4), (i).

(2.3.2) If y is of type I5,then we can easily see that L has degree 1 on at least two

components, say Γ° and Γ 1 . By (2.0.4) it cannot happen that they are adjacent to one

another. Hence the adjacent component of Γ°, say Γa, has degree two. By (2.0.4) (ii),

the only possibility is Γ°^P2 and Γ"^F0. Note that NB/p2 = (%,2(\\ and on FOi

[£] = [α£ + ( l - α ) / ] . Hence by (2.0.3.2) we have a2-a-1=0, which is impossible.

(2.3.3) If y is of type I 4 , then in view of (2.3.2), and since £ * = 0 deg Z^β = 8, it

suffices to consider the case when Γa and Γβ are adjacent and having degL^α =

2 = degZ/r/}. By (2.0.4), (ii) the only possibility is Γa^F0^Γβ. From degZ^α = 2 and

(2.0.4) it follows that [ £ ] = [α£ + ( l - α ) / ] and £' = [ £ + / ] . Moreover, NΓ«IX,=

— [ £ + / ] . Hence by (2.0.3.3) we have 2a2 —2a— 1 = 0 which is impossible.

(2.3.4) If y is of type I 3 , then in view of (2.3.2) and (2.3.3), and since

Σα=o d e S L'r« = 8 it suffices to consider the case when Γα and Γβ are adjacent and having:

(a) deg L'Γa = 1, and deg L'Γβ = 3; (b) deg L'ΓΛ = 2, and deg LΓβ = 3.

In (a) by (2.0.4), (ii), Γ^P2, and Γβ^F1 is the only possibility. Hence by (2.0.4)

and (2.0.3.2) it follows that 3a2 — 2a — 2 = 0, which is impossible since aeZ. In (b)

Γa^F0, and Γβ^Fx is the only possibility. Then from (2.0.4) and (2.0.3.3) it follows

that the curve B=FonF1 is either a fibre on Fo and the unique curve on Fi of

self-intersection — 1, or the curve E on F o and F1 where E is as in (0.7). Note that in

this case the third component, say Γ 2, is isomorphic to Fx and is adjacent to Γβ. From

(2.0.4) and (2.0.3.2) it follows that the curve B' = FίnF1 is a fibre on one of the F1 and

is the unique curve of self-intersection - 1 on the other Fίm Note that the same is

obtained if γ is of type IV.

(2.3.5) If y is of type Ijξ, then Γ = £ * = o α α Γ α with aa= 1 for 0 < α < 3 and α 4 = 2.
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Since Σ« = o

β α deg Z «̂ = 8 we have either (i) deg L'ΓΛ= 1 for 0 < α < 3 , and deg L'Γ4 = 2, or

(ii) deg L'Γoι = 1 for α = 0, 1, 4 and deg L'Γ2 = 2 = deg Lf

n, or (iii) deg L'Γ<X = 1 for α = 0, 2, 4

and deg L'Γι = 2 = deg Z^3, or (iv) deg LΓ« = 1 for 1 < α <4, and deg Z^o = 3.

Note that (ii), (iii), (iv) cannot occur by (2.0.4) (i). So it remains to rule out case (i).

In case (i) Γ^P2 for 0 < α < 3 and Γ 4 is either F2, or Fo. Note that the P 2 ' s are

disjoint and each of the P 2 ' s intersect Γ 4 . Let £ = P 2 n Γ 4 . Since L ' JB = L ' P 2 Γ 4 =

yα y 4 = l for 0 < α < 3 it follows that B is a smooth rational curve. Therefore the

intersection of P 2 and Γ 4 is transverse. Hence B is a Cartier divisor on P2 and Γ 4 . On

Γ 4 ^ F 2 , πf(Z/) = [£ + 2/], Np2lx.= -L and 5 = / , where / denotes the ruling of the

quadric cone F2. B u t / i s not a Cartier divisor on F2. Hence this case cannot occur.

Whereas if Γ4^F0, then // = [ £ + / ] , NFolx.= -\E+f] and either B=E or B=f. As

for P 2 , Lp2 = Q,2(l) and Np2/x> = (^2( — 2). An easy calculation shows that (2.0.3.3) does

not hold. Hence this possibility is also ruled out.

If y is of type If, then Γ = £ 4

= o t f α Γ α with aa=\ for 0 < α < 3 and a4 = 2 = a5. This

forces only one possibility, namely deg Z^«= 1 for all α. This violates (2.0.4), (i).

(2.3.6) CLAIM. Ify is of type I 2 or III, then Γ has one of the following possible

type : Pf + Fr9 with r = l , 3 , 5; or F2 + Fn with r = 0,2,4; or Fr + Fs, with (r,s) = (0,0),

(0,2), (0.4), (1,1), (1,3), (2, 2).

PROOF. If y is of type I 2 or III then Γ = Γ° + Γ1. By (2.0.4) Γ^Fr, r> 1 or FΓ,

r > 0 . If both Γa^Fr, then by (2.0.4) (ii), r = 1 or 2, and since 8 = deg L ô + deg L'ΓU it is

easy to see that the only possibility is Γ°^Pi^Γ\ i.e. Γ α ^ P 2 and Lp2 = ̂ 2 (2) . The

other possibility is Γ°^Fr and Γ1^Fr or both Γa^Fr. So overall we have:

(1) Pi + Ph or (2) P 2 + FΓ; or (3) P 2 + iv; or (4) F2 + Fr; or (5)

In (1), B is a linear P 1 , since Z/ = Q,2(2) and 2 = L' B. This argument goes through

for types I 2 as well as III. Now using (2.0.3.2) we get a contradiction.

In (2), on P 2 , [£] = Q>2(1) and this does not depend on the type of y. We also

know that deg L'Fr = 4. The same reasoning as above gives r = 0, 2. Hence by (2.0.4) and

(2.0.3.2) we have, in both cases, a2 — a— 1 = 0 which is impossible.

In (3) since 7 = degZ^ r = -r + 2k and fc>r+l, it follows that r = l , 3, 5.

In (4) since 6 = deg L'Fr it follows that r = 0, 2, 4.

In (5) we have a symmetrical situation with respect to r and s. Moreover deg LΓ* > 2.

Hence we consider only the possibilities degL^0 = 2, 3, 4 and degL^i = 6, 5,4, re-

spectively. Hence as seen easily we must have (r, s) as in the claim.

As in (2.1.3) we need the following remark.

(2.3.7) REMARK, (i) Suppose y is of type I 2 , in (2.3.6).

If Γ = P2 + Fr, then by (2.3.6), r = 1, 3, 5. Note that on P 2 , [B] = φ ( 2 ) .

Let r = 5. Then L' = [ £ + 6/], NF5/X,= - [ £ + / ] . Note that B is an effective divisor
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in F5, hence 2pa(B') - 2 = [ ( - 2E - If) + (aE + (2 - α)/)] [aE + (2 - α)/] = - la2 + 9a - 4.

Since pa(B')>0 we have 7a2-9a + 2<0 and thus Λ = 1 , i.e. B = E+f By [11, V, 2.18],

B is a reducible curve.

Let r = 3. Then as in the case r = 5, L = [E + 5/], N F 3 / ; r = — [ £ ] and J5 = E. An easy

calculation shows that (2.0.3.3) does not hold.

Let r = l . Then Z/ = [ £ + 4/], N F l / j r = [ — £ + / ] . Since .5 is effective and since

2 = L''B = (E + 4f)'(aE + bf) = 3a + b, we have B = 2f

If r = F 2 + FΓ, then by (2.3.6), r = 0,2,4. If r = 4, then LF 4 = [ £ + 5/],

ΛΓF4/χ, = - [ £ + / ] and B = E+f on F 4 . If r = 2, then LF 2 = [£ + 4/], NFl/x,= - [ £ ] and

β = E on F2. If r = 0, then LF 4 = [£ + 3/], N F 4 / X , = - [ £ + / ] and β = 2/on F o .

If Γ = Fr + Fs, then (r, s) is as in (2.3.6). In the usual way we compute LΓ«, Nr«jX.

and B.

(ii) If y is of type III, in (2.3.6), then Γ = Γ° + Γ\ and LΓ«, Λf j^ are as in (2.3.7)

(i), whereas B is computed as in (2.1.3) (iii) or (2.2.3) (ii).

(2.3.8) CLAIM. Let Γ be as in (2.3.6). Then the types of Γ are as in Table 1.

PROOF. Going over the possible types for Γ and reasoning as in (2.1.4) and (2.2.4)

we can rule out the following cases: Pi + F r, with r = 1, 3, 5; F2 + Fr, with r = 0, 4; Fr + F s,

with (r, s) = (0,4), (1, 3). Hence the possible types for Γ are as in Table 1.

In Table 1, (a, b) stands for [aE + bf~\. IfΓ°^F2, then in the table we should read

instead of L'Γo.

TABLE 1

LΓo LΓι NpoιX. Nrι/x'

0,2)
(1,1)
(1,2)
(1,2)
(1,3)

(1,4)
(1,4)
(1,3)
(1,2)
(1,3)

( - 1 ,
( - 1 ,
( - 1 ,
( - 1 ,
( - 1 ,

-2)
- i )
-1)

0)

- i )

( - 1 ,
( - 1 ,
( - 1 ,
( - 1 ,
( - 1 ,

0)
0)
0)
0)

-1)

If γ is of type I x or II, then Γ is irreducible and reduced as we have seen in (2.1.5).

(2.4) ThecasedegL Γ = 7.

CLAIM. Γ has at most three components. Moreover iff has three components then

1 +F0, if Γ has two components then either Γ = F2 + FX, or Γ = F1-\-F2.

The proof will be omitted since it is similar to that in (2.3).
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3. The case d= 3.

(3.1) THEOREM. Let X, L, X\ L andp: X'-^C be as in (1.0). Then there exists a
morphism Φ: X'-*PC{V) with V=pJίjU) such that the following diagram commutes:

We also have Φ{Xf)e\%(n(3) + π*(M)|/or some line bundle M on C.

PROOF. By (2.1) all the fibres of the morphism p are irreducible. Let V=pJJJ).
As in (1.6), it follows that rank V=n+ 1. By (1.2) L is locally very ample with respect
to/?. Hence we have a morphism Φ: X'^>PC(V) such that the above diagram commutes,
(see [10, (4.4.4)]). Moreover, Φ is an embedding. Note that ΦF is the map associated
to the linear system \L'F\, where F=/?"1(c) is a general fibre of p. We also have
Φ(Xf)nπ~1(c) = Φ(F). Hence it follows that

(3.1.1) Nφ(xΊ/pc(V),Φ(F)

Since Pic(Pc(*0) = Pic(C) x Z, we have [Φ(A^] = % ( n ( α ) + π*(M) for some αeZ, and
MePic(C). By (3.1.1) we conclude that α = 3, whence

4. Thecaserf=4.

(4.1) THEOREM. Let X, L, X\ L andp: X'-+Cbeas in (1.0). Then there exists a
morphism Φ: X'^PC(V) with V=p^(L) such that the following diagram commutes:

and that Φ(Xf) restricted to each fibre Pn+i of π is a complete intersection of type (2,2)
inPn+1.

PROOF. By (2.2) p has irreducible fibres. By (1.2) L is locally very ample with
respect to p. Hence there exists a morphism Φ: X'^PC{V) such that the above diagram
commutes. Also by [10, (4.4.4)] Φ is an embedding. Let F denote a general fibre of p.
By noting that ΦF is the morphism associated to the linear system | L'F\, and since Fis
a del Pezzo manifold with d = 4, F is isomorphic via ΦF to a complete intersection of
type (2,2) in Pn+\ see [8, (2.2)]. We will show that this is also true for the possible
singular fibre Σ of p. After slicing Σ with n — 3 general members Ate\Lf\9 we obtain
ΣnX'3 = Γ, which is a possible singular fibre of p3. But Γ is irreducible are reduced,
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hence Σ itself is irreducible and reduced. Note that Σ is a del Pezzo variety, whence,

(a) A(Σ,L')= l=g(Σ, L'); (b) Σ is locally Gorenstein, ωΣ = ̂ ( l - d i m Σ); and (c)

HXΣ, tL') = 0 for any 0 < / < d i m Σ, teZ. (a) is trivially checked, (b) is obtained from

{Kx. + L)Σ = θ£ (c) follows from [7, (5.7.6)]. Hence h°(Σ9 2L') = χ(Z, 2L') = (n2 + 5n + 2)/

2 = h°(Pn+\ Θpn+1(2))-2. Thus there are two distinct hyperquadrics Q1 and Q2 in P " + 1

which contain ΦΣ(Σ). •

5. The case d=%. In this section we will deal with the cases dim X'>3. From

(1.5) it follows that the only cases to look at are dim X' = 3 and dim X' — A. Let F b e a

general fibre of/?: X'-*C. Note that if dim Xr = 39 then Fis either isomorphic to QbP
2,

the blow up of P2 at one point beP2 or is isomorphic to P1 x P1.

(5.0) dim X' = 3 and F^QbP
2.

(5.1) dimΛΓ' = 3 and F^PλxPK

(5.2) dim JT = 4.

(5.3) THEOREM. Let, X, L, JT, L' andp: X'-+C be as in (1.0) with the additional

assumption in (5.0). Then there exists a birational morphism Φ: X'-> Y with Y a P2-bundle

over C such that the following diagram commutes:

Φ
X'-=-*Y

>\ A
PROOF. A general fibre of/?: X-+C is isomorphic to QbP

2. By (2.3), the possible

reducible fibre Γ of p has at most three components. Moreover either Γ is as in Table

1, or Γ = F0 + Fι+F1.

(5.3.1) Let Γ be as in Table 1, with Γ = F2 + F2. Since J/VF2/Λ:̂ / = ̂ ( - 1 ) then F2

can be smoothly blown down to a curve C to give a manifold A™. Let π: JΓ->JΓ' be

the blow down morphism. Let L" be the line bundle on X" such that π*L" = L + [F2~\.

Note that π(F2) = C^E^P1, where £ is as in (0.7).

(5.3.1.a) CLAIM. L(c is ample.

PROOF OF CLAIM. It is enough to show that degL( /

c >0. Note that degL('c =

E)\E = AfΈ=4. This proves our claim.

Since L'(c is ample, by [6, (5.7)] it follows that L" is ample on X".

Let Γ be as in the remaining cases in Table 1. A reasoning similar to that in (5.3.1)

shows that one of the two components Γa of Γ can be smoothly blown down to a curve

to give a manifold X". Moreover the line bundle L" on X" with π*L" = L' + [Γα] is ample

(π: X'->X" is the blow-down morphism).

(5.3.2) Let Γ = F0 + F1 + F X . Note that a reasoning similar to that in (5.3.1) holds

true also in this case. Of course in this case we need two steps as in (5.3.1) in order to

get a manifold which we still call it X". Moreover the line bundle L" on X" with
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π*L" = L + [Γα] + [Γ*] is ample (Γα, Γ^ are two components of Γ and π : * ' - > * " is the

blow-down morphism).

We repeat this process for all reducible fibres Γf of /?. Since p has only finitely many

reducible fibres, after a finite number of steps we get a manifold which, for simplicity,

we still call X", a morphism which again, for simplicity, we still call π : X'->X", and

an ample line bundle L" on X" such that π*L" = L' + £\Γ?, where Γ? stand for the

components of Γ( which are blown down by π. Hence we have a morphism /?': X"^>C

such that /?' o π=/?, and all of the fibres of/?' are irreducible and reduced, and a general

fibre F' of /?' is isomorphic to β b P 2 .

Let is be the exceptional curve in F. It is easy to see that there are no obstructions

to deformations of E in X". Let J f be the irreducible component of the Hubert scheme

of X" parametrizing flat deformations of E in X". Let °U be the universal family in

Jf x X" and denote q1(
6U) by D, where q2 is the projection of ^f x X" onto the second

factor. From the natural identification of the tangent space T#%Λ of Jf at the point α

which corresponds to E with Γ(E, NE/X..)9 we see that dimZ> = 2. Also dim//(Z))=l.

Indeed, dim p\D) < 1. On the other hand since E is contained in a general fibre of/?',

it follows that dimp'{D)> 1. Hence dimp\D)= 1. Moreover, the general fibre of/?jD is

isomorphic to E ( ^ P 1 ) , and each fibre of p\D is irreducible and reduced, since L" is ample

and L'E = ΘE(\). Applying [5, (5.4)] to (D, L"D, p\D, C) we conclude that D is a P^bundle

over C. Let/be a general fibre of/?jD: D^C. From Nf/D = Θf, det Nf/x,, = Θf(— 1) and

the exact sequence

it follows that JVD/Jr-,/ = #/(— 1). Hence there exists a manifold 7 and a birational

morphism π' : AΓ"->7 expressing X" as Γ with C' = π'(Z)) blown up, see [16]. Let

i f = π'^L" + [D]) and let p": F->C be the morphism such that p" o π' =//. The morphism

/?" is such that all of its fibres are irreducible and reduced, a general fibre F" of /?" is

isomorphic to P 2 , and J?F>> = Op2(3).

(5.3.3) CLAIM. 77ί£? //ra? bundle <£ = π'#(L" + [D]) w relatively ample with respect

to /?".

PROOF OF CLAIM. It suffices to show that !£ +p"*Jί is ample for some M e Pic(C).

Let C' = π'(/)). By [6, (5.7)], it suffices to show that (JS?+//'*ΛίT)|C is ample and that

π'*(J2?+//'*.#)-£> is ample.

Take J(9 such that deg J? = m»0. Since π'*(JSf +p"*Jί)-D = L"+p'*Jί is ample,

we need only to show that (S£ +p"*Jt)-C>0.

To see this, let A = L"-D. Note that A is isomorphic to C and so ( J ^ + z ? " * ^ ) C' =

π'*(J? +p"*M )Ά = (L" + [D] + p ' * ^ ) L" D = L"2 D + L" i ) 2 + /w > 0 for /w » 0 .

Let Z = U i^^fc^i, where F f denotes the possible singular fibre of/?". Note that F,-

is irreducible and reduced. Let U= Y—Z. We note that J ^ = φ,(3), where F" is a

general fibre of/?". Hence over £/, ̂  = 3// (modulo line bundles coming from Pic(C)),
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where HePic(U), or equivalently, &u = 3H+p"*(Jί) for some Me Pic (C).

(5.3.4) CLAIM. There exists a line bundle H on Y such that & = 3H+p"*(JT)
for some Jί e Pic(C).

PROOF OF CLAIM. Let A1(Y) denote the group of cycles of codimension 1 on Y
modulo rational equivalence. Let /: U->Y be the inclusion. Note that Y and U are
smooth. Hence the morphism /* : A1(Y)-+A1(U) is surjective. Moreover A1(Y)^Pic(Y)
and A\U)^Pic(U)9 (e.g. [11, p. 428]). Thus i*: Pic(r)->Pic(t/) is surjective. Hence
HePic(U) lifts to H on Y. Now consider g-3H-p"*(Jl\ which is trivial when
restricted to U. Since the possible singular fibres of p" in Z are irreducible we have
&-3H-p"*(J()=p"*(s/) for some J^GPIC(C). And so $£ =.7>H+p"\Jf\ where

(5.3.5) REMARK. From (5.3.4) it follows that H is relatively ample with respect
to p". Hence the quadruple (Γ, //,/?", C) is a family of polarized varieties, [5, (5.1)].

Note that HF.. = GF..(\) and deg HF..= \9 hence Δ{F% 77) = 0. Now we use [5, (5.3)
and (5.4)] to conclude that Y is isomorphic to Pc(pl(H)). •

(5.4) THEOREM. Let X, L, X\ L\ andp: X'^Cbe as in (1.0) with the additional
assumption in (5.1). Then there exists a birational morphism π: X'-+X" to a projective
manifold X" such that the following diagram commutes'.

and that X" is embedded in a P^-bundle P over C with its restriction to each fibre of P

being an irreducible reduced quadric in P3.

PROOF. Here a general fibre of p: X'-+C is isomorphic to P1 x P1. By (2.3), the
possible reducible fibre Γ of p has at most three components. Moreover either Γ is as
in Table 1, or Γ = F0 + F1+F1. Note also that the morphism/? has only finitely many
reducible fibres Γt. As in the proof of (5.3) we see that there exists a birational morphism
π: X'-^X" and an ample line bundle L" on X" such that π*L" = Z/ + ]Γ./7, where Γ*
stand for the components of Γf which are blown down by π. Moreover all the fibres
of the morphism p': X"-*C with p' o π =p are irreducible and reduced, a general fibre Ff

of// is isomorphic to P1 x P 1 , and LF, = ΘPixpί(2,2) = ΘF,(2) say.
Let Z = U x<i<kFh where Ft denotes the possible singular fibre of //. Note that Ft

are irreducible and reduced. Let U=X" — Z, then over U, Vυ = 2H (modulo line bundles
coming from Pic(C)), where //ePic(£/), or equivalently, L'v = 2H+p'*(Jΐ) for some

(5.4.1) CLAIM. There exists a line bundle H on X" such that L" = 2H + pr*{JT)fOr
some Λ^ePic(C).
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The proof is as in (5.3.4), and so we omit it.

(5.4.2) REMARK. From (5.4.1) it follows that H is relatively ample with respect

to//. Hence the quadruple (X", H, p\ C) is a family of polarized varieties, see [5, (5.1)].

Note that i/F, = φ ( l ) and deg HF = 2 , hence Δ(F\ H) = 0. By [5, (5.5)] it follows

that we can mapX" into a P3-bundle P over C such that its restriction to each fibre

of P is a hyperquadric. •

(5.5) THEOREM. Let X, L, X\ L\ andp: X'-+C be as in (1.0) with the additional

assumption in (5.2). Then there exists a birational morphism π": X'-*X" to a projective

manifold X" such that the following diagram commutes:

V
and that X" is isomorphic to a P3-bundle P over C.

PROOF. Let F' and F denote the general fibres of p4 and p3, respectively. Note

that ( F , L) is a del Pezzo manifold with Δ(F\ Lr) = 1 and d= 8. From [8, (5.6)] it follows

that ( F , L') = ( P 3 , 0P3(2)). Let Γ be a possible reducible fibre of /?3, let c=p3(Γ) and let

Σ =pl x{c). Choose X'3 s\L'\ general enough so that Σ n X'3 = Γ is transverse. It follows

from (2.3) that either Γ is as in Table 1 or Γ = F0 + F1 +Ft.

If Γ = F0 + F1+Fl9 then I' = 2 : 0 4 - Σ 1 + Σ 2 . Say Γ ° ^ F 0 , and Γ^F1 for α = l , 2 .

Note that Γ is ample on Σ\ If Γ^FU then from [1] it follows that Σ 1 is a P2-bundle

π': Σ^-^P1 over P 1 . Here Ή! denotes the extension of π, where π is as in (0.7). As for

Σ° we claim that Σ° is a hyperquadric. Indeed, NΓo/x>3= —L'Γo. Since Σ°nX'3 = Γ° is

transverse in X', it follows that NΣΌ/x>tΓo = NΓo/x,3= — L'Γo. Since Pic(I"°) injects into

Pic(Γ°), NΣo/x>=-L'Σo. We also know that (Kχt + 2Lr)Σo = ΘΣo. These last two facts

together give KΣo + L'Σo = ΘΣo. Hence Σ° is a hyperquadric. Note that Σ° and Σ1 meet on

a surface S. Such S must contain B = FonFl9 a linear P1 (see (2.3)) as ample divisor.

Hence S^P2. Since S is in Σ\ it follows that S must be a fibre of Σ1-*P1. Also S

contains the exceptional curve B of Fl9 and B cannot be contracted by π : F1-^Pί.

Hence there are no such Σ's.

If Γ = Γ° + Γ\ then Σ = Σ° + ΣK Say Z ° ^ Γ 0 and Σι=>Γ\ where Γ° and Γ 1 are as

in Table 1. By [1], note that Σ1 is a />2-bundle π 7 : I ' 1 ^ / > 1 over P1. Since a general

fibre/of Γ 1 is ample in P2 and NΓηx.4f = Θf(—\), we see that NΣι/x>4iP2 = Θp2(— 1).

Hence Γ 1 can be smoothly blown down on X' to give a manifold X". Let π" be the

blow-down morphism and let L" be the line bundle on X" such that π*L" = L' + [ I ' 1 ] .

We will show that L" is ample. Let C=π"{Σ1).

We will examine only the case Σ^>Γ, with Γ = F2 + F2, since all the remaining cases

use a similar reasoning. Note that in this case Σ1 z> F>, and C = π"(Σ1) = π"(F2) ^ £, where

£ i s as in (0.7). By noting that deg(L' + [2:1])|Σi=deg(L / + [F 2 ] ) | F 2 , the same proof of
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(5.3.1.a) gives that L\'c is ample. Thus L" is ample on X", [6, (5.7)].

We repeat this process for all reducible fibres Σt of/?. Since/? has only finitely many

reducible fibres, after a finite number of steps we get a manifold which, for simplicity,

we still call X", a morphism which again, for simplicity, we still call π"': X'-*X" and

an ample line bundle L" on X " such that (π")*L" = L + £ * ̂ ? Hence we have a morphism

/?': X"-+C with /?Όπ"=/?. Moreover all the fibres of the morphism p' are irreducible

and reduced, a general fibre F of p' is isomorphic to P 3 , and L£, = φ>(2).

Let /? be the line bundle on X'f2> as in (5.4.1). By the Lefschetz theorem there is a

unique extension H' of H to A™. Since /7^ = Q,3(α) for some α e Z , and 2 =

άeg{RF) = άtg{{Π'F)F) = Cb*(a)%*W we get α = l. Hence

/7;, = Q,3(1). Since Pic(F) injects into Pic(F) and Lp = 2HF, we conclude that L'r =

2H'F,. Hence H' is relatively ample with respect to p'. Now by [5, (5.3) and (5.4)] we

conclude that X" is isomorphic to Pc(pf^{H')). •

6. The cased = 7 .

(6.1) THEOREM. Let X, L, X\ L\ andp: X'->C be as in (1.0). Then there exists

a birational morphism π: X'-+X", where X" is a P3-bundle over C.

PROOF. From (1.5) it follows that dim X' = 4. Let Fbe a general fibre of/?: X'-*C.

Note that F^QbP
3, the blow up of P 3 at a point beP3. A reasoning similar to that

in (5.5) gives that up to smooth blow down of a component of Σt (the possible reducible

fibres of/?), we can always assume that all the fibres of/? are irreducible and reduced.

Let E be the exceptional divisor on F over beP3. It is easy to see that there are

no obstructions to deformations of E in X'. Let J f be the irreducible component of

the Hubert scheme of X' parametrizing flat deformations of E in X'. Let % be the

universal family in J f x X' and denote q2(
(%) by D, where q2 is the projection of Jtf* x X'

onto the second factor. We claim that D is a P2-bundle over C. From the natural

identification of the tangent space T#> α of J f at the point α, which corresponds to E

with Γ(£, NE/X.), we see that dim Z> = 3. Clearly dim/?(£>)< 1. On the other hand since

E is contained in a general fibre of/?, it follows that dim/?(/))> 1. Hence dim/?(!>)= 1.

Moreover, the general fibre of plD is isomorphic to E ( ^ P 2 ) , and each fibre of/?)D is

irreducible and reduced, since LJ is ample and L'E = ΘE(l). Now consider the quadruple

(D, L'D, pD9 C). Such a quadruple is a family of polarized varieties [5, (5.1)]. By [5, (5.4)]

we conclude that D is a P2-bundle over C. Let/be a general fibre of/?(D: £)->C From

Nf/D = Θf, det Nf/χ> = Θf(— 1) and the exact sequence 0-+Nf/D-+Nf/x>-*ND/X> f->0, it

follows that NDjX, f = Θf(—\). Hence there exists a manifold Λr" and a birational

morphism π: A" '-^" expressing A" as A'" with C' = π(Z>) blown up, see [16]. Let

L" = πJJ*! + [£>]) and let p ' : X"-+C be the morphism such that /?' o π =/?. The morphism

/?' is such that all of its fibres are irreducible and reduced, a general fibre F' of /?' is

isomorphic to P 3 , and L£, = φ>(2).

The same proof as that in (5.3.3) gives that L" is relatively ample with respect to
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/?'. Moreover as in (5.4.1) we can show that there exists a line bundle H on X" such
that L" = 2ΐt+p'*(JΓ) for some Jί e Pic(C). Hence (X\ L", /?', C) is a family of polarized
varieties. Now use [5, (5.3) and (5.4)] to conclude that (X\ H) = {Pc(£), ξ,) where
δ=p'JJt) and ξs is the tautological line bundle on Pc($) B
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