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Abstract. We present an algorithmic procedure to desingularize every 3-
dimensional toric variety, while keeping under control the Euler characteristic of the
varieties computed during the process. We prove that our upper bounds for the Euler
characteristic of the desingularized toric varieties are the best possible.

Introduction. We refer to [4] and [5] for resolutions of singularities of toric
varieties in general. In [3, p. 48] and in [2, 8.2] it is explained how to get a simplicial
subdivision of a general nonsimplicial fan.

We present a method to desingularize every 3-dimensional toric variety X=XA

(with A a simplicial fan): a subdivision V(A) of A is constructed by successively starring
each 3-dimensional cone σ e A of multiplicity mult(σ) > 1 at a nonzero primitive vector
pσ e σ n Z 3 such that the sum of the multiplicities of the cones obtained by the starring
is the smallest possible. Here, as usual, mult(σ) is the index of the subgroup of Z 3

generated by the primitive (integral) generators of σ.
When applied to the 2-dimensional case, our method yields the familiar construction

of the coarsest nonsingular subdivision of A: this is uniquely determined by the set S
of integral points of the compact faces of the boundary of the convex hull of the set
of integral nonzero points in each cone of A. As is well known, for every dimension
>2, S generally contains too few points, and these are not very useful to construct
desingularizations.

In the 3-dimensional case we rather focus attention on the set S' of <σ-minimal
integral vectors of σ with respect to the order induced by each cone σeA. As shown
in our paper, S' is the set of primitive generators of those rays which belong to every
nonsingular subdivision of A. While in the 2-dimensional case S= S', in the 3-dimensional
case S' is strictly larger than S, and is a key tool in our desingularization algorithm.

Our method also keeps under control the number of cones obtained during the
desingularization process and yields, for every 3-dimensional compact toric variety
X=XΛ (where each 3-dimensional cone σsA is simplicial) a desingularization X' of X
such that E{X')<-E(X) + 2YjσeΔ(3)m\\\l(σ). Here, E{X) is the Euler characteristics,
which coincides with the number #zl(3) of 3-dimensional cones in A. We show that our
upper bound is the best possible.
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NOTATION.

σ, τ, p simplicial rational cones in R3

σ + ( — σ) the J?-subspace spanned by σ

<ι> l 9..., υk} the fc-dimensional cone generated by the vectors vu ...,vke Z 3 , k= 1, 2, 3

Xσ the aίfine toric variety associated with σ

Δ a fan in R3

Δik) the set of fc-dimensional cones in a fan A; 1-dimensional cones are called

rays

XΔ the toric variety associated with a fan Δ

E{XΔ)
 = #^ ί 3 ) th e Euler characteristic of a fan Δ (the symbol # denotes cardinality)

int'S the interior of S

1. Cones and nonsingular subdivisions. We refer to [5] for background on cones,

fans, and their subdivisions. All cones considered in this paper will be rational, simplicial,

and will be contained in R3. When writing σ = (vu..., υk}, we mean that σ is the

A -dimensional cone determined by its generators vt e Z3. A nonzero vector w e Z3 is said

to be primitive if it is minimal along its ray.

Let σ = (vuv2,v3y. The cones (vί9v2y, {vί,v3}, (v2,v3} are called the (2-
dimensional) faces of σ. For each nonzero peσnZ3 we let (σ*/?)(3) be the set of

3-dimensional cones of the fan σ*p obtained by starring σ at p. Thus in particular, if

peintσ we have (σ*p)(3) = {</?, v2, t>3>, <f l 9 jp, t?3>, (vί9 v2,p}}; in case/7 lies in the rela-

tive interior, say, of the face (vu t;2>, then (σ*/?)(3) = {</?, υ29 v3}, <i?1? p, v3)}; finally, if

pe(Vi} for some /e{l, 2, 3}, then (σ*/?)(3) = {σ}. Compare [6, p. 15].
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Let σ = {v1, . . . , vky, where each ι?f is primitive and k = 2, 3. Note that the set

{vu . . . , i J is uniquely determined by σ. Then the half-open parallelepiped {half-open

parallelogram, in case k = 2) Pσ is defined by

By definition, the multiplicity of σ, mult(σ), is the index in the lattice Z 3 n ( σ + ( — σ))

of the subgroup generated by vl9..., vk. Equivalently,

mult(σ) = #(Pσ n Z 3 ) = the number of integral points in Pσ .

In case k = 3 we also have

mult(σ) = I det(f l 5 v2, v2) I = the volume of Pσ .

By definition, a simplicial fan A in R3 is nonsίngular if the multiplicity of each cone in

zJ ( 2 )uzl ( 3 ) is equal to 1. We say that a point p is indispensable for σ if for every

nonsingular subdivision A of σ, ^ is a primitive generator of some ray in A(1). In

particular, every primitive generator of σ is indispensable for σ.

Let σ = <u, vv> be a (2-dimensional, rational, simplicial) cone in R3, with v and w

primitive vectors in Z 3 . Let Θ be the convex hull in R3 of the set ( σ n Z 3 ) \{0}. With

reference to [5, 1.6], let us display, in their natural order, the points

v = lo,ll9...9lt9lt + i = w

in Z 3 lying on the compact edges of the boundary polygon dΘ of Θ. Let A' be the

subdivision of σ determined by the cones </,-, lj + 1} for eachy = 0, . . . ,/ . Then A' is the

coarsest nonsingular subdivision of σ, in the sense that whenever A is a nonsingular

subdivision of σ, then for each / = 0 , . . . , / + 1 the vector lt is a primitive generator of

some ray in A(1). Stated otherwise, {/0, lί9..., /„ lt + x} is the set of indispensable points

for σ. Let us write

indisp(σ) = {/0,/!,...,/f,/ί+1} .

There is no ambiguity in this terminology: as shown by the following proposition, for

every 3-dimensional cone p — (u, v, w> having σ = <u, w> among its faces, indisp(σ)

coincides with the set of indispensable points for p lying on σ.

1.1. PROPOSITION. Let σ = (v, w> be a 2-dimensίonal cone in Z 3 , with v and w

primitive. Let q e Z 3 n (σ + (— σ)) be a primitive vector. Then q e indisp(σ) if and only if

for some (equivalently, for all) primitive ueZ3 with uφσ + ( — σ), q is indispensable for

the cone <w, υ9 w>.

PROOF. Suppose there exists a primitive vector ueZ3 \ ( σ + (— σ)) together with

a nonsingular subdivision A of <w, υ, w> such that q is not a primitive generator of any

ray in A(1). Letting A " = {p e A | p ̂  (v, w>}, we have that A " is a nonsingular subdivision

of <t;, w>; since A" contains the coarsest subdivision of <ι?, w>, then ^^indisp(σ).
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Conversely, assume ^^indisp(σ). Let A' be the coarsest nonsingular subdivision

of σ, and let v = l0, ll9..., lt, lt + ι = w be the primitive generators of the rays in zl'(1),

listed in their natural order. Pick an arbitrary primitive vector w e Z 3 \ ( σ + ( —σ)). Let

Δ1 be the simplicial fan whose 3-dimensional cones are <w,/0,/x>, <w,/ 1 ?/ 2>,...,

<M, /„ / f + i>. By construction, for eachy = 0, 1, . . . , t, </,-, lj+1} is a cone in (A^.

Claim. There exists a nonsingular subdivision Δ2 of A1 such that each </,-, lj+1}

is a cone in (A2)
(2).

Although the proof is a routine exercise [3, p. 48], we shall give it here in detail

to make this paper self-contained. Let d be the maximum multiplicity of the 3-dimen-

sional cones in Δγ. If d=\ then also every cone in Cdi)(2) has multiplicity = 1, and

we have nothing to prove. Otherwise, let τ = <w1? vv2, H>3> be a 3-dimensional cone

in Δx such that mu\t(τ) = d, where wί9 w2, w3 are primitive. Since mult(τ) = #(Pτ n Z 3 ) ,

the half-open parallelepiped Pτ contains a nonzero integral point a, which we can safe-

ly assume to be primitive. Let Ala be the smallest subdivision of Δx containing <α>

among its rays. In detail, Ala is constructed as follows (compare [6, p. 15]):

Case 1: a lies in the interior of τ, or a lies on the boundary of Aγ.

Then replace τ and its faces by the cones in (τ*α) ( 3 ), together with their faces and

the ray <<?>.

Case 2: a lies on the boundary of τ but not on the boundary of Δx.

Then let τ ' / τ be the unique 3-dimensional cone in Ax such that a lies on the

common 2-dimensional face τ n τ ' . To obtain Ala, replace τ and τ' (and their faces)

by the cones in (τ*tf)(3) and (τ'*α) ( 3 ), together with their faces and the ray {a}.

In either case, a does not lie in any cone </,-, / J + i ) , because a is a primitive integral

point in Pτ and, by construction, the half-open parallelogram P^μj + Ϊy does not contain

any nonzero integral points. Thus, each </,-, lj+1} is a 2-dimensional cone also in Ala.

Write a = λ1w1 +λ2w2 + λ3w3 (0<λk< 1) and assume that p is a 3-dimensional cone

in AίtO having a among its primitive generators. Then for some z = l , 2 , 3 we have

mult(p) = A i|det<w1, w2, w3> \<d. Then the number of 3-dimensional cones in Ala

having multiplicity d is strictly smaller than the number of 3-dimensional cones in A x

having multiplicity d. Proceeding in this way, after a finite number of steps we obtain

a subdivision A * of A1 such that the maximum multiplicity d* of the 3-dimensional

cones in A * is strictly smaller than d, while each </7 , lj+1} is still a cone in (A * ) ( 2 ) . By

induction, after a finite number of steps, we obtain a nonsingular subdivision A2 of Δγ

having the required properties.

Having settled our claim, we note that A2 is also a nonsingular subdivision of

<M, v, w>, and q is not the primitive generator of any ray in (Δ2)
{ί). Thus, q is not

indispensable for <w, v9 w). q.e.d.

The following addίtίvίty property for indispensable points in 2-dimensional cones

is implicit in [5, 1.6]:

1.2. PROPOSITION. Let σ = <ι;, w>, with both v and w primitive; assume
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indisp(σ) = {/0, lί9..., lt? lt+ί}. Then for each y = 1,. . . , ί we have indisp<ι;, w> =

indisp<ί;, /,-> uindisp</j, w>.

2. A desingularization algorithm.

2.1. DEFINITION. Let σ=<ι> l9 v2, v3}, with primitive vectors ul51?2, t;3. Let /? be

a (possibly, not primitive) vector of σ n Z 3 , and write p = λίvί + λ2v2 + λ3v3 for uniquely

determined rational numbers Λ,f>0. Then the norm \\p\\σ of p in σ is defined by

Note that if p is primitive, \\p\\σ is the sum of the multiplicities of the cones in (σ*p)(3\

The following are immediate consequences of the definition:

(a) | |0| |σ = 0. For each i= 1,2, 3, ||ι; i | |σ = mult(σ) = |det(i;1, ι?2, i;3)|.

(b) The function || | | σ : σ n Z 3 -> Q takes integral values > 0 for all nonzero points

peσnZ3 and has the following linearity property:

\\P + qL=\\ph+\\qh for all p and q .

(c) Let Λσ denote the lattice in Z 3 generated by vu v2, v3. Given r and s in σ n Z 3 ,

suppose that r — seΛσ. Then by (a) and (b), the integers | |r | |σ and H s Ĥ  differ by an

integral multiple of mult(σ), in symbols:

| | r | | σ = | | j | | σ (modmult(σ)).

We are interested in those nonzero vectors peσnZ3, other than the primitive

generators of σ, having the smallest possible norm in σ. Since there may be many such

points, throughout this paper we fix, once and for all, a total order < l e x over Z 3 , by

the following stipulation: For any two distinct points q — {qγ, q2, q3) and r = {ru r2, r3)

we write q<]exr if and only if

— either dist(O, #)<dist(0, r),

— or q and r are equidistant from the origin and, letting /e{l, 2, 3} be the first

index such that q.φr^ we have qi<rt.

Here, dist(/?, q) is the Euclidean distance between p and q.

2.2. DEFINITION. Given σ = (vu v2, v3}, with primitive vectors vuv2,v3, we

denote by pσ the first point (with respect to the total order < l e x) having the smallest

norm in σ among all points in the set ( σ n Z 3 ) \{0, vί9 υ2, v3}. We call pσ the point of

minimal norm in σ.

The following are immediate consequences of the definition:

(a) pσ is necessarily primitive.

(b) If mult(σ) > 1 then pσ e Pσ.

(c) Assume mult(σ)> 1, and let p be a cone in (σ*pσ)
{3\ Writing pσ = Σiλivi, by

(a) the multiplicity of p is given by λjVS\vλi{σ) for somey'e{l, 2, 3}. Therefore, by (b),
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mult(/p)<mult(σ).

We shall never need to consider pσ in case mult(σ) = 1.

2.3. DEFINITION. Let σ = (vl9 v2, v3}, with primitive vectors vu v2, v3. For each

« = 0, 1, 2, . . . , the set Vn(σ) is defined inductively as follows:

π(σ) | mult(τ) = 1} u {(τ* A ) ( 3 ) | τ e V » , mult(τ) > 1} .

2.4. PROPOSITION. Adopt the above notation. Then we have:

( i ) There is an integer 0<m<mult(σ) such that Vm(σ) = Vm + 1(σ) = . . . , while

Vι(σ)φVι+1(σ)for all l<m.

(ii) Vm(σ) is the set ofh-dimensional cones of a finite fan V(σ) which is a nonsingular

subdivision of σ. Moreover, the primitive generators of those rays in V(σ)(1) lying on the

boundary of σ are exactly the indispensable points of the faces of σ.

PROOF. By induction on d=mult(σ). If d= 1 we have nothing to prove. Assume

d> 1. Assume Vf(σ) has already been obtained, and let dt > 1 be the maximum multiplicity

of the cones in Vt(σ). Let τ be a cone in V,(σ) of multiplicity dv Let pτ be the point of

minimal norm in τ. By Remark (c) following Definition 2.2, the multiplicity of each

cone in (τ*/?t)
(3) is strictly smaller than dt. Thus, whenever / is such that dt> 1, the step

leading from Vt(σ) to V ί + 1(σ) guarantees that the maximum multiplicity dt + 1 of the

cones in V ί + 1(σ) is strictly smaller than dv This shows that the process must terminate:

more precisely, there is a smallest integer m, with 0<m<d, such that Vm(σ) = Vm + 1(σ);

m is the smallest integer such that the maximum multiplicity dm equals 1. This completes

the proof of (i).

In order to prove (ii), focusing attention on the initial step from V0(σ) to V^σ),

we argue by cases:

Case 1: pσeintPσ.

Writing, as above, (σ*/7σ)
(3) = {σl9 σ2, σ3}, we again have mult(<x7 ) < rf for each

j= 1, 2, 3. By the induction hypothesis, we have a nonsingular subdivision V(σ7) of σj9

such that the primitive generators of the rays in V(σ7 )
( 1 ) lying on the boundary of σ5

are exactly the indispensable points of the faces of σ}. It follows that V(σ) =

V((τ1)uV(σ2)uV(σ3) is a nonsingular fan. Further, the primitive generators of the

rays in V(σ)(1) lying on the boundary of σ coincide with the indispensable points of

those faces of σ, which are also faces of σ, i.e., those faces of σ̂  not containing pσ.

The proof of Case 1 is complete.

Case 2: pσφintPσ.

Let us write σ= <ι;l5 v2, v3} for primitive vectors υu v2, v3. Arguing as in (i) above,

and writing without loss of generality pσe(vl9v2y with pσφvι and pσφv2, it follows

that the primitive v e c t o r ^ lies in the half-open parallelogram P<VuV2y = {λ1v1+λ2v2 |

0<λι< 1, i=ί, 2}. Thus, by the definition of multiplicity, m u l t ^ , ι ; 2 >>l. Let σ1 =

(pσ, vί9 v3} and <τ2 = </?σ, 2̂> ϋ3> Again recalling Remark (c) after Definition 2.2, we
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can write mult(σ1)<ί/ and mult(σ2) < d. By the induction hypothesis, for each /= 1, 2,

we have that V(σf) is a nonsingular fan, and the primitive generators of the rays in

V(σι )
( 1 ) lying on the boundary of σf coincide with the indispensable points of the

faces of σt. Therefore, V(σ) = V(σ1)u V(σ2) is a nonsingular fan such that the primi-

tive generators of the rays in V(σ)(1) lying on either face <ι;l5 v3} or (v2, v3} coincide

with the indispensable points of these faces. There remains to be proved that the

primitive generators of the rays in V(σ)(1) lying on the face (vu v2} coincide with the

indispensable points of <ι;l5 v2}. In the light of Proposition 1.2, it suffices to settle

the following:

Claim. The point pσ is indispensable for <t; l 5 v 2 } .

For otherwise (absurdum hypothesis), pσ would not be among the primitive vectors

vx = /0, lu . . . , lt9 lt+ x = v2 of the coarsest nonsingular subdivision of <f1? v2}. Trivially,

t>\ because, as we have seen, pσ lies in the half-open parallelogram P<VuV2y- There

is a uniquely determined ke{0, ...,t} such that pσ lies in the cone <4>4+i> By

construction, mult<4, Zfc+1> = 1, or equivalently, {4, 4 + i} *s a P a r t of a basis of Z 3 .

Since 0 is the only integral point of the half-open parallelogram P<ιktιk+ίy, it follows

that pσ = λίlk + λ2lk + ί for suitable integers λuλ2>\. The linearity property of the

function || | |σ (Remark (b) after Definition 2.1) implies that ||/?σ||ff = A1||4ll<rH-A2|l4 + illσ

Since the 2-dimensional cone <4, 4 + i> *s strictly contained in <ι;l51;2>, either lk or lk+ι

belongs to the set ( σ n Z 3 ) \ { 0 , v1, v2, v3}, and its norm in σ is strictly smaller than

\\pσ\\σ. This contradicts our assumptions about pσ.

Having proved our claim, we have also completed the proof of the proposition.

q.e.d.

2.5. REMARK (to be continued in 4.3). In case τ is a 2-dimensional cone, one

can similarly define a nonsingular subdivision V(τ) of τ by choosing points of minimal

norm. In this way we get that the set of generating vectors of the rays in V(τ)(1) coincides

with indisp(τ): as a matter of fact, arguing as in the above claim, we see that each point

of minimal norm is indispensable; now apply the additivity property of Proposition

1.2. Thus, our algorithm yields a 3-dimensional generalization of the traditional

construction [5, 1.6] of the coarsest nonsingular subdivision of a 2-dimensional cone.

Suppose now we are given a finite fan A of rational simplicial cones in R3 whose

support is the whole space R3. By Proposition 2.4, for any two 3-dimensional cones σ

and a' of A having a common 2-dimensional face σ n σ', the set G of primitive generators

of the cones in V(σ) lying on σ n σ ' only depends on σnσ' : specifically, G coincides

with the set of indispensable points of σnσ' ; therefore, G is also equal to the set of

primitive generators of the cones in V(σr) lying on σ n σ'. This key observation, together

with Proposition 2.4, shows that by patching together the V(σ)'s we obtain a nonsingular

subdivision of the fan A. This establishes the following result:

2.6. THEOREM. Let A be a finite fan of rational simplicial cones in R3 as above. Let
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V(A)= (J {V(σ) I σeA{3)}. Then V(A) is a fan yielding a nonsingular subdivision of A.

3. Upper bounds for nonsingular subdivisions. Throughout this section, σ =
(vu v2, v3} will denote a 3-dimensional cone generated by primitive vectors vl9 v2, v3.

3.1. LEMMA. Let σ = (vί9 v2, v3y and assume that J=mult(σ)> 1. Then there is a
point pe(PσnZ3)\{0} such that \\p\\σ<d+l. If in addition (PσnZ3)\{0} has non-
empty intersection with the boundary of σ, then p can be so chosen that \\p\\σ<d.

PROOF. Case 1: (PσnZ3)\{0}^intPσ.
Then let π = (vu v2y + ( — (vi9 v2}) be the plane in R3 spanned by vx and v2. Our

standing assumption implies that π contains exactly one integral point of Pσ, namely
0. Therefore, all integral points of π are obtainable as linear combinations of υγ and
v2 with integral coefficients; stated otherwise, mult<f1? v2} = 1. By hypothesis, the
half-open parallelepiped Pσ contains exactly d integral points. Let r be a nonzero integral
point of Pσ. Let π(r) be the plane through r and parallel to π. Then r must be the only
integral point of Pσnπ(r); for otherwise, if r'Φr were another such point, then r' — r
would be an integral point of the plane π = π(0) not belonging to the lattice generated
by v1 and v2, thus contradicting mult<f1, v2} = 1.

Following now [1, VII.2.4], and denoting by Λσ be the lattice in Z 3 generated by
vuv2,v3, we observe that every point xeR3 can be written uniquely in the form
x = ξiVί + ξ2v2 + ξ3v3 for some real numbers ξu ξ2, ξ3; andxeΛσif and only if ξu ξ2, ξ3

are integers. Hence, for every xeR3 there is a unique teΛσ such that x<>=x — t is a
point of Pσ\ the function ° : x^x^ maps Z3 onto PσnZ3. Two points have the same
image if and only if they differ by a lattice point of Aσ. Let g be the only nonzero
integral point of Pσ lying at the smallest possible (Euclidean) distance d from π = π(0).
Uniqueness of g, as well as the fact that d>0, are guaranteed by our initial discussion.

Claim. {0<>,g<>Λ2g)<>,...Λ(d-l)g)<>} = PσnZ3.
It is sufficient to show that for each7= 1,..., d—l, the plane π^jg)^) is different

from π(0). We already known that π(^fo) = π(^)/π(0). By way of contradiction, let j
be the smallest integer such that n((jg)°) = n(0) and je {2, . . . , d— 1}. Since for each
rePσnZ3 the plane π(r) contains precisely one point of Pσ n Z 3 , it follows that not all
d points of Pσ n Z 3 belong to the set π(0) u π(g°) u ... u π(((/- 1)0)°). So, for a suita-
ble z' = 0,... ,7 — 2, there exists s e / ^ n Z 3 lying in the open region in R3 between the
two planes n((ig)0) and π(((i+l)g)0). Let d* be the distance between π(0) and
(s — ig)°ePσr\Z3. Then 0<d*<d, which contradicts the assumed minimality of d.
The claim is settled.

Let « = 0, 1,..., d— 1. By the linearity property of the function || \\σ (Remark (b)
after Definition 2.1) we have ft||g||σ= ||w^||σ whence, by Remark (c).

(mod*?).
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Let us now denote a= \\g\\σ.

Subcase 1.1: gcd(α, d) = l.

Then pick an integer n'e {1, . . . , d— 1} satisfying the congruence n'a= 1 (modi/).

By (*), we must either have \\(nfg)<>\\σ = d+ 1, or \\{n'g)<>\\σ = 2d+ 1 (the other cases

being manifestly impossible). Note that the integral point v1 + v2 + v3 — (nfg)° lies in

intP σ . Again by linearity, K +v2 + v3-(n'g)<>\\σ= \\vx +ι>2 + i> 3 | | σ - | |(«^)° | | f f = 3rf-

ll(w'^)°||σ, whence either (nfg)° or (vί + v2 + v3 — (n'g)<>) has the desired properties.

Subcase 1.2: gcd(α, d) = m> 1.

Then for suitable integers Λ, /c> 1 we have a = hm and d=km. By (*), we obtain

II(%) ° IIff = 0 ( m o d ^ m ) s i n c e > b y o u r c l a i m > (kg) ° ^ 0, it follows that either || (fc#) ° | |σ = d,

or ||(/c^)o||(T = 2J. Noting that the integral point vί+v2 + v3 — (kg)° lies in intPσ, we

conclude that either (kg)0 or (v1 + v2 + v3 — {kg)<>) has the desired properties.

Case 2: Some point qe(Pσr\Z3) \{0} lies on the boundary of Pσ.

Without loss of generality, we may assume that q is primitive and belongs to the

half-open parallelogram P(VίjV2y. Taking, if necessary, symmetric points with respect to

the center (vΐ+v2)/2, and recalling that vx and v2 are primitive, we may safely write

q = λvί+μv2 for suitable λ9 μ>0 with λ + μ<\. Letting now σx and σ2 denote the

3-dimensional cones obtained by starring σ at q, we conclude that | |# | | σ = mult(σ1) +

mult(σ2) = (λ + μ)d< d. q.e.d.

The reader will recall that V(σ)(fe) denotes the set of fc-dimensional cones in V(σ),

and that for any set S we write #*S to denote the cardinality of S. We also write

genV(σ)(1)

to denote the set of primitive generators of the rays in V(σ)(1).

3.2. PROPOSITION. Let σ = (vu v291>3> be a cone with mult(σ) = ί/. Then we have

the inequalities #V(σ)(3) < Id- 1 and #(gen V(σ)(1) \{υl9 υ2, v3})<d-l.

PROOF. By induction on d. The case d= 1 is trivial. Assume d> 1. Let pσ be as

given by Definition 2.2. Note that/?σ is primitive (Remark (a) following Definition 2.2).

We argue by cases:

Case 1: pσeintPσ.

Then letting (σ*pσ)
i3) = {σί9σ2,σ3}, by Definition 2.1 together with Lemma

3.1 we have mult(σ1) + mult(σ2) + mult(σ 3)= \\pσ\\σ<d+ 1; by Remark (c) following

2.2, we have the inequality mult(σ ί)<rf. By induction #V(σ)(3) = ̂ ι.ίfV(σι.)
(3)< - 3 +

Similarly, from the identity genVίσy 1 ^^! , v2, v3} = (genV(σ1)
iί)\{υl9pσ, v3})u

(gQnV(σ2)
(1)\{pσ,v2,v3})u(gQnV(σ3)

il)\{v1,v2,pσ})Ό{pσ}, by induction we get

#(gen V(σ)(1) \{υl9 υ2, i;3})<mult(σ1)-1 +mult(σ 2)- 1 +mult(σ3)-1 + 1 = \\pσ\\σ-2<

d-L

Case 2: pσ lies on the boundary of Pσ.
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Then assume without loss of generality pσ^{λ1vί + λ2v2 | 0<Aj<l} . Let (σ*/?σ)
(3) =

{σί9 σ2). From the proof of Case 2 in Lemma 3.1 it follows that mult(σ1) + mult(σ2) =

\\pjσ<d. s i n c e mult(σi)<έ/, by induction we get #V(σ)(3) = #V(σ1)
(3) + #V(σ2) ( 3 )<

2 m u l t ( σ 1 ) - l + 2 m u l t ( σ 2 ) - l = 2 | | / 7 ί r | | σ - 2 < 2 t / - l .

Similarly, using the identity gen V(σ)(1) \{vl9 υ2, ι;3} = (gen V(σ1)
(1) \{υi9 pσ, v3}) u

(genV(σ2)
( 1 )\{/?σ, v2,v3})u{pσ} by induction we get KgQnV(σ)(1)\{vl9v2,υ3})<

\\pσ\\σ-l<d-l. q.e.d.

For later use, we shall now give a characterization of indispensable points. For

this purpose, we first observe that any 3-dimensional cone σ induces a partial order

relation <σ in R3 by the usual stipulation:

x<σy if and only if y — xeσ.

For each zeR3 we let [0, z]σ = {xeR3 | 0 < σ x < σ z } .

3.3. PROPOSITION. Let /? e (σ n Z 3 ) \{0}. Then p is indispensable for σ if and only

if p is <σ-minimal among all nonzero integral points of σ, in symbols, [0,/?] σ nZ 3 =

{0,p}

PROOF. TO avoid trivialities, throughout this proof we assume that/? is primitive.

First assume that p is not indispensable for σ. Let A be a nonsingular subdivision

of σ such that/? is not a primitive generator of any ray in zl(1). Let τ be a 3-dimensional

cone of A such that /? e τ. The nonsingularity of τ implies that /? φ Pτ, and we must have

v <τp for some primitive generator v of τ; a fortiori, we have v<σp. By our hypotheses

about zl, we have that ι?#p and υφO, which shows that p is not a <σ-minimal point

in σ.

Conversely, assume that/? is not < ^-minimal in σ, and let q' e ([0, /?]σ n Z 3 ) \{0, /?}.

Let r'=p — q\ and note that r 'e([0,/?] ( TnZ 3)\{0,/?}. Let ^ and r be the primitive

vectors in σ n Z 3 such that q' = nq and r' = mr for suitable integers m, π > 0 . Note that

7̂«̂ r, for otherwise p would not be primitive. Let A be the coarsest nonsingular

subdivision of the 2-dimensional cone p = (q, r} as defined in [5, p. 24]. Let us display

the primitive generators of the rays of zl ( 1 ) in their natural order as follows:

q = l0, lu ..., /„ lt+1=r. For each j=0, ...91+ 1, the point /? is different from If as a

matter of fact, /? does not belong to the half-open parallelogram Pp = {λq + μr 10 < λ < 1,

0 < μ < 1} while, by construction, each l{ (i= 1, . . . ,/) does belong to P p ; moreover, by

assumption, /? is different from both q and r. Let σ = <t;l5 f2, t>3>, with primitive vectors

î5 V2> V3 Since /? is not <σ-minimal in σ, /? is necessarily distinct from vί9 v2, v3.

Claim. There exists a simplicial fan A1 which is a subdivision of σ and such that

for each i = 0 , . . . , t9 the cone </i? / ί + 1> is in (A^K

The proof is a routine exercise [6, Chapter 2]. However, to make this paper

self-contained we shall give an explicit construction of such Ax. We argue by cases:

Case 1: Both q = l0 and r = lt+1 lie in the interior of σ.
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Let π = <g, r> + ( - <g, r » be the plane in R3 spanned by q and r. Letting π+ and

π " be the two open half-spaces in R3 determined by π, it is no loss of generality to

assume that vx eπ+ and v2eπ~. The intersection of the cone (υu v2} with π is a ray

<w>, with weZ3 the primitive generating vector of <w>. It is no loss of generality to

assume that lt+1 belongs to the cone <w, /0> (otherwise, /0 belongs to <w, / ί + 1> and the

proof is similar). Then {<i;3, /0, vx), <ι>3, /0, i>2>, <i;l9 /0, lΊ), <t>2, lθ9 lx},..., <ι>l9 /,, Zf + 1>,

<u2, /ί5 /, +1>, <^i, ϋ2» 'f +1)} i s t r l e s e t of 3-dimensional cones of a fan A x with the required

properties.

Case 2: l0 lies in the interior of σ, and lt+1 lies on the boundary.

Subcase 2.1: / f + 1 lies in the relative interior of a face of σ.

We can assume that lt+1 lies in the relative interior of <u l5 u2>. Then {<u3, /0?

 y i)?

<v3, lo>
 V2>, <vl9109 Ί X <»2, lo> li>,.> ,<vi, it, fί+i>> < ^ t ί ί +i>} is the set of 3-dimen-

sional cones of a fan A x with the required properties.

Subcase 2.2: lt+ί coincides with some vertex of σ.

We can assume lt + 1=υί. Then {<u3, Zo, v2), <^3, /0, Ί>, <^2? Ό> Ί X •••> <ϋ3> 't> 't+iX
<ι;2, Zί5 /ί+1>} is the set of 3-dimensional cones of a fan Ax with the required properties.

Case 3: Both lt + ί and l0 lie on the boundary of σ.

This case is handled similarly to the previous cases.

Having settled our claim, the same construction as the one given in the proof of

the claim in Proposition 1.1 yields a nonsίngular subdivision A2 of A1 such that each

</t , /i+1> is still a 2-dimensional cone of A2. Since the primitive generators of the rays

of (A2)
{1) lying on </i5 / i + 1> coincide with the two indispensable points hx and / i + 1 , by

the above discussion it follows that p is not a primitive generator of any ray in (A2)
(1).

Since A2 is a nonsingular subdivision of σ, we conclude that p is not indispensable

for σ. q.e.d.

4. Tightness of the upper bounds. Given any rational, simplicial, 3-dimensional

cone σ, recall from 2.1 and 2.2 the definition of || | |σ and of pσ.

4.1. LEMMA. Let σ = <ι?l5 v2, v3} be a cone with ί/=mult(σ)> 1, and with primitive

vectors vu υ2, v3. Let Iσ denote the set of indispensable points for σ, other than υu υ2, v3.

Assume that \\pjσ = d+l. Then / < τ - ( P σ n Z 3 ) \ { 0 } = genV(σ) ( 1 )\{ι;1, υ2, v3}^intPσ.

PROOF. If, by absurdum hypothesis, there exists a (possibly, not primitive) point

in (? σ nZ 3 )\{0} lying on the boundary of Pσ, then by Lemma 3.1 it would follow

that \\pσ\\σ<d, which contradicts our hypothesis. Thus, (PσnZ3) \{0}^intPσ.
Claim. (P σ ί iZ 3 )\{0}c/ σ .

By way of contradiction, assume p e (Pσ n Z 3) \{0}, but p is not indispensable for

σ. Then by Proposition 3.3, there exists a point #'e([0,/?]σnZ3)\{0,/?}. Letting

q"=p — q\ we also have <7"e([0,/?]σnZ3) \{0,/?}. By hypothesis, for each

qe(PσnZ3)\{0} we have d+ 1 < | |^| |σ. Since by our initial discussion υ1+v2 + v3 — qe

Z 3 nintP σ , by Remarks (a) and (b) after 2.1 we also have d+l<\\vί+v2 + v3 — q\\σ =
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K +v2 + v3\\σ- \\q\\σ = 3d- \\q\\σ9 whence \\q\\σ<2d-1. It follows that \\p\\σ<2d-l and
\\q'\\σ>d+l, and hence \\q»\\σ=\\p\\σ-\\q>\\σ<2d-\-(d+\) = d-2, which is impos-
sible. Our claim is settled.

Since by the definition of multiplicity, the half-open parallelepiped Pσ has precisely
d— 1 nonzero integral points, it follows that Iσ has at least d— 1 elements. On the
other hand, since by Proposition 2.4 V(σ) is a nonsingular subdivision of σ, we obtain
/σSgenV(σ)(1)\{ι;1, v2, v3}. By Proposition 3.2, the latter set has at most d—\ ele-
ments, whence it has exactly d—\ elements. In conclusion, the equinumerous sets
(Pσ n Z 3) \{0} c / σ c gen V(σ)(1)\{ι?l91^2,^3} coincide, as required to complete the
proof. q.e.d.

4.2. PROPOSITION. For each integer d>\, the cone a = (vi,v2,v3} with vι =
(0,0, 1), v2 = (0, 1, 1) and v3 = (d,d—l,d), has multiplicity equal to d, and every non-
singular subdivision Δ of σ satisfies the inequalities

( i ) %A(σ)i3)>2d-l and
(ii)

PROOF. TO avoid trivialities assume d>\. Direct inspection shows that
(PσnZ3) \{0} coincides with the set {(1, 1, 2), (2, 2, 3),. . . , (d-1, d-1, d)}, and for
each qe(PσnZ3)\{0}, a straightforward computation yields \\q\\σ>d+\. By Lemma
4.1, all d-\ points in (P σ nZ 3 )\{0} are indispensable for σ, and #(genV(σ)(1)\
{vuv2,v3}) = d—l. Further, for every nonsingular subdivision A of σ we must have
J ( 1 )2V(σ) ( 1 ), whence (ii) immediately follows.

With reference to the proof of Proposition 2.4 (i), for each ί = 0,1,..., d — 2, the
step from V,(σ) to Vf+1(σ) amounts to starring the cone τt = <(ί, ί, £+1), (0, 1, 1),
(d, d— 1, d)} at the point (t + 1 , ί +1, ί+ 2). Thus from τf we obtain three 3-dimensional
cones, two of which have multiplicity = 1. Since the number of 3-dimensional cones is
increased by two, we conclude that #V(σ)(3) = 2d— 1. A simple counting argument now
shows that for every nonsingular subdivision A of σ, #A(3)>2d—l, which settles (i).

4.3. REMARK (continuation of 2.5). Let σ=(vί9v2,v3y be the same as in
Proposition 4.2, with d>\. Let Θ be the convex hull in R3 of the set (σnZ3) \{0}. Let
X be the set of integral points lying on the compact faces of the boundary polyhedron
dΘ of Θ. Then each qeX belongs to the closed tetrahedron with vertices 0, υί9 v2 and
v3. It follows that \\q\\σ<d= \\Vi\\σ (/=1,2, 3). Actually, X coincides with the set
{vl9 v2, v3}, since each pe(PσnZ3)\{0} satisfies the inequality \\p\\σ>d+\. Thus, in
contrast to the 2-dimensional case, X gives no information on how to construct (coarse)
nonsingular subdivisions of σ; compare with the analogous remarks in [5, p. 34]. On
the other hand, for every nonsingular subdivision A of σ, each re {(1, 1,2), (2, 2, 3),. . . ,
(d—l, d— 1, rf)} = genV(σ)(1)\{ι;1, υ2, v3} must be a primitive generator of some ray in
A(1\ because r is indispensable for σ. This shows that the nonsingular subdivision V(σ)
given by Proposition 2.4 is a nontrivial generalization of the construction of the coarsest
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nonsingular subdivision of a 2-dimensional cone.

The rest of this section is devoted to the other extreme case, where all integral

points of Pσ lie on the two-dimensional faces of σ. Given σ = (vu v2, v3}, with primitive

Vι,v2,v3, for any two distinct indices, 1,7s{1,2, 3} we denote by Pu the half-open

parallelogram

We also let

It is not hard to see [4, p. 35] that each dtj is a divisor of mult(σ). Actually, the following

stronger result holds:

4.4. PROPOSITION. Let σ = (υ^ v2, v 3 ) with primitive vectors vu v2, v3. Let i,j, k e

{1, 2, 3} be pairwise distinct. Then the product d^dik is a divisor o/mult(σ).

PROOF. Let d=mult(σ). To avoid trivialities, assume d>\. Without loss of

generality we may assume dtj > 1. It is easy to see that the d(j integral points of Ptj lie

on dy equidistant (with respect to Euclidean distance) parallel lines Λ(0),.. ., Λ{dij— 1),

where Λ(0) is the line spanned by the vector vi9 and for each t = 0,..., dtj— 1, Λ{i) is

the line parallel to Λ(0) and passing through point (t/d^Vj. Let/? be the unique integral

point of Pij lying on Λ(\). We can write

(1) p = λvi + (l/dίj)vj fo r s o m e O < Λ , < 1 .

Now consider the half-open parallelogram Pik. Arguing as in the proof of Case 1 in

Lemma 3.1, we see that the dintegral points of Pσ lie on d/dik equidistant parallel planes

π(0) , . . . , π(d/dik— 1), where π(0) is the plane spanned by v( and vk, and, for each

t= 1, 2, . . . , d/dik—l, π(t) is the plane parallel to π(0) and passing through the point

(tdik/d)Vj. Each plane π(t) contains precisely d/dik many integral points of Pσ. For some

integer r with 0 < r < d/dik, the point p lies on the plane π(r), and we can write

(2) p = λvi + (rdik/d)vj.

From (1) and (2) we get d=rdikdij, which yields the desired conclusion. q.e.d.

4.5. PROPOSITION. Let σ = (v1, v2, v3} with primitive vectors vu v29 v3, and with

ί/=mult(σ)>l. Assume without loss of generality d23>d13>dί2. If i n t P σ n Z 3 = 0

then one of the following conditions holds:

(a) either d=d23 and dl2 = d13= 1,

(b) or d=4 and d23 = d13 = d12 = 2.

PROOF. By hypothesis we have d23 + d13 + d12 = d+2. For suitable integers,

Al9 /z2, h3 we can write d=h1d23 = h2d13 = h3d12. If follows that
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(3) d(\/h1 + \/h2 + \/h3) = d+2, l ^ A ^ A ^ A , ,

whence \/h1 + \/h2 + \/h3>\ and A ^ f l ^ } .

Case 1: A1 = l.

Then d=d23. By (3), dί3 + dί2 = 2, whence d13 = d12 = 1. Thus, condition (a) holds.

Case 2: hx = 2.

Then rf is an even number, say d= In with d23 = n. From (3) we get 1/A2 + 1/A3 > 1/2,

whence A2e{2, 3}.

Subcase 2.1: A2 = 2.

Then di3=n. By (3) we get d12 = 2. By Proposition 4.4, the only possibility is « = 2,

whence J = 4 , and each dtj = 2; we are in condition (b).

Subcase 2.2: A2 = 3.

Then by (3), 1/A3 > 1/6, whence A3 e {3, 4, 5}. Suppose A3 = 3 (absurdum hypothesis).

Then d=\2, d23 = 6, and d12 = d13 = 4, which contradicts Proposition 4.4. Similarly, if

A3 = 4 we get d= 24, whence d23 = 12, rf13 = 8, and d 1 2 = 6, another contradiction. Finally,

if A3 = 5, then d= 60, J 2 3 = 30, d13 = 20, dί2 = l2, which is also impossible. In conclusion,

when hλ = 2 , the only possibility left open by Proposition 4.4 is d=A and d(j = 2 for each

iφj. q.e.d.

When miPσ contains no integral points, V(σ) satisfies the following minimality

conditions:

4.6. PROPOSITION. Given σ = <f1? v2, v3y with primitive vectors vί9 v29 v3, assume

int PσV\ Z 3 = 0. Then for any arbitrary nonsingular subdivision Δ of σ we have:

( i ) V(σ) ( 1 )^zl ί l ); indeed, gen V(σ)(1) coincides with the set of indispensable points

of {the faces of) σ.

(ii)

PROOF. TO avoid trivialities, assume </=mult(σ)>l. Assume without loss of

generality d23>d13>d12. In the light of Proposition 4.5, we have only to consider the

following two cases:

Case 1: d23 = d and dί3 = d12= 1.

Let pσ be the point of minimal norm in σ. By hypothesis, pσeP23. Arguing as

in the proof of the Claim in Proposition 2.4, we see that pσ is indispensable for

the 2-dimensional cone <ι?3, v2}. By Proposition 1.1, pσ is also indispensable for σ.

In fact, by [5, 1.6], pσ is contained in the triangle with vertices 0, v2 and v3. Let

(σ*P σ ) ( 3 ) = {σ2, σ3}, where σ2 = <i>l5 v2, pσ> and σ3 = (υί9 υ3, pσ}.

Claim. (Pσ2 n Z 3 ) \{0} c p<V2^y and (Pσ3 n Z 3 ) \{0} c P<V3^};

As a matter of fact, pick an arbitrary point q e (Pσ2 n Z 3 ) \{0}. Since by hypothesis

P 1 2 n Z 3 = {0}, and since the half-open parallelogram P(VίtPσy = {λv1+μpσ\0<λ<\,

0 < μ < l } is contained in Pσ, it follows that P<Vl P σ > n Z 3 = {0}, whence q cannot

lie in P^ΌuPσy Further, q cannot lie in intP < T 2 nZ 3 , for otherwise, either point q or
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v1 + v2+pσ — q would lie in i n t P σ n Z 3 , which is impossible. The only remaining

possibility is that q lies in P<V2>Pσy. We have proved that (Pσ2nZ3)\{0}^P<V2Pσ>.

Similarly, (Pσ3nZ3)\{0}^P<V3ιPσ>9 and the claim is settled.

Proceeding inductively as in the proof of Proposition 2.4, since both mult(σ2) and

mult(σ3) are strictly smaller than d, we obtain the nonsingular subdivision V(σ) after

exactly — 2 + #indisp<tf2, v3} many starring operations, involving precisely the

indispensable points of <t>2, v3} other than v2 and υ3. It is now easy to see that conditions

(i) and (ii) are satisfied in the present case.

Case 2: d=4 and d23 = d13 = dί2 = 2.

Then, without loss of generality, we can write pσ = (v2-\-v3)/2. Let (σ*/?σ)
(3) =

{σ2, σ3}, where σ2 = (vl9v29pσy and σ3 = <ι?1, υ39 pσ}. Then for each ie{29 3},

mult(σt) = 2, and the half-open parallelogram Pσ. contains precisely one nonzero integral

point, namely the point q^ipi + v^β. Therefore, by Definition 2.2, pσ. must coincide

with qt. Proceeding in this way, after two steps the construction of V(σ) is completed.

Since pσ9 qί and q2 are all indispensable for σ, condition (i) holds. A trivial counting

shows that also (ii) holds. q.e.d.

5. Epilogue. In this section we assume familiarity with the first chapters of [3]

and [5]. Recall [2, 12.8] that for every (finite simplicial) complete fan A in R3 the Euler

characteristic E(XA) of the associated toric variety coincides with the number #zl(3) of

3-dimensional cones in A.

5.1. THEOREM, (i) Let X=XΔ be a compact ^-dimensional toric variety, where

each σeA{3) is simplicial. Then X' = XY(Δ) is a desingularization of X satisfying the in-

equality

E(X')<-E(X) + 2 Σ mult(σ).
σed<3>

(ii) This upper bound is the best possible. Indeed, for any two integers e and m with

4<e<m, there exists a compact 3-dimensional toric variety X=XΔ such that each cone

σeA(3) is simplicial, E(X) = e, andYjσ(_Δ(3)mvλt(σ) = m, having the additional property

that every desingularization X" of X satisfies the inequality

E(X")>-E(X) + 2 Σ mult(σ).
σeJ<3>

PROOF, (i) By [5, Theorem 1.11], A is a finite fan whose support coincides with

R3. By Theorem 2.6 and Proposition 3.2, V(A) is a nonsingular subdivision of A satisfying

the inequality #V(J) ( 3 )< - # J ( 3 ) + 2 Σ σ e J ( 3 ) m u l t ( σ ) . By [5, Theorem 1.18], the toric

variety X' = XV{Δ) arises as a desingularization of X. By [2, Corollary 12.8], E{X')<

— £'(Ar) + 2^ ( τ e J ( 3 ) mult(σ). For the proof of (ii), one uses the same results from [2]

and [5], together with Proposition 4.2. q.e.d.
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