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Abstract. For a relatively minimal fibration of genus 2, the best bounds of the
orders of its automorphism group, abelian automorphism group and cyclic automor-
phism group are obtained as a linear function of the self-intersection number of the
canonical divisor.

It is well known that the automorphism group of a surface of general type is finite
and bounded by a function of K2 (cf. [1]). Since then, several authors worked on this
subject and found better upper bounds of the group. Recently Xiao [11], [12] obtained
a linear bound for this group. Hence it is natural to investigate the upper bounds for
particular classes of surfaces. Here we are interested in the upper bounds of various
automorphism groups of surfaces with genus 2 pencils. As a first step, in the present
paper, we will study the upper bounds of automorphism groups of genus 2 fibrations.

We always assume that S is a smooth projective surface over the complex number
field. A genus 2 fibration is a morphism / : S-+C where C is a projective curve such
that a general fiber of / is a smooth curve of genus 2.

DEFINITION 0.1. An automorphism of the fibration / : S->C is a pair of
automorphisms (σ, σ) with σeAut(S), σe Aut(C) such that the diagram

s - ί - s

Λ 1/

commutes.

The automorphism group of fibration / will be denoted by Aut(/). The main
results of this paper are the following:

THEOREM 0.1. Suppose S is a surface of general type over the complex number field

with a relatively minimal genus 2 fibration f: S^C. Then
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|Aut(/)|<504Λ:f .

Iff is not locally trivial, then

More precisely,

126KI, if g(C)>2;

144KJ, if g(C)=\;

These bounds are the best possible.

THEOREM 0.2. Suppose S is a surface of general type over the complex number field

with a relatively minimal genus Ifibration f: S->C. Then an abelian automorphism group

G of f satisfies

I GI < 12.5* | + 100.

This bound is the best possible.

THEOREM 0.3. Suppose S is a surface of general type over the complex number field

with a relatively minimal genus Ifibration f: S-^C. Then a cyclic automorphism group

G of f satisfies

if g(C)=\ , * ! > 1 2 ;

if g(c)=o.

These bounds are the best possible.

THEOREM 0.4. Suppose S is a minimal surface of general type over the complex

number field with a genus Ifibration / : S—>C with g(C)>2. Then a cyclic automorphism

group G of f satisfies

Theorem 0.1 will be obtained as a consequence of several propositions in Section

3. In Section 4, we discuss abelian and cyclic automorphism groups of the fibration / .

The propositions proved there imply Theorems 0.2, 0.3 and 0.4. We remark that Xiao

[7] has obtained a bound for abelian automorphism groups of /. Our theorem is an

improvement of his. Examples are given in Section 5 to show that most of these bounds

are the best possible.

1. Preliminaries. The surfaces with genus 2 pencils have been studied by many

authors. The facts we need in this paper appeared mostly in [3], [6], [9], [10]. In

particular, Xiao's book [10] gave a systematic description of the properties of genus 2
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fibrations which are just what we need here. Unfortunately, this book has not been
translated into English yet, hence it is not available for most readers. For this reason,
we will recall some materials in this section.

Let / : S->C be a relatively minimal fibration of genus 2 and (Jθs/c~ωs®f*ωc
the relative canonical sheaf of /. For a sufficiently ample invertible sheaf <£ on C, the
natural homomorphism /*(/*ωs/c(x) J^)^ωs/C(χ)/*J2? defines a natural map Φ:

Φ is called a relative canonical map. By a succession of blow-ups, we can obtain the
following commutative diagram:

where p and φ are composites of finitely many blow-ups, Θ is a double cover. Then we
get the branch loci R on P and R on P such that R is the minimal even resolution of
R (i.e., the canonical resolution of the double cover). If 5£ is sufficiently ample, then
all the singularities of R must be located in one of the six types 0), I), II), III), IV) and
V) of singular fibers defined by Horikawa [3].

P is a relatively minimal ruled surface. We denote a section which has the least
self-intersection number by Co with CQ = — e. We use F to denote both the fiber of /
and π.

A singular point of the branch locus is said to be negligible if this point itself and all
its infinitely near points are double points or triple points with at least two different
tangents. By the minimal even resolution, the inverse image of a negligible singular
point is composed of ( — 2)-curves. All other singular points are said to be non-negligible.
The singular fiber of type 0) in the classification of Horikawa is nothing else but the
fiber which does not contain any non-negligible singular points.

The minimal even resolution φ : P-+P can be decomposed into φ : P-+P followed
by φ: P-*P, where φ and φ are composed respectively of negligible and non-negligible
blow-ups. The image of R in P is denoted by R.
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If we take away all the isolated vertical ( —2)-curves from the reduced divisor R,
we get a new reduced divisor Rp9 which is called the principal part of the branch locus
R. Then for any fiber F of π: P^C, the second and third singularity index s2(F), s3(F)
of F is defined as follows:

If R has no quadruple singularities on F, then s3(F) equals the number of (3->3)
type singularities of R on F. Otherwise s3(F) equals the number of (3-»3) type singu-
larities of R on F plus one. Hence s3(F) = 0 if and only if R has no non-negligible
singularities on F.

Let φ : Rp-+C be the natural projection induced by π o ψ: β^C. Then the second
singularity index s2(F) of F is the ramification index of the divisor Rp on f(F) with
respect to the projection φ. lϊ Rp has singularities (which must be negligible) on F, the
singularity index s2(F) c a n be calculated as follows:

For a smooth point psRpnF, the ramification index of φ at /? can be defined as
that for an ordinary smooth curve. If peRpnF is a singular point of Rp, then the
ramification index of φ at /? is defined as the sum of ramification indices of the
normalization of Rp at the pre-image of p with respect to its projection to C plus the
double of the contribution to the arithmetic genus of Rp during its normalization at
the singular point p. If the normalization of Rp contains an isolated vertical component
E, then the contribution of E to the ramification index of φ is equal to 2g(E) — 2.

Since there are a finite number of fibers Fwith ^(F) = 0̂, we define the /-th singularity
index s^f) of/ to be the sum of s^F) for all fibers, when i=2, 3. If we take away from
the branch locus R all the fibers Fwith odd s3(F), we obtain a divisor Rp which is called
the principal part of R. Suppose that

Rp~-3KP/c + nF,

where KP/C is the relative canonical divisor of π and ~ represents the numerical
equivalence. With these definitions, the formula for the relative invariants of a genus
2 fibration can be stated as follows:

THEOREM 1.1 (Xiao [10]). Let f: S^C be a relatively minimal fibration of genus
2. Then

2. Local cases. We begin with a local fibration / : SΔ-^Δ where / is an analytic
mapping onto the unit disk A, SA is a 2-dimensional analytic smooth manifold and the
fibers of / are projective curves. We assume that the fiber over the zero is singular and
all the fibers over A* = Δ — {0} are smooth curves of genus 2.
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Similarly, we have a commutative diagram:

503

Denote the branch locus in PΔ by RΔ. We also denote the horizontal part of RΔ

by R'Δ, that is,

RΛ

— F0, if RΔ contains Fo ,

otherwise.

Let Fo = π ^O), Ft = π *(/)> teΔ*, and KΛ = {σe Aut(SΔ) \ f ° σ = / } . Any automorphism

σeKΔ induces an automorphism σ of PΔ satisfying π ° σ = π and σ(RΔ) = RΔ. If we denote

the image of KΔ by KΔ^AutPΔ, then

Note that any finite automorphism group of P1 must be those in Table 1.

TABLE 1.

Cyclic group Zn

Dihedral group D2n

Tetrahedral group Γ 1 2

Octahedral group O24

Icosahedral group / 6 0

\G\

n

In

12

24

60

Number of points in an orbit

1, n

2, n, In

4, 6, 12

6, 8, 12, 24

12, 20, 30, 60

For any σeKΔ, its restriction σ\Ft to F^P1 must preserve the set of six points

contained in FtnRΔ. Hence KΔ can be isomorphic to one of the following groups O 2 4 ,

Tί2, £>i2, £ 6 , Z 6 , Z 5 , Z)4, Z 4 , Z 3 , Z 2 and {1}.

LEMMA 2.1. If KΔ^O24., T12 or D12, then Fo is contained in RΔ, and RΔ has six

ordinary double points on Fo. In this case, we have s2(F0)= 10 and s3(Fo) = 0.

PROOF. Since KΔ^O24r, Tί2 or D12, RΔnFt (teΔ*) consists respectively of six

vertices of a regular octahedron, of six points corresponding to the centers of edges of

a regular tetrahedron, or of sixth roots of unity. These six horizontal branches of RΔ
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cannot intersect when t->0. Since RΔ must have some singularities by assumption, Fo

is contained in RΔ.

Since RΔ does not contain non-negligible singularities, one has ,S3(F0) = 0 and

RΔ = RΔ = (RΔ)p. On Fo, RΔ has six ordinary double points, the contribution of each

double point to the arithmetic genus of RΔ during its normalization being equal to one.

The pre-image of Fo in the normalization of RΔ is a smooth vertical rational curve

which does not meet any other branches, so its contribution to the index s2(F0) i s equal

to - 2 . Therefore s2(F0) = 2 x 6 + ( - 2) = 10. •

We list the following useful lemmas, whose proofs are evident. Since local equations

are used for calculation of singularity indices, they are given in simplified form, omitting

some higher order terms. All the non-negligible singularities here are canonical, i.e.,

those defined by Horikawa.

LEMMA 2.2. If KΔ^D6 and RΔ is not etale over A, then up to coordinate trans-

formation we have:

(1) The equation of R'Δ is (x3 - tk)(tkx3 - 1), k>0. In this case, s3(F0) = 0 implies

(2) The equation of R'Δ is(x3-l)2-tk(x3+l)2,k>0. In this case, we have s3(F0) = 0

and s2(F0)>3.

LEMMA 2.3. If KΔ = Z6 and R'Δ is not etale over A, then up to coordinate trans-

formation, the equation of R'Δ is x6 — tk, \<k<3. If k = 3, it has a non-negligible

singularity with s3(F0) = 1 and s2(F0) = 3. Otherwise s2(F0)>5.

LEMMA 2.4. If KΔ = Z5 and R'Δ is not etale over A, then up to coordinate trans-

formation, we have:

(1) The equation of R'Δ is x(x5-tk), k= 1, 2. In this case, s3(Fo) = 0 ands2(F0)>6.

(2) The equation of R'Δ is x(tkx5 - 1), k = 1, 2. In this case, s3(F0) = 0 and s2(F0) > 4.

LEMMA 2.5. If KΔ^D4 and R'Δ is not etale over A, then up to coordinate trans-

formation, we have:

(1) The equation of R'Δ is {x2- \)((x- \)2-tk(x+ l)2)(tk(x- l ) 2 - ( x + I)2), k>0. In

this case, s3(Fo) = 0 implies s2(Fo)>6.

(2) The equation of R'Δ is (x2- I)(x2-tk)(tkx2- 1), k>0. In this case, we have

s3{Fo) = 0 and s2(F0)>2.

LEMMA 2.6. If KΔ = Z4 and R'Δ is not etale over A, then up to coordinate trans-

formation, the equation of R'Δ is x(x4 — tk), k=\, 2. In this case, we have s3(F0) = 0

and s2(F0)>5.

LEMMA 2.7. If KΔ^Z3 and R'Δ is not etale over A, then up to coordinate trans-

formation, we have:

(1) The equation of R'Δ is (x3-tkl)(tk2x3-a(t)), ku k2>0, a{O)φO. In this case,

^3(^0) — ̂  implies s2(F0) > 4.
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(2) The equation of R'Δ is x6-\-a(t)x3-\-tk, 1 <k<3. In this case, s3(Fo) = 0 implies

s2(F0)>5.

(3) The equation of R'Δ is (x3-b-tkί)(x3-b-tkla(t)), kί9 k2>0, a(O)φO and

0. In this case, we have s3(Fo) = 0 and s2(F0)>6.

(4) The equation of R'Δ is (x3 - tk)(x3 - a(ή), 1 < k < 3, a(O) φ0. In this case, we have

s3(Fo) = 0 ands2(F0)>2.

(5) The equation ofR'Δ is ((JC- b)2 - tka(t))(x- bω)2 - ω2tka(t))((x- bω2)2 - ωtka(t)),

k>0, a(O)φO, bφO, ω = exp(2π//3). In this case, we have s3(Fo) = 0 and s2(F0)>3.

We summarize the results of Lemmas 2.2 through 2.7 in Table 2 where we assume

that R'Δ has only negligible singularities or ramifications on Fo.

TABLE 2.

D6

Ze

Zs
D*

z*
z,
z2

1

\κΔ\

12

12

10

8

8

6

4

2

> 3

> 5

> 4

> 2

> 5

> 2

> 1

> 1

\KΔ\/s2(F0)

< 4

<2.4
<2.5
< 4

<1.6
< 3

< 4

< 2

LEMMA 2.8. If RΔ has only negligible singularities or ranificatίons on Fo, then

\KΔ\/s2(F0)<4. Moreover, ifKΔ^Zβ, Z 5 , Z 4 or {1}, then \KΔ\/s2(F0)<2.5.

3. Bounds of automorphism groups. Let G = Aut(/) be the automorphism group

of the ίibration / : £->C of genus two. Then we have an exact sequence

(σ, σ) 1—• σ ,

w h e r e / / ^ A u t ( C ) , K={(σ, Ίd)eG} = {σeAut(S)\foσ = f}. T h u s \G\ = \K\\H\. T h e

elements of H are often regarded as transformations of the fibers of / or π.

PROPOSITION 3.1. If f: S-+C is a relatively minimal fibr at ion of genus 2 with

g(C)>2, then

|Aut(/) |<504* | .

PROOF. Since | AΓ|<48, \H\<\ Aut(C)|<8%(C)- 1), we have
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On the other hand, Kj/c>0 and the equality holds if and only if/ is locally trivial.

Hence

K2

s>S(g-\)(g(C)-l) =

and \G\<504Kl D

PROPOSITION 3.2. If f\ S—»C is a relatively minimal fibration of genus 2 with

g(C)>2 which is not locally trivial, then

PROOF. Let R' denote the horizontal part of the branch locus R. If R' is not etale

over C, then by the lemmas in Section 2, we have | K\ < 12. Since | H\ <S4{g{C)-1)<

10.5Λ:J,

Now assume that Rf is etale. Since / is not locally trivial, we must have Λ^f/c>0,

i.e., either s3(f)>0 or s2(f)>0. So R must contain some fiber Fo. By Lemma 2.1,

s3(F0) = o and s2(F0) = 10. Let p = f(F0), n = \H\. Since H is a subgroup of Aut(C), H

determines a finite morphism τ: C^X=C/H. Denote the ramification index of peC

with respect to τ by r and the other ramification indices by rf. Then Hurwitz's theorem

implies that

Since the 7/-orbit of the point p has n/r points, this implies that s2(f)> lOn/r. Hence

It is not difficult to see that the expression 2g(X) — 2+ l/2r + ]Γ(l — l/r£) reaches its

minimal value 2/21 (under the condition 2g(X) - 2 + Σ(l - 1/r. ) > 0) when g(X) = 0,r1 = 2,

r2 = 3, and r = r3 = 7, that is,

*1>—«=-8-|//|.
5 " 2 1 21 ' '

Thus

D
REMARK. It is not difficult to see that if g(C)>2, f is not locally trivial and

|Aut(/)| = 126A:|, then | Aut(C)| = 8%(C)-1), |Aut(iOI=48 for any smooth fiber F

and Aut(/) = Aut(C) x Aut(.F). We will give an example later. In this case, the fibration
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/ is of constant moduli.

LEMMA 3.1. Let S be a surface of general type which has a relatively minimal genus

2 fibration f: S—• C. If the third singularity index s3(f) φ 0, then

60 2

7

where

r= min | S t a b H / ( F ) | ,

StabH/(F) being the stabilizer of f(F) in H.

PROOF. Let Fo be a singular fiber such that s3(Fo)Φ0 and r=\ StabHf(F0)|. Then

and we get

D

LEMMA 3.2. Let S be a surface of general type which has a relatively minimal genus

2 fibration f: S—•C. If the horizontal part Rf of the branch locus R is not etale and has

only negligible singularities or ramifications, then

\Aut(f)\<20rK2

slc,

where

r = min{| StabH/(F) 11F singular fiber) .

PROOF. Let Fo be a singular fiber with r = \ StabHf(F0) |. Since here

we have

by Lemma 2.8. •

LEMMA 3.3. Let S be α surface of general type which has a relatively minimal genus

2 fibration / : S-*C. If the horizontal part R' of the branch locus R is etale, then
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|Aut(/) |<24rKj / c ,

where

r = min{| S t a b ^ F ) 11F singular fiber} .

PROOF. Let Fo be a singular fiber with r=\ StabHf(F0)|. By assumption, we have
s2(F0)= 10. Hence

I GI = I K\ I H\ < - ^ - 5K2

s/c<24rKj/c .

D

Let K denote the subgroup in Aut(.P) which is induced by K. If σ e K, then π ° σ = π

and σ(R) = R. Let K1 be a cyclic subgroup of order m of ΛΓ, and let Q = P/K1 be the

quotient surface. Then Q is a ruled surface. We have a commutative diagram:

Let C o and C^ ~ C0 + eFbe the reduced ramification divisors of K1. Let Cr

0 be a section

of π' with the least self-intersection number C r

0

2 = — e\ and let F' be a general fiber of

π\ Then α*C'0 = raC0, α*C' 0 0 =mC 0 0 , oc*F' = F and £>' = raέ>. Let D = a(R'\ and let

C'^C'o + C^ be the branch locus. Then C'~2C' 0 + έ>'F' KQ/C.

LEMMA 3.4. Assume K=D6. If R' is not έtale and has only negligible singularities

or ramifications, then f has more than one H-orbits of singular fibers.

PROOF. Let K1 be the unique cyclic subgroup of order 3 of K. There are two types

of singular fibers as listed in Lemma 2.2. Let Fo be a singular fiber. Then the local

equations of D near Fo are (1) (x-tk)(tkx-\\ k<\ (2) ( c - l ) 2 - / k ( x + I ) 2 , λ:>0. In

Case (1), D meets C at two points in Fo. In Case (2), D does not meet C in Fo.

If all the singular fibers of / are of type (1), then D is an etale cover of C. This

means that a — e' and C ~D. Hence DC' = 0, which is impossible because D and C"

meet in Fo.

If all the singular fibers of / are of type (2), then DC' = 0. Hence D~C and

D(D + KQIC) = 0. This means that D is etale over C, a contradiction. •

LEMMA 3.5. Assume K^D4. If R' is not έtale, then f has more than one H-orbits

of singular fibers. If H is cyclic and g(C) = 0, then
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PROOF. In this case, there are four sections in P which do not meet one another.

Hence e = 0. R' contains two of these sections denoted by C o and C^. Let Kx be a

cyclic subgroup of K with C o and C^ are ramifications. Assume that there is only one

//-oribt of singular fibers. If these singular fibers are all of type (1) in Lemma 2.5, then

the local equation of D = OL(R' — Co — C^) is (x — tk)(tkx — 1), namely, D is etale. Therefore

D~2C0, DC'O = DC'n = 0, a contradiction. If the singular fibers are of type (2) in Lemma

2.5, then D does not meet C'o and C'^. Hence D~2C'O, D 2 = 0, a contradiction. Hence

there are at least two //-orbits.

Now suppose H is cyclic. Let h = \H\. An //-orbit is said to be big if it contains h

fibers. If there is a big //-orbit whose singular fibers are of type (1), then s2(F0)>6, so

|G|<(20/3)AΊ / c. If |G|>(20/3)#J / c, then the singular fibers in a big //-orbit must be

of type (2) with k<2. Let F2 and F3 denote two fibers fixed by //. Then at least one

of them is of type (1). The structure of types (1) and (2) implies that the normalization

of D = oc(R' — C0 — COD) is etale with respect to π''. Hence D must be decomposed into

two isomorphic sections Dx and D2 with D1~D2~C'0 + aF'. Since both D1 and D2

meet Cr

0 and C'^, F2 and F3 are all singular of type (1). Since D1D2 = 2a = kh, we get

D1C'0 = a = kh/2. Hence the local equation of R' near F2 or F3 is (x2-l)((x-\)2-

tkhl\x+ \)2){tkhl\x- l ) 2 - ( x + I)2). When A>6, these are non-negligible singularities. If

Ft {i = 2, 3) is a singular fiber of type I), then j 3(F i) = 2[(fcA-2)/8] + l>(fcft-l)/4. If Ft

is of type II), then s3(Ft) = 2[£A/8] > (kh - 6)/4. So

/f|/c>-^x2xA + 4-x " . " χ2 = ^rh
h-6 11 . 21

5 ~ 5 4 ~Ίθ"

80 / , 2121 \
—J<12.5JfI/c.

If there are more than one big //-orbits, it can be similarly shown that \G\< 12.5AΓ|/C.

D

LEMMA 3.6. Assume K^Z3. If R' is not etale and has only negligible singularities

or ramifications and f has only one H-orbit of singular fibers, then

|Aut(/)|<6rKf/c,

where

r = min{| StabHf(F) \ | F singular fiber} .

PROOF. Let K1 = K. If the singular fibers are of types (1) or (4) in Lemma 2.7, then

D~2C'0 + aF' is etale. D(KQ/C + D) = 0 implies a = e'. Hence /)(C/

o + C/

o0) = 0, a con-

tradiction. If the singular fiber Fo is of type (5) with k=l, then D is irreducible and

smooth near Fo. This implies D C ^ ^ O , a contradiction. Therefore s2(F0)>5 for any

singular fiber Fo. So | G \ < 6rK| / c . Π
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LEMMA 3.7. Assume K= Z2. If R' is not etale and f has only one H-orbit of singular
fibers, then

|Aut(/)|<5rKj/c,

where

r = min{| StabH/(F) 11F singular fiber) .

PROOF. Let Fo be a singular fiber. \G\>5rKj/c implies s2(F0)<3. We distinguish
between two cases.

Case I. Rf contains C o and C^. Then the local equation of R' near Fo must be
(1) x(x

2-ή(x

2-a(t)), a{ϋ)Φ0, s2(F0) = 3, or (2) x{(x

2 - a

2)2 -1\ aΦO, s2(F0) = 2. Let
D = a{R' - Co - C J - 2C'O + aF. If all the singular fibers are of type (1), then D is etale.
This is impossible. If the singular fibers are of type (2), then D is irreducible and does
not meet C'. This is impossible.

Case II. R' does not contain Co and C^. Then the local equation of Rf may be
(1) (χ2-t)(x2-a(t))(x2-b(t)\ a(0)b(0)Φ0, a(0)Φb(0)9 s2(F0)=l; (2) [x

2-t){ta{t)x2-
\){x2-b{t)\ a(0)6(0)#0, s2(F0) = 2; (3) ((x

2-a

2)2-t)(x2-b(t)% ab(0)Φ0, s2(F0) = 2; (4)
((x2-a2)2-t)(x2-ώ(ή\ ft(0)#0, s2(F0) = 3. Let D = oc(R')~3C'0 + aF. If Fo is of type
(1) or (2), then D is etale and smooth. D must be decomposed into three disjoint
components. This means e' = 0, a contradiction. If Fo is of type (3) or (4), then D
is smooth. The ramification index is D(D + KQjC) = 4a — 6e' = \H\/r. Hence DC =
2a— 3er = \H \/2r. This is a contradiction because we have DC = 0 for type (3) and DC =
\H\/r for type (4).

PROPOSITION 3.3. If S is a minimal surface of general type which has a genus 2
fibration f: S^>C with g(C)=l, then

PROOF. In this case, we have

Thus either s3(/)>0 or s2(f)>0.
Let j(C) be the /-invariant of the elliptic curve C. Let m denote the number of

points contained in a smallest //-orbit of C. Since H is a finite subgroup of Aut(C), we
have

m=

if

if y(C)=1728,

|//|/6 if j(C) = O.

Since r<6, by Lemmas 3.1, 3.2 and 3.3, the conclusion is immediate. •
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PROPOSITION 3.4. If S is a surface of general type which has a relatively minimal

fibration f: S-+C of genus 2 with g(C) = 0, then

|Aut(/)|<120(*i

Moreover, we have

for Λ^J>33, and when K\<Ί>2, there are only four exceptions.

PROOF. In this case, we have

Hence either s3(f)>0 or s2(f)>0.
Case I. Assume that Rf is etale over C. If r<5, then by Lemma 3.3

I G\<24rK2

s/c< 1 2 0 ( ^

If r>6, then //must be a cyclic or a dihedral group. In this case, there are at most
two singular fibers. Hence KljC<4 by Theorem 1.1. This means that S is not of general
type [10, Theorem 4.2.5, p. 90].

Case II. Assume that Rf is not etale. Then / is a fibration of variable moduli.
Hence / must contain more than two singular fibers (cf. [2]). This implies r<5. The
conclusion follows from Lemmas 3.1 and 3.2.

In the preceding argument, we can see that |G|<48(i£j + 8) holds if r<2. If
I GI >48(λJ + 8), we must have r > 3. Then H is one of Γ12, O24r and /6 0.

If / has more than one //-orbit of singular fibers, then

K2

S/C> 1 (s2(F0) | 7s3(F0) /2(Λ)

~ 5\ \K\ \K\ ) 5 \ \K\

( |

G\ ~ 5r\ \K\ \K\ ) 5rx \ \K\ \K\

1 1 1 1 9 1
> x 1 x — = >-

25 4 20 4 400 48

Therefore / has only one //-orbit.
If the singular fibers has non-negligible singularities, then by Lemma 3.1,

|G|<(60/7)rA:|/c<(300/7)A:|/c<48AΊ/c. Suppose that the horizontal part Rf of the
branch locus has only negligible singularities or ramifications. Then by Lemmas 3.4,
3.5, 3.6 and 3.7, we have

\G\<\2.5rK2

s/c.

Thus \G\>4SKj/c implies that r>4 and Kis Z 6 or Z 5 . If K^Z6, then r = 5 and H^/60.
To ensure \G\>4SKj/c, we have s2(F0) = 5, i.e., R = R'~ — 3KPjCΛ-nF is a smooth
irreducible divisor. As a multiple cover on C, the ramification index of R is equal to
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R(R + KP/c)=\2n. On the other hand, this ramification index is equal to 5 x (60/5) = 60,

i.e., n = 5. However, 2n = 10 = Kj/C ^s2(f)/5 =\2, a contradiction.

If K^Z5, then \G\>48A:|/C implies s2(F0) = 4. In this case R = R' = CO + RU where

R1~5C0 + (n + 3e)F is an smooth irreducible divisor and R1Co = 0, i.e., n = 2e.

Computing the ramification index of Rx we get Rί(R1+KP/c)=l0n = 4\H\/r. Thus 5r

divides \H\, a contradiction. Hence | G | >48(Xf + 8) implies that R' is etale over C.

There are only a finite number of possibilities. We list the possible fibrations with

in Table 3.

TABLE 3.

H

ho
4o
O

2 4

O
2
*

r

5

3

4

3

\G\

2880

2880

1152

1152

κl

16

32

4

8

|AΊ/(*i + 8)

120

72

96

72

180

90

288

144

In Section 5 we will show the existence. D

COROLLARY 3.5. If S is a minimal surface of general type which has a genus 2

fibration f.S^C with g(C) = 0, then

\Aut(f)\<2SSK2

s.

PROOF. If K2

S > 2, then 48(AT| + 8) < 288AΓ|. By Proposition 3.4 we need only check

the four exceptional examples. D

4. Abelian automorphism groups. Let G^Aut(/) be an abelian group. Then it

is well known that | ΛΓ| < 12.

PROPOSITION 4.1 (Xiao [7, Lemma 8]). Let / : S->C be a relatively minimal

fibration of genus 2 with g(C)>2. Then an abelian automorphism group G of S satisfies

Then

Let G^ Aut(P) be the induced automorphism group of a commutative group G.

LEMMA 4.1. Assume that K^Z3 and g(C) = 0. Let peC be a fixed point of the

cyclic group H, and let F=π~1(p). If there is a R\F-orbit containing three points in F, then

s2(F)>3\H\.

PROOF. Since p is a fixed point of H, the induced action of G on F forms
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a commutative subgroup G\F^Aut(F)^Aut(P1). Since G\F stabilizes this X]F-orbit,

we have G\F = K\F^Z3, i.e., H\F=\. Hence the local equation of R' near F has the

form f(x3,th) where h = \H\. More explicitly, the local equation of Rf is (3)

(x3-b- tk'hax{th)){x3-b-ίk2ha2(th)) or (5) ((x-b)2- tkha(th))((x-bωf -ω2tkha(th))((x-

bω2)2-ωtkha(t% bΦO. Thus s2(F)>3h = 3\H\. •

PROPOSITION 4.2. If S is a surface of general type which has a relatively minimal

fibration f: S->C of genus 2 with g(C)< 1, then an abelian automorphism group G of f

satisfies

I GI < 1

PROOF. It is well known that H must be a cyclic group or a dihedral group

If g(C)=\ and H does not act freely on C, then \H\<6. Hence \G\<

72<12.5(A:| + 8). If g(C) = 0 and H^D^ then | G | < 4 8 and the claim holds too. So

we can assume that H is a cyclic group and that there exists a singular fiber Fo with

I StabH/(/o) 1 = 1.

Case I. Suppose that the horizontal part Rr of the branch locus R is etale over

C. Then \G\<6K2

/C.

Case II. Suppose that R' is not etale. If there is a big //-orbit with s3(F0) Φ 0, then

SO

Now suppose that on the big //-orbits R' has only negligible singularities or

ramifications. If K=Z6, Z 5 , Z 4 or {1}, then by Lemma 2.8, we have

^ ~ ' 5K2

S/C< 12.5K2

S/C< 12.5(K2 + 8 ) .

Suppose that K^D4, Z 3 or Z 2 and that | G| > 12.5(A:| + 8). Then Lemmas 3.5, 3.6

and 3.7 imply that / must have more than one //-orbits of singular fibers. To ensure

IGI > 12.5(AΓ| + 8), / cannot have more than one big //-orbits. Thus we have g(C) = 0.

Lemma 3.5 excludes the case of K^D4.

If K^Z3, then s2(F0)<2. Hence Fo must be of type (4) of Lemma 2.7 with k= 1.

Taking Kί=K we construct the quotient surface Q = P/K1 as in §3. Then D = oc(Rf) is

etale near Fo. But D cannot be etale. Hence at least one of the //-stabilized fibers F2

and F3 is of type (2) k= 1 or type (5) k=\. Lemma 4.1 excludes the case of type (5).

Suppose one of the F( is of type (2). Then D~2C'0 + aFf is irreducible and smooth. As
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a smooth double cover of C^P1, the ramification index of D is at least 2. So F2 and

F3 are all of type (2). Then DC = D(D + KQ/c) = 2(a-e') = 2, a contradiction.

If K^Z2, then s2(F0)=l. Hence the local equation of R' near Fo is (x2 —

t)(x2-a(t))(x2-b(t)\ 0(0)6(0)#0, a(0)/6(0). So D = OL{R') is etale near F o .

If F2 and F 3 have no ramifications, then D can be decomposed into three compo-

nents D^C'Q + diF', i=l, 2, 3. These three components must meet one another on F2

and F3. So there exists at least one point on Ft where three components intersect.

The local equation of Rf is (x 4 + a(ί)x2 + ί2)(x2 + t2b(ή). Since D^C^ - CO) = e\ we have

| 7 / | < 1 .

If F2 or ^3 has ramifications, the equation of R' near Ft must be one of (1) x6 —1\

(2) ( x 4 - 0 ( / V 0 ^ 2 - 1), 0(0)^0; ( 3 ) ( ( J C 2 - Λ 2 ) 2 - / X J C 2 - / * ) , 0 ^ 0 ; ( 4 ) ( ( x 2 - α 2 ) 2 - 0 ( x 2 -

&(/)), Z?(/) 5^0. If F 2 is of type (1), then D is irreducible and smooth. As a smooth triple

cover of C = P X , the ramification index of/) is at least 4. Hence F 3 is of type (1) as well.

Let D~3C'0 + aF'. Then 2DC = D(D + KQ/C) = 4, impossible. If F 2 is of type (2), then

D is smooth and cannot be irreducible. D has two components Dγ~2CΌ) + aF' and

D2~2C0 + bF. By the same argument, we have D1C' = D1(Dί + KQ/c) + 2. Hence

Z)1C
/

o = 0 and DxD2 = 0, which is impossible.

Suppose that G is a cyclic automorphism group of /. Similarly, there is an exact

sequence

where 7/^Aut(C), K={(σ, id)eG}. It is known that | K\<\0.

LEMMA 4.2. Suppose that f: S-> C is afibration and that G is a cyclic automorphism

group of f. Suppose there exists a point peC such that

(1) σ\f-ι{p)eK\f-ι(p),for σeG and σ stabilize f~1{p)\

(2) K-^Aui(f~1(p)) is injective.

Then I K\ and \ StabH(/?) | are coprime.

PROOF. Let Hγ = StabH(/?), F=f~\p). Let h = \H1\, k = \K\, d=(h,k). Assume

that σ is a generator ofβ-^HJ. Then β((σ

k/d)h)=l implies σhk/deK. On the other hand,

since σ | F e ^ | F by (1), we obtain (σh/d)k\F = idF. Thus σkh/d=\ by (2). This is impossible.

PROPOSITION 4.3. If S is a surface vf general type which has a relatively minimal

fibration f: S—>C of genus 2 with g(C)= 1. Then a cyclic automorphism group G of f

satisfies

\G\<5K2

for Ki>\2.

PROOF. If H does not act freely on C, then \H\<6. Hence |G|<60 and the
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conclusion holds. Therefore we assume that H acts freely. So G^Kx H and G is cyclic
if and only if (| K\, | H\)= 1. We distinguish two cases.

Case I. Suppose that the horizontal part R' of the branch locus R is etale over
C. There exists a singular fiber Fo with | StabH(f(F0)) | = 1. It is not difficult to show
that in this case \G\<5Kj.

Case II. Suppose that Rf is not etale.
(a) K=Z5. Let Fo be a singular fiber. The local equation of Rr near Fo is (1)

x(x5-tk) or (2) x(tkx5-l\ k=\, 2. We construct the quotient surface Q = P/K as in
Section 3. R' must contain one of the sections Co and C^. We take this section away
from R\ and get a reduced divisor Rx with RXF=5. Let D = aί(Rί). Then D~C'0 + aFf.
Since DC'o = 0, we have 0 = έ?' = 5e. Thus Rί^5C0-\-5eF and i ^ C ^ = 5e. Since the
intersection number of Rx and Fon the fiber Fo is equal to k<2, the number of singular
fibers must be a multiple of 5. But |//| cannot be divisible by 5, hence the singular
fibers are located in different //-orbits. This means \G\<5Kj.

(b) K^ZA. The local equation of R' near a singular fiber Fo is x(x4 — tk), k=l,
2. We use the same construction as in Case (a). Then R' must contain Co and C a . Let
Rί = Rf-Co-Cao and Z> = αCRi). Then D~C'0 + e'F. Similarly we deduce RiCo0=4e.
Since \H\ cannot be even, there are more than one singular //-orbits. So | G|<5Kf.

(c) K^Z3. If / has only one //-orbit of singular fibers and if \G\>5K$, then
5 2(F0) = 5, namely, the local equations of R' is x6 + a(t)xό + t. Constructing the quotient
surface Q = P/K, we see that D = aι(R')~2C'0 + aF' is a smooth irreducible curve and
rΦ\H\. Since DC'o = 0 and DC'O0 = \Hl we get a = e' = 3e = \H\, i.e., (|//|, |K\) = 3, a
contradiction.

(d) K^Z2. Lemma 3.7 ensures |K\<5Kj.
(e) A" = 1. If s2(F0)>2, then \G\<5Kf/c. If ^(/Ό) = 1, there is only one situation,

i.e., the local equation of R' near Fo is (x2-t)(x-a1(t))(x-a2(ή)(x-a3(t))(x-
a4(t))(x — a5(t)), aι(0)^0. Suppose that there is only one singular //-orbit. Then Rf is
a smooth sextuple cover of C. The contribution of each singular fiber to the ramification
index equals 1. By Hurwitz's formula,

So IHI is even, a contradiction. •

PROPOSITION 4.4. If S is a surface of genral type which has a relatively minimal
fibration f: S-+C of genus 2 with g(C) = 0. Then a cyclic automorphism group G of f
satisfies

\G\<12.5K2

S

PROOF. If R' is etale, we have \G\<5KljC. If there is a singular fiber in a big
i/-orbit with s3(F)>0, then | (71 <(50/7)J£j/c. Now assume that Rf has only negligible
singularities or ramifications in big //-orbits. If K^Z4 or {1}, we have \G\< \0Kj/c by
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Lemma 2.8. When * = Z 3 or Z 2 , if / has only one //-orbit of singular fibers, then

Lemmas 3.6 and 3.7 ensure | G \<6Kj/c. Otherwise, by the proof of Proposition 4.2, /

has at least two big //-orbits of singular fibers, hence \G\< 10*J / c.

There remains the case of K^Z5. The proof of Proposition 4.3 tells us that if /

has only one big //-orbit of singular fibers, then / has another singular fiber which is

stabilized by H. By Lemma 2.4, we have

so

I GI + 10| H\ < \2.5Kllc-10 = 12.5*1 + 90 .

D

When g(C)>2, we need the following lemma on the order of some automorphisms

of a curve. The proof of the lemma is just a slight modification of that of the theorem

of Wiman [5]. For the convenience of the reader, we include its proof here which is a

modified copy of the version given in [8, Lemma B].

LEMMA 4.3. Let H be a cyclic group of automorphisms of a curve C of genus g>2

such that the order of | StabH(/?) | is odd for any peC. Then

\H\<3g + 3.

PROOF. Let x be a non-zero element in H with the maximal number of fixed

points, H' the subgroup of H generated by elements fixing all fixed points of x, n the

number of fixed elements of x, and k the order of //'. Then k must be odd. Let C = C/H\

g' = g(C'), and let Σ be the image of the set of fixed points of //' on C". We have

(1) 2g-2 = 2kg'-2k + n(k-l)

and the quotient group H" = HjH' is a cyclic group of automorphisms of C" which

satisfies the same condition imposed on //, i.e., | StabH"(/?) | is odd for any pe C".

If « = 0, then g'>2 and \H\<g — \. If n = 2, then because every non-zero element

of H" induces a non-trivial translation on Σ, we must have | H " | < 2 , so \H\<2k. Then

\H\<2g by (1) (note that g'^0 in this case). So we may assume n>3.

Suppose gf =\ and H" acts freely on C . Considering the induced action H" on

Σ, we see that \H"\<n. So (1) gives \H\<2g + n — 2. On the other hand, since fc>3, (1)

also gives n<g— 1, therefore \H\<3g — 3 in this case.

Suppose g'= 1 and H" does not act freely on C . Then H" has a fixed point. By

assumption, |H"\ must be odd. This implies | H " | < 3 . So (1) gives \H\<2g+\.

Now suppose that C is a rational curve. Then the action of H" has exactly two

fixed points. So | H" \ must be odd. If one of these two points is in Σ, then | //" \<n—l

in view of the action of H" on Σ. Since \H"\ is odd, we have « > 4 . So \H\<3g-\-3.
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Suppose that Σ and the two fixed points ξ, η of H" are disjoint. Let /Z^c// be
the stabilizer of a point in the inverse image of ξ. Then [H: H x] = k. Since the stabilizer
of a point in the inverse image of η is also of index k in //, we see that any non-zero
element in H1 fixes exactly 2k points, i.e., the inverse image of ξ and η. Now we can
replace H' by Hx and repeat the arguments above (note that the only conditions we
used are that non-trivial elements in H' have the same fixed point set and that H/Hf acts
faithfully on Σ). But then Σ is composed of two orbits of H", so | H" \<n/2, whereby

by (1).
Finally, we use induction on g. Suppose that g'>2 and \H"\<3g' + 3. (1) gives

3{g~gΊ >\H\.
( )

2g -2 + n
If «>4, we are done. If « = 3, by assumption, we must have \H"\<3. Therefore

D

PROPOSITION 4.5. If f: S—>C is a relatively minimal fibration of genus 2 with
g(C)>2, then a cyclic automorphism group G of f satisfies

for Kj>4S.

PROOF. (1) Assume that \H\=Λg(C) + 2 and |AΓ| = 10. Let g = g(C). By the
theorem of Wiman (see the version given in [8, Lemma B]), C is a cyclic cover of P1

with ramification indices rx = 2, r2 = 2g+l, r3 = 4g-\-2 or rί = 39 r2 = 6, r3 = (4g-\-2)/3.
In fact, these rf are the orders of StabH(/?) for peC. Since Z 1 0 is a maximal cyclic
automorphism subgroup of a smooth curve of genus 2, by Lemma 4.2 we have
(I StabH(/?) I, I K\)= 1 if/" ι(p) is a smooth fiber. But in Case 1, r1 and r3 are even, while
in Case 2, r2 and r3 are even. So / has at least (2g+ 10)/3 singular fibers. By Lemma
2.4, we have s2(F)>4 for a singular fiber F. Hence

K2

s-%{g-\) = K2

slc>
A-

3 15

75
| + 5 5 | + 30

16

when A:|>48.
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If |A^|<8 and | AΓ| is even, then by Lemma 4.3 there exist points peC with
(I StabH(/?) I, 2) Φ 1. Hence K\ - S(g -1) = Kj/C> 1 and

when AΓ|>14.
If I K\ is odd, then | AΓ| <5. The inequality is immediate.
(2) Assume that \H\ is odd. By Lemma 4.3, we have |//|<3g + 3. So

/

when Kj>24.
(3) Assume that | H| is even and | H\ < Ag + 2. If | K\ = 10, / must have more than

one singular fibers by Lemma 2.4. So Kj-S(g-l) = Kj/c>2. We get

If IKI < 8, it is not difficult to obtain this inequality. •

It seems that this bound is not the best possible. In Section 5 we will give an
example to show that there are infinitely many fibrations which has an automorphism
with order 3.75Λ:J + 60.

5. Examples.

EXAMPLE 5.1. Fibration with \G\ = 50Kj.

Let C be a Hurwitz curve, i.e., | Aut(C)| = 84(#(C)— 1), and let F be a curve of
genus 2 with |Aut(F)| = 48. Let S=CxF with f = pτ1: S->C. Then Kj = i(g(C)-l),

) ^ Aut(C) x Aut(F),

I Aut(/) I = I Aut(C) I I Aut(F) | = 504KJ .

EXAMPLE 5.2. Fibrations with \G\ = 126Λ |̂ which is not locally trivial.

Let F=Pι. Let pi=0, p2 = co, p3 = \, P4. = ̂ /Z^, Ps=~1^ Pβ=-\f-^ be six
points on F. Let C be a Hurwitz curve. Then C has an //-orbit {#1 ?..., qm} which
contains m=\2(g(C)-l) points. Let P=CxF. Taking R = pr:f(q1 + + ^ J + Pr*(/?i +
• +p6) as the branch locus, we construct a double cover of P. After desingularization,
we get a smooth surface S with a genus 2 fibration / : S^C. By computation, we obtain

)-l) , and | G| = 48 x

EXAMPLE 5.3. Fibrations with \G\ = 144Λ:| and g(C)= 1.

Let F and pl9... ,p6 be as in Example 5.2. Let C be an elliptic curve with the
y'-invariant y(C) = 0. Fix a ^ e C . Then the order of the group of automorphisms
Aut(C, qx) of C leaving qγ fixed is equal to 6. Let H1^Zm@Zm be a subgroup of
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translations of Aut(C). Take an extension subgroup HίaHczAut{C) such that

H\HX ^Aut(C, qt). Then | H\ = 6m2. Let ql9..., qm2 be the orbit of q± under H. Let

P=CxF. Using R = prf(q1+ •• +#m2) + pr?(/?1 + +p6) as the branch locus, we

construct a double cover of P. After desingularization, we get a smooth surface S with

a genus 2 fibration / : S->C. By computation, we get Kj = 2m2. On the other hand,

I AΓ|=48 gives | G| = 288m2 = 144AΓ|.

EXAMPLE 5.4. Rational fibration with | G | = 120(AΓ| + 8).

Let F and / ? l 9 . . . ,/?6 be as in Example 5.2. Let C = P1, ql9..., # 1 2 be the twelve

vertices of an icosahedron. Let P=CxF. Taking R = pτ*(qι + +#i2) + PΓ*(/7i +

" ' ' +Pβ) a s t n e branch locus, we can construct a double cover of P. After

desingularization, we obtain a genus 2 fibration / : <S->C with AΓ| = 16, | // | = 60,

EXAMPLE 5.5. Rational fibrations with | G \ = 4 8 ( * | + 8).

Let F and pu ... ,p6 be as in Example 5.2. Let C=P1 and let qί9..., qm be the

m-th roots of unity. Then using the same construction as in Example 5.2, we obtain a

genus 2 fibration with Kj = 2(m - 4), | K\ = 48, | H \ = 2m, | G | = 96m = 48(AΓ| + 8).

EXAMPLE 5.6. Exceptional rational fibrations listed in the proof of Proposition 3.4.

Using the same construction as in Example 5.2, take qί9..., q20 as the twenty

vertices of a dodecahedron. We get a fibration with AΓ| = 32 and | G | = 2880 = 9 0 * j . If

we take qί9...9q6

 a s the six vertices of an octahedron, we get a fibration with

Kj = 4 and | G\ = 1152 = 288AΓ|. If we take ql9 . . . , q8 as the eight vertices of a cube, we

get a fibration with K2

S = 8 and | G \ = 1152 = \44K2.

EXAMPLE 5.7. Fibrations the order of whose abelian automorphism group is

12.5(^1

Let x 0 , . . . , x2m, X2m+i be the homogeneous coordinates in p 2 m + 1

? and let P2m be

the hyperplane defined by x2m+ι =0. Let φ: ίι->(l, t, . . . , t2m, 0) be a 2m-ple embedding

of P 1 in P 2 m and denote its image by Y. Then F is a rational normal curve of degree

2m. Let X be the cone over Y in p 2 m + 1 with vertex Po = (0, 0, . . . , 0, 1). Denote

^ = exp(2π//10m). Then the automorphism σ: (x0, . . . , x2m + i)h^(xo> xir1^ » ximγ\lm^
X2m+i) of P2m + 1 is of order 10m. The automorphism τ : (x0, . . . , x2m+i)i~^'(xθ9 » ^m?
X2m + irl2m) oΐ P2m+1 is of order 5. The cone Z i s stabilized by these automorphisms σ

and τ. Take a hypersurface // defined by Xo + χ2m + x2m+i which is also stabilized by

σ and τ. Moreover, PoφH. How blowing up the cone Â  at the vertex Po, we get the

Hirzebruch surface P = F2m which has an automorphism σ of order 10m induced by σ

and an automorphism τ of order 5 induced by τ. The pull-back of the intersection Hr\ X

is a smooth divisor Rx on P which is linearly equivalent to 5C 0+10rai 7. Taking

R = R1 + Co = 6Co + \0mF, which is a smooth even divisor and stabilized under σ and
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τ, as the branch locus, we can construct a double cover S of P which has a natural genus

2 fibration / : S^P1. Since KP= -2C0-(2m + 2)F, we have K2

S = 2(KP + R/2)2 = 8(m-

1). The pull-back of σ to 5 can generate a cyclic automorphism subgroup // of order

10m. The pull-back of τ to S together with the hyperelliptic involution of the fibra-

tion / generates a cyclic automorphism subgroup K^Z10. Since H and K com-

mute, G = KH^Z10@Z10m is an abelian automorphism group of / with order

EXAMPLE 5.8. Rational fibrations which has an automorphism of order

Let x0, . . . , x2m, x2m + i be the homogeneous coordinates in p 2 m + 1

? and let P2m be

the hyperplane defined by x2m + 1 = 0 . Let φ : t\->(1, t, . . . , t2m, 0) be a 2ra-ple embedding

of P 1 in P 2 m and denote its image by Y. Then 7 is a rational normal curve of degree

2m. Let X be the cone over Y in p 2 m + 1 with vertex P o = (0, 0, . . . , 0, 1). Denote

η = exp(2π//(50m — 5)). Then the automorphism σ: (x 0 , . . . , X2m+i)h~*(χθ9 xir15^ >

*2m>71Om> X2m+\Ά) o f P 2 " 1 * 1 is of order 50m-5. The cone X is stabilized by this

automorphism σ. Take a hypersurface //defined by xtχi+X2m + x2m+i which is also

stabilized by σ and PoφH. Now blowing up the cone X at the vertex Po, we get the

Hirzebruch surface P = F2m which has an automorphism σ of order 50m —5 induced by

σ. The pull-back of the intersection HnXis a smooth divisor Rx on P which is linearly

equivalent to 5C0H-10mF. Taking R = R1 + C0 = 6C0 + lOmF, which is a smooth even

divisor and stabilized under σ, as the branch locus, we can construct a double cover S

of P which has a natural genus 2 fibration / : S^P1. Since A : P Ξ - 2 C O - (2m + 2)F, we

have Ks = 2(Kp + R/2)2 = 8(m— 1). The pull-back of σ to 5 can generate a cyclic

automorphism group Gγ of order 50m —5. Since | Gx \ is odd, G1 and the hyperelliptic

involution of the fibration / generate a cyclic automorphism group G of S. Therefore

I GI = 100m-10= 12.5/^ + 90.

EXAMPLE 5.9. Fibrations which has an automorphism of order 5Kj.

Let F=P1. Let pι = 0 , pk = exp(2kπi/5), k= 1, . . . , 5, be six points in F. Let C be

an elliptic curve, {qu . . . , gm} an orbit of a cyclic translation group / / ^ Aut(C) of order

m, where m is an odd prime different from 5. Then using the same construction as in

Example 5.2, we obtain a genus 2 fibration with Kj = 2m, K^Z10. Let G = Kx H^Z1Om.

Then | G |

EXAMPLE 5.10. Fibrations which has an automorphism of order 3.75AJ+ 60.

Let p0 = 0,pk = exp(2/c7n/3), k = 1, 2, 3 be four points in C = Px. For any odd prime

Ί, 5, taking D=po+pί+(m—l)p2 + (m—l)p3 as a branch locus, we can construct

a cyclic cover σ: C^C of degree m. Then g(C) = m— 1. //" = {x i—> x exp(2/cπ//3) |

fc=l,2, 3 } ^ Z 3 is a cyclic automorphism group of C which stabilizes the set

{Po> PiτPiτ P3}' O n t n e other hand, the Galois group //' of the cyclic cover σ is isomorphic
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to Z m . We obtain an extension

such that Z 3 m

Let #o = 0, qk = exp(2kπi/5), & = 1 , . . . , 5 , be six points in F^P1. Let P=CxF.

Taking R = pr%(qo + q1 + +qs) as branch locus, we can construct a double cover

θ: S->P which is also a genus 2 fibration f=pί ° 0: S-»C. Fhas a cyclic automorphism

group K1 = {y\-*yewp(2kπi/5)\k=l,...,5}^Zs which stabilizes the set {q0, . . . ,q5}

and can be lift to P. It is not difficult to see that we can get K^Z10 by adding the

involution of the double cover. Then G = Kx H^Z3Om is a cyclic automorphism group

of / which satisfies

because Kj = S(g(C)-l).
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