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ASYMPTOTIC BEHAVIOR OF THE TRANSITION DENSITY
FOR JUMP TYPE PROCESSES IN SMALL TIME
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Abstract. The Markov process of pure jump type given by S.D.E. has a smooth
density under non-degeneracy conditions both on the coefficient and on the Lévy measure
of the driving Lévy process. In this case we obtain an estimate of this density when the
time parameter is small. In this way we extend the Léandre estimate of the density for
pure jump processes.

Introduction. Consider the stochastic differential equation (S.D.E.):

0.1) X(x)=x+ Y p(x;-(x), 42(s)) ,

s<t
where z(t) denotes an R%-valued Lévy process (semimartingale) of pure jump type with
the Lévy measure h(d(), Az(t)=z(t)— z(t —) and y(x, {) denotes a non-degenerate bounded
function from R?x R4 to R It is known that the process x,(x) has a generator L of the
corresponding semigroup which is of the form

Lf(x)= J

RIN({x

for a function fin a certain class. Here g(x, A)=jn,,l,,\{x}(x+y(x, Q)h(dQ) is the Lévy
measure of x,(x).

Under certain conditions (including g(x, dz)=g(x, z)dz), Léandre [8] studied the

asymptotic behavior of the transition density p,(x, y) of this process, and showed that

} L&) - f(¥)]g(x, dz) ,

0.2) px, Y)~gx, )t as -0 if g(x, y)#0.

Here we note that the condition ““g(x, y)#0” implies that the process can reach y from
x by a single jump. The object of this paper is to give a refinement of Léandre’s result
in the following form:

(0.3) pdx, Y)~Clx, y, alx, YHr*=»  as t-0,

where a(x, y) can be interpreted as, roughly speaking, the minimum number of jumps
by which the trajectory can reach y from x (y #x).
The proof heavily depends on Léandre’s method and results in [8], and we make
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use of the recently developed theory of Malliavin calculus of jump type (cf. [1], [2],
(71, [91, [10], [12]).
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1. Notation and results. Let z(t) be a d-dimensional Lévy process of the form

At)= f ) f (N(sdy),
o Jrav(0)

where N(dsd{) is a Poisson random measure on [0, + o0) x (R*\ {0}) with the mean
measure ds x h(d{). We put the following assumptions on h(d{):
h(d¢) has a C®-density h({) on R*\ {0} such that

(1.1) supph(-)={(eR?;|{|<c}, where O<c<+o0,

f min(| { |, 1)h()d{ < +
R\ {0}

f (M>dC<+oo for ¢>0,
ici=e \ h(0)

and that

¢ d-a
(1.2) h(C)=a<—>'ICI I

Iq
in a neighborhood of the origin for some a (0, 1), and some strictly positive function
a(+)eC®(s?™Y).

In what follows we carry out our study in the usual probability space (2, (%), o, I1),

where Q=D[R", R%] denotes the Skorohod space, %, is the filtration generated by z(t)
and IT is the probability measure on Q of z(t). Consider the following S.D.E.:

(1.3) X(X)=x+ 3 y(x,-(x), 42(s))

s<t

or

x(x)=x+ J J Yx-(x), ON(dsd() .
0
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Throughout this paper (x, {) is assumed to be a bounded C*-function from R? x R? to
R, whose derivatives of all orders are bounded, which satisfies y(x, 0)=0 and

0 t o
(1.4) inf{'ya—z(x, 0 (%(x, c>>y; xeRY, Lesupp h}zé IyP
on R? forsome 6>0.

The S.D.E. (1.3) has a unique solution for y(x, {) above, which we shall denote by
x,(x) (or more precisely (x/(x), z(t))), and we shall denote the law of x,(x) under IT by P.
The following result of Léandre plays a fundamental role.

ProprosITION 1.1(cf. Léandre[8,(1.6)]). Suppose that there exists C >0 such that

(1.5) inf ‘det<1+a—y(x, c)> >C
xeRd 0x
{e(supph)
and
(1.6) lim inf n“j hQ)d{>0  for some a€(0,2).
n=0 Ic1>n

Then there exists a subset of probability 1 such that the mapping
Px)@): RP > R*,  x>x(x)(w)

defines a diffeomorphism for all t, and the law of x,x) possesses a density p{x, y) of class
C* with respect to y for each t>0 and x.

Note that (1.6) follows from (1.2). We also remark that x+ p,(x, y) is also of class
C*, by Theorem 2.9 and lemma 2.3, (iiiy of Norris [12].
Let us introduce crucial notation in this paper. Set

P,=x+y(x, supph)=x+{y(x,); {esupph} .
Then each P, is a compact set in R? since y is bounded. For each ye R? (y #x), we put
ox, y)=lo(x, y)+1.
Here /y(x, y) denotes the minimum number of distinct points z,, ..., z;€ R? such that
1.7) z,€P,, z;eP, |, i=2,...,]1 and yeP, (zo=Xx).

-1

We always have o(x, y)< oo for each given x, ye R? (x #y) by (1.2), and (1.4).
We set

(1.8) g(x,2)=h(H )| [Jy]"'(x, H '(2)|  for zeP\({x}

and ¢g(x,z)=0 otherwise. Here we put H,:supph—P,, {—x+y(x,{) (=z), and
Jy=(0y/00)(x, {) is the Jacobian matrix of y. The kernel g(x, z) is well defined and satisfies
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(1.9) J f(2)g(x, 2)dz= Jf (x+y(x, OO, for feC(P,).

That is, g(x, dz)=g(x, z)dz is the Lévy measure of x,(x) mentioned in the introduction.
Note that suppg(x, +)<= P, by definition.
Now we can state our main result.

THEOREM. Under the assumptions (1.1), (1.2) and (1.4), (1.5) we have, for each distinct
pair x, ye R? for which k=ua(x, y) (< + ),

limM=C,
U
where
(1.10)
C=Clx, y, 1) = (I/K!){J‘dezl- . 'szzdz,(_lg(x, zy) g(Ze— 15 y)} , K=2,
9(x,¥), k=1.

The proof of this Theorem will be given at the end of Section 4.

ExaMPLE. We give here a very simple example of the Theorem. Let d=2, and let
a smooth radial function # satisfy suppn={x; | x| <1} and n(x)=11in {x; | x|<1/2}. Put

(1.11) hO=nO117*7*, «e(©,1), for (eR™N\{0},

that is, h({)d{ is the Lévy measure for a truncated stable process (cf. [4, Section 3]) with
index a€(0, 1). Then 4 satisfies (1.1) with c=1 and (1.2). Let y(x, {)={, and let x,(x) be
given by

(1.12) ' x(X)=x+ Y. Azs).
s<t
Then P,=x+supph=x+B(1) (B(1)={x;|x|<1}), and g(x, z) is reduced to g(x, z)=
h(z —x) (cf. (1.8)). '
Let x,=(0, 0) and choose y,=(e, 0) so that 1 <e<2. We then have a(x,, y,)=2.
The constant C(x,, y,, 2) is calculated as follows:

(1.13) C(xo, Yo, 2)= f 9(Xo, 2)9(2, yo)dz = J h(z — xo)h(yo —2)dz .
Puy B(1)

The integral (1.13) makes sense. Indeed, if z=0 then h(y,—0)=h(y,)=0. Since
yo€{x;|x|>1}, by the continuity of x+ P,, there exists 6 >0 such that if |z—x,|<é

then y, ¢ supp(g(z, -)). That is, g(z, yo)=0 for ze{z; | z—x,|<d}, and this implies that
the integral exists.
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2. Decomposition of transition density. In this section we give a decomposition
of p/(x, y), which plays a crucial role in Léandre’s paper [8]. We will state it in a little
detail, since it is also essential in the proof of our theorem.

Given ¢>0, let ¢,: R?— R be a non-negative C*-function such that ¢,()=1 if
|z|=¢ and ¢,(0)=0 if |z|<e¢/2. Let z,(¢) and z(¢) be two independent Lévy processes
whose Lévy measures are given by ¢,(0)h(()d{ and (1— ¢, (0))h({)d(, respectively. Then
the process z(¢) has the same law as that of z,(g)+ zj(¢). Since the process z,(¢) has finite
Lévy measure on R\ {0}, the corresponding Poisson point process Ny () on
[0, 00) x (R™N\{0}) jumps only finite times in each finite interval [0, f]. We set
=0, t]*/~) and &% =] [;» 0%, Where | |i» o denotes the disjoint sum and ~means
the identification of the coordinates on the product space [0, ] by the permutation.
The distribution 13,’8 of the moments (instants) of jumps related to Ny(¢) in [0, t] is
given by

k
@1 J f (St)dﬁt,e(st)={<t f ¢£(C)h(C)dC> (,:,) eXp<—t j(bg(C)h(C)dC)}
#Sc=k) :

1 t t
XTJ -'~If(sl,...,sk)dsl"'dsk,
" Jo 0

where f'is a function on %, (a symmetric function on [0, ¢]%).

Let J(¢) be a random variable whose law is ¢, (O)h(0)dl/([ $(OR()dL), and choose
a family of independent random variables J;(¢), i=1, 2, ..., having the same law as J(g).
Choose 0<s<t< + . For a fixed S,e¥, we consider the solution of the following
S.D.E. of jump type:

22)  xfe SpX)=x+ L ¥x,—(e, S X), AZie)+ Y Vxe— (e, Spy %), Ji()) -

u<s $i€S;, 8i<s

Then the law of x(e, S,, x) has a smooth density, denoted by py(e, S,, x, y) (cf. [8,
p. 87]). Then

(23) ps(x9 y)=f ps(ﬁ, Sn X, y)dﬁt. E(St) >
S¢

because z,(¢) and z,(¢) are independent, which is written in a decomposed form (by putting
s=t)

1

N -_—
(24) pdx, y)= ‘_ZO pdi &%, ) +PAN, & %, ) ,
where

pr(ia & X, y) = pt(s’ Sn X, y)dﬁt,s(st)

H,i
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and p(N, ¢, x, y) is the remaining term. Then it follows from the definition and (2.1) that

k
2.5) pdk, & x, ) =(1/k!)'eXp< —t J%(C)h(l)dC) . < f ¢E(C)h(C)dC>

t t
xfj P& {S1s -y S}y X, Y)Sy . . . dsy
0 0

We denote by x(e, &, x) the process in (2.2) with S,e¥ ,, and by py(e, &, x, y)
its density.

For the random variable J(¢) introduced above, there exists a density g,(x, z) such
that P(x+ y(x, J(¢)) edz)=g,(x, z)dz. Indeed, g,(x, z) is given by

¢H; '(2))g(x, 2)
[EXGLGYS
where g(x, z) is the density of the Lévy measure of x,(x) (cf. (1.8)). Note that, by definition,

supp g.(x, * )< P,, and that g(x, z)is of class C*® whose derivatives are uniformly bounded
(since g(x, z) has an only singularity at x=_z). Now we have, for each s, <- - - <s,<?,

(2:6) gx, 2)=

>

(2.7)  pe, {51,-~~,Sk},X,Y)=deBJ dzy -~ fdz;c—lj dz,
Pz P

zk -1
X {psl(sa @a X, 26)95(269 Zl)psz—sl(sa Q, le Z/l)ge(zrla ZZ)
X ps_‘;—sz(g’ Qs ZZ: Z,Z) o 'gs(z;(— 1> Zk)pt—sk(s’ @9 Zk9 y)} .

Indeed, the increment x, (& {sy,..., S}, X)— X, (&, {81, ..., S}, x) has the same
law as that of x,(¢e, &, x)—x on (0,s;,,—s;) for i=0,...,k (s0=0, s,+,=1t), and
Xs;+uy-(6 {815 - .., S}, X) is going to make a “big jump” (i.e., a jump derived from
Ji+1(e)) at u=s;, , —s; according to the law g,(X,, ,-(& {81, . .., 8}, X), 2)dz.

3. The proof of the Theorem, (I) lower bound. Let e.=sup{e>0;{|{|<¢e}c
supp 4} >0, and choose 0 <& <g¢,. First we note that, for each #>0 and a compact set
K, we have uniformly in ye K,

(3.1 limj pe, &, 2z, y)dz=1,
(zilz—yl<m

s—0
by Proposition 1.2 in Léandre [8]. Then we have:

LEMMA 3.1. Let A" be a class of non-negative, equi-continuous, uniformly bounded
functions whose supports are contained in a fixed compact set K. Then, given >0, there
exists to>0 such that

(3.2 inf f f@p.—ie, &, z, y)dz> f(y)— b

s<t
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for every fe A, ye K and every te(0, t,).
ProOF. Given 6 >0, choose #>0 so that | f(z)— f(y)|<d/2 for each |z—y|<n.
Then,

ff (@)~ e, B, 2, y)dz > J f@p.- e, B, z, y)dz

(zilz—yl<m}

=j (f(z)_f(y))pt—s(e’ g’ Z, y)dz+f(y) pt—s(g’ Q’ Z, y)dZ
{zilz=yl<n}

{z;lz=yl<m}

Z(f(y)_é/z) pt—s(g, Q9 Za}’)dz-

{zilz—yl<n)

By (3.1) we can choose 7,>0 so that, if t<t, then

{ inf J p,_s(s,ﬁ,z,y)dZ}(f(y)~5/2)2f(y)—5 forall yeK.
yeK,s<t Jiz: 12—y <n)

q.ed.

Now we choose an arbitrary compact neighborhood U(x) of x and arbitrary compact
sets K;, ..., K,_; of R% and set

f={ga(26a ')’ gc(z,U ')>""ga(z;c—1’ .);ZIOEU(X)’ ZIIEKI’“"Z;c—IEKk—l} .

Since A" has the property in Lemma 3.1 (cf. (2.6)), it follows from (2.7) that, for every
0>0, there exists ¢, >0 such that for every 0<t¢<¢,

(33) p,(&, {sl’ LERE] Sk}a X, y) Zj Ps,(ea @’ X, Zlo)dz’()
U(x)

Xj dzy -~ J dzj,_1(94(20, 21)—6)* * (gezk -1, ¥) —9) -
Ky Ky -1
But we have, for each fixed #>0,

(3.4) lim inf f Poe, B, %, Z0)dZo =1,
t—0 sy <t,xeR (Ix—2z8] <m

by (2.13) in [8]. So it holds, for sufficiently small every ¢>0, that

(3.5 P&, {515 -5 Sibs %, ¥)=>(1 —é)j dz’lf dzy- -
Ky K>

X J dzi, - 1(9.(20, 21) — ONgel21, 22) = 0) " (9ulZk- 1, ) —9) -

Combining (2.5) with (3.5), we have
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(3.6) lim mf( )pz(k & X, y)2(1/kY)-(1-9)- <J¢E(C)h(C)dC)

szlf dzy- - J dzi - 1(9:x, 21) = 0)(9.(21, 22) = 0)  *(9lzk— 1, ¥) —9) -

Since 6>0 and Kj, ..., K,_, are arbitrary, and since suppg,(z;_;, - )<P,. ,i=1,...,

k—1, we have

zZi-1

(3.7 lirtrif)nf <%)p,(k, & X, y)Z(l/k!)'<J%(C)h(C)dC)k

xj dz1j dz,-- J dzy_194x, 2,)9421, 25) " " 9zk-1, V) -
Px P, Py,

Hence it follows from (2.4) that

1 k
(38  lim mf( 5 )p,( x, ) (1/a(x, ) !)-( f ¢>B(c)h(odc>

t—0

XJ‘ dzlf dzZ. : f dzk—lgs(x’ zl)gs(zl’ ZZ). ' 'gs(zk—la y) .
Py P,

sz*2

Since ¢>0 is arbitrary, we have in view of (2.6)

- 1
(39 l",ri:)nf<t = ))pt(x »)=(1/alx, y)Y)

xj dz1j dz,-- j dz,_1{9(x, 2,)9(21, 22)* - *9(2k—1, Y)} -
Py Pz, Zk -2
The proof for the lower bound is now complete.

4. The proof of the Theorem, (II) upper bound. The proof of the upper bound
of lim sup,_o(1/t**?) p(x, y) is rather delicate and is carried out in the same way as in
Léandre [8], but it is a little more tedious in our case.

First we choose and fix N >«(x, y)+ 1. Noting that sup{p,(¢, S, x, y); #S,>2, x, ye
R < C(e) (cf. [8, (3.23)]), we have

LemMA 4.1 (cf. Léandre [8, Proposition II1.3]). Foreverye>0andt>0, we have

4.1 sup p(N, ¢, x, y) < C(e)t"

yeR4

ProoF. Recall that
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ﬁt(N’ & X, Y)=j pt(ss Sta X, y)dﬁt,a(sr) .
yr\(U:lLT)Iy’l.i)

Since
P, (48,2 N)< C(e)t"

by the Poisson law, we have

PdAN, &, x, y)< “§u>prt(3, S, X, y)ﬁt,s(#stz N)

<sup{p(e, S,, x, y); #5,>2, x, ye R} C(e)t"

<8(e)Ce)t" .
q.e.d.

LemMA 4.2 (cf. Léandre [8, Proposition II1.2]). For every p>1 and any n>0,
there exists €>0 such that for all t<1 and every ¢ €(0, ¢),

(4.2) sup p(0, ¢, x, y) < C(&, n)t” .

|x=ylzn

Combining Lemma 4.1 with Lemma 4.2, we see that it is sufficient to study
ik, € x, y) for 1 <k <alx, y). For a given n>0, make a subdivision of the space

— d .
A={(z0, 24, ..., Z4—1, Z)ER*X - - xR*; z,€P,,2,€P,,, ..., 7€ P, |}

2k+1

as A=\Ji=; Aun), where
AM)={(zo, 2y .-+ 241, 2)ER* X - - xRY; 2, €P,, z,€P,,, ..., 7, €P, |
and 'x—zblsi’,’lzl—zrlIsn’IZZ_zéls"I’---’|zk—yls’1}9
A, (M) ={(z6, 2y, ..., Zh-1, Z)ER*x - - xR4; 2, € P, 2,€P,,, ..., 5, P, |
and |x—zo|<n, |z, =2, |>n,2,—25|<n, ..., |z—yI<n},
Agperi(m)={(20, 245 ..., Zk—1, Z)ER* x - - xR*; 2, € P, 2,€P,,, ..., 7, €P, |
and |x—zo|>n, |z, =2\ |>n,|z,— 25>, ..., |z —y|>n},
and we shall classify those divisions into four cases:

[A]1={Am); |z, —y|>n},
[B]={Ain);|x—zo|>n and |z,—y|<n},
[Cl={Am}={{lx—z0|<n, |z, =2y |<n, |z, — 25 |<n, ..., |z—y|<n}},

and
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[D]1={Ain); |x—zo|<n and |z,—y|<n}\{4,(n)} .
We put

(4.3) Iiny, e (8 {815 8} %, 9)
= X j {Psi(&s B> X, 20)9Z0> 21)Ps, —5,(& D 21, 21)
Ai(m€eIN1J 4;(n)
X gs(zll’ 22)p53~32(85 Q’ 22, Z,Z) XX ga(z;c~ 1 Zk)P,_Sk(ﬁ, ga Zgs _Y)}
xdzidz_y - -dz,dz,,  [N]=[A], [B],[C], [D].

Then in view of (2.7) we have

4.4 e, {S1, -y Sih X V)= pap,eon+ gy o+ Ticron+ Iipp e )& {815 - s S} X, 9)
since supp(g,(z;_ ¢, * ))<= P, , fori=1,..., k.
LEMMA 4.3. Forany(x, y)e(R*x RYONA(A={(x, x); xe R*}),any {sy, ..., 5}, any
n>0 and any p>1, there exists ¢>0 such that if 0<¢' <e¢ and t<1, then
Teayeon+ gy eon+ Tiog e ) € {815 -5 si}, %, WIS C(E, n, k, p)t? .

Proor. The proofis essentially the same as that in Léandre [8, Proposition II1.4],
but is a little more complicated.
First note that there exists ¢>0 such that if 0<¢'<e and t<1, then

O<s<t

4.5) P{ sup | x,(¢, &, x)—x|>n}_<_c(s', n, p)t?

(see [8, Proposition 1.4] and Lepeltier-Marchal [11, Lemme 17]). Then we observe

I[B],t,'l(sl’ {Sla ] Sk}’ X, y)SCl(SI, ", ka p)tp .

Next, let G.: R > R%, x—x+y(x,{). If {eint(supph), then G, gives a diffeo-
morphism by (1.5). Let G, ! denote its inverse mapping, and put J(x, {)=G; '(x)—x,
{ eint(supp h). Since y(x, {) is a bounded, C®-function both in x and { (cf. Section 1),
(1.4) and (1.5) imply that §(x, {) is also bounded, C* in x e R? and { eint(supp h). Note
that J(x, 0)=0 since Gy(x)=x. We put, for fixed ¢>0,

S, =sup{| (x, )|; xe R, L eint(supp(1 — §,)  h)} .

The following estimate also obtained by Léandre [8, Proposition 1.3] is used in the
estimate of Ij 4, (¢, {S1, ..., 8¢}, X, y): for every p>1, and every  with S,<n,

(4.6) lim sup sup (1 /SP)J (e, &, x, y)dx < + o0 .
(x;lx—yl|>n}

s—0 yeRd4

Since S, — 0 as ¢ -0, it follows from (4.3), (4.6) that
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I[A],t,n(gl’ {Sl’ ceey Sk}s X, ,V)Scz(ﬁl, ’77 ka p)tp .

Using the inequality (4.5), we can prove a similar estimate for

Iipy,i,q(€, {515 85 X, 9)
q.e.d.

Noting Lemma 4.3 we have only to study I¢; , (€, {s;, - .., S}, X, y) for each small
n>0 and 0 <& <e. Put a(x, y)=k (1 <k < + ). Then we have:

PrOPOSITION 4.4. If n is small and 1 <i<k=o(x, y), then

(4-7) I[C],t,n(al’ Sv X, y)=0 fOI‘ Sref%,i s

hence

(48) j I[C],t,r](8,9 St’ X, y)dﬁt,s'(st)=0 .
S

ProoF. Let Q, ,;and Q, ; be as follows:

—_ d . d d
Qx,,,,,:{zeR ;20,2052 -5 211, Z)ER X - - - X R, z, €P

ZiePz;»_ls |x—2{)|$11, lZl—le |S’7: |22—Z,2|S'l, ey ‘Zi—Z‘SV]} s

20 22€ P4, .00,
- d. d d
Q.. ={zeR*;3(zy,...,z;_)eR* *x --- xR* z,€P,, z,€P,, ...,

Zi-2° ZePzi—l}

=UJ{P., ,;z1€Py...,z;i_1€P, ,}.

z;_1€P

Here we put z,=x. Then Q, ; is a closed set in R, since each P, is compact and z;— P,
is continuous. Observe that Q. , ;>0Q, ; for all >0, and ﬂPo Qx.n.i=Qx,i That is,
yeQ, ;if and only if ye Q, , ; for all n>0. Since supp(g,(z}, * ))<= P, for j=0,...,i—1,
we observe

4.9) I[C].t.ry(sl’ Sy X, y) = {psl(8’9 I, x, Zb)ga’(zb, Zl)psz—s,(ela F, 21, le)

Ax(n)
X ge’(zlb 22)ps3—s2(£” Qa 22, 2'2) XX gs’(ZQ— 15 Zi)pt—si(g,, @’ Zijs y)}
xdzdz;_---dz,dzg .
In view of the condition in Q, , ;, we see that
(4.10) if y¢Q.,: then I, (¢,S,x,y)=0.

Recall that a(x, y)=k and i<k. By the definition of a(x, y) in Section 1, (1.7), we
have that y¢Q, ;, which implies y¢Q, ., for every sufficiently small n>0. Hence,
Iicy, . n(€,S, x, ) =0for S,e &, ;ifi<k=a(x, y). Thus, j.?’,,.-I[C]Jm(EI’ S, X, y)df",,s,(S,)=0 .

q.e.d.
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LEMMA 4.5. Let A be a class of non-negative, equi-continuous, uniformly bounded
functions whose supports are contained in a fixed compact set K. Let the constants n>0
and ¢ >0 be those appearing in I, , (¢, S,, X, y) and (4.2), respectively. Then, for every
0>0, there exists ty,>0 such that

s<t

(4.11) SUPJ S@p,- &, &, z, y)dz< f(y)+6
(z;lz—yl<m}

for every fe A, ye K and every te(0, t,).

Proor. For given 6 >0, there exists , =#,(K, A, 6)>0such that | f(z) — f(y)| < /4
for each | z—y|<#n,. We may assume 7, <5 by choosing small §. Then we have

(4.12) Supf f@p,-¢, D, z, y)dz
{z;lz—yl<m

s<t

s<t s<t

< Supf f@p,- (&, &, z, yydz + Supf f@p. (€, D, z, y)dz .
{z;lz—yl<ni} fz;m<|z—yl<nm}

The first term can be estimated as in Lemma 3.1 by f(y)+ /2 for t€(0, t;) for some
t;>0. As for the second term, since #>0 is arbitrary in (3.1) and since all f’s in " are
uniformly bounded, there exists ¢, >0 such that

sup f J@p.-€, D, z, y)dz<5/2
S<tJizsm<|z—y|<n}
for every fe A, ye K and te(0, t,).

Letting to=min{t,, t,} >0, and we have the assertion. qg.ed.

Choose an arbitrary compact neighborhood U(x) of x and arbitrary compact sets
K,, ..., K., of R such that {z; |z—x|<n} < U(x) and that Q, , ;< K, i=1,...,k—1.
Set

3‘/={ge'(zb, ')9 ge’(zlb .)9 R ge’(z:c—l, ');ZIOEU(x)’ ZIIEKls ""Z;c—ler—l} .

To apply Lemma 4.5, we should be a little more careful, since ¢ >0 depends on
the choice of n>0 by Lemma 4.3. Since /" has the property in Lemma 4.5, for given
0>0, >0, & >0, there exists 7,>0 such that for every 0<r<t,

(413) SupJ‘ ge’(ZE— 1 z,-)p,_s(s', g, zi: zli)dzngs’(Zli— 1 Z,i)+5 ’
S<t Jflzi—zi|<m
for zpe U(x), z;_ 1 €K;_1,i=2,...,x (z.=Y).
From (4.13) we have in view of (4.9), for 0<z<¢,,

(414) I[C]J,'I(SI> {51’ ""Sx}’x’ y)sj
U(x)

Ps,(s', @, X, Z/O)dZIOJ dz’l .. .J\ dZ;_1
K Ky -1
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X {(9:A26, 21) +0) - (92— 1, V) +0)} .
Hence by (3.4)

(4] 5) lim Soup(]/tk)f T f (f(bs'(C)h(C)dC) I[C],t,ﬂ(el’ {sb cee Sx}’ X, y)dsx o 'dsl
= 0 0

s(f@(é)h(()d{),(f dZ‘J dzz‘--f dz, _,

X {(gelx, 1)+ 6)(gez1, 2) + ) (gelze— 1, )+ )} -

Since 6>0 and K|, ..., K, _, are arbitrary, we have in view of Lemma 4.1 (with
N=k+1), Lemmas 4.2 and 4.3, Proposition 4.4 and (2.4), (2.5), (4.4), that

(416 lim sup <tik>p,(x, y<(Ux !)-( f moh(cmc)x

X f dz, J. dz,-- J dzx—l{gs'(x, 21)9:A215 22)" * " GelZi— 1 J’)} .
Py Pz, P

Zx-2

Letting & — 0, we have in view of (2.6)
. 1
4.17) lim sup (—) px, y)
t—0 t*

S(I/K!)J dzlf dz,-- j dzx—1{g(X, 21)9(z4, 25)" 'g(zx—l’}’)} .

Zk-2

The proof for the upper bound is now complete.

PrOOF OF THEOREM. The statement of the Theorem is immediate from (3.9) (with
k=a(x, y)) and (4.17). q.e.d.

5. Concluding remark. In Section 1 we confined ourselves to the simple case
where the Lévy measure of the driving Lévy process has exponent a€(0, 1) near the
origin. Although this condition is not indispensable, our method heavily depends on
the fact that the process x,/(x) is of pure jump type.

Apart from our case, Duflo [3] studied the upper bound of the semigroup of
measures on a locally compact Lie group G generated by an operator satisfying the
maximum principle (called y-generalized Laplacian), which may correspond to jump
processes on G. He obtained a general result which implies, when reduced to the case
G=R* and for the truncated stable process given in the example in Section 1, the
following proposition:

ProPOSITION 5.1 (Duflo [3, p. 239]). Let pl(x, y)=pl(y —x) denote the transition
density corresponding to the semigroup generated by h(d{)=h({)d(, where h({) is given by
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(1.11). Then, for n=1, 2, ..., there exists constant C, such that

5.1 pix)<C,t"**  for te(0,1) and xe{x;|x|>n}.
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