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ASYMPTOTIC BEHAVIOR OF THE TRANSITION DENSITY
FOR JUMP TYPE PROCESSES IN SMALL TIME
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Abstract. The Markov process of pure jump type given by S.D.E. has a smooth
density under non-degeneracy conditions both on the coefficient and on the Levy measure
of the driving Levy process. In this case we obtain an estimate of this density when the
time parameter is small. In this way we extend the Leandre estimate of the density for
pure jump processes.

Introduction. Consider the stochastic differential equation (S.D.E.):

(0.1) xtx) = x+Σv(xa-(x),Ms)),
s<t

where z(t) denotes an Rd-valued Levy process (semimartingale) of pure jump type with

the Levy measure h(dζ\ Δz(t) = z(t) — z(t — ) and y(x, ζ) denotes a non-degenerate bounded

function from Rd x Rd to Rd. It is known that the process xt(x) has a generator L of the

corresponding semigroup which is of the form

Lf(x)=\ lf(z)-f(x)]g(x,dz),

for a function/in a certain class. Here g(x, A) = JRd\A\{x}{χ + y(x, ζ))h(dζ) is the Levy

measure of xt(x).

Under certain conditions (including g(x, dz) = g(x, z)άz\ Leandre [8] studied the

asymptotic behavior of the transition density pt(x, y) of this process, and showed that

(0.2) pHx,y)~g(x,y)t as ί - 0 if g(x,y)Φ0.

Here we note that the condition "g(x, y ) # 0 " implies that the process can reach y from

x by a single jump. The object of this paper is to give a refinement of Leandre's result

in the following form:

(0.3) pt(x,y)~C(x,y,a(x,y))t«x>y) as ί->0,

where oc(x, y) can be interpreted as, roughly speaking, the minimum number of jumps

by which the trajectory can reach y from x {yφx).

The proof heavily depends on Leandre's method and results in [8], and we make
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use of the recently developed theory of Malliavin calculus of jump type (cf. [1], [2],
[7], [9], [10], [12]).
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1. Notation and results. Let z(t) be a ^/-dimensional Levy process of the form

z(t)=\ ζN(dsdζ),
Jo Jjtd\{o}

where N(dsdζ) is a Poisson random measure on [0, + oo) x (/?d\{0}) with the mean
measure ds x h(dζ). We put the following assumptions on h(dζ):

h(dζ) has a C°°-density h(ζ) on Rd\{0} such that

(1.1) suρph( )a{ζeRd; \ζ\<c} , where 0 < e < + oo,

LijRd\{0}

— μC<+oo for ε > 0 ,
J|ζ|>εV mθ /

and that

(12) ur\—Λ ' l . i π - d - α

L

in a neighborhood of the origin for some αe(0, 1), and some strictly positive function

In what follows we carry out our study in the usual probability space (Ω, (^)ί>0 ? Π),
where Ω = D[R+, R0'] denotes the Skorohod space, 3Ft is the nitration generated by z(t)
and Π is the probability measure on Ω of z(ή. Consider the following S.D.E.:

(1.3)

or

f Γ
JoJ
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Throughout this paper y(x, ζ) is assumed to be a bounded C°°-function from Rd x Rd to

Rd, whose derivatives of all orders are bounded, which satisfies y(x, 0) = 0 and

(1.4) inf< *y—(x, ζ) ( — ( x , ζ) )y x e Rd, ζ e supp ft > > δ \ y \2

I δζ \ dζ ) )

on Rd for some δ > 0 .

The S.D.E. (1.3) has a unique solution for y(x, ζ) above, which we shall denote by

JC^X) (or more precisely (x,(x), z(ί))), and we shall denote the law of xt(x) under Π by P.

The following result of Leandre plays a fundamental role.

PROPOSITION 1.1 (cf. Leandre [8,(1.6)]). Suppose that there exists C > 0 such that

( dy \
(1.5) inf detl / + — ( x , ί ) l > C

ζe(suρpή)

lim inf rf(1.6) lim inf η* h(ζ)dζ>0 for some α e (0, 2).
1 - 0 J | ζ | > ^

Then there exists a subset of probability 1 such that the mapping

φt(x)(ω): Rd^Rd , x ι-» Xί(x)(ω)

defines a dijfeomorphism for all t, and the law of xt(x) possesses a density pt(x, y) of class

C00 with respect to y for each t>0 and x.

Note that (1.6) follows from (1.2). We also remark that x\-^pt(x, y) is also of class

C00, by Theorem 2.9 and lemma 2.3, (Hi) of Norris [12].

Let us introduce crucial notation in this paper. Set

Λc = x + y(x, supp ft) = x + {y(x, 0 ζ e supp ft} .

Then each Px is a compact set in /?d since γ is bounded. For each yeRd {yφx), we put

Here /0(x, y) denotes the minimum number of distinct points z l 5 . . . , zteRd such that

(1.7) ZlePx, ZteP^t, i = 2,...,l and y e P Z ί (zo = x).

We always have α(x, y)< oo for each given x,yeRd (xφy) by (1.2), and (1.4).

We set

(1.8) g{x,z) = h{H;\z))\lJyY\x,H;\z))\ for zePx\{x]

and g(x, z) = 0 otherwise. Here we put Hx: supp ft ̂ P x , ^i-^x-h7(x, ζ) ( = z), and

/y = (dy/dζ)(x, ζ) is the Jacobian matrix of y. The kernel g(x, z) is well defined and satisfies
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[f{z)g{x,z)dz=[(1.9) \f(z)g(x, z)dz= /(x + y(x, ζ))h(ζ)dζ, for

That is, g(x9 dz) = g(x, z)dz is the Levy measure of xt(x) mentioned in the introduction.

Note that supp g(x, ) cz Px by definition.

Now we can state our main result.

THEOREM. Under the assumptions (1.1), (1.2) and (1.4), (1.5) we have, for each distinct

pair x,yeRd for which K = α(x, y) (< + oo),

_c

where

(1.10)

! - • •

P*κ-2

K=\ .

The proof of this Theorem will be given at the end of Section 4.

EXAMPLE. We give here a very simple example of the Theorem. Let d = 2, and let

a smooth radial function η satisfy supp η = {x; | x | < 1} and η(x) = 1 in {x; | x | < 1/2}. Put

: , αe(0, l ) , for ζeRd\{0},

that is, /i(ζ)ί/C is the Levy measure for a truncated stable process (cf. [4, Section 3]) with

index αe(0, 1). Then h satisfies (1.1) with c= 1 and (1.2). Let y(x, ζ) = ζ, and let xf(x) be

given by

(1.12)
s<t

Then JPJC = x + supp/z = x + J5(l) (B(l) = {x; | x | < 1}), and g(x, z) is reduced to g(x,z) =

h(z-x) (cf. (1.8)).
Let xo = (0, 0) and choose yo = {e, 0) so that 1 < e < 2 . We then have α(x0, j o ) = 2.

The constant C(x0, y0, 2) is calculated as follows:

(1.13) C(x0, y0? 2)= g(x09 z)g(z, yo)dz= h(z-xo)h(yo-z)dz.
Jpxo Jβ(D

The integral (1.13) makes sense. Indeed, if z = 0 then h(yo-0) = h(yo) = 0. Since

>ΌG {x; I x I > 1}, by the continuity of x\-^Px, there exists (5>0 such that if | z — x01 <δ

then y0 φ supp( f̂(z, •))• That is, g(z, yo) = 0 for ze{z;\z — xo\<δ}9 and this implies that

the integral exists.
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2. Decomposition of transition density. In this section we give a decomposition

of pt(x, y), which plays a crucial role in Leandre's paper [8]. We will state it in a little

detail, since it is also essential in the proof of our theorem.

Given ε>0, let φE: Rd^>R be a non-negative C°°-function such that φε(ζ)=\ if

| z | > ε and φε(ζ) = O if | z |<ε/2. Let zt(ε) and z't(ε) be two independent Levy processes

whose Levy measures are given by φε(ζ)h(ζ)dζ and (1— φε(ζ))h(ζ)dζ, respectively. Then

the process z(t) has the same law as that of zt(ε) + zj(ε). Since the process zt(ε) has finite

Levy measure on l?d\{0}, the corresponding Poisson point process Ns(ε) on

[0, oo) x (/?d\{0}) jumps only finite times in each finite interval [0,/]. We set

Sft fc = ([0, t]kl~) and &?

t

 = \Ak>o&t,k> w n e r e LJfc>o denotes the disjoint sum and ~means

the identification of the coordinates on the product space [0, t]k by the permutation.

The distribution Pt ε of the moments (instants) of jumps related to Ns(ε) in [0, t] is

given by

(2.1) I f(St)dPUε(St) = {(t ^ΦXζ)h(ζ)dζJ(^j exp( - 1 J</>ε(ζ)/*(Cκ)}

1 P Γ
x~v\ ' " \ / ( s i ' ?

s fc)^ 5 i '"dsk,
t Jo Jo

where/is a function on Sftk (a symmetric function on [0, t]k).

Let J(ε) be a random variable whose law is φε{ζ)h{ζ)dζj{\φε{ζ)h(ζ)dζ), and choose

a family of independent random variables /j(ε), i = 1, 2,..., having the same law as J(ε).

Choose 0 < ^ < ί < + oo. For a fixed Ste£fv we consider the solution of the following

S.D.E. of jump type:

(2.2) χs(ε, St, x) = x+ Σ y(Xu-(β, $t> x), ^Jβ))+ Σ ? ( ^ - f e St9 x\ Jt(ε)).
u<s SieSt,Si<s

Then the law of xs(ε, St, x) has a smooth density, denoted by ps(ε, St, x, y) (cf. [8,

p. 87]). Then

(2.3) pJix, y) = ps(ε, St9 x, y)dPu ε(St),

because zf(ε) and z't(ε) are independent, which is written in a decomposed form (by putting

s = t)

N - l

(2.4) ^Xx, jθ = Σ pt(U ε, x, y) + pt(N, ε, x, j ) ,

where

pt(U ε, x, y) =\ pt(ε, St, x, y)dPu ε(St)
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and pt(N9 ε, x, y) is the remaining term. Then it follows from the definition and (2.1) that

(2.5) pt(k, ε, x, y) = (1/k!) expf-1 Lε(ζ)h(ζ)dζ) ( ίφε(ζ)h(ζ)dζj

x *•• pt(ε,{sί,...,sk},x,y)dsk...dsί .
Jo Jo

We denote by xs(ε, 0 , x) the process in (2.2) with SteSfttθ9 and by ps(ε, 0 , x, y)

its density.

For the random variable J(ε) introduced above, there exists a density gε(x, z) such

that P(x + y(x, J(ε)) e dz) = gε(x, z)dz. Indeed, gε(x, z) is given by

gε(χ, z)=—f ,
)φε(ζ)h{ζ)dζ

where g(x, z) is the density of the Levy measure of x,(x) (cf. (1.8)). Note that, by definition,

supp gε(x, -)<^PX, and that gε(x, z) is of class C00 whose derivatives are uniformly bounded

(since g(x, z) has an only singularity at x = z). Now we have, for each s1 < - • <sk<t,

(2.7) pt(ε, {sί9 . . . , sk}, x,y)=\ dz'o dzt \dz'k_ A dzk

J J ^ ό J Jp-fc-i

x {^Slfe 0 , x> ^otoe^Ό, ^i)PS2-Sl(ε9 0 , ^i, z\)gε(zf

u z2)
xPs 3-s 2fe 0 , ^2? z'i)'' '9ε(Zk-ι> zk)Pt-sk& 0, zk,y)} .

Indeed, the increment x S i + u (ε, {sl9 ...,sk}9 x) — xs.(ε, {sί9 ...,sk}9 x) has the same

law as that of xM(ε, 0 , x) — x on (0, si + 1— st) for i = 0, ...,fc (s o = 0, s k + 1==ί)» a n d

x ( s . + u ) -(ε, {sί9 ...9sk}9x) is going to make a "big j u m p " (i.e., a j u m p derived from

/ ί + 1 ( ε ) ) at u = sί+ί -Si according to the law 0e(x(Si + ι ) -(ε, {sl9..., sk}, x), z)dz.

3. The proof of the Theorem, (I) lower bound. Let εc = s u p { ε > 0 ; { |£ |<ε}c=

supp h) > 0, and choose 0 < ε < εc. First we note that, for each η > 0 and a compact set

K, we have uniformly in y e K,

(3.1) lim P&90,z9y)dz=l9
im

by Proposition 1.2 in Leandre [8]. Then we have:

LEMMA 3.1. Let Jf be a class of non-negative, equί-contίnuous, uniformly bounded

functions whose supports are contained in a fixed compact set K. Then, given δ >0, there

exists to>0 such that

(3.2) inf I f(z)pt_s(ε, 0 , z, y)dz>f(y)-δ
S<tJ
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for every fe^yeK and every te(0, ί0).

PROOF. Given δ>0, choose η>0 so that \f(z)-f(y)\<δ/2 for each \z — y\<η.

Then,

f/(Φ,-S(ε, 0 , z, y)dz> ί f(z)Pt-s(ε, 0 , z, y)dz
J <J{z;\z-y\<v)

(f(z)-f(y))p,-s(e, 0, z, y)dz + f(y) f pt_s(ε, 0 , z, y)dz
JΊ<1} J(Z;|Z-J. |<IJ}

)-δβ) ί
J{z;|z-y

By (3.1) we can choose / 0

> ^ so that, if t<t0 then

inf ί pt-s(ε,0,z,y)dz\(f(y)-δ/2)>f(y)-δ for all yeK.
κ,s<tj{z;\z_y]<η} )

q.e.d.

Now we choose an arbitrary compact neighborhood D{x) of x and arbitrary compact

sets Kl9..., Kk_ j of Rd, and set

Since JΓ has the property in Lemma 3.1 (cf. (2.6)), it follows from (2.7) that, for every

δ > 0, there exists ί0 > 0 such that for every 0 < / < t0

(3.3) pf(ε, {s l9..., s j , x, y) > pSl(ε, 0 , x, z'o)dz'o
J U(x)

x ί dz; ί rfz ^ωzΌ,z\)-δ) ωzί_ l 5y)-δ).

But we have, for each fixed η > 0,

(3.4) lim inf | pSi(ε, 0 , x, zΌ)dzΌ = 1 ,
t^OSί<t,xeR*J{]χ_z

by (2.13) in [8]. So it holds, for sufficiently small every />0, that

(3.5) pt(ε, {sl9..., sk}, x, y)>(l-δ)\ dz\ ί dz'2

x ί d^-ώJtzΌ, z\)-δ)(gε(zf

l9 z'2)-δ) - -(gε(z'k_u y)-δ).
Jκk-i

Combining (2.5) with (3.5), we have
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(3.6) lim inf(^jpJίK e, x9 y)>(l/k!) (l -δ)-( Lε(ζ)h(ζ)dζJ

x dz\ dz'2'-\ dz'k _ iteXx, z'x) - δ){gε{z\, z2) -$)-- (gε{z'k _uy)-δ).
JKi JK2 JXfc-i

S i n c e ( 5 > 0 a n d K1,...,Kk_1 a r e a r b i t r a r y , a n d s i n c e supp ge(z[^l9 )czPzi_ι9i=l9...9

k— 1, we have

(3.7) lim inf ( - 1 W ε, x, y)>

: dzΛ dz2'"\

Hence it follows from (2.4) that

(3.8) lim inf ( _ L - k ( x, y)^(l/at(x9 y)l)
r-o

:ί dzλ
Jpx JpZ

dz2'"\ dzk.tgJix9 zjgjiz^ z2) gε(zk_ ί9 y).
]p,u-,

Since ε > 0 is arbitrary, we have in view of (2.6)

(3.9) lim inf (-J—)pt( x, y)>(VΦ, y)\)

x dzΛ dz2"Λ dzk.ί{g(x,z1)g(zuz2)- g(zk.uy)} .
Jpx JpZί JPzk-2

The proof for the lower bound is now complete.

4. The proof of the Theorem, (II) upper bound. The proof of the upper bound

of lim supt-0(l/ta(x'y))pt(x9 y) is rather delicate and is carried out in the same way as in

Leandre [8], but it is a little more tedious in our case.

First we choose and fix N > α(x, y) + 1 . Noting that sup{pj(ε, St, x, y) #St >2,x,ye

Rd}<C(ε) (cf. [8, (3.23)]), we have

LEMMA 4.1 (cf. Leandre [8, Proposition III.3]). For every ε > 0 and t>0,we have

(4.1) p N

yeRd

PROOF. Recall that
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pt(N, ε, x, y) = pt(ε, St, x, y)dPtJSt).

Since

Pt,ε($St>N)<C(ε)tN

by the Poisson law, we have

pt(N, ε, x, y)< sup A(ε, St, x, y)PtJ9St>N)

*St>N

<sup{/?,(ε, St, x, y); #S,>2, x, yeRd}C(ε)tN

<C(ε)C(ε)tN .

q.e.d.
LEMMA 4.2 (cf. Leandre [8, Proposition III.2]). For every p>\ and any η>0,

there exists ε>0 such that for all t<\ and every ε'e(0, ε),

(4.2) sup pt(O,ε\x,y)<C(ε\η)tp.
\χ-y\>η

Combining Lemma 4.1 with Lemma 4.2, we see that it is sufficient to study
pt(k, ε, x, y) for 1 </c<α(x, y). For a given η>0, make a subdivision of the space

A = {(zf

θ9zu...,z'k_uzk)eRdx --xRd;z1ePzb,z2ePz,,...,zkePzic_ί}

as A = (J f= i * 4̂i(?/), where

^ i W = {(4 z l 9 . . . , zi_ l 9 zk)eRdx xR d ; z ί eP z b , z2ePΛ,..., zkePzU_t

and | x-z^ |<?/, | z 1 -z /

1 |<^ |z 2 -Z2 |<f7, . . . , | z k -y |<^} ,

i, , 4- i , ̂ )e/?d x x/?d; zx eP z b , z 2 e P 2 l , . . . , zkePzU_^

and |x-zΌl

and

Λ2k+i(>/) = {(zΌ, z 1 ? . . . , zi_ l 9 zfc)ei?dx x R d ; Z l e P z b , z2ePz.ί9..., zkeP

and |x-zόl>>7, \z1-z?1\>η9\z2-z!2\>η9... ,\zk-y\>η} ,

and we shall classify those divisions into four cases:

= {AJrι);\zk-y\>η}9

and \zk-y\<η} ,

and
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{ ^ ) ; | x - z ' 0 | < > 7 and \zk-

We put

(4.3) I[N]^η(ε,{su...,sk},x,y)

-Σ ί
-s2fe 0 , Z2, Z

r

2) X X ̂ e(zi_ !, Zk)pt _ 5fc(ε, 0 , Zk, }>)}

*dzkdz'k_, -dzJzΌ, [ΛΓ| = [>!], [£] , [C], [D] .

Then in view of (2.7) we have

(4.4) pt(ε, {sl9 . . . , sfc}, x, y) = (I[A],t,η + I[B],t,η + hc],t,η + I[Di,t,η)(ε, {sί9 , s*}, x, y),

since supp(^(z;_1? ) ) c P z i . 1 for i = l , ...,fc .

LEMMA 4.3. For any (x, y) e (Rd x / ? d ) \ Δ (Δ = {(x, x) x e Rd}), any {sx, ...,sh}9 any

η>0 and any p>l, there exists ε>0 such that ifθ<εf<ε and t< 1, then

(hA],t,η + hB],t,η + hDu,ηW, {sί9 , sk}, x, y)<C(ε\ η, fe, p) ί p .

PROOF. The proof is essentially the same as that in Leandre [8, Proposition III.4],

but is a little more complicated.

First note that there exists ε > 0 such that if 0 < ε ' < ε and ί < 1, then

(4.5) P< sup I χs(ε\ 0 , x ) - x | > η \ < c(ε\ η, p) tp

(see [8, Proposition 1.4] and Lepeltier-Marchal [11, Lemme 17]). Then we observe

/ [ B ] ,M(6\ {*I, , sk}> x, y)<Cί{ε\ η9 fc, p)tp .

Next, let Gζ.R
d^>Rd, xι-+x + y(x,O- If ζeint(supph\ then Gζ gives a diffeo-

morphism by (1.5). Let G ζ

- 1 denote its inverse mapping, and put y(x, ζ) = Gζ~
1(x) — x,

ζGint(supp/z). Since y(x, C) is a bounded, C°°-function both in x and ζ (cf. Section 1),

(1.4) and (1.5) imply that y(x, ζ) is also bounded, C00 in xeRd and ζ e int(suρρ h). Note

that y(x, 0) = 0 since G0(x) = x. We put, for fixed ε > 0 ,

SE = sup{| f(x, 01 x eRd, ζ eint(supp(l - 0ε) Λ)} .

The following estimate also obtained by Leandre [8, Proposition 1.3] is used in the

estimate of I[A],t,η(
εΊ ίsi > ? sfc}> x? y): f°Γ every p>l, and every η with Sε<η,

(4.6) lim sup sup (l/sp) ps(ε, 0 , x, y)dx < + oo .
s^O yeRd J{χ.\χ_y\>η}

Since Sε-+0 as ε-»0, it follows from (4.3), (4.6) that
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hA],t,η(ε', {sί9 , sk}9 x, y)<C2(ε\ η,k, p)tp .

Using the inequality (4.5), we can prove a similar estimate for

I[Di,t,η(ε',{s1,...,sk},x,y).

q.e.d.

Noting Lemma 4.3 we have only to study J [ C ] > M(ε', {sl9 . . . , sk}9 x, y) for each small

η > 0 and 0 < ε' < ε. Put α(x, y) = κ (\<κ< + oo). Then we have:

PROPOSITION 4.4. Ifη is small and 1 </<κ; = α(x, y\ then

(4.7) I[C]fUη(ε\Svx,y) = 0 for Ste£fui9

hence

(4.8) ί I{C].t.ηV,St9x9
Jsrt,t

PROOF. Let QXtηti and Qxi be as follows:

Qx^i = {zeRd\ 3(z'o, z1 ? z ' l 5 . . . , z;_1? z^eRd x x Rd, z^P^, z2ePz.ί9...,

x /?d, zx ePx, z2ePZι,...,

Here we put zo = x. Then βx,/ is a closed set in /?d, since each Pz. is compact and

is continuous. Observe that Qx,ηj^>Qxj for all ^/>0, and f\ >0QXtηti = QXti. That is,

j ; e β X I if and only if yeQx η Λ for all η>0. Since supp(#ε,(z}, ))c=Pz,. forj = 0,..., ί— 1,

we observe

JAι(
(4.9) / [ c ] , * , ^ s» x9y)=\ {PsMf> 0> x ' Z'O)QAZ'O> ZI)PS2-SM'> 0> zu z'ί)

ι(η)

x gε{z\, z2)pS3_S2(ε\ 0 , z2, z2) x x gt,(z\_ ί9 z^pt_s.{ε\ 0 , zi9 y)}

xdZidz'i-!- -dzidz'o .

I n v iew of t h e c o n d i t i o n in Qxηh w e see t h a t

(4.10) if yφQx,ηJ then I[C]tUη(ε\St,x,y) = 0.

Recall that oφc, y) = κ and ι<κ;. By the definition of oc(x,y) in Section 1, (1.7), we

have that yφQxj, which implies yφQx,ηj for every sufficiently small η>0. Hence,

IίCltUη(έ9St9 x, y) = 0foτ SteSTui if i<κ = oc(x, y). Thus, $<rtiI[C],t,η(
ε'> St, x, y)dPuASt) = 0 .

q.e.d.
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LEMMA 4.5. Let CfC be a class of non-negative, equi-continuous, uniformly bounded
functions whose supports are contained in a fixed compact set K. Let the constants η>0
and ε'>0 be those appearing in I[C],t,η(ε\ S» x, y) and (4.2), respectively. Then, for every
δ>0, there exists to>0 such that

(4.11) sup I f(z)pt_s(ε', 0 , z, y)dz < f{y) + δ
s ^ ' J{z;\z-y\<η}

for every fe$ί,yeK and every te(0, ί0).

PROOF. For given δ >0, there exists ηί = η1(K, Jf,δ)>0 such that |/(z)- f{y) \ < δ/4
for each \z — y\<η1. We may assume η^<η by choosing small δ. Then we have

up

^ ' J { z ; | z - >

Γ Γ
<sup f(z)pt-s{ε\ 0 , z, y)dz + sup f(z)pt_s(ε', 0 , z, y)dz

The first term can be estimated as in Lemma 3.1 by f(y) + δ/2 for ίG(0, ίx) for some
t1 >0. As for the second term, since η>0 is arbitrary in (3.1) and since all/'s in C/f are
uniformly bounded, there exists t2 > 0 such that

sup I f(z)pt-,(ε>90,z9y)dz<Zδ/2

(4.12) sup I f(z)pt_s(ε',0,z,y)dz
-y\<η}

•L.,-
for every fejf, yeK and ίe(0, ί2).

Letting ίo^minlίj, ί2}>^?

 a n d w e n a v e the assertion. q.e.d.

Choose an arbitrary compact neighborhood D(x) of x and arbitrary compact sets
Ku ...,Kκ_ί of Rd such that {z; \z-x\<η}cz D(x) and that β , , ^ ^ ^ , i = l , . . . , κ - 1 .
Set

To apply Lemma 4.5, we should be a little more careful, since ε r>0 depends on
the choice of η>0 by Lemma 4.3. Since Jf has the property in Lemma 4.5, for given
δ > 0, 77 > 0, ε' > 0, there exists ί0 > 0 such that for every 0 < / < t0

(4.13) sup ^(z;._ l9 zdpt-tf9 0 , zi5 z3ίz f^^(zj.i, zί

for z'o
From (4.13) we have in view of (4.9), for 0<t<to,

(4.14) /IC]fM(ε', {5l,..., 5J, x, >;)< | Λ l ( f i ' , 0 , x, z'o)dz'o ί dzΊ • • | £!<_,
Jt/(x) Jxi JjKκ-i
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Hence by (3.4)

(4.15) limjmpO/t-) Γ J Ύ ίφAζ)h(ζ)dζ\Ίιcluη(ε', {slt. ..,sκ}, x, y)dsκ- • •dsι

<( {φAOKOdζ)" ί dzA dz2 --\ dzκ_,

x {(gε{x, zί

Since δ>0 and Ku ..., Kκ_γ are arbitrary, we have in view of Lemma 4.1 (with

N = κ+\), Lemmas 4.2 and 4.3, Proposition 4.4 and (2.4), (2.5), (4.4), that

(4.16) lim supULk(x, y)<(l/κ\) ( [φε.(ζ)h(Qdζ
r->0 \ t /

x dzΛ dz2' \ dzK_x{gt{x, zx)gε{zu z2) -gε{zκ.u y)} .
J px JpZi JPzκ_2

Letting ε' ->0, we have in view of (2.6)

(4.17) limjsupf —)p t(x,y)

<(l/κ!) d z j dz2- dzκ.γ{g(x,z^g(z^z^ όf(zκ_1? >;)} .

The proof for the upper bound is now complete.

PROOF OF THEOREM. The statement of the Theorem is immediate from (3.9) (with

k = α(x, y)) and (4.17). q.e.d.

5. Concluding remark. In Section 1 we confined ourselves to the simple case

where the Levy measure of the driving Levy process has exponent αe(0, 1) near the

origin. Although this condition is not indispensable, our method heavily depends on

the fact that the process xt(x) is of pure jump type.

Apart from our case, Duflo [3] studied the upper bound of the semigroup of

measures on a locally compact Lie group G generated by an operator satisfying the

maximum principle (called χ-generalized Laplacian), which may correspond to jump

processes on G. He obtained a general result which implies, when reduced to the case

G = Rd and for the truncated stable process given in the example in Section 1, the

following proposition:

PROPOSITION 5.1 (Duflo [3, p. 239]). Let p]{x,y) = p]{y — x) denote the transition

density corresponding to the semigroup generated by h(dζ) = h(ζ)dζ, where h(ζ) is given by
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(1.11). Then, for n=l,2,..., there exists constant Cn such that

(5.1) p](x)<Cnt
n + 1 for te(Q, 1) and xe{x;\x\>n} .
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