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LINEAR SYSTEMS ON TORIC VARIETIES
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Abstract. A version of Fujita's conjectures is proven for g-Gorenstein toric
varieties.

Introduction. In 1985, Fujita posed the following conjectures:

(0.1) CONJECTURES [Fuj]. Let (X, L) be a projectίve (possibly mildly singular)

polarized variety of dimension n. Then

(i) Kx + tL is base point free for t>n\

(ii) Kx + tL is very ample for t>n+l.

As a first step towards proving this, Fujita proved:

(0.2) THEOREM. Let (X, L) be a projective non-singular polarized variety over C of

dimension n. Then

(i) Kx + tL is neffor t>n\

(ii) Kx + tL is ample for t>n+l.

The proof of (0.2) depends on Mori theory (in fact, only on Kawamata

vanishing—cf. [De, 8.3]), which is why X has to be complex.

Evidently, Fujita's conjectures hold true for projective space. In this paper, I amplify

on this obvious observation, finding a slightly larger class of varieties for which (0.1)

holds:

(0.3) THEOREM. (0.1) is true for Q-Gorenstein projectίve toric varieties (see (3.2)

for precise statements).

The proof of (0.3) faithfully follows Fujita's original approach. First, (0.2) is proved

for toric varieties, using toric Mori theory as developed by Reid [Re]. Then (0.1) is

seen to follow from (0.2), owing to the combinatorics of line bundles on toric varieties.

Note that since toric Mori theory is properly combinatorial (and in particular can

do without Kodaira-like vanishing statements), we do not need to restrict ourselves to

the complex case here: (0.3) holds in arbitrary characteristic.
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1. Preliminaries. In this first section I group together notation, definitions and
standard results to be used in the sequel. Any reader familiar with the canonical texts
on toric varieties [Da], [O] and [Fu] can conveniently skip this section.

(1.1) Toric notation. Let M, TV be two mutually dual free abelian groups of rank
n, and let Mκ, NR be their real scalar extensions.

For a fan A a NR, denote

A(i): = {μeA \dimμ = i} .

A fan Ac:NR determines an ^-dimensional toric variety X(Λ) by pasting together the
£/σ: = Specfc[σv nM], σeA(n), where k is an arbitrary base field.

X(Δ) is complete if and only if Δ covers NR. X(Δ) is β-factorial if and only if it is

simplicial, i.e. every σeΔ(n) has just n rays.
(1.2) Cycles. Let X= X(Δ) be an arbitrary toric variety. A cone μ e Δ(ί) determines

an (n — z)-dimensional closed, torus-stable subvariety V(μ) of X, defined as the closure
of the orbit Oμ : = Spec ̂ [μ1 n M]. V(μ) is also a toric variety, corresponding to the fan
/?(Star(μ)), where Star(μ): = {σ|μ-<σ}, and/?: NR^NR/(μ — μ) the natural projection.

Let AJ(X) denote the Chow group of cycles modulo rational equivalence. Then
one proves (cf. [Da, 10.3]) that for any toric variety X, At(X) is generated by classes

[F(μ)], where μeΔ(n — i).
In particular, I will denote by

the torus-stable Weil divisors that generate An_1(X).
(1.3) The Picard group. A Cartier divisor D on a toric variety X(Δ) is given by

a collection {u(σ)eM}σeΔ(n). This collection corresponds to what is called a piecewise

linear function φD on the support \Δ\:

ΨD(V) ' = <X<τ), t;> if veσ.

A nef Cartier divisor D = ̂ r

i = laiDi also determines a convex lattice polyhedron PD in

MK, defined as

PD: = {ueMR\<^u,eiy>-ai,i=l, . . . , r] .

Two nef Cartier divisors are rationally equivalent if and only if their polyhedra differ
by an element m e M.

(1.4) Intersecting curves and divisors. Let X=X(Δ) be a complete toric variety.
Suppose D e Pic(X) is given by {u(σ)}σeA(n} and CeA^X) is a curve V(μ) with μeΛ(n— 1).

Writing μ — σv nσ 2, with σ l 5 σ2εΔ(ri), we find that C is a smooth rational curve,
given by the fan {σ1? μ, σ2} in the 1 -dimensional vector space NR/(μ — μ). It follows that
the intersection number (C, D) is

(C, D) =
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where v is any element of (σί\μ)nN, and λv some positive constant depending on the
choice of v.

(1.5) PROPOSITION. Let X=X(Δ) be a complete tone variety and DePic(X).

(i) D is base point free if and only if it is nef;

(ii) D is ample if and only ίf(C, D)>0 for every effective curve C on X.

PROOF. This follows from (1.4), analogous to [O, 2.18] where (ii) is proven in

the simplicial case. D

(1.6) Intersecting curves and divisors—reprise. On a simplicial complete toric

variety, we can actually be more explicit about intersection numbers than in (1.4). By

(1.2), the intersection pairing Pic(X) x A1(X)^>Z is fully determined by the values

(Di9V(μ))9 ι = l , . . . , r, μεA(n-l).

These values can be expressed in terms of the fan A as follows. Any μeA(n—l) is the

intersection of two uniquely determined ^-dimensional cones, say σ1 and σ2. We number

the ^eJ(l) in such a way that

μ=<e l 5 . . . , £ „ _ ! > , σl = (el, . ..,£„-ι,O , σ2 = <e l9 . . . , e n _ 1 ? eπ + 1> .

After eventually renumbering σ± and σ2, we find a unique vector («1 ?..., flM + ι)eβw+1

with αM < αn + x = 1 satisfying

this vector will be denoted Rel(μ).

The formula in (1.4) now implies that

cμat, if / = ! , . . . , « + ! ;

0 , otherwise,

where cμ is some constant with 0<cμ<l (actually, cμ = mult(μ)/mult(σ2)).
(1.7) Dualizing sheaf. Let X= X(A) be a complete toric variety; then its dualizing

sheaf is given by

This implies: X is Q-Gorenstein if and only if for every σeA(n), the minimal elements

on the rays of σ lie in a hyperplane of NR.
(1.8) Cone of curves. Let Y be an arbitrary (J-Gorenstein projective variety.

Defining

N1(Y):=A1(Y)®Q/ =
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(where = denotes numerical equivalence), one gets two dual Q- vector spaces of dimen-
sion p(Y), the Picard number of Y. (In fact, on a toric variety X, this definition boils
down to N1(X) = Pic(A") (x) Q, N^(X) = A±(X) ® β, since for curves on X rational and nu-
merical equivalence coincide (Brion — cf. [FS]).)

Nι(Y) contains the cone of effective 1 -cycles, defined as

(Note that for a toric variety X, it follows from (1.2) that NE(JQ is polyhedral, generated
by torus-stable curves V(μ), μeA(n—l).)

A 1 -dimensional subspace 7?c=NE(F) on which Kγ is negative is an extremal ray
if Cί9 C2eNE(7), C1 + C2eR implies C1? C2eR. An element of A^Y) whose class is
non-trivial and lies in an extremal ray is called an extremal curve.

The length l(R) of an extremal ray R e NE( Y) is defined as

l(R) : = min{ - (KY9 C) \ R a C extremal curve} .

An extremal curve CeR for which —(Kγ, C) = l(R) is called minimal.

2. On the length of extremal rays. In this section, I will prove:

(2.1) PROPOSITION. Let X be a Q-Gorenstein projective toric variety of dimension
n. Then one has for any extremal ray R ofNE(X):

with equality only if X=Pn.

Then by (1.5) we may conclude the following, which is logically stronger than (0.2):

(2.2) COROLLARY. Let X be a Q-Gorenstein complete toric variety of dimension n,
and let DεPic(X)®Q.

( i ) If(D,C}>nfor all C e NE(X), then KX + D is nef.

(ii) If(D9C)>n+\forallC€ NEpf), then KX + D is ample.
Moreover, if X^P", then the > signs in (i) and (ii) can be changed into > signs.

(2.3) PROOF OF (2.1), FIRST STEP. Reduction to the simplicial case.
If ^is not simplicial then n>2, and performing what Danilov terms "elementary

subdivisions" of A, we get a partial crepant resolution σ : X^> X, where X is a simplicial
toric variety. By the projection formula,

for all CeNE(JP). Thus we need one easy lemma to reduce the proof of (2.1) to the

simplicial case:

(2.4) LEMMA. Let π : Ϋ^Y be a crepant biratίonal morphism of projective
Q-Gorenstein varieties. If CReNE(Y) is a minimal extremal curve, then
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where C# is a minimal extremal curve in NE( F), and reQ with 0 < r < 1 .

PROOF. The class CΛeNE(7) is the direct image π^C of some CeNE(F). Since
, C) < 0, we can write

with rteQ>Q and Ct eNE(F) minimal extremal curves. Now the condition "CR =

Σ*=ιriπ*^ί eχtremaΓ implies n^C^R for / = ! , . . . , 7, and π^C^OeNEtΓ) for / =

7 + l , . . , fc
So one gets that

where the constant reQ>0 is < 1 since CR is supposed to be minimal. Q

(2.5) PROOF OF (2.1), SECOND STEP. For simplicial toric varieties, (2.1) follows

from toric Mori theory [Re]. We only need Reid's combinatorial condition for a

torus-stable curve to be extremal:

(2.6) PROPOSITION ([Re, 2.10]). Let X be a simplicial projective toric variety of

dimension n, JRc=NE(AΓ) an extremal ray. Suppose V(μ)eR for μEA(n—l) and

Rel(μ) = (Λ l 5 ...,an + 1). Then for every at>0,

and the curves corresponding to the cones

μ': = (el9 . . . , ei9 . . . , en, en + ιy ,

μ : = \e1,...,ei,...,en,en+1y

belong to R.

(2.7) END OF PROOF OF (2. 1). Suppose μεΔ(n- 1) such that R 9 V(μ) is an extremal

curve and

-(KX9
i = l

where Rel(μ) = (α1? . . . , an + ί ) with an<an+1 = 1 (cf. (1.6)). Then necessarily ak: =

™*{ai}ι<ί<n-ι>l.
By (2.6),

μ' = (el9...,ek,...9en,en + ίy

gives another curve in R, and we can write Re\(μ') = (a'ί9 ...,a'n + ί ) with a'k=\.
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Comparing the linear relations

Σ ****+****+ *»+ι =o;
Σ *'«*« + *fc + fln+i*n+i=0>

one finds a'i = ailak<\^ /= 1, . . . ,«+ 1, hence

Finally, to prove the last statement of (2.1), suppose (Kx, V(μ)) = — (n+\) for all
V(μ)eR. Then the above reasoning implies that Rel(μ) = (l, 1, . . . , 1) for all V(μ)eR.

Define

A(n-l)R: = {μεA(n-\)\V(μ)eR},

and suppose that A(n— l)R=£A(n— 1). Then since zl is complete, there exist cones
μ± e A(n— l)R, μ2 e A(n— l)\A(n — l)R, which are faces of the same σe A(n), say

σ = <el5 . . . , £>„> , /*! - <<?!, . . . , έ?Λ _ ! > , μ2 = O2, . . . , £?„> .

But this is absurd, since then by (2.6)

This proves that in case equality holds in (2.1), A(n— 1)R must equal A(n— 1), so the
Picard number p(X)= 1, Since also mult(σ)= 1 for all σeA(ri), this implies that X=Pn.

D

3. Very ampleness. As announced in the introduction, a version of Fujita's
conjecture will be proven for β-Gorenstein toric varieties. Since base-point-freeness
is already established, we will concentrate on very ampleness of the adjoint linear
system.

(3.1) DEFINITION. A Q-Cartier divisor D is said to be Q-base point free (resp.

Q-very ample) if the smallest positive multiple of D which is a Cartier divisor, is base
point free (resp. very ample).

With this definition, the precise form of the statement (0.3) in the introduction is:

(3.2) THEOREM. Let (X, L) be a polarized Q-Gorenstein toric variety of dimension
n. Then

( i ) Kx + tL is Q-base point free for t > n;
(ii) Kx + tL is Q-very ample for t>n+\.

Moreover, if(X9 L)^(Pn, 0(1)), then > signs will do in (i) and (ii).

By (1.5), (i) is a consequence of (2.2)(i). The rest of this section will be spent on
proving (ii).
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(3.3) Very ampleness criterion. A Carder divisor D on a toric variety is very
ample if and only if for any vertex v of PD a MR, the lattice points in the cone

are non-negatively and integrally generated by the lattice points in PD — v.

(3.4) REMARK. On a smooth toric variety, every ample Cartier divisor is very
ample (Demazure — cf. [O, 2.15]). This immediately proves (3.2)(ii) in the smooth case.

Criterion (3.3) is used in [EW] to prove the following

(3.5) THEOREM (Ewald-Wessels). Let X be an n-dίmensional projectίve toric variety,
and LePic(X) ample. Then kL is very ample as soon as k>n — 1.

(3.6) COROLLARY (numerical criterion for very ampleness). Let X be an n-

dimensional projectίve toric variety, and DePic(X). If (D, C)>n — 1 for every effective
curve C on X, then D is very ample.

PROOF. Since D = {u(σ)}σe A(n) is ample, the polyhedron PD c MR is w-dimensional,
and its vertices are exactly the elements u(σ\ σeA(n) ([Fu, p. 70]). It is not hard to see
that u(σi) and u(σj) are connected by a 1 -dimensional side Ltj of PD if and only if
σ, n σj = : μ^ e Δ(n — 1), and that in this case

So the assumption on D translates into the fact that the polyhedron PD has at least n
lattice points on every 1 -dimensional side. But then for every vertex v of PD, there exists
an ^-dimensional lattice polyhedron Qv generating the cone σv and such that
(n — i)Qv cPD — υ; hence it follows from (3.5) that PD satisfies the very ampleness criterion
(3.3). Π

(3.7) PROOF OF (3.2)(ii). Let t>n+l, and in case (X, L)^(Pn, 0(1)), let / > Λ + 1;
then we know that Kx + tL is ample (2.2). Let r be the smallest positive integer such
that r(Kx + tL) is a Cartier divisor.

Suppose tL — Σ'i^i ^ίA Then its polyhedron is given by

PtL = {ueMR\(u9ei)>- tab ί = 1 , . . . , r} .

Since Kx + tL is an ample β-Cartίer divisor, its polyhedron is an ^-dimensional rational
polyhedron, given by

pκx + tL = {ueMR I <χ £?;> > \-tah i= 1, . . . , r}

thus PKχ+tL^PtL contains all interior lattice points of PtL, and its walls are parallel to
those of PtL.

In particular, the rational polyhedron PKχ+tL contains the lattice polyhedron ̂ (ί- ι)L,
which satisfies the very ampleness criterion (3.3) according to the result of Ewald and
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Wessels (3.5) (note that by assumption, t>n+\). Then a fortiori, the lattice polyhedron

rPKχ+tL^PKχ+tL contains P(t-^L, so r(Kx+tL) is very ample for the right t. Π
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