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CELLS IN CERTAIN SETS OF MATRICES
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Abstract. We decompose the canonical bases for ^-Schur algebras and the modified

quantized enveloping algebras of type A into two-sided cells in terms of some

combinatorics on certain sets of matrices.

Introduction. Let s/ be an associative algebra over a field K and $ a basis for stf

as a K-vector space. Then & is divided into cells, by Lusztig [Lu2, 29.4], via the

equivalence relations on $ defined as follows:

If the elements cb b, h,. e K with b, b\ b" e$ denote the structure constants of stf i.e.,

they satisfy bb' = Yuh,,sgtcbb,b,,b", then we say for b,b' e& that b' <Lb (resp. b' <Rb) if

there are sequences b1=b,b2, . . . , bn = b' and βl9 . . . , βn-1 in $ such that cβib.b. + ίφ0

(resp. cb.β.b. + ΐ φ<$) for all /= 1, . . . ,«— 1. These are preorders on ^ . We define <LR to

be the preorder on 31 generated by < L and <R. For xe {L, /?, LR) and b,bΈ& we say

b~xb' if b<xb' <xb. Thus ~ L , ~ Λ and ~ L R are equivalence relations on ^ . The

corresponding equivalence classes are called left, right and two-sided cells of 0&

respectively.

In certain nice circumstances, cells are important in the study of representation

theory and can be classified combinatorially. For example, if stf = Jf(W) is a Hecke

algebra associated with a Coxeter group W and & is the Kazhdan-Lusztig basis of

J^(W), then cells in the sense above are the Kazhdan-Lusztig cells (see [KL]). When

W is a Weyl group or an aίfine Weyl group of type A, K-L cells can be classified in

terms of partitions, tableaux, Robinson-Schensted maps, etc. (see, e.g., [Sh]).

In this paper, we shall consider two more examples in the case of type A, namely,

srf is a g-Schur algebra 5^(n, r) or a modified quantized enveloping algebra U of type

A and $ is the K-L basis of £fq(n, r) (cf. [Dul]) or the canonical basis of U (cf. [Lu2]).

These bases are indexed by certain sets of matrices. So the cell decomposition of J*

induces a cell decomposition of these matrix sets. We shall give a combinatorial

description for those two-sided cells.

In Section 1 we first generalize a result of Greene [G], which associates partitions

to finite posets, to a result on a cerain matrix semigroup M(n), namely one associates

partitions to the matrices in M(n). Thus, we decompose M(n) into subsets in terms of

partitions. Our main result is Theorem 2.1 which shows that these subsets are two-sided
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cells of the K-L bases of g-Schur algebras. We shall prove the theorem in Section 3.

In Section 4 we apply the result to modified quantum groups II of type A.

ACKNOWLEDGEMENT. The author would like to thank the referee for correcting

some inaccuracies in the first version of the paper.

1. A generalization of Greene's result. We first recall Greene's method [G] which

associates partitions to finite partially ordered sets.

Let P be a finite partially ordered set. A chain in P is a subset of P which is totally

ordered by the induced order of P. A k-chain family is a subset of P which is a disjoint

union of A: chains. We denote by ck(P) the maximum cardinality of fc-chain families and

let λk(P) = ck(P)-ck_1(P) (with the convention that co(P) = 0).

1.1. THEOREM (cf. [G]). Maintain the notation introduced above. Then

(1.1) X,{P)>->XP{P)

is a partition of\P\ where p is the maximum cardinality of the subsets which contain no

chain of length 2. (These subsets are called antichains according to Greene.)

Let TV be the set of nonnegative integers. For any neN, let [1, ή] denote the interval

from 1 to n in N. We order N2 = NxN by setting (iJ)<(ΪJf) if i>ϊ and j<f. Thus,

each [1, n ] 2 is a finite poset with the induced order. Clearly, the partition of n2 associated

to [ l , n ] 2 i s ( 2 n - l , 2 n - 3 , . . . , 3 , 1).

We now generalize Greene's idea to associate partitions to n x n matrices with

entries in N. Let M(n) be the set of all n x n matrices with entries in N, and let s: M(ή) -• N

be the map sending a matrix A=(aij)sM(ή) to its entry sum s(v4) = £\ .aiy More

generally, if F is a λ>chain family of [1, ή]2, we define $F(A) to be the sum of the entries

atj with (i, j)eF. We call the map s F : M(n) -* N an F-sum map and zF(A) the F-sum of

A. Let zk(A) be the maximum value of F-sums of A for all A:-chain families F.

1.2. THEOREM. Maintain the notation above. For AeM(ri) with s(A) = r, we define

σi{A) = si(A) — si_ί(A) (with the convention that so(Λ) = 0) for all /e[ l , n]. Then

σ1(A)>σ2(A)> • >σn(A) is a partition ofr. Therefore, we obtain a surjective map

σ-.A^ σ(A) = (σx(A\ <*2(A\ , σH(A))

from M(ή) onto the set Λ+(n) of partitions with at most n parts.

PROOF. The idea of the proof is to associate a finite poset, hence a partition by

(1.1), to a matrix in M(ή).

For A=(aij)eM(n), let P = P(A), <A be a finite poset satisfying the following

conditions:

( i ) p=(jι<i,j<nPij ( a disjoint union) with | P . . | = fl... Hence \P\ = s(A).
(ii) Every Pu is a chain in P.
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(iii) For a ε Pip b e Pvy with (ί, ) Φ(ί', y'), α<ĉ Z? if and only if (i, 7)<(/', / ) .

Note that condition (iii) means that <A induces a partial order on the set

P = {Ptj I (z, j)e[l, ri]2} and P with the induced order is isomorphic to the poset [1, ri]2.

Also, one sees easily from (ii) and (iii) that if (i, j)<(ϊ, f) then Pij\jPvr is a chain.

Our construction of P implies also the following relationship between the posets

<A and [1, ri]2, < : Let S be a subset of P which is a union of Ptj and let

Then we have $I(A) = \ S\. Further S is a chain if and only if I(S) is a chain, while S

is a A -chain family if and only if I(S) is a A -chain family.

For any subset S of P, we define its closure S as the minimal subset of P contain-

ing S and being a union of some Piy Clearly, if S is a chain, so is S. Also, if S is a

/r-chain family, then so is S. In particular, if S is a A -chain family in P satisfying

ck{P) = \S\, then S=S. Therefore, in this case, I(S) is a /r-chain family in [ 1 , Λ ] 2

and cfc(7
)) = |5 ' | = s/(S)(y4)<sfc(y4). Conversely, if F is a A>chain family in [ l ,w] 2 with

5k(A) = zF(A), then SF=\J(ij)eFPij is a A>chain family in P. So sk{A) = \SF\<ck(P). So

we have proved that sk(A) = ck(P). Now, our first assertion follows from (1.1). The proof

of the rest is obvious. •

1.3. REMARK. In Section 3 we shall look at the poset P(A) in terms of certain

pseudo-matrices. These matrices will be used to define the longest element of the double

coset defined by A. A special case for this is given in Example 1.4 below.

We now define an equivalence relation ~ on M(ή) by setting, for A, BeM(n), A ~B

Ίϊσ(A) = σ(B). The corresponding equivalence classes, i.e., the fibres of σ, are called cells

of M(n). Clearly, for any reN, the subset M(n, r) = s~1(r) of M(n) (consisting of all

matrices in M(n) whose entry sum is r) is a union of cells. For a partition λeA+(n), we

denote by M(ή)λ = σ~1(λ) the cell corresponding to λ. We shall see that these cells agree

with the Kazhdan-Lusztig two-sided cells in the sense of [Du2] as indicated in the

following example.

1.4. EXAMPLE. Let P(ή) be the set of permutation matrices in M(n). Then, P(n) is

a group isomorphic to the symmetric group S n on [1, ri]. We take this isomorphism

from S n to P(n) by sending w to Aw where if w maps j to / then Aw is the matrix with

1 at the (/, y')-entry for ally, and 0 elsewhere. Since, any entry sum of Aw over a chain

in [1, ri]2 gives the cardinality of the subset of [1, ri] consisting of the column indices

of the non-zero entries over the chain and the natural order of this subset is reversed

by w, it follows that the number sk(Aw) is the maximal cardinality of a subset of [1, ri]

which is a disjoint union of k subsets each of which has its natural order reversed by

w. Thus, the partition σ{Aw) associated to Aw as in 1.2 is the partition associated to w

as defined in [Lul, §6] which is actually based on the general result (1.1) of Greene.

Therefore, by [loc. cit., (7.1)], we have the following.
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1.5. COROLLARY. The sets M(n)λr\P(n) (λ\-n, a partition of ή) are all distinct

two-sided Kazhdan-Lusztig cells of SΛ.

We shall generalize this result to the matrix semigroup M(ή).

2. Kazhdan-Lusztig cells of the matrix semi-group M(ή). We now recall from

[Du2, 4.2] the definition of Kazhdan-Lusztig cells for M{n). This definition via g-Schur

algebras and their K-L bases (cf. [Dul]) is a natural generalization of the original one

as given in [KL], and is equivalent to the one given in the introduction.

Fix a positive integer r, and let W denote the symmetric group 6 r on r letters. Let

λ be a composition of r, namely,

with λt 4- +λm = r and λt>0, for all /. The set of all compositions of r into n parts

is denoted by Λ(n, r). Let Λ(n)=[jr>0Λ(n, r). Note that Λ+(n) is a subset of Λ(n).

Each λ G Λ(n) corresponds to a standard Young subgroup Wλ generated by basic

transpositions. This correspondence is given as follows: We first partition the set

{1, 2, 3 , . . . , r] into subsets Rf such that the subset R* contains the first λί entries, Rλ

2

the next λ2 entries and so on. The Young subgroup is then the one generated by those

transpositions which interchange numbers in the same subset.

For example, if λ = (2, 1, 3), then the corresponding subsets are

and the Young subgroup is generated by

{(12), (45), (56)}.

It is well-known that we may identify the matrix set M(n, r) with the set of double

cosets D(n, r) of W with respect to standard Young subgroups associated with

compositions in Λ(n, r). The bijection is defined as follow: if D= WλwWμ is a double

coset with λ, μeΛ(n, r), then ΛD = (aij)eM{n, r) is the matrix satisfying atj = \ Rfnw(Rl )\

for all /, j . Note that au is independent of the selection of the representative w of the

double coset (cf. [JK, (1.3.10)]).

Let ^q(n, r) be the g-Schur algebra of degree (n, r) over the field A = Q(t) with q = t2.

It has the standard and K-L bases indexed by the double cosets in D(n, r) (see, e.g.,

[Dul, 2.2]). Then, with the previous identification, these bases may be labelled by the

matrix set M(n, r). Let

(2.0) B{n,r) = {θA\AεM{n,r)}

denote the K-L basis of 5^(π, r) (cf. [Dul, 2.3]). Thus, we may define the K-L cells for

M(n, r), hence for M(π), via these K-L bases as done in [KL], or equivalently, as in

the introduction.
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To do so, we first define preorders < L , <R, <LR on M(n, r). We say Λ<LB if ΘA

appears with nonzero coefficient in the product ΘCΘB for some CeM(n, r), and Λ<RB

if Ax <LBX where ( )x is the transpose of a matrix. Let <LR be the preorder generated

by < L and <R, and let ~ L , ~R, ~LR be the associated equivalence relations on M(n, r).

We call the corresponding equivalence classes the left, right and two-sided K-L ce//s of

M(n, r) respectively. Thus, the matrix semigroup M(ή) are decomposed into these K-L

cells.

The following theorem is a generalization of Corollary 1.5.

2.1. THEOREM. The cells M(n)λ (λGA+(n)) defined in 1.3 are all distinct two-sided

K-L cells.

The proof is divided into two steps. First, we reduce it in the rest of this section

to a problem on symmetric groups. We then solve the symmetric group problem in the

next section.

We need some notation first. For each A=(aij)eM(n), let

Both ro and co define two maps from M(n) to Λ(n). Let wA denote the longest element

in the double coset Wτo{A)wWco{A) corresponding to A, and wλ (λeΛ(n)) the longest

element in the Young subgroup corresponding to λ. We denote by Bw (we W) the K-L

basis of the generic Hecke algebra associated to W. We shall use the same notation

< L , <R, <LR and ~ L , ~κ, ~LR to denote the preorders and the associated equivalence

relations on Was defined in [KL].

We now have the following reduction.

2.2. LEMMA. For any A, BeM(n) with *(A) = *(B), we have

A ~LR B <=> wA ~LR wB .

PROOF. Without loss of generality, we may assume A, BeM(n, r) for some r > 0 .

We first claim that A<LB if and only if QO(A) = CO(B) and wA<LwB. Indeed, the

"only if" part is obvious (see [Dul, 3.4]). Conversely, suppose co(v4) = co(2?) and

wA<LwB. Then, there is a we W such that BWA appears (with nonzero coefficient) in

the product BWBWB. This implies by the positivity property on the structure constants

with respect to K-L bases that BWA appears in the product ^Wro(A)^w^wro(B)^wB' However,

^wΓO(A)^w^wΓO(B) i s a linear combination of the elements BWD (De WroiA)\W/WroiB)) where

wD is the longest element in D. So BWΛ appears in a product BWDBWB. It follows from

[loc.cit.] and the hypothesis co(̂ 4) = co(i?) that there exists a matrix CeM(n, r) such that

wc = wD, ro(C) = ro(^) and co(C) = ro(B) and such that ΘA appears (with nonzero

coefficient) in the product ΘCΘB. That is, we have A<LB, and our claim is proved.

We now turn to the proof of the lemma. The "only if" part of our assertion
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is obviously true. Conversely, suppose wA~LRwB. By [Lu3, 3.1(k)(l)], there exists

xeW such that wΛ~Lx~RwB. Thus, by [KL, 2.4], we have x = wc for some

CeWro(B)\W/Wco{A). Now the claim above implies that A~LC~RB and therefore,

A~LRB. D

Note that one may use [Du2, 4.2(d)] to prove the above lemma. However, the

previous proof gives a result on left cells.

2.3. COROLLARY. For any A, BeM(n) with *{A) = s(B), we have

A ~LB <ί=> co(A) = co(B) and wA ~LwB .

We end this section with an example.

2.4. EXAMPLE. For n = 2, Theorem 2.1 gives the following easy description for

the two-sided K-L cells of the matrix semigroup M(2): Two matrices

a b\ (a' V
and

c d) \cr d'

in M(2) are in the same two-sided cell if and only if a + b + c + d=a' + b' + c' + d' and

min(β, d) = min(a\ d'). This can be seen easily from Lemma 2.2 and the fact that for

any A=(aij)eM(2) we have σ2(^) = min(fl11, a22).

3. Proof of Theorem 2.1. The rest part of the proof of Theorem 2.1 is based on

an interesting description of the longest element in a double coset defined by a matrix

A G M(n). This result was carried out by the collaboration of Tim Sturge, a vacation

student of UNSW from Canterbury University, New Zealand.

Fix a matrix A=(aij)eM(n, r). We define numbers

i n j

bij = bij{A)= Σ Σ"ki- Σ au
fc=l 1 = 1 1 = 1

and decreasing sequences

cu = c^A) = (by + aip . . . , bij + 1).

We combine these sequences into a sequence

(7l?72? >Jr) = \Cnli > c l l ? c«2? J C12? ' Cnm J Cln)

This sequence defines a permutation yA sending / to j\. We write

We note that the ctj can be arranged in a pseudo-matrix (co ) associated to A. Thus,

the numbers {1,..., r) in (cι7) are arranged so that they are in the natural order when

read from right to left inside the sequence and from right to left along the rows, followed
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by top to bottom down the successive rows. Then the permutation yA may be read off

from this matrix by reading from left to right inside the sequences and from bottom

to top up the columns, followed by left to right along the successive columns.

For example if the matrix (αo ) is

12 0 3\

(3.1) 1 2 0

\2 1 1/

then the psuedo-matrix associated to A is

(5,4) 0 (3,2,1)N

(8) (7,6) 0

(12,11) (10) (9)

which gives the permutation

yA = (l2, 11,8,5,4, 10,7,6,9,3,2, 1).

Let / be the length function on the symmetric group W.

3.2. LEMMA. Maintain the notation above. If A = (a^) e M(n, r), then yA is the longest

element wA of the double coset corresponding to A and

V̂ 1

PROOF. We shall use the notation given at the beginning of Sections 1 and 2. For

simplicity, we denote by N the number given by the summation above. That is,

N= Σ aijaki -
l<i<k<n
l<j<l<n

Note that the subset {(i,;), (fc,/)}, where \<i<k<n, \<j<l<n, is an antichain and

the sum is taken over all antichains of length 2 in [1, n ] 2 .

Let w be an element in the double coset WλwAWμ corresponding to A. Thus,

λ = τo(A) and μ = co(A). For any ί,j, fc, / such that 1 <i<k<n and \<j<l<n, we pick

ceRfnwiR1-) and deR£nw(Rγ). Clearly, there are N ways of making this selection.

Let a = w~x{c), b = w~1{d). Then i<k andy</ imply w(a)<w(b) and a<b, respectively.

So there are at least N pairs (α, b) satisfying 1 < a < b < r and w(a) < w(b). In other words,

we have

(3.3) N<\{a,b)\l<a<b<r,w(a)<w(b)}\.

On the other hand, it is well known that
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Γ j = \{(a,b)\l<a<b<ή\

= I {(a, b)\a<b, w(a)>w(b)} \ + \ {(a, b)\a<b, w(a)<w(b)} \

Therefore, we have /(w):^") — N, and in particular, l(wA) <{*£) — N By the uniqueness
of the longest element of a double coset, we only need to prove that yA e WλwA Wμ and

i(yA)=(n

2)-N.
Let C^Ci^A) denote the set of members of the sequence ciy We note from the

definition of yA that

U Ca = Rt and U CkJ
1 <k<n

fny(R'j) and hence a = \RThus, we have Cij = RfnyA(R'j), and hence aij = \RinyA(Rf)\9 which proves that
yAeWλwAWμ by [JK, 1.3.10]. Note that y^C^A^C^A*).

We now prove that yA has the required length. Consider a, b such that 1 <a<b<r
and yA(

a)<yA(b) There exist i,j such that j^(α)e CfJ and k, I such that yA(b)eCkl. Note
that αeCy^Λ') and beC^A1). As α<Z?, we have eithery'</ or j=l and />fc while as
yA{a)<yA{b) we have either i<k or i = k andj>l. These together imply i<k andj</.
Thus |{(a,b)|a<b,^»<^(^)} |<^V. However \{(a,b)\a<b,yA(a)<yA(b)}\>N by
(3.3). Therefore, we have | {(α, ft) | Λ< 6, ̂ («) <^(*)} I = N •

The shortest element wA of the double coset corresponding to A may be constructed
similarly. Given Λ=(αl7) as before, we define numbers

ί n n

br.=br.(A)= X X akl- YJail
fc=l ί = l i = j

and increasing sequences

crj=crj(A) = (bij+ 1, . . ., bij + dij).

We combine these sequences into a permutation

J Λ = ( C 1 1 ? ? £«1? C12> ' Cn2-> J C l«? J CMM)

Note that the element yA could be easily read off from the pseudo-matrix (cj) by
reading from left to right inside the sequences and down the successive columns.

For example if the matrix (a^) is given as in (3.1), then the associated pseudo-matrix
for the shortest element is
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(1,2) 0 (3,4,5)N

(6) (7,8) 0

\(9, 10) (11) (12)

Reading off from this matrix, we obtain

^ = ( 1 , 2 , 6 , 9 , 1 0 , 7 , 8 , 1 1 , 3 , 4 , 5 , 1 2 ) .

Similarly to Lemma 3.2, we have the following.

3.4. LEMMA. Maintain the notation above. If A=(aij)eM(n,r), then yA is the

shortest element wA of the double coset corresponding to A and

/(*£) = Σ «y««.
1<i<fc<w
ί<Kj<n

The proof of the lemma is similar to that of Lemma 3.2. We leave this to the reader.

3.5. PROOF OF THEOREM 2.1. By Lemma 3.2, it is easy to see that, given a matrix

AeM(n) and a chain C in [1, «] 2 , the subset of [1, r] consisting of the numbers whose

images under wA are in the sets C^A) where (i,j)eC has the cardinality $C(A) and the

natural order reversed by wA. This implies that the number $k(A) defined in Section 1

is the maximal cardinality of a subset of [1, r] which is a disjoint union of k subsets

each of which has its natural order reversed by wA (compare the proof of (1.2)). Therefore,

by [Lul, 7.1], we have σ(A) = σ(B) (cf. Lemma 1.2) if and only if wA~LRwB. Now, our

result follows immediately from Lemma 2.2. •

3.6. COROLLARY. Fro any A, BeM(n) and integer />0, we have

PROOF. Clearly, it suffices to prove the case where /= 1.

Let F be a A>chain family satisfying sk(A) = sF(A). We may extend the chains in

F to obtain a /c-chain family Ft such that F(^Fί and \Fίr\Δ\=k9 where Δ is the

diagonal {(i, i) | ie [1, ή]} of [1, ή\2. For example, if k= 1, we may take Fί to be a chain

of length In — 1 starting with (n, 1) and ending at (1, ή). So we may assume F= F1 without

loss of generality. Thus we have $k(A + In)>sF(A + In) = sk(A) + k.

On the other hand, if Fr is a /r-chain family satisfying zk(A + /„) = zF{A + /„), then

$k(A + Q<zF{A) + k<zk(A) + k. Therefore, we have $k(A + In) = $k(A) + k for any A.

Now the assertion follows immediately from 2.1 and 1.2. •

Let M(n)o = {A=(aij)eM(n)\aii = 0 for some /}.

3.7. COROLLARY. The matrix set M(n)0 is a union of two-sided K-L cells.

PROOF. Since



426 J. DU

^ r)\(M(n, r-n

where M(n,r — ή) + In denotes the set consisting of A + In (AeM(n,r — ή)), and

M(n,r — n) + In, is a union of two-sided K-L cells by Corollary 3.6, our assertion

follows immediately. •

4. An application to quantum groups of type A. Let U be the Drinfeld-Jimbo

quantized enveloping algebra over the field A = Q{t) associated with the special linear

Lie algebra slπ and U the modified form of U (see [Lu2, chpt. 23]). It is well-known

that, for each r > 0, there is an algebra homomorphism from U to the #-Schur algebra

έfq(n, r). This induces a homomorphism

with the following property: If B denotes the canonical basis of {/, then αr sends an

element in B either to a K-L basis element in B(n, r) (2.0) of the #-Schur algebra or to

zero (cf. [Gr, 3.5]). We label the elements of B by the index set M(n)0:

B={ΘA\AeM(n)0}

such that the labeling is compatible with that of K-L basis of ^q(n, r), that is, if ocr{ΘB) = θA

then A = B. Such a labelling can also be easily obtained via the canonical basis of the

corresponding quantum coordinate algebra (see [Lu2, 29.5] and [Du3, 3.6]).

We now can describe the two-sided cells of B in terms of the combinatorics in

Section 1.

4.1. THEOREM. Let ~LR be the equivalence relation on B introduced in the introduc-

tion. Then we have ΘA~LRΘB (A, BeM(n)0) if and only ifσ(A) = σ(B).

PROOF. If ΘA~LRΘB, then by [Lu2, 29.4.1-2] ΘA, ΘBeB\_λ~\ for some dominant

weight λ. (The definition of B[λ] is in [loc. cit., 29.1.1].) However, the image of B\_λ~\

under some αr is a two-sided cell of the K-L basis B(n, r) of ^(n, r). This is seen from

the definition of B[λ] and the facts that the basis B(n, r) can also be defined by the

canonical bases of those tensor products which define B and that the action of U on

the tensor products factors through αr. (One can actually define B(n, r)[λ] similarly.)

Therefore, ΘA~LRΘB if and only if θA~LRθB, i.e., A~LRB and the result follows from

Theorem 2.1. •

We end the paper with an example (compare Example 2.4).

4.2. EXAMPLE. Let U= U{*\2) and E.F.K.K1 the generators. With the notation

in [Lu2, 25.3.1] we have

B= {Eia)\ _nF
(b\ Fib)\nE

ia) I α, ft, neN, n>a + b} .

Note that
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i ) {a) for n =

We define

' - - f »>•• f o r a n y λ
1s(^) i l ' ii A — u , \v y

The element (9^ is well-defined by (*) when x=y = 0. So £={6>J,4eM(2) 0 } . The

two-sided cells B[n] of I? corresponds bijectively to the elements n in N. By the previous

theorem we have

The results agree with those given in [Lu2, 29.4.3] which are obtained in a different

way.
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