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Abstract. We consider complete hyperbolic surfaces with punctures and holes. The
aim of this paper is to show that there exist pairs of hyperbolic surfaces of any genus
not less than 56 which are iso-length-spectral but not isometric, for arbitrarily fixed
numbers of punctures and holes.

1. Introduction. In this paper, a hyperbolic surface is a complete orientable
2-dimensional Riemannian manifold with constant curvature — 1. A hyperbolic surface
of genus g with m punctures and n holes and with no boundary is said to be of type
(g, m, ή). Such surfaces are said to be of finite type. The length spectrum Lsp(M) of a
hyperbolic surface M of finite type is the collection of the lengths of closed geodesies
on M with multiplicities. As a set, Lsp(M) is discrete in R, and each multiplicity is finite.
Two hyperbolic surfaces Mx and M2 of finite type are said to be iso-length-spectral, or
simply, isospectral, if Lsp(M1) = Lsp(M2).

The following question is classical: "Does isospectral imply isometric?", and we
refer to this problem as the iso-length-spectral problem. In the case of closed hyperbolic
surfaces, the answer is negative. The first counterexamples were given by Vigneras [V]
by arithmetic methods. Later, Sunada [S] found a more general approach to isospectral
manifolds, and using this technique Buser [Bl] and Brooks-Tse [BT] showed the
existence of counterexamples for any genus >4. However the problem is unsolved in
the case of genus 2 and 3. On the other hand, Wolpert [W] showed that the answer is
affirmative for generic hyperbolic surfaces, that is, the set of hyperbolic surfaces whose
geometry is not uniquely determined by its length spectra is contained in a real proper
sub variety in the Teichmuller space. For further information we refer the reader to
[B2]. In this paper, we consider the case of non-compact hyperbolic surfaces of finite
type. We denote by Jt(g, m, ή) the moduli space of hyperbolic surfaces of type (g, m, n),
that is,

Jί(g, m, n) = {M: hyperbolic surface of type (#, m, ri)}/~ .

Here M~M' means that M is isometric to M'. We denote the equivalence class of M
by [M]. We define the subset jV(g, m, ή) of M(g, m, ή) as follows: an element [M] of
Jί(g, m, ή) is contained in Jί(g, m, ή) if there exists another element [M'] such that
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Lsp(M) = Lsp(M'). The aim of this paper is to show the following:

THEOREM 1.1. Let g, m andn be nonnegative integers. There exists a constant ceN
such that Jf(g, m, n) is nonempty for every g>c and for any m and n. Furhter, c is not
greater than 56.

REMARK. On the other hand, it is known (cf. [H], [BS]) that ^(1,1,0) =
Jf{\, 0, 1) = Λ φ , m, ή) = 0 , where m + n = 3.

In the proof of the theorem, Sunada's construction for isospectral manifold and
the Cay ley graph play important roles, as we explaine in Section 2. Section 3 is devoted
to the proof of the theorem.

ACKNOWLEDGMENTS. The author wishes to express his heartfelt gratitude to
Professor Masahiko Taniguchi, Professor Hiroshige Shiga and Professor Toshiyuki
Sugawa for their advice and encouragement. He is also grateful to the referee for careful
reading of the previous versions of this paper and for valuable suggestions for
improvement.

2. Sunada's Theorem and the Cayley Graph.

DEFINITION 2.1. Let G be a finite group with two subgroups Hί and H2. We call

(G, Hί9 H2) a Sunada triple if the following conditions hold:
(a) Hί is not conjugate to H2 in G.
(b) For every conjugacy class {gr}G in G of g e G,

The Sunada triple in the next lemma is used in [BT] to construct isospectral pairs
of compact hyperbolic surfaces of genus 4. This is also the only example of Sunada
triples used in this paper.

LEMMA 2.2 (cf. [ B T ] , [B2]). Let G = SL(3, 2), the group of all 3 x 3 matrices with

coefficients in Z2 and with determinant 1. We consider two subgroups

1

0

0

* *\

* * / .

and H2 =
ί r

•
0

*

*

°\1
•

with cardinalities #// ι=24 and with indices [G: # J = 7 (/= 1, 2). Then (G, Hu H2) is a
Sunada triple. Further, let A, B and C be the following elements of G:

A = B = C=
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Then the following holds:

(a) A4 = B3 = C7 = I(I is the unit matrix), C=ABA'^B'1.

(b) The powers /, C,.. .,C6 form a set of right coset representatives for Ht\G

(1=1,2).

(c) A and B generate G.

Now we describe the fundamental theorem to construct isospectral surfaces.

THEOREM 2.3 (Sunada [S], Buser [B2]). Let (G, Hl9 H2) be a Sunada triple and

M a hyperbolic surface of finite type. Suppose that G acts on M as orientation-preserving

isometrίes and the actions of H1 and H2 are free. Then the quotient surfaces H1\M and

H2\M are isospectral.

For a given finite group G, we will construct a hyperbolic surface, by combinatorial

method, on which G acts as orientation-preserving isometries. This method is explained

in [B2]. To this end, we need the following:

DEFINITION 2.4. A graph consists of finitely many vertices and finitely many

oriented edges joining two vertices.

(I) Let G be a finite group with generators Aί9..., An which are not necessarily

pairwise distinct and may contain the unit element. The Cay ley graph <£ = (&(G: Aί9...,

An) of G with respect to the generators Al9 . . . , An is defined as follows:

(a) There exists a bijective map w from G to the vertex set of <&.

(b) For any pair (g, g')eGx G, let Anι,..., Ank be the subsequence in the sequence

Aί9..., An of all generators A satisfying g'= gA. Then the two vertices w{g) and w(g')

are joined by exactly k edges oriented from w(g) to w(g'). Each of these edges is said

to be of type An. for /= 1, . . . , k.

(II) For each subgroup H of G, H\G denotes the right quotient set and [#]

d e n o t e s t h e r i g h t c o s e t o f g e G. W e d e f i n e t h e quotient graph H\& = H\9(G :Al9...9

An) as follows:

(a') There exists a bijective map w from H\G to the vertex set of H\&.

(b') For any pair (Lglίgl)e(H\G)x(H\G), let Ani,...,Ank be the sub-

sequence in the sequence Aί9 ..., An of all generators A satisfying [#'] = [_gA~]. Then the

two vertices w(g) and w(gf) are joined by exactly k edges oriented from w(g) to w(g').

Each of these edges are also said to be of type An. for /= 1, . . . , k.

EXAMPLE 2.5 (cf. [B2]). Let (G, Hl9 H2) and A9 B, C e G be as in Lemma 2.2. The

quotient graphs H^^iG: A, B) (ί= 1, 2) are given in Figure 2.1. We put the suffix k

for the vertex corresponding to the right coset [C f e].

Let Δ = {(x9 y)eR2\x2+y2<l} be the unit disk with the hyperbolic metric

ds2 = 4(dx2 + dy2)/(l-(x2+y2))2. A geodesic in A is a half-circle meeting dΔ =

{(x, y)εR2\x2+y2=\} perpendicularly at both ends.

Let c be a geodesic arc or a closed geodesic on a hyperbolic surface. We denote by
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FIGURE 2.1.

L(c) the hyperbolic length of c.

DEFINITION 2.6. A geodesic polygon P is a simply connected closed subset of A

whose relative boundary consists of finitely many geodesic arcs. A vertex of P is either

an intersection point in A of boundary geodesies or a connected component of PndA,

where F is the closure of P in R2. Moreover, a vertex is said to be an i-vertex, p-vertex

and h-vertex if it is contained in Δ9 contained in dA as a point, and contained in dA as

an interval, respectively. A boundary geodesic arc joining two vertices of P is called a

side of P.

Let G be a finite group. Now we will explain how to paste some copies of a geodesic

polygon with respect to a Cayley graph of G to obtain a hyperbolic surface on which

G acts as orientation-preserving isometries. First, we take a fundamental polygon P of

G, which is a geodesic polygon with In sides equipped with the following properties.

(1) No sides connect two vertices contained in dA.

(2) The sides of P have a division into pairs U " = i ( ^ ' ^} satisfying L(ei) = L(ei)

for every /. Moreover, if L(ei) = L(ei) = oo, the end points of et and et contained in dA

are contained in the same vertex of P.

(3) There is a map Ψ: {1,...,«} -+G,i\-> Ψ(i) = : Ai9 such that {Ai}^1 generate G.

(4) If L(et)< oo, we parameterize et and et by arc length with positive orientation

as parts of the boundary of P: e^s), e^s), se[0, L^eJ]. If L(^ )=oo, one of the end points

of et and et are contained in A from (1). Therefore we adopt these points as start points

and parameterize et and et by arc length: e^s), et(s), seR+ u {0}.

Next we prepare #G copies {Pg}geG of the fundamental polygon P of G taken as

above. The sides e-x and ei oϊ Pg are denoted by e^Pg] and ^ [ P J , respectively. We glue

the copies together according to the Cayley graph <S = (S(G\ Al9..., An), that is, if
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' = gAi (g, g' G G), then Pg is pasted to Pg. via the following identification of sides (1 < i<n)\

, Lfo)]), if

+ u {0}), if Uet)= oo .

Note that we paste the copies together preserving each orientation. The resulting surface
is denoted by (P, <&). Since Au . . . , An generate G, the Cayley graph is connected and
hence the surface (P, 9) is connected.

DEFINITION 2.7. A point of M=(P, 9) is called a vertex of M if it corresponds
to an /-vertex of some Pg. Further, the angle at a vertex of M is denned as the sum of
the angles which come together at the vertex. A singular point of M is a vertex of M
whose angle is different from 2π.

The surface M=(P, <&) has a smooth hyperbolic structure (M is said to be smooth,
for short) if and only if M has no singular point. If M=(P, &) is smooth, G naturally
acts on M as orientation-preserving isometries; indeed, for each geG, the natural
isometry Ph-• Pgh for every heG can be extended to an isometry on M.

Similarly, for every subgroup H of G, we can obtain a surface M' = (P, H\&) by
gluing together #(H\G) copies {P[g]}[θ]eH\G °f P with respect to the quotient graph

= H\<&(G:Aί9..., An). Now the following lemma is immediately.

LEMMA 2.8. Let G be a finite group and H a subgroup ofG. Suppose that M=(P9 <g)
and M' = (P9 H\&) are smooth for a suitable fundamental polygon P of G. Then M' is
isometric to the quotient surface H\M.

Let (G, Hu H2) be a Sunada triple. Suppose that M=(P, &), Mt =(P, Ht\lf) and
M2 = (P, H2\&) are smooth for a suitable fundamental polygon P of G. Then Mγ and
M2 are isospectral by the above lemma and Theorem 2.3.

3. The Proof of Theorem 1.1. We take (G, Hl9 H2) as in Lemma 2.2. Let ft, fc, p,
q, s and t be integers such that heN, k,p,seNu {0} and q, t e {0,..., 6}. For every ft,
fc, p, g, s and ί as above, a fundamental polygon JP of G satisfying the following conditions
can be constructed:

( i ) M={P, 9), Mx = (P, Hx\9) and M2 = (P, H2\9) are smooth, and hence Mγ

and M2 are isospectral.
(ii) Mx and M2 are of type (gf, m, n); where

(3.1)

(iii) Mx is not isometric to M2.
In (3.1), /?, ^, 5 and t are uniquely determined for every pair m, neTVu {0}. Since

7ft + 3fe exhaust all integers greater than 18 and since 3(q +1) + 1 < 37, every triple (#, m, n)
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(g>56; m, ne7Vu{0}) can be written as in the form (3.1). Therefore the assertion of
Theorem 1.1 is proved. In the following, we construct a fundamental polygon P of G
satisfying the condition (i), (ii) and (iii) above.

3.1. Fundamental construction of P. By abuse of notation, the length of a geodesic
c is also denoted by c whenever there is no confusion. Put N=4h + k+p + q + s + t+ 1.
Take arbitrarily xeR+, which will be determined later in the argument. Let Of be a
geodesic triangle whose two edges have the same length x with inner angle 2π/N (see
Figure 3.1). Let y be the remaining edge of Sf and φ a included angle between x and
y. Note that y and φ go to oo and 0, respectively, when x goes to oo. Further we
construct geodesic polygons ^ ( 1 ) , ^ ( 2 ) , 2' and @(3) as in Figure 3.1. By elementary
arguments in hyperbolic geometry, it is easily seen that θί9 θ2, θ3 and a are uniquely
determined by y (and hence by x). For example, sinh a = tanh(y/2) and cos θ3 = tanh2(>>/2).
Therefore θu θ2 and θ3 go to 0 when x goes to oo.

/7-vertex

yβ

y/2

FIGURE 3.1.

cut open

FIGURE 3.2.
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Now take arbitrary aeR+ to obtain a F-piece Yo whose boundary geodesies have
lengths α, α and z (see Figure 3.2). Here a Y-piece is a connected hyperbolic planar
surface whose boundary consists of three closed geodesies. Let β be a unique simple
geodesic arc perpendicular to both α, and let F be one of the end points of β. We take
a simple geodesic arc γ' which connect F and z and are perpendicular to z. We cut Yo

open along β and y' to obtain a geodesic heptagon $ (see Figure 3.2). We obtain a
geodesic octagon ^ ( 4 ) by pasting (f and 3)' together along z.

Now we prepare the following N geodesic polygons;

Ah copies of 3)

k copies of

p + q copies of
s +1 copies of

and ^ ( 4 ) . Paste them together along x in this order to obtain a geodesic polygon P (see
Figure 3.3). We name the sides of P in the negative direction of the boundary of P:

FIGURE 3.3. (The case of h = k=p = q=s = t=l.)
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<*1,β1,ΰi9β1,...,<*h,βh9ah9βh,

δl9 δu . . . , <5p + g, δ
p+q

7, α, β, ά, /?, 7 .

Now we obtain a division of the sides of P into pairs {α1? αx} u u {α, α} u {/?, β} u {7, 7}

satisfying L(α1) = L(α1) and so on.

3.2. Correspondence between the sides of P and the generators of G. We need

the following lemma, which is immediately proved by induction on /.

LEMMA 3.1. For any leN and for any beZ such that bψO (mod 7), there exist

μl9..., μι G Z which satisfy

(1) μ i # 0 ( m o d 7 ) (1 </</),

(2) Σ!-i/Ίs

Let μu ..., μk+q+t be integers satisfying the conditions in the above lemma for the

case l=k + q + t and b= — 1. For each side of P, we assign an element of G as follows:

«!!-•/, βx H+ / , . . . , αΛH-/, j8Λh->/, y 1 ι - > C ' V . . , y f c ^ C ^ ,

η^I,..., η,\-+I9 ηs + ί^Cfik + ̂ \...9 ηs+t

y h-• C, α 1—• J4, β\-+ B .

Here / is the unit matrix and ̂ 4, 5 and C are elements of G as in Lemma 2.2. We

remark that all assigned elements of G generate G because A and B alone generate G.

Now we obtain a fundamental polygon P of G.

3.3. M is smooth. We obtain the surface M by gluing together %G copies {Pg}geG

of P with respect to the Cayley graph (S = (S(G:/,...,/, C μ i , . . . , C k + β + t , C, 4, £). Here

we show that M has no singular point. Take the vertex υγ of P between oc1 and y, v2

between α and 7, and t;2 + / between yt and y£ for 1 <i<k9 respectively (see Figure 3.3).

The vertex in Pg corresponding to vt is denoted by v^g) (1 <ί<k + 2). We now define

an equivalence relation in the set of all /-vertices of {Pg}geG

: t w o /-vertices are equivalent

if they are identified in M. The equivalence class of an /-vertex v is denote by [u].

Obviously, the equivalence classes are in one-to-one correspondence with the vertices

of M.

LEMMA 3.2. The set of all i-vartices of {Pg}geG has the following decomposition:

(3.2) ( U Ό>xto)]) u ( U fofo)]) u ( U iΛto)])



ISO-LENGTH-SPECTRAL PROBLEM FOR COMPLETE HYPERBOLIC SURFACES 569

where <C> is the cyclic group generated by C.

PROOF. First we determine the equivalence class [v>ι{g)] for some geG. The

right-hand side a1 of the /-vertex v^g) of the copy Pg is glued to the side δί1 of PgI = Pg.

Therefore the /-vertex v^g) is equivalent to the /-vertex of Pg between αx and βx. We

continue this procedure to obtain the /-vertices equivalent to vx(g) (see Figure 3.4). This

procedure finishes when the side γ of PgC^k+q+t is glued to the side γ of Pg; note that

7 = 1

holds. Similarly the equivalence classes [yf(^)], 2<i<k + 2, geG are determined in view

of the facts that ABA ~ 1B~x = C and that Cμj has order 7 for every je {1, . . . , k}. Note

Type I p
Λ gC*l +M2 + M3

Type II Type III

gA

FIGURE 3.4. (The case of h = k=p = q=s = t=\.

ΓgAB
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that %[vϊ(g)] = N9 #[ι>2(0)] = 5 and #[i;i(gf)] = 7 (ΐ = 3,.. ., k + 2) for any geG. One can
easily see that v^g) is equivalent to Vj(g') if and only if i=je{\,2} and g = g\ or
i=je{3, . . . , k + 2} and g'eg(C}. Therefore the equivalence classes appearing in (3.2)
are pairwise disjoint.

On the other hand, an easy calculation reveals that these equivalence classes exhaust
the set of all /-vertices of {Pg}geG, because the latter set has cardinality #G(N+k + 5).

D

The equivalent classes [1^(0)] (geG) are said to be of type I, [t>2(0)] a r e °f tyPe II
and Iviigj] (3<ί</c + 2) are of type III, respectively. A vertex of M corresponding to
an equivalence class of type I is also said to be of type I, and so on. We show that the
angles at the vertices of M are always equal to 2π. It is true for a vertex of types II
and III. By a suitable choice of x, it is also true for a vertex of type I, as can be seen
from the following observation. The angle is greater than 2π when x goes to 0 because
N>5. On the other hand, φ, θί9 θ2 and θ3 go to 0 and hence the angle goes to 0 when
x goes to 00.

3.4. Mx and M2 are smooth. Recall that we obtain the quotient surfaces
M~Ht\M (ι=l,2) by pasting together seven copies {P[g]}[g]eHi\G = {P[CJ]}^o of P
with respect to the quotient graph Hι\^. In this and the next subsections, we only
deal with the surface Ml9 but the same argument works for M2. Here we prove that
for any ηeH^lI} the action of//onM has no fixed point. Indeed, otherwise a fixed
point must be a vertex of M. Therefore it suffices to show that Hxr\Gv = {/} for every
vertex υ of M, where Gv is the stabilizer of v. By Lemma 3.2 every vertex v corresponds
to some equivalence class [v^g)]. Under this correspondence, τeGv if and only if v^xg)
is equivalent to v^g). Therefore, τ = I and hence Gv= {/}, if v is of type I or II. If v is
of type III, τeGv if and only if τgeg(C}. In this case, Gv = g(C}g~1. Because the
cardinality of <C> is 7, so is g(Cyg~x. Since %GV = Ί and since ##^ = 24, we obtain
# i n G υ = {I}.

3.5. Types ofM1 and M2. We determine the number of punctures ofM1. Observe
that each /?-vertex of @\2) a P[CJ]9 1 <i<p, 0<y<6, form a puncture by itself. On the
other hand, the seven p-vertices of {Sι\2)czP[CJ]}^=0 form a puncture for every
p+ 1 <i<p + q> Therefore Mx has Ίp + q punctures. Similarly, Λ/\ has Ίs + t holes. Then
an elementary calculation of the Euler number shows that the genus of Mγ is equal to

3.6. Mx and M2 are not isometric. Now we explain how some modification, if
necessary, on P makes Mί and M2 non-isometric. We consider the quotient surface
Mo = G\M with singular points which we obtain by pasting together the sides of P
with respect to the quotient graph G\&. We remark that α and α (resp. β and β) yield
a simple closed geodesic, which we also denote by α (resp. β). One can see, from
[G: Hi] = 1 (/= 1, 2), that Mx and M2 are seven sheeted covering surfaces of Mo. There
are k singular points on Mo, all of whose angles are 2π/7. A curve c on Mo traversing
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singular points are also said to be a geodesic on M0 if c is a piecewise geodesic on the

surface M 0\{singular points of Mo} and if the both two angles made by two geodesic

segments of c at each singular point are equal to π/7. Note that every geodesic on Mo

in this sense can be lifted to a geodesic on Mx and M 2 .

From now on, / stands for 1 or 2. Here we explain how the pattern of linkage of

the lifts of α on Mt can be seen from the pattern of linkage of the edges of type B on

the graph H>\^. First observe that each edge ά of P[g] on M{ is a lift of α. Let K([#])

be a vertex of P[g] between α and β. Then vertices w([g]) and w([#']) are joined by an

edge of type B oriented from vP([#]) to w([#']) on the graph Ht\9 if and only if the

edge β of P[g] and the edge β of P[gΊ are glued together on Mi9 that is, the vertices

V(ίgD and F([#']) are joined by the edge α (of P[g]) on M t .

From the above observation and from Figure 2.1, one can see that the seven lifts

of α on M( yield three simple closed geodesies αi5 α} and α". Here we assume that L(άf) = α

and L(άJ) = L(α'/) = 3α. If we take α sufficiently small, α is a unique prime closed geodesic

on Mo which has length < 3α. Then αi5 α\ and α" are characterized as the prime closed

geodesic of length < 3α on M f. Similarly, the lifts of β on M\ correspond to the edges

of type A of the graph H>\^. We look at the two lifts of β on M{ which connect dc£

with the union αj u αJ'. They are common perpendiculars between a£ and ά'f u α". On Mγ

the two perpendiculars form a closed geodesic. On the other hand, it is not the case on

M 2 . Therefore, Mγ and M2 are not isometric, if the following condition (*) holds:

(*) The closed geodesic β is a unique geodesic arc of length β on M o which is

perpendicular to α at both ends.

Indeed, we have the next lemma.

LEMMA 3.3. A suitable Fenchel-Nielsen deformation ofM0 satisfies the condition (*).

Here a Fenchel-Nielsen deformation is defined as follows.

DEFINITION 3.4. Let S be a hyperbolic surface which may have singular points.

Let c be a simple closed geodesic on M o traversing no singular point. The Fenchel-Nielsen

deformation of S with respect to c is defined as follows:

First cut S along c to obtain a (possibly disconnected) surface with geodesic

boundary. Each of the two sides of the cut is equipped with the orientation induced

by that of S. Next rotate one side by length t relative to the other side in the negative

direction. Then glue the sides in their new position to obtain a new hyperbolic surface St.

PROOF OF LEMMA 3.3. We consider the Fenchel-Nielsen deformation (M0)t of Mo

with respect to z. Let s/t be the set of all geodesies on (M0)t which are perpendicular

to α at both ends. Let 3&\ be a subset of s/t all of whose elements intersect z, and % a

subset of s/t all of whose elements have length β. The assertion of Lemma 3.3 follows

if there exists a real number / such that % = {β}. Since one can easily see that ^\{j5} cz ̂ f ,

the condition %={β) is equivalent to the condition 0Stn% = 0.

Now take a branched Riemannian covering map φ0: A -> Mo. Fix a lift α 0 on A
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of α. For a lift z of z, we decompose A into a disjoint union A1L\zUA2, where the half

space A x contains α 0. We define a bijective map φ? t: A -> A (teR) as follows: φ?yt(ξ) = £

for ξeAί9 and (?£,(£) for ^ G ^ 2 is
 t r i e image of £ of when we slide A2 relative to Aγ by

length ί. The sliding-direction is defined in the same manner as in Definition 3.4. The

map φ?t is not yet defined on z, but one can define it suitably as the following arguments

work well. Next, for any ξ e A, let {zί9..., £,-} be the list of all lifts of z which separate

α0 from ξ. Moreover, we assume that zx separates α0 from z 2 , . . . , zj9 ξ, while z2 separates

α0 and zί from z 3 , . . . , zj9 ξ9 and so on. Needless to say, the list may be empty. Now

we define a map on A as φt(ξ); = φ~ito oφ^t(ξ). Then φt: A->A is a bijective map.

With the trivial map ft: M0-+(M0)t, we now obtain a branched Riemannian cov-

ering map Φt'' = ft0Φo°(ψt)~i'' A->(M0)t so that we have the following commutative

diagram:

Mo —+ (Mo\.
Jt

With the above preparation, we define a bijective map Φt: ^ 0 -> ̂  as follows: For

an element / G ^ 0 , we take a lift Γwith the starting point on α0. Then Γis a unique

common perpendicular between α 0 and another lift α'o of α. Note that /intersects distinct

lifts of z even in number. Let Tt be the unique common perpendicular between α 0 and

φ^α'o). Then we define Φt(l): = φt(ΐt). Observe that this map is well-defined (i.e., the

definition does not depend on the choice of the lift Γ) and that this map is bijective. It

is easily seen that the length L{Φt(l)) depends real analytically on t. Because L(Φt(l)) -• + oo

when t -• + oo, it is not a constant. Moreover, we remark that the subset {le&t\ L(l) < R]

of 3&t is a finite set for any constant ReR+9 in view of the discreteness of the covering

transformation group of φt. Therefore, % = {β} holds for a generic real number t\ where

"generic" means that the set of all real numbers t such that %\{β} Φ0 is a discrete

subset of R. •

Now we take a real number t satisfying \t\<z and % = {β}. We modify the

construction of P as follows: Paste $ and <2>' along z after sliding them by length / in

a suitable direction. This new fundamental polygon P satisfies the conditions (i), (ii)

and (iii) above. Therefore we complete the proof of Theorem 1.1.
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