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Abstract. We construct a one-to-one correspondence between the equivariant

diffeomorphism classes of smooth S/?(2, /?)-actions on the standard 4-sphere without fixed

points and the equivalence classes of certain pairs of Λ-actions and maps defined on the

circle subject to five conditions. Consequently, we show that there are infinitely many

smooth Sp(2, i?)-actions on the space without fixed points up to equivariant dίffeomor-

phisms.

Introduction. Asoh [2] classified smooth SL(2, C)-actions on S3 topologically,
and Uchida [7] classified SO0(p, ^-actions on Sp+q~1 for p, q > 3 such that the restricted
SO(p) x SΌ(<7)-actions are standard. Each of their actions is characterized by a pair
(φ,f) satisfying certain conditions, where φ is a one-parameter transformation group
on S1 and / : Sί-^P1(R) is a smooth function. The pair, introduced by Asoh and
improved by Uchida, is constructed by using the following two facts: first, the restricted
maximal compact subgroup action has codimension one principal orbits and secondly,
the fixed point set of the action restricted to the principal isotropy subgroup is
diffeomorphic to S1.

In this paper, we shall study smooth Sp(2, /?)-actions on S* without fixed points.
Since Sp(2, R) is simple and contains U(2) as a maximal compact subgroup, it follows
that the principal isotropy subgroup of the restricted ί/(2)-action is conjugate to a circle
T. Hence the £/(2)-action has codimension one principal orbits, but the fixed point set
of the restricted Γ-action is diffeomorphic to S2. Thus we are in a situation slightly
different from [2] and [7]. Instead of the pair, we shall construct a triple (S, φ, f)
satisfying the conditions defined in §4, where S is diffeomorphic to Sί in S2, φ is a
one-parameter transformation group on S and / : S-^P^R) is a smooth map, and show
that the triple is finally represented by a pair (φ\ /') defined in §6.

The author wishes to express his gratitude to Professor Fuichi Uchida who offered
many helpful suggestions, advice and encouragement during the course of this work.

1. Preliminaries. In this section, we give relevant known facts and basic prop-
erties for later convenience.
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1.1. Sp(2, R) and sp(2, R). Let Sp(2, R) be the real symplectic group of order 2

defined by

,R) = {geM(49R)\gJtg = J} for J=( _° ^ V

where Λ/(4, /?) denotes the set of real 4 x 4 matrices, ιg the transposed matrix of g and

/2 the identity matrix of order 2. Sp(2, R) contains U(2) as a maximal compact subgroup,

which is naturally embedded in SO(4) by

The Lie algebra sp(2, R) of S/?(2, Λ) is

(1.1) sp(29R) = {AeM(4,R)\AJ+JtA =

A3 -ιA
Aι are 2 x 2 matrices with A2 and A3 symmetric }• .c^

We can take a basis of sp(2, R) as follows:

°V-/2 0 / ' V-P Oy' 3 \0 Rj' \Q 0

Vo - β / ' Vβ o/ ' Vo -ij' 8 V/2 o
P o \ / O P

o - P ) ' El0={p o
where P, β, Λ are 2 x 2 matrices defined by

-(ί .) «-(?ίM-°,ί
respectively. The Lie algebra u(2) of ί/(2) is given by

where < > denotes the linear subspace generated by the elements in the angle bracket.

1.2. The 5-dimensional standard representation of Sp(2, R). We denote the inner

product on M(4, R) by

(X, Y) = trace(JTy) for X, Ye M(4, R),

and define an action of Sp(2, R) on M(4, R) by

(1.2) g-X = gXtg for geSp(2,R), XeM(4,R).
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Then M a l t = { I e M ( 4 , R)\tX= -X) is an Sp(2, /?)-invariant subspace of M(4, R) and

has an orthonormal basis

R 0 \ _ 1 / 0 R>

_ 1 _ 1 _ 1 _ 1

2 2 ' 4 2 3 ' 5 2 4 ' 6 2 1 '

Since e6 = (\/2)J, the space R5 = (el9 e29 e3, e4, e5} is Sp(2, /?)-invariant. We call this

space R5 the standard representation space of Sp(29 R) and the action (1.2) the standard

action of Sp(2, R) on R5.

Then R5 = R1®R2 and we have the following properties:

(1.3) The standard Sp(2, /?)-action on R5 leaves invariant the quadratic form

for any X=vίeί + v2e2 + wίe3 + w2e4. + w3e5 of R5.

(1.4) Rx and R2 are ί/(2)-invariant subspaces. Moreover, U{2) acts on S(Rt) (/= 1, 2)

transitively and

S(RX) = U(2)/SU(2), S(R2) =

where 5r(Λί) = {Ar€Λi| ||jr|| = 1}. The normal subgroup C/(l) of (7(2) acts trivially on R2

and so does SU(2) on Rx.

REMARK 1.5. The above 5-dimensional representation of Sp(2,R) is a homo-

morphism from Sp(2, R) onto SO0(29 3) and sends J to

-I2 0

0 I3

1.3. Subgroups and subalgebras. Put J?3 = <e1? e2, e3}<=:R5. Let H(a, b9 c) (resp.

i)(a9 b, c)) denote the isotropy subgroup (resp. the isotropy subalgebra) of the standard

action of Sp(2, R) at aex + be2 + ce3 for (α, b, c) Φ (0, 0, 0).

LEMMA 1.6. ί)(α, b, c) = < 5 l 5 5 2 , i?3, 5 4 , 5 5 , 5 6 >, wΛ r̂e in the case cφO,

B1 = bE3 + aE4 + c(Eη + £*9), B2= — aE3 + ££4 + c(-E8 + E10),

B3 = — ft^ -\-aE4 + c(ii7 — £"9) , #4 = #is3 + ££4 + c(£ 8 — £ Ί 0 ) ,

and in the case c = 0,

B1=b2EΊ + a2E9-ab(E8-Eί0), B2 = a2Es + b2Eί0-ab(EΊ-E9),

£ 3 = £ 3 , £4 = ̂ 4, £ 5 = ^ 2 , B6 = aE5+bE6.
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PROOF. Note that A e ϊ)(α, fc, c) if and only if AX+X*A = O for X= aex + be2 + ce3.

Then the result follows by routine calculations. q.e.d.

We define m(θ)eSp(2, R) (θeR) by

(1.7) m(0) = expί-y £5J = ίcoshyJ/-ί sinhy

and put M = {/w(0) | 0eΛ}. Then we have

(1.8) /w(0) (α«1

where ft' = ftcosh0 + csinh0, c^ftsinhfl + ccoshβ. Let T be the maximal torus of

SU(2) defined by

Then we have

(1.9) t = <£ 2 > , Lie(ΛΓ(Γ, Sp{29 R))) = <El9 E2, E5, E6> ,

where t and Lie(7V(Γ, 5^(2, /?))) denote the Lie algebras of T and N(T9 Sp(2, /?)),

respectively, and N(T, Sp(2, R)) the normalizer of T in Sp{2, R).

LEMMA 1.10. Sp(2, R)=U(2)MH(0,b,c).

PROOF. Let 0 e 5/7(2, R) and 0 (fo?2 + ce3) = V®WER1®R2. By (1.4) there exist

ke U(2) and ε£ = ± 1 (i = 1, 2) such that

| M > | | * 3 .

Since - | | r | | 2 + | |w| | 2= -b2 + c2 by (1.3), there exists ΘER such that

m(θ) (be2 + ce3) = ε1\\υ\\e2+ε2\\w\\e3 .

Hence m(-θ)k~1geH(0, b, c). q.e.d.

It should be noted that f| («,&,c) *)(α' b9c) = t by Lemma 1.6.

LEMMA 1.11. Let g Z?e a proper subalgebra ofsp(2, R) which contains t. Tfdim g > 6,

then g = ί)(α, fc, c) for some (a, b, c) or g = ϊ)(α, ft, c) © <ftJ£
>

5 — ̂ 6 > for a2 + b2 = c2.

PROOF. By the Ad(Γ)-action on sp(2, /?), we can first decompose sp(2, /?) into
Ad(Γ)-invariant subspaces as vector spaces:

*V(2,R)=V1®V2®V3@W,

where Kt = (E3, E4}, V2 = <£7, £ 1 0 >, F 3 = <^8, £ 9>, PΓ= <£ l 9 £ 2 , £ 5 , E6), and Ad(Γ)

acts trivially on W. Hence we see that
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Then the result follows by the Lie algebra structure of sp(2, R) and the bracket

operations on these Ad(Γ)-invariant subspaces (cf. Uchida [6, §2]). q.e.d.

By Lemma 1.6, we see that ί)(α, ft, c) = ϊ)(α', ft', c') if and only if (α, ft, c) = r(a\ ft', c')

for OΦreR. Hence from now on we rewrite H{a,b,c) (resp. ί)(α, ft, c)) as H(a:b:c)

(resp. ί)(fl: ft: c)), where (α: ft: c) is an element of the real projective space P2(R).

Next we denote the element t(τ) e U{2) by

/(τ) = expί —T-E1 | = ί cos— J/-ίsin— jE1 for τeR .

Then {/(τ) | τe/?} = U(l) is a normal subgroup of U(2) and acts on R3 by

(1.12) ί(τ) ( ^

where a' = acosτ — ftsinτ, ft^αsinτ-hftcosτ. The M- and C/(l)-actions on R3 derive

M- and ί/(l)-actions on P2(R), respectively. We call these derived actions on P2(R) the

standard actions on P2(R) and use the same notation as for the actions on I?3.

2. Standard Sp(29 faction on S4. We set S* = {XeR5 \ \\X\\ = 1}. Let Φ o :

5/7(2, /?) x S 4 -^5 4 denote the smooth Sp(2, /?)-action on S 4 defined by

(2.1) Φ 0 ( ^ Z ) = | | ^ J r | | - ^ Jr for geSp(2, R) and XeS4.

We call Φo

 t h e standard action of 5/?(2, R) on S 4. By (1.4) and (1.7), this action has

the following properties:

(2.2) The restricted £/(2)-action φ has the principal orbit U(2)/T of codimension one

and two singular orbits U(2)/T2 and U(2)/SU(2). Let F(T) be fixed point set of the

restricted Γ-action on S 4. Then F(T) = {ueί + ve2 + we3 \ u2 + υ2 + w2 = 1} cz/?3 and

where 7V(Γ, U(2))=T2uE3T
2 (cf. Bredon [3, p. 191]).

(2.3) S 1 = {ve2 + w^3 11?2 + w2 = 1} is an M-invariant subspace of F(T).

By (1.8), Lemma 1.10, (1.12), (2.2) and (2.3), we see that the standard Sp(2, φ-action

on S4 has three orbits.

REMARK 2.4. By the classification theorem due to Asoh [1], any almost effective

smooth £/(2)-action on S4 is equivariantly diffeomorphic to one of the following:

(1) the £/(2)-action φ defined above.

(2) ψ': U(2) xS4-^S4 defined by

ψXg,(x,y)) = (gx,y) for (x, y)eS4^C2 xR1.

We notice that the action ψ' has two fixed points as singular orbits.
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3. Smooth Sp(2, /?)-actions on S4.

LEMMA 3.1. Let Φ: Sp(2, R)xN-+N be a smooth Sp(2, R)-actίon on a smooth

4-manifold N. Then the action Φ has a fixed point if and only if its restricted U(2)-action

has a fixed point.

PROOF. Suppose the restricted £/(2)-action has a fixed point Xo. Let g be the

isotropy subalgebra at Xo with respect to the Sp(2, /?)-action. Then tc=u(2)c:g. On the

other hand § = l)(a:b:c), fy{a\b\c)®(bE5— aE6} or sp(2, R) by Lemma 1.11. Hence

g = sp(2, R). Thus Xo is a fixed point of the Sp(2, /?)-action. q.e.d

By this lemma and Remark 2.4, we have:

LEMMA 3.2. Let Φ: Sp(2, R) x S 4 - ^ 4 be a smooth Sp(2, R)~action on S 4 . Then

the action Φ has no fixed point if and only if its restricted U(2)-actίon is equivariantly

dίffemorphic to the action φ in (2.2).

In the rest of this paper, we shall study smooth Sp(2, /?)-actions on S 4 without

fixed points. By Lemma 3.2, we assume that the restricted ί/(2)-action coincides with

φ. We put

= Sp(2,R), K=U(2),
0

t\ = \

(33) - ° '
φ = Φ0\KxS* ,

Let Φ: G x S4^>S* be a smooth G-action on S* satisfying Φ \ (Kx S4) = φ We shall

construct a smooth map / : F(T)-+ P2(R) uniquely determined by the condition

(3.4) W/W)<=9* for XeF(T),

where g x is the isotropy subalgebra at X with respect to the given G-action Φ and

\)(f(X)) is a subalgebra of sp(2, R) in Lemma 1.6. Because QX is a proper subalgebra

of sp(2, R) containing t, there exists a unique (a:b:c)eP2(R) such that ί)(α:b :c)cg x

by Lemma 1.11.

Comparing ί)(α: b: c) with the isotropy subalgebra of the restricted faction, we

have

(3.5) /(JT) = ( 0 : 0 : l ) o J r = ( 0 , 0 , ± 1 ) ,

and

(3.6) f(X) = (a:b:0)oX= (u, v, 0) .

Let m(θ) be the matrix defined by (1.7). The set F(T) is invariant under the M-action

ΦI (MxS% because m(θ) commutes with each element of T. Let φ: R x F(T)^F(T)

denote the smooth /^-action on F(T) defined by φ(θ, X) = Φ(m(θ), X). Then we see that

/ is £/(!)- and M-equivariant by the definitions of/ and ί)(a:b:c). Hence we have
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(3.7) f(φ(θ,X)) = m(θ)-(a:b:c) = (a:bf:c') for f(X) = (a:b:c),

where b' = b cosh θ + c sinh 0, c' = b sinh 0 + ccosh 0, and also

(3.8) f(t(τ) X) = t(τ) (a:b:c) = (a':b':c) for / ( ^ ) = (α:ί>:c),

where a' = acosτ — bsinτ, b' = asinτ + bcosτ. By (3.6), (3.8) and (1.12), we see that the

restriction f\ {^=(1*, υ, 0)eF(T)} is a double covering.

LEMMA 3.9. The mapf\ F(T)^>P2(R) is smooth.

PROOF. Put f{X) = (a:b:c) for X = (u, v, w). Then I)(α:b:c)cgx. First assume that

w/0. Then c^O and we have

aE3 -cE109 bE3

by Lemma 1.6. Hence

where ^ , > denotes the standard Riemannian metric on S 4 and each element of sp(2, /?)

can be considered naturally as a smooth vector field on S 4 (cf. Palais [5, ch. II, Th.

II]). Hence f(X) = (a:b:c) = (a/c: b/c: 1) is smooth, since £ 3 φ QX by Lemma 1.11.

Next assume that w = 0. Then c = 0. If 6^0, then /(φ(0, X)) has a non-vanishing

third coordinate for some θeR by (3.7). Hence / is smooth, since f(X) = m( — 0)

/(φ(0, A')) by (3.7). In the same way we see that / is smooth in a neighborhood of the

points Xt (/= 1, 2) satisfying /(Z f) = ( l : 0:0) by (3.8).

Thus / is smooth on F(T). q.e.d.

By (3.5), (3.6), (3.7) and (3.8), the image of / contains P2(R)-C, where C is the

standard ί/(l)-orbits of the set {(0:1: ± 1)}. Hence we see that / is surjective by the

continuity of/.

Let Ji:F(T)^F(T) 0=1,2) denote the involutions defined by J1(u,v,w) =

( —w, —v9w) and J2(u9 v, w) = (u, v, — w). Then J1J2(X)= — X and we have

(3.10) /(ΛW) = M W ) = (a:b:-c) for /(*) = (α: b: c),

which follows from Ji(X) = \j/(ji, X) (/= 1, 2), where

(3.11) Λ = £ i =

Since jim(θ) = m( — θ)ji, we have

(3.12) / i(φ(

Put P^Λ) = {(6: c) = (0: b: c)eP2(Λ)} and 5 = / " ^ Λ ί

LEMMA 3.13. 5 /.s β one-dimensional submanifold of F(T) which is dίffeomorphic

to a great circle in F(T).
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PROOF. Let f0 be the restriction of/ on F(T) - {± e3}. Then f0 maps F(T) - { ± e3}

onto P2(R)-{(0:\)}. Since f0 is ί-regular on P^lQ-ftO: 1)} by (3.8), fo^P^R)-

{(0:1)}) is a one-dimensional submanifold of F(T)-{±e3}. By (3.5), S=fό1(P1(R)-

{(0:1)}) u { ± e3}. On the other hand, φ(θ, ±e3)eS by (3.7) and φ(-, ± έ?3) gives a local

diffeomorphism from a neighborhood of 0 in R to a neighborhood of ±e3. q.e.d.

Let us denote the restriction of / and φ to S also by / and φ, respectively. By the

definition of S, S is /Γinvariant for /=1, 2, and / and φ also satisfy the conditions

(3.5), (3.6), (3.7), (3.10) and (3.12). Moreover S-{±e3} intersects transversely U(\)-

orbits on F(T)-{±e3}.

4. Properties of (S, φ, / ) . Let S2 = {X=(u, υ, w)eR3 \u2 + v2 + w2 = 1} and

P^R) = {(b :c) = (0:b: c)} c= P2(R). Let (5, φ, f) be a triple of a one-dimensional closed

submanifold S of S 2, a smooth /^-action φ: Rx S^S and a smooth map / : S-^P^R)

satisfying the following conditions:

( i ) S is /Γinvariant and diffeomorphic to a great circle containing {(0, 0, ±1)},

where Jt (i= 1, 2) are involutions on S2 defined in §3. S-{(0, 0, +1)} intersects each

circles {(u, υ, w)eS2\w = c} (— 1 < c < 1) transversely.

(ii) Jt(φφ, X)) = φ(-Θ, Jt(X)) (i= 1, 2),

(iii) /(Λ (*)) = / ( / 2 W ) = (fc: - c) for / W = (b: c),

(iv) /(φ(0, JO) = (A': c') for /(JO = (A: c),

where bf = b cosh 0 + c sinh 0, cr = b sinh 0 + c cosh 0,

(v) /(JO = (0:l)oJr=(0,0, ±l)eS,

(vi) f (JO = (1:0) o X= (w, i;, 0) e S.

Let (S, φ, /) be a triple defined above. Let Whc and P{X) denote matrices defined

by

(4.1) Wbc = (b2 + c2yll2(be2 + ce3), P(X)= Wb

x

cWhc

for f(X) = (b: c), respectively. Let ̂ (A") denote the subset of G defined by

U(X) = {g e G \ (g Wj(g Wbc) = Wbc*Wbc} .

Then traceP(X) = 1 and H(0:b:c)a U(X). We have

(4.2) (m(0) ^ ^ ^ ( 0 ) Wbc) = λ(θ, X)P(φ(θ, X)) ,

where

λ(θ, X) = cosh20 + 2bc(b2 + C2)'1 sinh20

for f(X) = (b:c). By the conditions (v) and (vi), we have

(4.3) KnH(0:b:c) = Kx,

where Kx denotes the isotropy subgroup at XeS for the ^-action φ.
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5. Construction of Sp(2, /?)-actions.

5.1. Let (S, φ, f) be a triple of a one-dimensional closed smooth submanifold S

of S2, a smooth /^-action φ on S and a smooth map / : S^P^R) satisfying the six

conditions in §4. We construct a smooth G-action on S* from the triple (S, φ, / ) . We

use the notation in (3.3) and (3.11).

Let XeS. Then by Lemma 1.10,

(5.1) G = KMH(0:b:c)

for f(X) = (b:c). Take (g, p)eGx S4. Let us choose

XeS:φ(k9X)=p,

kfeK9 θeR, ueH(0:b:c): gk = k'm(θ)u,

and put

(5.3) Φ(g,p) = ψ(k\φ(θ,X))eS*.

Then we have the following:

PROPOSITION 5.4. Φ: Gx5 4 ->S 4 of (5.3) is a smooth G-action on S* such that

Φ\(KxS*) = ψ.

In the rest of this section, we shall prove this proposition. The proof is divided

into two parts.

5.2. First we shall show that Φ of (5.3) is well-defined and defines a G-action on

S* such that Φ \ (K x S4) = φ.

LEMMA 5.5. Let f(X) = (b:c) and

(*) km(θ)u = k'm(θ')uf for k.k'eK and u,u'eH(0:b:c).

Then φ(k, φ(0, X)) = φ(k\ φ(θ\ X)).

To show this, we need the following lemma.

LEMMA 5.6. In Lemma 5.5, the following hold.

(1) Iff(X) = (ε: 1) (ε = ± 1), then (*) implies θ = θ' andk~γk' ET.

(2) Iff{X) = (1:0), then (*) implies one of the following:

(a) Θ = Θ' = O andk-ιk'eSU(2\ (b) Θ = Θ'ΦO andk-^k'eT, (c) Θ=-Θ'^O and

k~1ktej2T.

(3) Iff(X) = (0:1), then (*) implies one of the following:

(a) Θ = Θ' = O and k~ιk'eT2, (b) θ = θ'Φ0 and k~xkεT, (c) θ=-θ'Φ0 and

PROOF. We only prove the case (2). Since km(θ) e2 = k'm(θ') e2, \\m(θ) -e2\\ =

\\m(θf)'e2\\. Hence θ= ±θ'. If 0 = 0', then (a) or (b) holds. If 0 = - 0 V O , then
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j2k~^/w(0') e2 =j2m(θ) e2 = m(-θ) e2 = m(θ') e2 .

Hence (c) holds. q.e.d.

PROOF OF LEMMA 5.5. In the case f(X) = (ε: 1), we have θ = 0' and k~ ίk' e T by
Lemma 5.6. Put k~1k' = u. Then

ψ(k', φ(θ\ X)) = φ(ku, φ(θ, X)) = φ(k, φ(θ, X)) .

In the case f{X) = {\: 0), if the case (c) of Lemma 5.6 (2) holds, put k~xk'=j2u. Then

φ(k\ φ(θ\ X)) = φ(kj2u, φ(-θ, X)) = φ(k, φ(0, J2(X))) = φ(k, φ(θ, X)) ,

by the condition (ii). The other cases of Lemma 5.6 (2) are clear. In the case f(X) = (0:1),
we can also show the result by Lemma 5.6, (3). Now we shall show the equality in the
other case. Let f(X) = (b:c), where bcφO and \b\Φ\c\. If | f t |< |c | (resp. | 6 | > | c | ) ,
then by the condition (iv), there exists θoeR such that f(φ(θ0, X)) = (0:1) (resp.
(1:0)). Put Xo = φ(θ0, X). Since km(θ- θ0) e3 = k'm{θ' - θ0) e3 (resp. km(θ- θ0) e2 =
kfm(θf-θ0)'e2), we have

φ(k', φ(θ', X)) = Φ(k\ φ(θ'-θ0, X0)) = Ψ(k, φ(θ-θ0, X0)) = ψ(k9 φ(θ9 X)) .

q.e.d.

By Lemma 5.5 and the definition of Φ, we can show that Φ of (5.3) is a well-defined
G-action satisfying Φ\ (Kx SA) = ψ. Since the proof is same as [7, §4], we omit it.

5.3. Next we shall show the smoothness of Φ of (5.3). For i= 1, 2, define

Si(Φ) = {Φ(g,ei+ι)\geG}, Si(Φo) = {Φo(g,ei+1)\geG}

for the G-action Φ of (5.3) and the standard (7-action Φo, respectively. Then clearly

S1(Φ0) = {vφweS(R1®R2)\\\v\\>\\w\\} ,

S2(Φ0) = {v®weS(R1®R2)\\\v\\< \\w\\} .

Put X0 = (u9 v, 0)eS. Let rx (resp. r) be the supremum (resp. the infimum) of the third
coordinate of {φ(θ, X0)\θeR} (resp. {φ(θ, e3)\θeR}) and set r2 = ( l - r 2 ) 1 / 2 . Then
0 < r f < 1 (/= 1, 2) and we see that

S1(Φ) = {vφweS(Rί®R2)\\\w\\<r1} ,

S2(Φ) = {v®weS(R1®R2)\\\v\\<r2} ,

by (5.3) and the conditions of (S, φ, f).

LEMMA 5.7. Φ is smooth on Gx S^Φ) (/= 1, 2).

To show Lemma 5.7, we define diffeomorphisms Ft (/=1,2). Let D3(δ) = {we
R21 \\w\\ <δ) and D2(δ) = {υeR1 \ \\v\\ <δ} for <5>0. The subset 51(Φ)n5r of S has two
components. We denote one of them by Sx. Then there is a smooth real-valued function
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hx on ( — rl9 r x ) such that /(w, v, w) = ( l : h^w)) for (M, V, w)eSί by the condition (vi).

By the conditions (iv), (vi), hγ is a diίfeomorphism from ( — r1,rί) onto (—1,1).

Moreover, we have Λi( — w ) = — Λi(w), because

(1: Aiί-w)) =/(ιι, 0, -w)=/(/2(κ, 0, w)) = ( l : -

Since WH+VV"1/^^) is a smooth even function, F1(w)=||w||"1(A1(||w||)) w is a
diffeomorphism from D\rx) onto Z>3(1) (cf. [4, ch. VIII, § 14, Problem 6-c]).

The subset S2(Φ) nS of S also has two components. We denote by S2 the one
containing the point e3. Then S2 = {φ(θ, e3)\θeR}. Let/7: S2^>D2(r2) be the map defined
by p(u, v, w) = (w, v) and let L=p(S2). Then there is a smooth real-valued function h2

on L such that /(u, 1?, w) = (h2(u, v): 1) for (M, f, w) G S2 by the condition (v). We see that
h2 is a diffeomorphism from L onto (—1, 1) satisfying h2( — u, —v)=—h2(u,v) and
h2(p(φ(θ, έ?3))) = tanh0. We put L0 = h2 ^[0, 1)). By using the standard ί/(l)-action on
Z)2(^), we define a map F 2 : D2{r2)-+D\\) by

F2(/ r) = A2(»)(/ ί2) for ίGί/(l), t>eL0.

Then F2 is a diffeomorphism from D2{r2) onto £>2(1), because we see that F2 is regular
on D2(r2) by the definition of (5, <p, / ) .

PROOF OF LEMMA 5.7. Let oc: D2(l)xS(R2)^S2(Φ0) be the diίfeomorphism
defined by

and let F2: S2(Φ)-+S2(Φ0) be the diffeomorphism defined by

) = *(F2{v\ \\w\\-ιw).

Since SU(2) acts trivially on R1 by (1.4), we see that F2 is ΛΓ-equivariant. By the
definitions of F2 and h2, we have

θ, e3)) = Φo(w(β), ̂ 3) for 0 e Λ .

Take gfeG and put g = km{θ)u for fce^, ueH(0:0:1). Then

W ( 0 , e3)) = F'2(ψ(k, φ(θ, e3))) = Φ0(k, F2(φ(θ, e3)))

= Φ0(k, Φ0(m{θ\e3)) = Φ0(g, e3).

Hence the diffeomorphism F 2 is G-equivariant. Thus we see that the restriction
ΦI (G x S2(Φ)) is smooth.

Let »0 be the element of 5 t satisfying f(v0) = (1:0). Then S± = {φ{θ, vo)\θeR}. Let
η: SiίΦ)-^^^!) x DVi) be the map defined by

Then f/ is a ^Γ-equivariant diffeomorphism by (1.4). We denote D(*Sf

1) = 5f

1(Φ)ΠiS2 and
denote by S' the intersection of ^(^Ί) with the great circle in S2 through v0 and e3.
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Then η(D(S1)) = S(Rί)x{we3eD3(r1)} and η(Sf) = {(vθ9we3)\\w\<rί}^S(Rί)xD3(r1).
Moreover η(Sί) is a smooth curve in η(D(S1)) such that

(* ) (», w 3 ) G ί/(SΊ) o (», - we3) e η(Sί) ,

since J2η(φ(θ, vo)) = ηφ( — θ, v0). It follows from the conditions (i), (ii) in §4 and (*)
that there exists a smooth map σ: ( — r l 5 rJ-^t/O) such that σ(w) = σ( — w) and that the
map δ:η(S')-^η(S1), defined by (5(Ar) = (σ(w) t?0, w^3) for ΛΓ=(»0, w^3) e fy(5"), is a
diffeomorphism. Let Δ t : 5(Λ 1 )xZ) 3 (r 1 )->S(Λ 1 )x/) 3 (r 1 ) be the Λ^equivariant diffeo-
morphism defined by

where ί o e U(\) is the element satisfying t0 t o = ̂ 2» σ(ll * II) being smooth since σ is an
even function. Let Δ 2 : S1(Φ)-^Sί(Φ) be the map defined by

Since AX^ = ̂ A2, Δ 2 is a ^-equivariant diffeomorphism. Let α': 5(Λi) x Z)3(l)->5'1(Φ0)
be the diffeomorphism defined by

Put F[ =αΌ (1 x F t) o η o Δ2. Then Fi : 5'1(Φ)^5ί

1(Φ0) is Λ^-equivariant and we have

θ, v0)) = Φ0(m(θ), e2) for θeR,

by the definitions of Fx and σ. Hence we see that F[ is a G-equivariant diffeomorphism
in the same way as above and that the restriction Φ | (G x SΊ(Φ)) is also smooth.

q.e.d.

Put X=(u9υ9w)eS and f(X) = (b:c). If w>0, then cΦO and there is a smooth
function β on {(w, v9w)eS\w>0} such that f(X) = (β(X): 1). We define the subsets S+

and S_ of 51 by

S+(resp. S.) = {X=(u,v,w)eS\w>0, β(X)>0 (resp. j8(Ar)<0)} .

Then each of S+ and 5_ is connected and Jί(S+) = S_ and 71(5_) = 5 + by (5.8) and
the definition of β.

LEMMA 5.8. Let (0, X)e/? x 5+ (resp. RxS.) be given. Then φ(θ, X)eS+ (resp.
S-) if and only if

(5.9) {2β(X) cosh 20 + (1 + β(X)2) sinh 20} > 0 (resp. < 0).

PROOF. f(φ(θ, X)) = (β(X) cosh 0 + sinh 0: β(X) sinh 0 + cosh 0) by the condition
(iv). Hence if φ(θ, X) e S+ (resp. S_), then (β(X) cosh 0 + sinh θ)(β(X) sinh 0 + cosh 0) > 0
(resp. <0). Thus we have (5.9). Conversely, if (5.9) holds, then φ(θ9 X)eS+ uJxJ2(S+)
(resp. S-UJίJ2(S.)). Hence we see that φ(θ, X)eS+ (resp. 5_) by (5.8) and the
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connectivity of the orbit of X under the R-acύon φ. q.e.d.

We define

D+ = {(θ,X)eRxS+\φ(θ,X)eS+},

W+ = {(km(θ)u,X)eGxS+\keK,(θ,X)eD+,ueH(O:β(X):l)}.

Then D+ is an open set of R x S+ and we have the following.

LEMMA 5.10. For (g, X)eGx S+, we have (g, X)e W+ if and only if

(5.11) tracefo Wβ(Xn)'(g Wβmί)Φ\(1 -β(X)2)(l +β(X)2Γ1 \,

where Wβ(χ)i is the matrix in (4.1).

PROOF. By Lemma 1.10, for any geGwe always have a decomposition g = km(θ)u,
where keK, ΘeR and ueH(0:β(X): 1). Hence we see that

(*) traced Wβ(xn)\g Wβ(X)ί) = cosh 20 + 2β(X)(β(X)2 + 1)" * sinh 20

by (4.2). We denote the right hand side of this equation by α(0).
First suppose (g, X)eW+. We may assume that φ(θ, X)eS+. If β(X)=l, then

α(0)>O. Hence (5.11) holds. If β(X)φ\, then α(0) has the minimum \(l-β(X)2)(\ +
βiX)2)'11 if and only if tanh 20= -2j8(X)(l+j8(Ar)2)"1. Hence (5.11) follows from (5.9).

Next suppose (5.11) holds. Then tanh20^ -2β(X) (1 +β(X)2yK Hence φ(θ, X)s
S+ u S_ by Lemma 5.8. If φ(θ, X)eS_, then we can take a decomposition of g satisfying
φ(θ\ X)eS+. We shall show this as follows: By considering the /^-action φ, β{X)φ\.
First suppose 0 < β{X) < 1. Then f(φ(θ0, X)) = (0:1) for 0O e R with β(X) + tanh 0O = 0.
Put k' = kj\, uf = m(-θ0)jίm(θ0)u and 0' = 20 o -0. Then we have

g = k'm(θ')uf;u'eH(0:β(X)Λ).

Moreover φ(θ', X)eS+, because

φ(0o, X) = Jiφ(θ0, X) = φ(-Θo, MX))

by conditions (ii), (v) and then

= φ(θ-θ0, φ(-θ09 J1(X))) = φ(θ-θo, φ(0o, X)) = φ(θ, X) .

Next suppose \<β(X). Then f(φ(θ0, X)) = (\ :0) for θoeR with β(X) tanh0O + 1 = 0 .
Now we put k' = kj2, uf = m( — θ0)j2m(θ0)u and 0' = 20O — 0. Then we see that
g = k'm{θ')u\ u'eH(Q:β(X): 1) and φ(θ', X)eS+ in the same way as above. q.e.d.

LEMMA 5.12. For any (g, X) e W+, there exist unique kTeK/T and ΘeR such that

(5.13) g = km(θ)u;ueH(0:β(X):l),(θ9X)eD+ .

Furthermore, the correspondence Δ: W+-+(K/T) x D+ defined by A(g, X) = (kT, 0, X) is
smooth.
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PROOF. First we shall show the uniqueness of the decomposition. If g = km(θ)u =

k'm(β')u\ then ||m(0) (0, β(X)9 1)|| = \\m{θf) -(0, β{X\ 1)||. Hence we have 0 = 0' by

Lemma 5.8. This implies k~ xk' e T. Next we shall show that Δ is smooth. Let 0 = θ(g, X)

and δ(g, X) = kT for (g, X) e W+. We consider the smooth function γ on W+ x R defined

by

γ(g, X, 0) = cosh20 + 2/?(Jr)(l + / W ) " 1 s inh20-traced Wβ{X)1)\g Wβmi)).

Then y(g, X, θ(g, X)) = 0 by (5.13) and (*) in the proof of Lemma 5.10. By Lemma 5.8

dγ/dθ = 2(sinh 20 + 2j?(X)(l + β(X)2) ~x cosh 20) > 0

at (g, X, 0) satisfying y(g, X, 0) = O. Thus we see that the function θ(g, X) is smooth by

the implicit function theorem.

Next consider the smooth maps δγ: W+-^R5, δ3: K/T^R5 and the smooth map

δ2 on (Λ1-{O})0(^2-{O}) defined by

δ1(g9X) = (l+ β{X)2)~1/2g (β(X)e2 + e3),

respectively. Since δ3δ = δ2δ1 and δ3 is an embedding, <5 is smooth. q.e.d.

Now we show that Φ of (5.3) is smooth. Define W(Φ) = {(g, ψ(k, X))eGx S*\keK,

(gk, X)e W+}. Since W+ is an open set of G x S+ by Lemma 5.10, we see that W(Φ)

is an open set of G x S*. Moreover, we see that Φ | W(Φ) is smooth, because Δ is smooth

by Lemma 5.12. Therefore, Φ is smooth on G x S 4, since G x *S4 is covered by the open

sets Gx {Φ(#, e2)IGe^}> Gx {Φ(g, e3)\geG} and W(Φ), and Φ is smooth on each open

set.

6. Equivalences and the theorem. Let Φt (/= 1, 2) be smooth G-actions on S4 without

fixed points. Φx and Φ2 are said to be equivalent if Φx is equivariantly diffeomorphic to

Φ2, i.e., there exists a diffeomorphism Ψ: S 4 -^^ 4 satisfying ^ ( Φ i ^ , X)) = Φ2(g, Ψ(X))

for any (g,X)eGxSAr.
Triples (Si9 φi9 /f) (/= 1, 2) satisfying the conditions (i) to (vi) in §4 are said to be

equivalent if there exists a diffeomorphism ξ from Sx onto S2 such that ξJj = Jjξ for

7=1,2 and if the following diagram is commutative:

(6.1) i x ζ l

Rx S2 • »3 2 f2

If S= S1 = {(0, t;, w)} c 512, then we simply write the triple (S 1, φ, f) as (φ, / ) . The

pair (φ, f) is characterized by the conditions (ii) to (vi) in §4. The pairs (φh ft) (/= 1, 2)
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are said to be equivalent if the triples (S1, φi9 f) are equivalent.

THEOREM. There is a one-to-one correspondence between the equivalence classes of
smooth Sp(2, Reactions on S4 without fixed points and the equivalence classes of pairs
(φ, f) satisfying the conditions (ii) to (vi) in §4.

To prove this theorem we need the following lemmas.

LEMMA 6.2. Let Φt (/ = 1, 2) be smooth G-actions on S4 satisfying Φt \ (K x S4) = φ.

Then the corresponding triples (Si9 φh f) defined in §3 are equivalent if Φf are equivalent.

PROOF. Let Ψ: S4-+S4 be a diffeomorphism satisfying Ψ ° Φ^g, X) = Φ2(g, Ψ(X)).
Then GΨiX) = Gx for any XeS4. Hence Ψ^S^ = S2 and fx =f2oψ. Let ξ=ψ\Sv Then
£// = //{ t/= 1, 2) and £(^(9, X)) = φ2(θ, ξ(X)). Hence (S l f φ l 9 Λ) and (S2, φ 2, /2) are
equivalent. q.e.d.

LEMMA 6.3. Let (St, φi9 f) (/= 1, 2) be triples satisfying the conditions (i) to (vi)
in §4. 77*e« /Ae corresponding G-actions Φt (/= 1, 2) constructed by (5.3) are equivalent
if(Si9 ψi, f) are equivalent.

PROOF. If (Si9 φi9 f) (i= 1, 2) are equivalent, then there exists a diffeomorphism
£: Sί-+S2 such that ξJj = Jjξ 0=1,2) and the diagram (6.1) is commutative. Since
ψ\(KxSi): Kx Si-+S* are smooth, closed and surjective, there exists a AΓ-equivariant
homeomorphism Ψ of S 4 satisfying ^ ( f e , Ar)) = ̂ (/c, ξ(JQ) for keK,XeSv Now for
any (#,p)eGx S4, let us choose Φ^g, p) = ̂ (A:', φ^θ, X)) as in (5.3), wherep = ι̂ (fc, ̂ ) ,
gk = k'm(θ)u, ue7/(0:b:c) for/^JΓ) = (b:c). Then we have

', φi(θ, x)))=Φ(k\ ξφiφ,

Thus Ψ is G-equivariant.
Let Si(T) = {XeSi\fi(X)^(\:0),fi(X)Φ(0:\)}. Since φ\(KxSt(T)) are open

maps and have smooth local sections, IF is a diffeomorphism on S 4 — {1?(Γ2) u B(SU(2))},
where ^(Γ2) = {^(fc,̂ 3)|A:GA:} and B(SU(2)) = {φ(k9e2)\keK} are two singular
orbits of the ^-action φ on S4. On the other hand, open orbits {Φi(g9e3)\geG}
and {Φi(g,e2)\geG} of the G-actions Φf are equivariantly diffeomorphic to
G/H(0:0:1) and G/H(0:1:0), respectively. Hence the G-equivariant homeomorphisms
ΨI {Φi(g, et)\geG}: {Φ,{g, et)\geG)-+{Φ2(g, et)\geG} (i = 2, 3) are diffeomorphisms.

Thus !P is a G-equivariant diffeomorphism and hence Φx and Φ2

 a r e equivalent.
q.e.d.

LEMMA 6.4. Let Φ be a smooth G-action on S4 satisfying Φ\(Kx S4) = φ, and let
(S, φ, f) be the triple defined in §3. Then the G-action Φf, constructed from (S, φ, f) by
(5.3), coincides with the given one.

PROOF. Let (g9p)eGxS4, and set Φ'(g9p) = φ(k\φ(θ, X)) as in (5.3), where
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p = φ(k, X\ gk = fc'm(0)κ, ueH(0:b:c) for f(X) = (b:c). Then we have

Φ(g,p) = Φ{kfm(θ)uk- \ φ(k9 X)) = φ(k\ φ(θ, X)) = Φ'(g9 p) .

q.e.d.

LEMMA 6.5. Let (5, φ, f) be a triple satisfying the conditions (i) to (vi) in §4, and
let Φ be the G-action on S* constructed from (5, φ, f) by (5.3). Then the triple (Sf, φ', /')
constructed from Φ coincides with the given one.

PROOF. Let XeS and f(X) = (b:c). Then H(0:b:c)aGx by the definition of Φ.
Hence f'(X) = (b: c) and we have S=S' by the condition (i). Therefore / = / ' and φ = φ'.

q.e.d.

LEMMA 6.6. Let (S,φ,f) be a triple satisfying the conditions (i) to (vi) in §4.
Then the triple is equivalent to a pair (φ\ /') satisfying the conditions (ii) to (vi) in §4.

PROOF. By the condition (i), there exists a /Γequivariant diffeomorphism h: S1^
S for /=1,2. We define a smooth it-action φ': /?xSίl->S'1 and a smooth map
/':5^ΛWby

φ/(θ,jr) = Λ-1(φ(θ,Λ(Ar))) and f(X)=f(h(X)) for 0e/?,AreS'1,

respectively. Then we see that the pair (φf, /') satisfies the conditions (ii) to (vi) in §4
and is equivalent to the triple (S, φ, / ) . q.e.d.

PROOF OF THEOREM. Let Φ be a smooth G-action on S4 without fixed points.
Then Φ is equivalent to a smooth G-action Φ' on SA satisfying Φ'\(Kx S*) = φ by
Lemma 3.2. Hence we are done by the above lemmas. q.e.d.

7. Examples and Corollary. Let (φ, f) be a pair defined in § 6. Then we denote

F(φ, f) = {XeS1\ φ(θ, X) = X for any θ e R} .

We say that Xu X2eF(φ, f) are equivalent if X2=J\JS2(Xi) for some r, se{0, 1} and
we denote the set of the equivalence classes by {F(φ, /)}. Then we have the following
lemma by the definition of (φ, / ) .

LEMMA 7.1. If {F(φ, /)} consists of m elements, then the G-action on S* constructed
from (φ, f) by (5.3) consists of (2m + 1) orbits.

Now we give two examples.

EXAMPLE 1. Let Φo be the standard G-action on S4 introduced in § 2. Then the
triple (50, φ 0, /0) is as follows:

S o ^ 1 , fo(0,υ,w) = (v:w) and φo(0, (0, Ό, w)) = (vf2 + w'2yll2(0, v\ w') ,

where t/= t; cosh 0 + w sinh 0, w' = ι;sinh0 + H>cosh0. Moreover {F(φ0, /0)} consists of
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one element.

EXAMPLE 2. Let m be a positive integer. Now we shall construct a pair (φ, /)

defined in §6 such that {F(φ, /)} consists of (2m— 1) elements. Let L be the unit vector

field on S1 defined by Lx = -w(d/dv)x + v(d/dw)x for X=(0, υ9 w)eS1. We put

jexp(-l/x 2 ) if

[θ if x<0,

and f/(x) = p(p(x)). We define smooth functions α(x) and jS(x) by

a(x) = (^(xj - η(

where ^ =(l+x)/2, x2 = (l -^)/2. Put y(x)= l/α(x) for x^O and

, 7 2 ) Φ ) = y(ωo(τ))α(ω2m _ x (τ))y(ω4m _ 2(τ)) (0 < τ < π) ,

W ^ Σ H V I W K W) (0<τ<π),

where ^ = π/(8m-4) and ω7(τ) = (τ-2js)/s (0<j<4m — 2). Then we see that

(7.3) ft(τ)(ώ/rfr)=l-α(τ)2,

and

(7.4) α(π - τ) = - a(τ), fc(π - τ) = b(τ),

by routine calculations (cf. Asoh [2, § 10]).

Put X=(0, cosτ, s i n ^ e S 1 ( - π < τ < π ) and

if 0 < τ < π ,

- τ) if — π < τ < 0 ,
( 7 ' 5 ) - ^ f

if 0<τ<π,
[b( — τ) if — π < τ < 0 .

Then g and h are smooth functions on S1 and S 1 — {(0, ±1,0)}, respectively. Also there

exists a smooth function h\X) in a neighborhood £/of(0, ± 1 , 0) satisfying h f(X)= 1

for any J G £/-{(0, ± 1, 0)}. We define a smooth map / : S1-^P1(R) by

_ f ( Λ W : ! ) i f * # (0, ± 1, 0),

^UlrA' ίΛO) if ^ e ( / .

Then conditions (iii), (v) and (vi) in §4 hold by (7.4). Moreover we have

g(j. (X)) = g(χ) , /*(j. (X)) = _ Λ(^) ,

by (7.4) and (7.5). We see by (7.3) that

(gL)xh=\-h(X)2 for XεS1-^, ±1,0)} .
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Hence the vector field gL defines a smooth /faction φ on S1 which satisfies
h(φ(θ, X)) = (h(X) + taήhθ)/(l +h(X)taπhθ) and conditions (ii), (iv) in §4 (cf. Asoh [2,
Lemma 9.3 and (6.8)]). We also see that {F(φ9 /)} consists of (2m— 1) elements.

By Example 2, we have the following:

COROLLARY. There are infinitely many non-equivalent smooth Sp(29 R)-actions on

S 4 without fixed points.

REFERENCES

[ 1 ] T. ASOH, Compact transformation groups on Z2-cohomology spheres with orbit of codimension 1,

Hiroshima Math. J. 11 (1981), 571-616.

[ 2 ] T. ASOH, On smooth SL(2, C) actions on 3-manifolds, Osaka, J. Math. 24 (1987), 271-298.

[ 3 ] G. E. BREDON, Introduction to compact transformation groups, Pure and Applied Math. 46, Academic

Press, New York-London, 1972.

[ 4 ] J. DIEUDONNE, Foundations of modern analysis, Pure and Applied Math. 10, Academic Press, New

York-London, 1960.

[ 5 ] R. S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs of Amer.

Math. Soc. 22 (1957).

[ 6 ] F. UCHIDA, Real analytic SL(n, R) actions on spheres, Tόhoku Math. J. 33 (1981), 145-175.

[ 7 ] F. UCHIDA, On smooth SO0(p, ^-actions on Sp+q~\ Osaka J. Math. 26 (1989), 775-787.

TOKYO METROPOLITAN COLLEGE OF AERONAUTICAL ENGINEERING

52-1, MlNAMI-SENJU 8-CHOME

ARAKAWA-KU

TOKYO 116

JAPAN




