Tόhoku Math. J. 48 (1996), 543-560

SMOOTH Sp(2, R)-ACTIONS ON THE 4-SPHERE

Dedicated to Professor Tsuyoshi Watabe on his sixtieth birthday

KAZUO MUKOYAMA

(Received June 30, 1995, revised January 31, 1996)

Abstract. We construct a one-to-one correspondence between the equivariant diffeomorphism classes of smooth $Sp(2, R)$ -actions on the standard 4-sphere without fixed points and the equivalence classes of certain pairs of *-actions and maps defined on the* circle subject to five conditions. Consequently, we show that there are infinitely many smooth $Sp(2, R)$ -actions on the space without fixed points up to equivariant diffeomorphisms.

Introduction. Asoh [2] classified smooth $SL(2, C)$ -actions on $S³$ topologically, and Uchida [7] classified $SO_0(p,q)$ -actions on S^{p+q-1} for p,q \geq 3 such that the restricted $SO(p) \times SO(q)$ -actions are standard. Each of their actions is characterized by a pair (φ, f) satisfying certain conditions, where φ is a one-parameter transformation group on S^1 and $f: S^1 \rightarrow P_1(R)$ is a smooth function. The pair, introduced by Asoh and improved by Uchida, is constructed by using the following two facts: first, the restricted maximal compact subgroup action has codimension one principal orbits and secondly, the fixed point set of the action restricted to the principal isotropy subgroup is diffeomorphic to *S¹ .*

In this paper, we shall study smooth $Sp(2, R)$ -actions on $S⁴$ without fixed points. Since $Sp(2, R)$ is simple and contains $U(2)$ as a maximal compact subgroup, it follows that the principal isotropy subgroup of the restricted $U(2)$ -action is conjugate to a circle *T.* Hence the $U(2)$ -action has codimension one principal orbits, but the fixed point set of the restricted Γ-action is diffeomorphic to *S² .* Thus we are in a situation slightly different from [2] and [7]. Instead of the pair, we shall construct a triple (S, φ, f) satisfying the conditions defined in §4, where *S* is diffeomorphic to S^1 in S^2 , φ is a one-parameter transformation group on *S* and $f : S \rightarrow P₁(R)$ is a smooth map, and show that the triple is finally represented by a pair (φ', f') defined in §6.

The author wishes to express his gratitude to Professor Fuichi Uchida who offered many helpful suggestions, advice and encouragement during the course of this work.

1. Preliminaries. In this section, we give relevant known facts and basic prop erties for later convenience.

¹⁹⁹¹ *Mathematics Subject Classification.* Primary 57S20.

Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

1.1. $Sp(2, R)$ and $sp(2, R)$. Let $Sp(2, R)$ be the real symplectic group of order 2 defined by

$$
Sp(2, R) = \{g \in M(4, R) \mid gJ'g = J\} \quad \text{for} \quad J = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix},
$$

where $M(4, R)$ denotes the set of real 4×4 matrices, ^{*tg*} the transposed matrix of g and I_2 the identity matrix of order 2. $Sp(2, R)$ contains $U(2)$ as a maximal compact subgroup, which is naturally embedded in *SO(4)* by

$$
U(2) \ni k = k_1 + ik_2 \longmapsto \begin{pmatrix} k_1 & k_2 \ -k_2 & k_1 \end{pmatrix} \in SO(4)
$$

The Lie algebra $\mathfrak{sp}(2, R)$ of $Sp(2, R)$ is

(1.1)
$$
\operatorname{sp}(2, R) = \{A \in M(4, R) | AJ + J'A = O\}
$$

= $\left\{ \begin{pmatrix} A_1 & A_2 \\ A_3 & -A_1 \end{pmatrix} | A_i \text{ are } 2 \times 2 \text{ matrices with } A_2 \text{ and } A_3 \text{ symmetric} \right\}.$

We can take a basis of sp(2, *R)* as follows:

$$
E_1 = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & P \\ -P & 0 \end{pmatrix}, \quad E_3 = \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix}, \quad E_4 = \begin{pmatrix} 0 & -Q \\ Q & 0 \end{pmatrix},
$$

\n
$$
E_5 = \begin{pmatrix} Q & 0 \\ 0 & -Q \end{pmatrix}, \quad E_6 = \begin{pmatrix} 0 & Q \\ Q & 0 \end{pmatrix}, \quad E_7 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}, \quad E_8 = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix},
$$

\n
$$
E_9 = \begin{pmatrix} P & 0 \\ 0 & -P \end{pmatrix}, \quad E_{10} = \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix},
$$

where P, Q, R are 2×2 matrices defined by

$$
P=\begin{pmatrix}1&0\\0&-1\end{pmatrix}, Q=\begin{pmatrix}0&1\\1&0\end{pmatrix}, R=\begin{pmatrix}0&1\\-1&0\end{pmatrix},
$$

respectively. The Lie algebra $u(2)$ of $U(2)$ is given by

$$
\mathfrak{u}(2) = \langle E_1, E_2, E_3, E_4 \rangle
$$

where $\langle \rangle$ denotes the linear subspace generated by the elements in the angle bracket.

1.2. The 5-dimensional standard representation of $Sp(2, R)$. We denote the inner product on $M(4, R)$ by

$$
(X, Y) = \text{trace}(X^tY) \quad \text{for} \quad X, Y \in M(4, R),
$$

and define an action of $Sp(2, R)$ on $M(4, R)$ by

(1.2)
$$
g \cdot X = gX^t g \quad \text{for} \quad g \in Sp(2, R), \quad X \in M(4, R).
$$

Then $M_{\text{alt}} = {X \in M(4, R) | Y = -X}$ is an Sp(2, *R*)-invariant subspace of $M(4, R)$ and has an orthonormal basis

$$
e_1 = \frac{1}{2} \begin{pmatrix} R & 0 \\ 0 & -R \end{pmatrix}, e_2 = \frac{1}{2} \begin{pmatrix} 0 & R \\ R & 0 \end{pmatrix},
$$

$$
e_3 = \frac{1}{2} E_2, e_4 = \frac{1}{2} E_3, e_5 = \frac{1}{2} E_4, e_6 = \frac{1}{2} E_1.
$$

Since $e_6 = (1/2)J$, the space $R^5 = \langle e_1, e_2, e_3, e_4, e_5 \rangle$ is $Sp(2, R)$ -invariant. We call this space \mathbb{R}^5 the standard representation space of $Sp(2, \mathbb{R})$ and the action (1.2) the standard action of *Sp(2, R)* on *R⁵ .*

Let $R_1 = \{X \in \mathbb{R}^5 \mid J \cdot X = -X\} = \langle e_1, e_2 \rangle$ and $R_2 = \{X \in \mathbb{R}^5 \mid J \cdot X = X\} = \langle e_3, e_4, e_5 \rangle$. Then $R^5 = R_1 \oplus R_2$ and we have the following properties:

(1.3) The standard $Sp(2, R)$ -action on R^5 leaves invariant the quadratic form

$$
-v_1^2 - v_2^2 + w_1^2 + w_2^2 + w_3^2 = (J \cdot X, X) ,
$$

for any $X = v_1 e_1 + v_2 e_2 + w_1 e_3 + w_2 e_4 + w_3 e_5$ of \mathbb{R}^5 .

(1.4) R_1 and R_2 are $U(2)$ -invariant subspaces. Moreover, $U(2)$ acts on $S(R_i)$ ($i=1, 2$) transitively and

$$
S(R_1) = U(2)/SU(2) , \quad S(R_2) = U(2)/T^2 ,
$$

where $S(R_i) = \{X \in R_i \mid ||X|| = 1\}$. The normal subgroup $U(1)$ of $U(2)$ acts trivially on R_2 and so does $SU(2)$ on R_1 .

REMARK 1.5. The above 5-dimensional representation of $Sp(2, R)$ is a homomorphism from $Sp(2, R)$ onto $SO_0(2, 3)$ and sends *J* to

$$
\left(\begin{array}{cc} -I_2 & 0 \\ 0 & I_3 \end{array}\right).
$$

1.3. Subgroups and subalgebras. Put $\mathbb{R}^3 = \langle e_1, e_2, e_3 \rangle \subset \mathbb{R}^5$. Let $H(a, b, c)$ (resp. *i*)(*a*, *b*, *c*)) denote the isotropy subgroup (resp. the isotropy subalgebra) of the standard action of $Sp(2, R)$ at $ae_1 + be_2 + ce_3$ for $(a, b, c) \neq (0, 0, 0)$.

LEMMA 1.6. $\mathfrak{h}(a, b, c) = \langle B_1, B_2, B_3, B_4, B_5, B_6 \rangle$, where in the case $c \neq 0$,

$$
B_1 = bE_3 + aE_4 + c(E_7 + E_9), \quad B_2 = -aE_3 + bE_4 + c(E_8 + E_{10}),
$$

\n
$$
B_3 = -bE_3 + aE_4 + c(E_7 - E_9), \quad B_4 = aE_3 + bE_4 + c(E_8 - E_{10}),
$$

\n
$$
B_5 = E_2, \quad B_6 = -cE_1 + aE_5 + bE_6,
$$

and in the case $c = 0$ *,*

$$
B_1 = b^2 E_7 + a^2 E_9 - ab(E_8 - E_{10}), \quad B_2 = a^2 E_8 + b^2 E_{10} - ab(E_7 - E_9),
$$

\n
$$
B_3 = E_3, \quad B_4 = E_4, \quad B_5 = E_2, \quad B_6 = aE_5 + bE_6.
$$

PROOF. Note that $A \in \mathfrak{h}(a, b, c)$ if and only if $AX + X^tA = O$ for $X = ae_1 + be_2 + ce_3$. Then the result follows by routine calculations. $q.e.d.$

We define $m(\theta) \in Sp(2, R)$ ($\theta \in R$) by

(1.7)
$$
m(\theta) = \exp\left(-\frac{\theta}{2}E_5\right) = \left(\cosh\frac{\theta}{2}\right)I - \left(\sinh\frac{\theta}{2}\right)E_5,
$$

and put $M = \{m(\theta) | \theta \in \mathbb{R}\}$. Then we have

(1.8)
$$
m(\theta) \cdot (ae_1 + be_2 + ce_3) = ae_1 + b'e_2 + c'e_3,
$$

where $b' = b \cosh \theta + c \sinh \theta$, $c' = b \sinh \theta + c \cosh \theta$. Let T be the maximal torus of *SU(2)* defined by

$$
\left\{\left(\begin{array}{cc} t & 0 \\ 0 & \overline{t} \end{array}\right) \in SU(2) \, | \, |t|=1 \right\}.
$$

Then we have

(1.9)
$$
t = \langle E_2 \rangle
$$
, Lie $(N(T, Sp(2, R))) = \langle E_1, E_2, E_5, E_6 \rangle$,

where t and Lie($N(T, Sp(2, R))$) denote the Lie algebras of T and $N(T, Sp(2, R))$, respectively, and $N(T, Sp(2, R))$ the normalizer of T in Sp(2, R).

LEMMA 1.10. $Sp(2, R) = U(2)MH(0, b, c)$.

PROOF. Let $g \in Sp(2, \mathbb{R})$ and $g \cdot (be_2 + ce_3) = v \oplus w \in R_1 \oplus R_2$. By (1.4) there exist $k \in U(2)$ and $\varepsilon_i = \pm 1$ $(i = 1, 2)$ such that

$$
k^{-1}g \cdot (b\bm{e}_2 + c\bm{e}_3) = \varepsilon_1 ||\bm{v}|| \bm{e}_2 + \varepsilon_2 ||\bm{w}|| \bm{e}_3.
$$

Since $-\|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 = -b^2 + c^2$ by (1.3), there exists $\theta \in \mathbf{R}$ such that

 $m(\theta) \cdot (be_2 + ce_3) = \varepsilon_1 \|\mathbf{v}\|e_2 + \varepsilon_2 \|\mathbf{w}\|e_3$.

Hence $m(-\theta)k^{-1}g \in H(0, b, c)$. q.e.d.

It should be noted that $\bigcap_{(a,b,c)}$ $\mathfrak{h}(a, b, c) = \mathfrak{t}$ by Lemma 1.6.

LEMMA 1.11. Let g be a proper subalgebra of $\mathfrak{sp}(2, \mathbb{R})$ which contains t. If dim $g \ge 6$, *then* $g = b(a, b, c)$ *for some* (a, b, c) *or* $g = b(a, b, c) \oplus \langle bE_5 - aE_6 \rangle$ *for* $a^2 + b^2 = c^2$.

PROOF. By the Ad(T)-action on $\mathfrak{sp}(2, R)$, we can first decompose $\mathfrak{sp}(2, R)$ into $Ad(T)$ -invariant subspaces as vector spaces:

$$
\mathfrak{sp}(2,\,R) = V_1 \oplus V_2 \oplus V_3 \oplus W
$$

where $V_1 = \langle E_3, E_4 \rangle$, $V_2 = \langle E_7, E_{10} \rangle$, $V_3 = \langle E_8, E_9 \rangle$, $W = \langle E_1, E_2, E_5, E_6 \rangle$, and Ad(*T*) acts trivially on *W.* Hence we see that

$$
g = (g \cap (V_1 \oplus V_2 \oplus V_3)) \oplus (g \cap W).
$$

Then the result follows by the Lie algebra structure of $\mathfrak{sp}(2,\mathbf{R})$ and the bracket operations on these $Ad(T)$ -invariant subspaces (cf. Uchida [6, §2]). q.e.d.

By Lemma 1.6, we see that $\mathfrak{h}(a, b, c) = \mathfrak{h}(a', b', c')$ if and only if $(a, b, c) = r(a', b', c')$ for $0 \neq r \in \mathbb{R}$. Hence from now on we rewrite $H(a, b, c)$ (resp. $b(a, b, c)$) as $H(a:b:c)$ (resp. $b(a:b:c)$), where $(a:b:c)$ is an element of the real projective space $P_2(\mathbf{R})$.

Next we denote the element $t(\tau) \in U(2)$ by

$$
t(\tau) = \exp\left(-\frac{\tau}{2}E_1\right) = \left(\cos\frac{\tau}{2}\right)I - \left(\sin\frac{\tau}{2}\right)E_1 \quad \text{for} \quad \tau \in \mathbb{R}.
$$

Then $\{t(\tau) | \tau \in \mathbb{R}\} = U(1)$ is a normal subgroup of $U(2)$ and acts on \mathbb{R}^3 by

(1.12)
$$
t(\tau) \cdot (ae_1 + be_2 + ce_3) = a'e_1 + b'e_2 + ce_3,
$$

where $a' = a\cos\tau - b\sin\tau$, $b' = a\sin\tau + b\cos\tau$. The M- and $U(1)$ -actions on \mathbb{R}^3 derive *M*- and $U(1)$ -actions on $P_2(R)$, respectively. We call these derived actions on $P_2(R)$ the standard actions on $P_2(R)$ and use the same notation as for the actions on R^3 .

2. Standard $Sp(2, R)$ -action on S^4 . We set $S^4 = \{X \in R^5 \mid ||X|| = 1\}$. Let Φ_0 : $Sp(2, R) \times S^4 \rightarrow S^4$ denote the smooth $Sp(2, R)$ -action on S^4 defined by

$$
(2.1) \t\t \Phi_0(g, X) = \|g \cdot X\|^{-1} g \cdot X \t\t \text{for} \t g \in Sp(2, R) \text{ and } X \in S^4.
$$

We call Φ_0 the standard action of $Sp(2, R)$ on $S⁴$. By (1.4) and (1.7), this action has the following properties:

(2.2) The restricted $U(2)$ -action ψ has the principal orbit $U(2)/T$ of codimension one and two singular orbits $U(2)/T^2$ and $U(2)/SU(2)$. Let $F(T)$ be fixed point set of the restricted T-action on S⁴. Then $F(T) = \{ue_1 + ve_2 + we_3 | u^2 + v^2 + w^2 = 1\} \subset \mathbb{R}^3$ and

$$
F(T)/(N(T, U(2))/T) = S4/U(2)
$$
,

where $N(T, U(2)) = T^2 \cup E_3 T^2$ (cf. Bredon [3, p. 191]).

 (2.3) $\mathcal{L} = \{v e_2 + w e_3 \mid v^2 + w^2 = 1\}$ is an *M*-invariant subspace of $F(T)$.

By (1.8), Lemma 1.10, (1.12), (2.2) and (2.3), we see that the standard $Sp(2, \mathbb{R})$ -action on *S⁴* has three orbits.

REMARK 2.4. By the classification theorem due to Asoh [1], any almost effective smooth $U(2)$ -action on $S⁴$ is equivariantly diffeomorphic to one of the following:

- (1) the $U(2)$ -action ψ defined above.
- (2) ψ : $U(2) \times S^4 \rightarrow S^4$ defined by

$$
\psi'(g, (x, y)) = (gx, y)
$$
 for $(x, y) \in S^4 \subset C^2 \times R^1$.

We notice that the action ψ' has two fixed points as singular orbits.

3. Smooth $Sp(2, R)$ -actions on $S⁴$.

LEMMA 3.1. Let Φ : $Sp(2, R) \times N \rightarrow N$ be a smooth $Sp(2, R)$ -action on a smooth *4-manifold N. Then the action Φ has a fixed point if and only if its restricted U(2)-action has a fixed point.*

PROOF. Suppose the restricted $U(2)$ -action has a fixed point X_0 . Let g be the isotropy subalgebra at X_0 with respect to the $Sp(2, R)$ -action. Then $t \subset u(2) \subset g$. On the other hand $g = f(a:b:c)$, $f(a:b:c) \oplus \langle bE_5 - aE_6 \rangle$ or $\mathfrak{sp}(2, R)$ by Lemma 1.11. Hence $g = sp(2, R)$. Thus X_0 is a fixed point of the $Sp(2, R)$ -action. q.e.d

By this lemma and Remark 2.4, we have:

LEMMA 3.2. Let Φ : $Sp(2, R) \times S^4 \rightarrow S^4$ be a smooth Sp(2, R)-action on S⁴. Then *the action Φ has no fixed point if and only if its restricted U(2)-actίon is equivariantly dίffemorphic to the action φ in* (2.2).

In the rest of this paper, we shall study smooth $Sp(2, R)$ -actions on $S⁴$ without fixed points. By Lemma 3.2, we assume that the restricted $U(2)$ -action coincides with *φ.* We put

(3.3)
$$
G = Sp(2, R), \quad K = U(2), \quad T = \left\{ \left(\begin{array}{cc} t & 0 \\ 0 & \overline{t} \end{array} \right) \middle| t \middle| t = 1 \right\},
$$

$$
\psi = \Phi_0 \middle| K \times S^4, \quad F(T) = \left\{ (u, v, w) = u e_1 + v e_2 + w e_3 \middle| u^2 + v^2 + w^2 = 1 \right\}.
$$

Let Φ : $G \times S^4 \rightarrow S^4$ be a smooth *G*-action on S^4 satisfying $\Phi | (K \times S^4) = \psi$ We shall construct a smooth map $f : F(T) \to P_2(R)$ uniquely determined by the condition

(3.4)
$$
\mathfrak{h}(f(X)) \subset \mathfrak{g}_X \quad \text{for} \quad X \in F(T),
$$

where g_X is the isotropy subalgebra at X with respect to the given G-action Φ and $\mathfrak{h}(f(X))$ is a subalgebra of $\mathfrak{sp}(2,\mathbb{R})$ in Lemma 1.6. Because g_X is a proper subalgebra of $\mathfrak{sp}(2,\mathbb{R})$ containing t, there exists a unique $(a:b:c) \in P_2(\mathbb{R})$ such that $\mathfrak{h}(a:b:c) \subset \mathfrak{g}_x$ by Lemma 1.11.

Comparing $b(a:b:c)$ with the isotropy subalgebra of the restricted K-action, we have

(3.5)
$$
f(X) = (0:0:1) \Leftrightarrow X = (0, 0, \pm 1),
$$

and

$$
(3.6) \t f(X) = (a:b:0) \Leftrightarrow X = (u, v, 0).
$$

Let $m(\theta)$ be the matrix defined by (1.7). The set $F(T)$ is invariant under the M-action Φ |($M \times S⁴$), because $m(\theta)$ commutes with each element of *T*. Let φ : $\mathbf{R} \times F(T) \rightarrow F(T)$ denote the smooth **R**-action on $F(T)$ defined by $\varphi(\theta, X) = \Phi(m(\theta), X)$. Then we see that f is $U(1)$ - and M-equivariant by the definitions of f and $b(a:b:c)$. Hence we have

(3.7)
$$
f(\varphi(\theta, X)) = m(\theta) \cdot (a:b:c) = (a:b':c') \quad \text{for} \quad f(X) = (a:b:c),
$$

where $b' = b \cosh \theta + c \sinh \theta$, $c' = b \sinh \theta + c \cosh \theta$, and also

(3.8)
$$
f(t(\tau) \cdot X) = t(\tau) \cdot (a:b:c) = (a':b':c) \quad \text{for} \quad f(X) = (a:b:c),
$$

where $a' = a \cos \tau - b \sin \tau$, $b' = a \sin \tau + b \cos \tau$. By (3.6), (3.8) and (1.12), we see that the restriction $f\left({X = (u, v, 0) \in F(T)} \right)$ is a double covering.

LEMMA 3.9. The map $f: F(T) \to P_2(\mathbb{R})$ is smooth.

PROOF. Put $f(X) = (a:b:c)$ for $X = (u, v, w)$. Then $b(a:b:c) \subset g_X$. First assume that $w\neq0$. Then $c\neq0$ and we have

$$
aE_3-cE_{10}\,,\quad bE_3+cE_9\,\epsilon\,\mathfrak{g}_X\,,
$$

by Lemma 1.6. Hence

$$
a||E_3||_X^2 - c\langle E_3, E_{10}\rangle_X = 0, \qquad b||E_3||_X^2 + c\langle E_3, E_9\rangle_X = 0,
$$

where $\langle \hspace{0.1 cm} \langle \, , \, \rangle \rangle$ denotes the standard Riemannian metric on S^4 and each element of $\mathfrak{sp}(2,\,I\!\! R)$ can be considered naturally as a smooth vector field on $S⁴$ (cf. Palais [5, ch. II, Th. II]). Hence $f(X) = (a:b:c) = (a/c:b/c:1)$ is smooth, since $E_3 \notin g_X$ by Lemma 1.11.

Next assume that $w = 0$. Then $c = 0$. If $b \neq 0$, then $f(\varphi(\theta, X))$ has a non-vanishing third coordinate for some $\theta \in \mathbb{R}$ by (3.7). Hence f is smooth, since $f(X) = m(-\theta)$. $f(\varphi(\theta, X))$ by (3.7). In the same way we see that f is smooth in a neighborhood of the points X_i (*i* = 1, 2) satisfying $f(X_i) = (1:0:0)$ by (3.8).

Thus f is smooth on $F(T)$. q.e.d.

By (3.5), (3.6), (3.7) and (3.8), the image of f contains $P_2(R) - C$, where C is the standard $U(1)$ -orbits of the set $\{(0:1:\pm 1)\}\)$. Hence we see that f is surjective by the continuity of f .

Let $J_i: F(T) \rightarrow F(T)$ (*i*=1,2) denote the involutions defined by $J_1(u, v, w) =$ $(-u, -v, w)$ and $J_2(u, v, w) = (u, v, -w)$. Then $J_1J_2(X) = -X$ and we have

(3.10)
$$
f(J_1(X)) = f(J_2(X)) = (a:b: -c) \quad \text{for } f(X) = (a:b:c),
$$

which follows from $J_i(X) = \psi(j_i, X)$ (*i*=1, 2), where

(3.11)
$$
j_1 = E_1 = J \in U(1), \qquad j_2 = E_3 \in N(T, U(2)).
$$

Since $j_i m(\theta) = m(-\theta) j_i$, we have

(3.12)
$$
J_i(\varphi(\theta, X)) = \varphi(-\theta, J_i(X)) \quad (i = 1, 2).
$$

Put
$$
P_1(\mathbf{R}) = \{(b:c) = (0:b:c) \in P_2(\mathbf{R})\}
$$
 and $S = f^{-1}(P_1(\mathbf{R}))$.

LEMMA 3.13. S *is a one-dimensional submanifold of F(T) which is diffeomorphic to a great circle in F(T).*

PROOF. Let f_0 be the restriction of f on $F(T) - \{\pm e_3\}$. Then f_0 maps $F(T) - \{\pm e_3\}$ onto $P_2(\mathbf{R}) - \{(0:1)\}\)$. Since f_0 is *t*-regular on $P_1(\mathbf{R}) - \{(0:1)\}\)$ by (3.8), $f_0^{-1}(P_1(\mathbf{R}) \{(0:1)\}\$ is a one-dimensional submanifold of $F(T) - \{\pm e_3\}$. By (3.5), $S = f_0^{-1}(P_1(R) \{(0:1)\}\cup\{\pm e_3\}$. On the other hand, $\varphi(\theta, \pm e_3) \in S$ by (3.7) and $\varphi(-, \pm e_3)$ gives a local diffeomorphism from a neighborhood of 0 in \vec{R} to a neighborhood of $\pm e_3$. *.* q.e.d.

Let us denote the restriction of f and φ to S also by f and φ , respectively. By the definition of *S*, *S* is J_i -invariant for $i=1, 2$, and f and φ also satisfy the conditions (3.5), (3.6), (3.7), (3.10) and (3.12). Moreover $S - \{\pm e_3\}$ intersects transversely $U(1)$ orbits on $F(T)-\{\pm e_3\}.$

4. Properties of (S, φ, f) . Let $S^2 = \{X = (u, v, w) \in \mathbb{R}^3 \mid u^2 + v^2 + w^2 = 1\}$ and $P_1(\mathbf{R}) = \{(b : c) = (0:b:c)\} \subset P_2(\mathbf{R})$. Let (S, φ, f) be a triple of a one-dimensional closed submanifold *S* of S^2 , a smooth **R**-action φ : **R**× S→S and a smooth map $f : S \rightarrow P_1(\mathbf{R})$ satisfying the following conditions:

(i) S is J_i-invariant and diffeomorphic to a great circle containing $\{(0, 0, \pm 1)\}\,$ where J_i (*i*=1, 2) are involutions on S^2 defined in §3. $S - \{(0, 0, \pm 1)\}\)$ intersects each circles $\{(u, v, w) \in S^2 \mid w = c\}$ ($-1 < c < 1$) transversely.

(ii) $J_i(\varphi(\theta, X)) = \varphi(-\theta, J_i(X))$ (*i*=1, 2),

(iii) $f(J_1(X)) = f(J_2(X)) = (b: -c)$ for $f(X) = (b:c)$,

(iv) $f(\varphi(\theta, X)) = (b': c')$ for $f(X) = (b:c)$,

where $b' = b \cosh \theta + c \sinh \theta$, $c' = b \sinh \theta + c \cosh \theta$,

(v) $f(X) = (0:1) \Leftrightarrow X = (0, 0, \pm 1) \in S$,

(vi) $f(X) = (1:0) \Leftrightarrow X = (u, v, 0) \in S$.

Let (S, φ, f) be a triple defined above. Let W_{bc} and $P(X)$ denote matrices defined by

(4.1)
$$
W_{bc} = (b^2 + c^2)^{-1/2} (be_2 + ce_3), \qquad P(X) = W_{bc}{}^t W_{bc}
$$

for $f(X) = (b : c)$, respectively. Let $U(X)$ denote the subset of G defined by

$$
U(X) = \{ g \in G \, | \, (g \cdot W_{bc})^t (g \cdot W_{bc}) = W_{bc}^{\ \ t} W_{bc} \} .
$$

Then trace $P(X) = 1$ and $H(0:b:c) \subset U(X)$. We have

(4.2)
$$
(m(\theta) \cdot W_{bc})^t (m(\theta) \cdot W_{bc}) = \lambda(\theta, X) P(\varphi(\theta, X)),
$$

where

 $\lambda(\theta, X) = \cosh 2\theta + 2bc(b^2 + c^2)^{-1} \sinh 2\theta$

for $f(X) = (b:c)$. By the conditions (v) and (vi), we have

$$
(4.3) \t K \cap H(0:b:c) = K_X,
$$

where K_X denotes the isotropy subgroup at $X \in S$ for the K-action ψ .

5. Construction of $Sp(2, R)$ -actions.

5.1. Let *(S, φ, f)* be a triple of a one-dimensional closed smooth submanifold *S* of S^2 , a smooth **R**-action φ on S and a smooth map $f : S \to P_1(\mathbb{R})$ satisfying the six conditions in §4. We construct a smooth G-action on S^4 from the triple *(S,* φ *, f)*. We use the notation in (3.3) and (3.11).

Let $X \in S$. Then by Lemma 1.10,

$$
(5.1) \tG=KMH(0:b:c)
$$

for $f(X) = (b : c)$. Take $(g, p) \in G \times S^4$. Let us choose

(5.2)
$$
k \in K, \quad X \in S : \psi(k, X) = p,
$$

$$
k' \in K, \quad \theta \in \mathbb{R}, \quad u \in H(0:b:c) : gk = k'm(\theta)u,
$$

and put

(5.3) $\Phi(q, p) = \psi(k', \varphi(\theta, X)) \in S^4$.

Then we have the following:

PROPOSITION 5.4. $\Phi: G \times S^4 \rightarrow S^4$ of (5.3) is a smooth G-action on S^4 such that Φ $(K \times S^4) = \psi$.

In the rest of this section, we shall prove this proposition. The proof is divided into two parts.

5.2. First we shall show that *Φ* of (5.3) is well-defined and defines a G-action on *S*⁴ such that $\Phi | (K \times S^4) = \psi$.

LEMMA 5.5. Let $f(X) = (b:c)$ and

$$
(*)\qquad km(\theta)u = k'm(\theta')u' \quad \text{for} \quad k, k' \in K \quad \text{and} \quad u, u' \in H(0:b:c).
$$

Then $\psi(k, \varphi(\theta, X)) = \psi(k', \varphi(\theta', X)).$

To show this, we need the following lemma.

LEMMA 5.6. *In Lemma* 5.5, *the following hold.*

(1) If $f(X) = (\varepsilon : 1)$ $(\varepsilon = \pm 1)$, then $(*)$ implies $\theta = \theta'$ and $k^{-1}k' \in T$.

(2) If $f(X) = (1:0)$, then $(*)$ implies one of the following:

(a) $\theta = \theta' = 0$ and $k^{-1}k' \in SU(2)$, (b) $\theta = \theta' \neq 0$ and $k^{-1}k' \in T$, (c) $\theta = -\theta' \neq 0$ and $k^{-1}k' \in j_2$

(3) If $f(X) = (0:1)$, then $(*)$ implies one of the following:

(a) $\theta = \theta' = 0$ and $k^{-1}k' \in T^2$, (b) $\theta = \theta' \neq 0$ and $k^{-1}k' \in T$, (c) $\theta = -\theta' \neq 0$ and $k^{-1}k' \in j_1T$.

PROOF. We only prove the case (2). Since $km(\theta) \cdot e_2 = k'm(\theta') \cdot e_2$, $\|m(\theta) \cdot e_2\| =$ $\|m(\theta') \cdot e_2\|$. Hence $\theta = \pm \theta'$. If $\theta = \theta'$, then (a) or (b) holds. If $\theta = -\theta' \neq 0$, then

$$
j_2k^{-1}k'm(\theta')\cdot e_2=j_2m(\theta)\cdot e_2=m(-\theta)\cdot e_2=m(\theta')\cdot e_2
$$

Hence (c) holds. q.e.d.

PROOF OF LEMMA 5.5. In the case $f(X) = (\varepsilon : 1)$, we have $\theta = \theta'$ and $k^{-1}k' \in T$ by Lemma 5.6. Put $k^{-1}k' = u$. Then

$$
\psi(k', \varphi(\theta', X)) = \psi(ku, \varphi(\theta, X)) = \psi(k, \varphi(\theta, X)) .
$$

In the case $f(X) = (1:0)$, if the case (c) of Lemma 5.6 (2) holds, put $k^{-1}k' = j_2u$. Then

$$
\psi(k', \varphi(\theta', X)) = \psi(kj_2u, \varphi(-\theta, X)) = \psi(k, \varphi(\theta, J_2(X))) = \psi(k, \varphi(\theta, X)),
$$

by the condition (ii). The other cases of Lemma 5.6 (2) are clear. In the case $f(X) = (0:1)$, we can also show the result by Lemma 5.6, (3). Now we shall show the equality in the other case. Let $f(X) = (b:c)$, where $bc \neq 0$ and $|b| \neq |c|$. If $|b| < |c|$ (resp. $|b| > |c|$), then by the condition (iv), there exists $\theta_0 \in \mathbb{R}$ such that $f(\varphi(\theta_0, X)) = (0:1)$ (resp. (1:0)). Put $X_0 = \varphi(\theta_0, X)$. Since $km(\theta - \theta_0) \cdot e_3 = k'm(\theta' - \theta_0) \cdot e_3$ (resp. $km(\theta - \theta_0) \cdot e_2 =$ $k'm(\theta'-\theta_0) \cdot e_2$, we have

$$
\psi(k', \varphi(\theta', X)) = \psi(k', \varphi(\theta' - \theta_0, X_0)) = \psi(k, \varphi(\theta - \theta_0, X_0)) = \psi(k, \varphi(\theta, X)).
$$
q.e.d.

By Lemma 5.5 and the definition of Φ, we can show that *Φ* of (5.3) is a well-defined G-action satisfying $\Phi | (K \times S^4) = \psi$. Since the proof is same as [7, §4], we omit it.

5.3. Next we shall show the smoothness of Φ of (5.3). For $i=1, 2$, define

$$
S_i(\Phi) = \{ \Phi(g, e_{i+1}) \, | \, g \in G \}, \quad S_i(\Phi_0) = \{ \Phi_0(g, e_{i+1}) \, | \, g \in G \}
$$

for the G-action Φ of (5.3) and the standard G-action Φ_0 , respectively. Then clearly

$$
S_1(\Phi_0) = \{v \oplus w \in S(R_1 \oplus R_2) \mid ||v|| > ||w||\},
$$

\n
$$
S_2(\Phi_0) = \{v \oplus w \in S(R_1 \oplus R_2) \mid ||v|| < ||w||\}.
$$

Put $X_0 = (u, v, 0) \in S$. Let r_1 (resp. *r*) be the supremum (resp. the infimum) of the third coordinate of $\{\varphi(\theta, X_0) | \theta \in \mathbb{R}\}$ (resp. $\{\varphi(\theta, e_3) | \theta \in \mathbb{R}\}$) and set $r_2 = (1 - r^2)^{1/2}$. Then $0 < r_i < 1$ ($i = 1, 2$) and we see that

$$
S_1(\Phi) = \{v \oplus w \in S(R_1 \oplus R_2) \mid ||w|| < r_1\},
$$

\n
$$
S_2(\Phi) = \{v \oplus w \in S(R_1 \oplus R_2) \mid ||v|| < r_2\},
$$

by (5.3) and the conditions of (S, φ, f) .

LEMMA 5.7. Φ is smooth on $G \times S_i(\Phi)$ (*i* = 1, 2).

To show Lemma 5.7, we define diffeomorphisms F_i (*i*=1, 2). Let $D^3(\delta) = \{w \in$ $R_2 \|\psi\| < \delta$ and $D^2(\delta) = \{v \in R_1 \mid \|v\| < \delta\}$ for $\delta > 0$. The subset $S_1(\Phi) \cap S$ of *S* has two components. We denote one of them by *S^x .* Then there is a smooth real-valued function

 h_1 on $(-r_1, r_1)$ such that $f(u, v, w) = (1 : h_1(w))$ for $(u, v, w) \in S_1$ by the condition (vi). By the conditions (iv), (vi), h_1 is a diffeomorphism from $(-r_1, r_1)$ onto $(-1, 1)$. Moreover, we have $h_1(-w) = -h_1(w)$, because

$$
(1: h1(-w)) = f(u, v, -w) = f(J2(u, v, w)) = (1: -h1(w)).
$$

Since $w \mapsto w^{-1}h_1(w)$ is a smooth even function, $F_1(w)=||w||^{-1}(h_1(||w||))$ w is a diffeomorphism from $D^3(r_1)$ onto $D^3(1)$ (cf. [4, ch. VIII, § 14, Problem 6-c]).

The subset $S_2(\Phi) \cap S$ of S also has two components. We denote by S_2 the one containing the point e_3 . Then $S_2 = \{ \varphi(\theta, e_3) | \theta \in \mathbb{R} \}$. Let $p : S_2 \to D^2(r_2)$ be the map defined by $p(u, v, w) = (u, v)$ and let $L = p(S_2)$. Then there is a smooth real-valued function h_2 on L such that $f(u, v, w) = (h_2(u, v): 1)$ for $(u, v, w) \in S_2$ by the condition (v). We see that *h*₂ is a diffeomorphism from *L* onto $(-1, 1)$ satisfying $h_2(-u, -v) = -h_2(u, v)$ and $h_2(p(\varphi(\theta, e_3))) = \tanh \theta$. We put $L_0 = h_2^{-1}([0, 1])$. By using the standard $U(1)$ -action on $D^2(\delta)$, we define a map $F_2: D^2(r_2) \rightarrow D^2(1)$ by

$$
F_2(t \cdot v) = h_2(v)(t \cdot e_2) \quad \text{for} \quad t \in U(1), \ v \in L_0.
$$

Then F_2 is a diffeomorphism from $D^2(r_2)$ onto $D^2(1)$, because we see that F_2 is regular on $D^2(r_2)$ by the definition of (S, φ, f) .

PROOF OF LEMMA 5.7. Let $\alpha: D^2(1) \times S(R_2) \rightarrow S_2(\Phi_0)$ be the diffeomorphism defined by

$$
\alpha(v, w) = (\|v\|^2 + 1)^{-1/2}(v \oplus w),
$$

and let F'_2 : $S_2(\Phi) \rightarrow S_2(\Phi_0)$ be the diffeomorphism defined by

$$
F_2(v\oplus w)=\alpha(F_2(v),\,||w||^{-1}w).
$$

Since $SU(2)$ acts trivially on R_1 by (1.4), we see that F_2 is *K*-equivariant. By the definitions of F_2 and h_2 , we have

$$
F_2'(\varphi(\theta, e_3)) = \Phi_0(m(\theta), e_3) \quad \text{for} \quad \theta \in \mathbb{R}.
$$

Take $g \in G$ and put $g = km(\theta)u$ for $k \in K$, $u \in H(0:0:1)$. Then

$$
F'_{2}(\Phi(g, e_{3})) = F'_{2}(\psi(k, \varphi(\theta, e_{3}))) = \Phi_{0}(k, F'_{2}(\varphi(\theta, e_{3})))
$$

= $\Phi_{0}(k, \Phi_{0}(m(\theta), e_{3})) = \Phi_{0}(g, e_{3})$.

Hence the diffeomorphism F'_2 is G-equivariant. Thus we see that the restriction $|(G \times S_2(\Phi))$ is smooth.

Let v_0 be the element of S_1 satisfying $f(v_0) = (1:0)$. Then $S_1 = \{\varphi(\theta, v_0) | \theta \in \mathbb{R}\}$. Let $\eta: S_1(\Phi) \to S(R_1) \times D^3(r_1)$ be the map defined by

$$
\eta(v\oplus w) = (\|v\|^{-1}v, w).
$$

Then η is a *K*-equivariant diffeomorphism by (1.4). We denote $D(S_1) = S_1(\Phi) \cap S^2$ and denote by S' the intersection of $D(S_1)$ with the great circle in S^2 through v_0 and e_3 .

Then $\eta(D(S_1)) = S(R_1) \times \{w e_3 \in D^3(r_1)\}$ and $\eta(S') = \{(v_0, we_3) | |w| < r_1\} \subset S(R_1) \times D^3(r_1)$. Moreover $\eta(S_1)$ is a smooth curve in $\eta(D(S_1))$ such that

(*)
$$
(v, we_3) \in \eta(S_1) \Leftrightarrow (v, -we_3) \in \eta(S_1),
$$

since $J_2\eta(\varphi(\theta, v_0)) = \eta\varphi(-\theta, v_0)$. It follows from the conditions (i), (ii) in §4 and (*) that there exists a smooth map σ : $(-r_1, r_1) \rightarrow U(1)$ such that $\sigma(w) = \sigma(-w)$ and that the map $\delta : \eta(S') \to \eta(S_1)$, defined by $\delta(X) = (\sigma(w) \cdot v_0, w e_3)$ for $X = (v_0, w e_3) \in \eta(S')$, is a diffeomorphism. Let Δ_1 : $S(R_1) \times D^3(r_1) \rightarrow S(R_1) \times D^3(r_1)$ be the *K*-equivariant diffeo morphism defined by

$$
\Delta_1(\mathbf{v},\,\mathbf{w})=(t_0\cdot\sigma(\|\mathbf{w}\|)^{-1}\cdot\mathbf{v},\,\mathbf{w})\ ,
$$

where $t_0 \in U(1)$ is the element satisfying $t_0 \cdot v_0 = e_2$, $\sigma(\|\cdot\|)$ being smooth since σ is an even function. Let Δ_2 : $S_1(\Phi) \rightarrow S_1(\Phi)$ be the map defined by

$$
\Delta_2(\mathbf{v}\oplus\mathbf{w})=(t_0\cdot\sigma(\|\mathbf{w}\|)^{-1}\cdot\mathbf{v})\oplus\mathbf{w}.
$$

Since $\Delta_1 \eta = \eta \Delta_2$, Δ_2 is a K-equivariant diffeomorphism. Let $\alpha' : S(R_1) \times D^3(1) \rightarrow S_1(\Phi_0)$ be the diffeomorphism defined by

$$
\alpha'(v, w) = (1 + ||w||^2)^{-1/2}(v \oplus w)
$$

Put $F_1' = \alpha' \circ (1 \times F_1) \circ \eta \circ \Delta_2$. Then $F_1' : S_1(\Phi) \to S_1(\Phi_0)$ is *K*-equivariant and we have

$$
F'_{1}(\varphi(\theta, \mathbf{v}_{0})) = \Phi_{0}(m(\theta), \mathbf{e}_{2}) \quad \text{for} \quad \theta \in \mathbf{R},
$$

by the definitions of F_1 and σ . Hence we see that F'_1 is a G-equivariant diffeomorphism in the same way as above and that the restriction $\Phi | (G \times S_1(\Phi))$ is also smooth.

q.e.d.

Put $X=(u, v, w) \in S$ and $f(X) = (b : c)$. If $w > 0$, then $c \neq 0$ and there is a smooth function β on $\{(u, v, w) \in S \mid w > 0\}$ such that $f(X) = (\beta(X): 1)$. We define the subsets S_+ and S_{-} of S by

$$
S_{+}(resp. S_{-}) = \{ X = (u, v, w) \in S \mid w > 0, \beta(X) > 0 \text{ (resp. } \beta(X) < 0) \} .
$$

Then each of S_+ and S_- is connected and $J_1(S_+) = S_-$ and $J_1(S_-) = S_+$ by (5.8) and the definition of *β.*

LEMMA 5.8. Let $(\theta, X) \in \mathbb{R} \times S_+$ (resp. $\mathbb{R} \times S_-$) be given. Then $\varphi(\theta, X) \in S_+$ (resp. *S-) if and only if*

(5.9)
$$
{2\beta(X) \cosh 2\theta + (1 + \beta(X)^2) \sinh 2\theta} > 0 \quad (resp. < 0).
$$

PROOF. $f(\varphi(\theta, X)) = (\beta(X) \cosh \theta + \sinh \theta : \beta(X) \sinh \theta + \cosh \theta)$ by the condition (iv). Hence if $\varphi(\theta, X) \in S_+$ (resp. S₋), then $(\beta(X) \cosh \theta + \sinh \theta)(\beta(X) \sinh \theta + \cosh \theta) > 0$ (resp. <0). Thus we have (5.9). Conversely, if (5.9) holds, then $\varphi(\theta, X) \in S_+ \cup J_1 J_2(S_+)$ (resp. $S_U J_1 J_2(S_U)$). Hence we see that $\varphi(\theta, X) \in S_+$ (resp. S_U) by (5.8) and the

We define

 $D_{+} = \{(\theta, X) \in \mathbb{R} \times S_{+} | \phi(\theta, X) \in S_{+}\},$ $W_+ = \{(km(\theta)u, X) \in G \times S_+ | k \in K, (\theta, X) \in D_+, u \in H(0: \beta(X):1)\}.$

Then D_+ is an open set of $\mathbf{R} \times S_+$ and we have the following.

LEMMA 5.10. For $(g, X) \in G \times S_+$, we have $(g, X) \in W_+$ if and only if

 (5.11) trace $(g \cdot W_{\beta(X)1})^t(g \cdot W_{\beta(X)1}) \neq |(1 - \beta(X)^2)(1 + \beta(X)^2)^{-1}|,$

where $W_{\beta(X)1}$ *is the matrix in* (4.1).

PROOF. By Lemma 1.10, for any $g \in G$ we always have a decomposition $g = km(\theta)u$, where $k \in K$, $\theta \in \mathbb{R}$ and $u \in H(0: \beta(X): 1)$. Hence we see that

$$
(*)\qquad\text{trace}(g\cdot W_{\beta(X)1})^t(g\cdot W_{\beta(X)1})=\cosh 2\theta+2\beta(X)(\beta(X)^2+1)^{-1}\sinh 2\theta
$$

by (4.2). We denote the right hand side of this equation by $\alpha(\theta)$.

First suppose $(g, X) \in W_+$. We may assume that $\varphi(\theta, X) \in S_+$. If $\beta(X) = 1$, then $\alpha(\theta) > 0$. Hence (5.11) holds. If $\beta(X) \neq 1$, then $\alpha(\theta)$ has the minimum $\left| (1 - \beta(X)^2)(1 + \beta(X)^2) \right|$ $\beta(X)^2$ ⁻¹ | if and only if tanh $2\theta = -2\beta(X)(1 + \beta(X)^2)^{-1}$. Hence (5.11) follows from (5.9).

Next suppose (5.11) holds. Then tanh $2\theta \neq -2\beta(X) (1 + \beta(X)^2)^{-1}$. Hence $\varphi(\theta, X) \in$ $S_+ \cup S_-$ by Lemma 5.8. If $\varphi(\theta, X) \in S_-$, then we can take a decomposition of g satisfying $\varphi(\theta', X) \in S_+$. We shall show this as follows: By considering the *R*-action $\varphi, \beta(X) \neq 1$. First suppose $0 < \beta(X) < 1$. Then $f(\varphi(\theta_0, X)) = (0:1)$ for $\theta_0 \in \mathbb{R}$ with $\beta(X) + \tanh \theta_0 = 0$. Put $k' = kj_1$, $u' = m(-\theta_0)j_1m(\theta_0)u$ and $\theta' = 2\theta_0 - \theta$. Then we have

$$
g=k'm(\theta')u'; u' \in H(0:\beta(X):1).
$$

Moreover $\varphi(\theta', X) \in S_{+}$, because

$$
\varphi(\theta_0, X) = J_1 \varphi(\theta_0, X) = \varphi(-\theta_0, J_1(X))
$$

by conditions (ii), (v) and then

$$
J_1(\varphi(\theta',X))\!=\!\varphi(\theta\!-\!\theta_0,\,\varphi(-\theta_0,J_1(X)))\!=\!\varphi(\theta\!-\!\theta_0,\,\varphi(\theta_0,X))\!=\!\varphi(\theta,X)\;.
$$

Next suppose $1 < \beta(X)$. Then $f(\varphi(\theta_0, X)) = (1:0)$ for $\theta_0 \in \mathbb{R}$ with $\beta(X)$ tanh $\theta_0 + 1 = 0$. Now we put $k' = k j_2$, $u' = m(-\theta_0) j_2 m(\theta_0) u$ and $\theta' = 2\theta_0 - \theta$. Then we see that $g = k'm(\theta')u', u' \in H(0:\beta(X):1)$ and $\varphi(\theta', X) \in S_+$ in the same way as above. q.e.d.

LEMMA 5.12. *For any* $(g, X) \in W_+$ *, there exist unique kT* \in K/T and $\theta \in \mathbb{R}$ such that

(5.13)
$$
g = km(\theta)u; u \in H(0:\beta(X):1), (\theta, X) \in D_+.
$$

Furthermore, the correspondence Δ : $W_+ \rightarrow (K/T) \times D_+$ *defined by* $\Delta(g, X) = (kT, \theta, X)$ *is smooth.*

PROOF. First we shall show the uniqueness of the decomposition. If $g = km(\theta)u =$ *k'm*(θ ')*u'*, then $\|m(\theta) \cdot (0, \beta(X), 1)\| = \|m(\theta') \cdot (0, \beta(X), 1)\|$. Hence we have $\theta = \theta'$ by Lemma 5.8. This implies $k^{-1}k' \in T$. Next we shall show that Δ is smooth. Let $\theta = \theta(q, X)$ and $\delta(g, X) = kT$ for $(g, X) \in W_+$. We consider the smooth function γ on $W_+ \times R$ defined by

$$
\gamma(g, X, \theta) = \cosh 2\theta + 2\beta(X)(1 + \beta(X)^2)^{-1} \sinh 2\theta - \text{trace}((g \cdot W_{\beta(X)1})^t(g \cdot W_{\beta(X)1})))
$$

Then $\gamma(g, X, \theta(g, X)) = 0$ by (5.13) and (*) in the proof of Lemma 5.10. By Lemma 5.8

$$
\frac{\partial \gamma}{\partial \theta} = 2(\sinh 2\theta + 2\beta(X)(1 + \beta(X)^2)^{-1}\cosh 2\theta) > 0
$$

at (g, X, θ) satisfying $\gamma(g, X, \theta) = 0$. Thus we see that the function $\theta(g, X)$ is smooth by the implicit function theorem.

Next consider the smooth maps δ_1 : $W_+ \rightarrow \mathbb{R}^5$, δ_3 : $K/T \rightarrow \mathbb{R}^5$ and the smooth map 2 on $(R_1 - \{0\}) \oplus (R_2 - \{0\})$ defined by

$$
\delta_1(g, X) = (1 + \beta(X)^2)^{-1/2} g \cdot (\beta(X)e_2 + e_3),
$$

\n
$$
\delta_3(kT) = k \cdot (e_2 + e_3),
$$

\n
$$
\delta_2(v \oplus w) = ||v||^{-1} v \oplus ||w||^{-1} w,
$$

respectively. Since $\delta_3 \delta = \delta_2 \delta_1$ and δ_3 is an embedding, δ is smooth. q.e.d.

Now we show that Φ of (5.3) is smooth. Define $W(\Phi) = \{(q, \psi(k, X)) \in G \times S^4 \mid k \in K,$ $(gk, X) \in W_+$. Since W_+ is an open set of $G \times S_+$ by Lemma 5.10, we see that $W(\Phi)$ is an open set of $G \times S^4$. Moreover, we see that $\Phi \mid W(\Phi)$ is smooth, because Δ is smooth by Lemma 5.12. Therefore, Φ is smooth on $G \times S^4$, since $G \times S^4$ is covered by the open sets $G \times {\Phi(g, e_2) | g \in G}$, $G \times {\Phi(g, e_3) | g \in G}$ and $W(\Phi)$, and Φ is smooth on each open set.

6. Equivalences and the theorem. Let Φ_i ($i = 1, 2$) be smooth G-actions on S^4 without fixed points. Φ_1 and Φ_2 are said to be equivalent if Φ_1 is equivariantly diffeomorphic to Φ_2 , i.e., there exists a diffeomorphism Ψ : S⁴ → S⁴ satisfying Ψ (Φ₁(*g, X*)) = Φ₂(*g,* Ψ(*X*)) for any $(g, X) \in G \times S^4$.

Triples (S_i, φ_i, f_i) (*i*=1, 2) satisfying the conditions (i) to (vi) in §4 are said to be equivalent if there exists a diffeomorphism ξ from S_1 onto S_2 such that $\xi J_j = J_j \xi$ for $j=1, 2$ and if the following diagram is commutative:

(6.1)
$$
\begin{array}{ccc}\n & R \times S_1 \xrightarrow{\phi_1} S_1 f_1 \\
1 \times \xi & \xi \\
& R \times S_2 \xrightarrow{\phi_2} S_2 f_2\n\end{array} P_1(R)
$$

If $S = S¹ = \{(0, v, w)\} \subset S²$, then we simply write the triple $(S¹, \varphi, f)$ as (φ, f) . The pair (φ, f) is characterized by the conditions (ii) to (vi) in §4. The pairs (φ_i, f_i) (*i*=1, 2)

are said to be equivalent if the triples (S^1, φ_i, f_i) are equivalent.

THEOREM. *There is a one-to-one correspondence between the equivalence classes of* smooth Sp(2, R)-actions on S⁴ without fixed points and the equivalence classes of pairs *(φ, f) satisfying the conditions* (ii) *to* (vi) *in* §4.

To prove this theorem we need the following lemmas.

LEMMA 6.2. Let Φ_i (*i*=1, 2) be smooth G-actions on S^4 satisfying $\Phi_i | (K \times S^4) = \psi$. *Then the corresponding triples* (S_i, φ_i, f_i) defined in §3 are equivalent if Φ_i are equivalent.

PROOF. Let $\Psi: S^4 \to S^4$ be a diffeomorphism satisfying $\Psi \circ \Phi_1(g, X) = \Phi_2(g, \Psi(X))$. Then $G_{\Psi(X)} = G_X$ for any $X \in S^4$. Hence $\Psi(S_1) = S_2$ and $f_1 = f_2 \circ \Psi$. Let $\xi = \Psi | S_1$. Then $\xi J_j = J_j \xi$ (*j* = 1, 2) and $\xi(\varphi_1(\theta, X)) = \varphi_2(\theta, \xi(X))$. Hence (S₁, φ_1 , f_1) and (S₂, φ_2 , f_2) are equivalent. q.e.d.

LEMMA 6.3. Let (S_i, φ_i, f_i) (*i*=1, 2) be triples satisfying the conditions (i) to (vi) *in* §4. Then the corresponding G-actions Φ_i (i=1, 2) constructed by (5.3) are equivalent $if(S_i, \varphi_i, f_i)$ are equivalent.

PROOF. If (S_i, φ_i, f_i) $(i=1, 2)$ are equivalent, then there exists a diffeomorphism $\zeta: S_1 \rightarrow S_2$ such that $\zeta J_j = J_j \zeta$ (j=1,2) and the diagram (6.1) is commutative. Since $\psi|(K\times S_i): K\times S_i\to S^4$ are smooth, closed and surjective, there exists a K-equivariant homeomorphism Ψ of S^4 satisfying $\Psi(\psi(k, X)) = \psi(k, \xi(X))$ for $k \in K$, $X \in S_1$. Now for any $(g, p) \in G \times S^4$, let us choose $\Phi_1(g, p) = \psi(k', \varphi_1(\theta, X))$ as in (5.3), where $p = \psi(k, X)$, $gk = k'm(\theta)u$, $u \in H(0:b:c)$ for $f_1(X) = (b:c)$. Then we have

$$
\Psi(\Phi_1(g, p)) = \Psi(\psi(k', \varphi_1(\theta, X))) = \psi(k', \xi \varphi_1(\theta, X))
$$

= $\psi(k', \varphi_2(\theta, \xi(X))) = \Phi_2(g, \Psi(p))$.

Thus *Ψ* is G-equivariant.

Let $S_i(T) = \{X \in S_i | f_i(X) \neq (1:0), f_i(X) \neq (0:1)\}$. Since $\psi | (K \times S_i(T))$ are open maps and have smooth local sections, Ψ is a diffeomorphism on $S^4 - \{B(T^2) \cup B(SU(2))\},$ where $B(T^2) = {\psi(k, e_3) | k \in K}$ and $B(SU(2)) = {\psi(k, e_2) | k \in K}$ are two singular orbits of the *K*-action ψ on S^4 . On the other hand, open orbits $\{\Phi_i(g, e_3) | g \in G\}$ and $\{\Phi_i(g, e_2) | g \in G\}$ of the G-actions Φ_i are equivariantly diffeomorphic to $G/H(0:0:1)$ and $G/H(0:1:0)$, respectively. Hence the G-equivariant homeomorphisms $|\{\Phi_1(g, e_i) | g \in G\} : {\Phi_1(g, e_i) | g \in G\} \rightarrow {\Phi_2(g, e_i) | g \in G}$ (i=2, 3) are diffeomorphisms. Thus Ψ is a G-equivariant diffeomorphism and hence Φ_1 and Φ_2 are equivalent.

q.e.d.

LEMMA 6.4. Let Φ be a smooth G-action on S^4 satisfying $\Phi|(K \times S^4) = \psi$, and let (S, φ, f) be the triple defined in §3. Then the G-action Φ' , constructed from (S, φ, f) by (5.3), *coincides with the given one.*

PROOF. Let $(g, p) \in G \times S^4$, and set $\Phi'(g, p) = \psi(k', \varphi(\theta, X))$ as in (5.3), where

$$
p = \psi(k, X), \ gk = k'm(\theta)u, \ u \in H(0:b:c) \text{ for } f(X) = (b:c). \text{ Then we have}
$$

$$
\Phi(g, p) = \Phi(k'm(\theta)uk^{-1}, \psi(k, X)) = \psi(k', \phi(\theta, X)) = \Phi'(g, p).
$$

q.e.d.

LEMMA 6.5. *Let* (5, *φ, f) be a triple satisfying the conditions* (i) *to* (vi) *in* §4, *and let* Φ *be the G-action on* S^4 *constructed from* (S, φ, f) *by* (5.3). Then the triple (S', φ', f') *constructed from Φ coincides with the given one.*

PROOF. Let $X \in S$ and $f(X) = (b : c)$. Then $H(0:b:c) \subset G_X$ by the definition of Φ . Hence $f'(X) = (b : c)$ and we have $S = S'$ by the condition (i). Therefore $f = f'$ and $\varphi = \varphi'$. q.e.d.

LEMMA 6.6. Let (S, φ, f) be a triple satisfying the conditions (i) to (vi) in §4. *Then the triple is equivalent to a pair* (φ', f') *satisfying the conditions* (ii) *to* (vi) *in* §4.

PROOF. By the condition (i), there exists a J_i -equivariant diffeomorphism $h: S^1 \rightarrow$ *S* for $i=1, 2$. We define a smooth **R**-action φ : $\mathbb{R} \times S^1 \rightarrow S^1$ and a smooth map $f': S^1 \rightarrow P_1(\mathbf{R})$ by

$$
\varphi'(\theta, X) = h^{-1}(\varphi(\theta, h(X)))
$$
 and $f'(X) = f(h(X))$ for $\theta \in \mathbb{R}, X \in S^1$,

respectively. Then we see that the pair (φ', f') satisfies the conditions (ii) to (vi) in §4 and is equivalent to the triple (S, φ, f) . q.e.d.

PROOF OF THEOREM. Let Φ be a smooth G-action on S^4 without fixed points. Then Φ is equivalent to a smooth G-action Φ' on S^4 satisfying $\Phi'|(K \times S^4) = \psi$ by Lemma 3.2. Hence we are done by the above lemmas. $q.e.d.$

7. Examples and Corollary. Let (φ, f) be a pair defined in §6. Then we denote

 $F(\varphi, f) = \{X \in S^1 \mid \varphi(\theta, X) = X \text{ for any } \theta \in \mathbb{R}\}.$

We say that $X_1, X_2 \in F(\varphi, f)$ are equivalent if $X_2 = J_1^r J_2^s(X_1)$ for some $r, s \in \{0, 1\}$ and we denote the set of the equivalence classes by $\{F(\varphi, f)\}\)$. Then we have the following lemma by the definition of (φ, f) .

LEMMA 7.1. If ${F(\varphi, f)}$ consists of m elements, then the G-action on S^4 constructed *from* (φ, f) *by* (5.3) *consists of* $(2m+1)$ *orbits.*

Now we give two examples.

EXAMPLE 1. Let Φ_0 be the standard G-action on S^4 introduced in §2. Then the triple (S_0, φ_0, f_0) is as follows:

 $S_0 = S^1$, $f_0(0, v, w) = (v:w)$ and $\varphi_0(\theta, (0, v, w)) = (v'^2 + w'^2)^{-1/2}(0, v', w')$,

where $v' = v \cosh \theta + w \sinh \theta$, $w' = v \sinh \theta + w \cosh \theta$. Moreover $\{F(\varphi_0, f_0)\}$ consists of

one element.

EXAMPLE 2. Let *m* be a positive integer. Now we shall construct a pair (φ, f) defined in §6 such that $\{F(\varphi, f)\}$ consists of $(2m-1)$ elements. Let L be the unit vector field on S^1 defined by $L_x = -w(\partial/\partial v)_x + v(\partial/\partial w)_x$ for $X = (0, v, w) \in S^1$. We put

$$
\rho(x) = \begin{cases} \exp(-1/x^2) & \text{if } x > 0, \\ 0 & \text{if } x \le 0, \end{cases}
$$

and $\eta(x) = \rho(\rho(x))$. We define smooth functions $\alpha(x)$ and $\beta(x)$ by

$$
\alpha(x) = (\eta(x_1) - \eta(x_2)) / (\eta(x_1) + \eta(x_2)),
$$

\n
$$
\beta(x) = x_1^3 x_2^3 \rho(x_1)^2 \rho(x_2)^2 / (x_1^3 \rho(x_1)^2 + x_2^3 \rho(x_2)^2),
$$

where $x_1 = (1 + x)/2$, $x_2 = (1 - x)/2$. Put $\gamma(x) = 1/\alpha(x)$ for $x \neq 0$ and

(7.2)
$$
a(\tau) = \gamma(\omega_0(\tau))\alpha(\omega_{2m-1}(\tau))\gamma(\omega_{4m-2}(\tau)) \quad (0 < \tau < n), b(\tau) = s \sum_{j=0}^{4m-2} (-1)^j \beta(\omega_j(\tau)) \quad (0 \le \tau \le \pi),
$$

where $s = \pi/(8m-4)$ and $\omega_j(\tau) = (\tau - 2js)/s$ $(0 \le j \le 4m-2)$. Then we see that

(7.3)
$$
b(\tau)(da/d\tau) = 1 - a(\tau)^2,
$$

and

(7.4)
$$
a(\pi - \tau) = -a(\tau), \qquad b(\pi - \tau) = b(\tau),
$$

by routine calculations (cf. Asoh [2, § 10]).

Put $X = (0, \cos \tau, \sin \tau) \in S^1$ $(-\pi < \tau \leq \pi)$ and

(7.5)

$$
h(X) = \begin{cases} a(\tau) & \text{if } 0 < \tau < \pi, \\ -a(-\tau) & \text{if } -\pi < \tau < 0, \end{cases}
$$

$$
g(X) = \begin{cases} b(\tau) & \text{if } 0 \le \tau \le \pi, \\ b(-\tau) & \text{if } -\pi < \tau < 0. \end{cases}
$$

Then g and h are smooth functions on S^1 and $S^1 - \{(0, \pm 1, 0)\}\)$, respectively. Also there exists a smooth function $h'(X)$ in a neighborhood U of $(0, \pm 1, 0)$ satisfying $h'(X) = 1$ for any $X \in U - \{(0, \pm 1, 0)\}$. We define a smooth map $f : S^1 \rightarrow P_1(\mathbf{R})$ by

$$
f(X) = \begin{cases} (h(X):1) & \text{if } X \neq (0, \pm 1, 0), \\ (1: h'(X)) & \text{if } X \in U. \end{cases}
$$

Then conditions (iii), (v) and (vi) in $\S 4$ hold by (7.4). Moreover we have

 $g(J_i(X)) = g(X)$, $h(J_i(X)) = -h(X)$,

by (7.4) and (7.5). We see by (7.3) that

$$
(gL)_Xh = 1 - h(X)^2
$$
 for $X \in S^1 - \{(0, \pm 1, 0)\}.$

Hence the vector field gL defines a smooth **R**-action φ on S^1 which satisfies $h(\varphi(\theta, X)) = (h(X) + \tanh \theta)/(1 + h(X) \tanh \theta)$ and conditions (ii), (iv) in §4 (cf. Asoh [2, Lemma 9.3 and (6.8)]). We also see that $\{F(\varphi, f)\}$ consists of $(2m-1)$ elements.

By Example 2, we have the following:

COROLLARY. There are infinitely many non-equivalent smooth Sp(2, R)-actions on S 4 *without fixed points.*

REFERENCES

- **[1] T. ASOH, Compact transformation groups on Z² -cohomology spheres with orbit of codimension 1, Hiroshima Math. J. 11 (1981), 571-616.**
- **[2] T. ASOH, On smooth** *SL(2, C)* **actions on 3-manifolds, Osaka, J. Math. 24 (1987), 271-298.**
- **[3] G. E. BREDON, Introduction to compact transformation groups, Pure and Applied Math. 46, Academic Press, New York-London, 1972.**
- **[4] J. DIEUDONNE, Foundations of modern analysis, Pure and Applied Math. 10, Academic Press, New York-London, 1960.**
- **[5] R. S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs of Amer. Math. Soc. 22 (1957).**
- **[6] F. UCHIDA, Real analytic** *SL(n, R)* **actions on spheres, Tόhoku Math. J. 33 (1981), 145-175.**
- $[7]$ F. UCHIDA, On smooth $SO_0(p, q)$ -actions on S^{p+q-1} , Osaka J. Math. 26 (1989), 775-787.

TOKYO METROPOLITAN COLLEGE OF AERONAUTICAL ENGINEERING 52-1, MlNAMI-SENJU 8-CHOME **ARAKAWA-KU TOKYO 116 JAPAN**