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ON SYMMETRIES OF CONSTANT MEAN CURVATURE SURFACES,
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Abstract. We start the investigation of immersions of a simply connected domain

into three dimensional Euclidean space which have constant mean curvature (CMC-

immersions), and allow for a group of automorphisms of the domain which leave the

image invariant. This leads to a detailed description of symmetric CMC-surfaces and

the associated symmetry groups.

1. Introduction. This is the first of two parts of a note in which we start the
investigation of conformal CMC-immersions Ψ: Q)-+R3, 3) an open, simply connected
subset of C, which allow for groups of spatial symmetries

Aut Ψ(β) = {T proper Euclidean motion of R3 \ TΨ{β) = Ψ{β)} .

More precisely (see the definition in Section 2), we consider a Riemann surface M with
universal covering π: 3>->M, and a conformal CMC-immersion Φ: M—>R3 with nonzero
mean curvature, such that Φoπ=Ψ. Then we consider the groups

Aut 3) = {g: 3) -» 3> biholomorphic} ,

Aut M= {g: M -+ M biholomorphic} ,

Autπ3) = {geAut3) | there exists geAutM: π°g = g°π\ ,

Autφ M={ge Aut M \ there exists Te Aut Ψ(β): Φ ° g = T° Φ} ,

and

Autψ9 = {geAui9\ there exists TeAut Ψ{β): Ψ°g = f °Ψ} .

There are many well-known examples of CMC-surfaces with large spatial symmetry
groups. The classic Delaunay surfaces (see [2]) have a nondiscrete group Aut Ψ{β)
containing the group of all rotations around their generating axis. Other examples are
the Smyth surface [9], which were visualized by D. Lerner, I. Sterling, C. Gunn and
U. Pinkall. These surfaces have an (m + 2)-fold rotational symmetry in R3, where the
axis of rotation passes through the single umbilic of order m. More recent is the large
class of examples provided by GroBe-Brauckmann and Polthier (see e.g. [4], [5]) of
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singly, doubly and triply periodic CMC-surfaces.
Other interesting classes of surfaces are the ones with a large group KvXΨ<3.

Examples for this are the compact CMC-surfaces, whose Fuchsian or elementary group
is contained in Aut^ Q).

Yet another class of surfaces (M, Φ), for which Aut^ Q) is interesting are the sur-
faces with branch points. If one deletes the set BczM of those points in M which are
mapped by Φ to be branch points, then such a surface can be constructed as an immersion
Φ of the non-simply connected Riemann surface M\B into R3. To get an immersion
Ψ of a simply connected domain 2 into R3, which covers (M\B, Φ), one can also
apply the discussion of this paper as will be shown in Section 4.5 of the second part.

It is our goal to describe properties of the group Aut Ψ(β) in terms of biholomorphic
automorphisms of the Riemann surface M or the simply connected cover ®, i.e., in
terms of AutφM or Autp^. To this end we investigate the relation between these
groups. This is done in Chapter 2. After defining in Section 2.1, what we mean by a
CMC-immersions (M, Φ), we start in Section 2.2 by listing some well known properties
of the groups AutM, Aut^, Autπ^. These follows entirely from the underlying
Riemannian structure of M and Q). In Section 2.3 we derive the transformation properties
of the metric and the Hopf differential under an automorphism in Aut*p Q). This will
lead in Section 2.4 to some general restrictions on KvXΨQ) in the case $ι = C. In Section
2.5-2.7 we will introduce group homomorphisms π: Autπ^->AutM, φ: AutφM->
Aut 1 ?^) and φ: Autp^->Aut Ψ{β). We will also prove, that, in case M with the
metric induced by Ψ is complete, φ is surjective (Corollary 2.7). In Section 2.8 it will
be shown that we furthermore can restrict our investigation to those CMC-immersions
Φ: M->/?3, for which φ is an isomorphism of Lie groups. In Sections 2.9 and 2.10 we
will investigate, for which complete CMC-surfaces the group Am>^ is nondiscrete. To
this end we give a simple condition on the image Ψ(@) of Ψ under which the group
Aut Ψ{β) is a closed Lie subgroup of OAff(/?3). Here we denote by OAff(/?3) the group
of proper (i.e., orientation preserving) Euclidean motions of R3. Using these results
and the work of Smyth [9], we will prove in the second part (Section II.2.4), that
Aut Ψ(β) is nondiscrete, if and only if the surface Ψ(β) is isometric to a CMC-surface
of revolution, i.e., a Delaunay surface. In Section 2.11 we illustrate the discussion in
Chapter 2, using the examples of Delaunay and Smyth. The groups AutφM, A\xίΨ^
and Aut Ψ(β) are explicitly given for these examples.

In the second part of these notes we will analyze symmetry conditions in terms of
the Weierstraβ-type representation of conformal CMC-immersions [1]. Using results
of this paper, we will also obtain a description of CMC-immersions from arbitrary
Riemann surfaces M into R3 in terms of the Weierstraβ-type data.

Equations and sections in the second part of the note will be referenced by adding
the roman numeral ΊΓ in front of the equation and section number, respectively.
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2. Automorphisms of CMC-surfaces.

2.1. Before we can start the investigation of CMC-immersions (M, Φ) we have to

define, what we mean by a CMC-immersion, if M is not a domain in R2. We will

restrict our investigations to the case of nonzero mean curvature, i.e. we will exclude

the special case of minimal surfaces.

DEFINITION. Let M be a connected C2-manifold and let Φ:M^R3 be an

immersion of type C2. Φ is called a CMC-immersion, if there exists an atlas of M, s.t.

every chart (U, φ) in this atlas defines a C2-surface Φ°φ~ι: φ(U)^>R3 with nonzero

constant mean curvature.

This definition makes sense due to the well known fact that CMC surfaces are

orientable and thus can be equipped with a complex structure compatible with the

induced conformal structure.

In this paper we will therefore restrict ourselves to conformal CMC-immersions

Φ:M->/?3, where M is a Riemann surface. I.e., if we write "(M,Φ) is a CMC-

immersion", we always mean " M is a Riemann surface and Φ is a conformal CMC-

immersion".

2.2. In this section we strip the CMC-surface M of its metric and leave only the

complex structure. We will recollect some well known facts a about Riemann surfaces

(see e.g. [3]).

Up to conformal equivalence the only Riemann surfaces, which are simply connect-

ed are the sphere CP1 = C\J{GC}, the complex plane C and the upper half plane

A = {zeC\lm(z)>0}, which is conformally equivalent to the open unit disk. Each of

these surfaces is equipped with its standard complex structure. Every Riemann surface

M can be represented as the quotient of one of these three Riemann surfaces by a free-

ly acting Fuchsian group Γ of biholomorphic automorphisms, i.e., we may write

M=Γ\β, where 3) is the simply connected cover of M.

If π: 3-+M is the covering map, then Γ is also the covering group of π. Then by

[3, V.4.5]

(2.2.1) Aut M=N(Γ)/Γ>

where N(Γ) is the normalizer of Γ in Aut^. Since geKvXπQ) is equivalent to

(2.2.2) πogoy = %og

for all yeΓ, we have g°y = y\°g for some yγeΓ, and thus

(2.2.3) Autπ ^ = iV(Γ).

Therefore,

(2.2.4) A u t M ^ A u t π ^ / Γ ,
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where Autπ 3) is a closed subgroup of Aut 3ι, and Γ is a normal subgroup of Autπ Q).

The following is also well known (see e.g. [3, IV.5, IV.6, V.4]):

LEMMA, (a) The group Γ is discrete, i.e., either finite or countable, and consists

of conformal (biholomorphic) automorphisms of Q), which act fixed point free on 3.

(b) If 3 = CPi, then Γ is trivial and M is the sphere.

(c) If 3 = C, then Γ is abelίan and M is either the plane, the cylinder or a torus.

(d) For a Riemann surface M=Γ \ 3 the following are equivalent:

• The Fuchsian group is abelian.

• The Lie group Aut M of conformal automorphisms of M is nondiscrete.

Surfaces of this kind are called exceptional surfaces.

2.3. In the following we will need two standard results from the theory of CMC

surfaces which can be found e.g. in [6]:

1. Edz2 = (Ψzz, N}dz2, defines a holomorphic quadratic form, the Hopf dif-

ferential, on M.

2. CMC surfaces come in S ^families, the so called associated families. In other

words, two CMC surfaces are isometric if and only if they are in the same

associated family.

We define OAff(/?3) to be the group of proper Euclidean motions in R3. It will be

convenient at times to decompose an element of ΓeOAff(/?3) into a rotational and a

translational part:

(2.3.1) Tv = RjV + tj, veR3.

We will also write f=(Rf, tf).

DEFINITION. AS already mentioned in the introduction we define

(2.3.2) Autπ 3ι = {g e Aut 3ι \ there exists g e Aut M: π°g = goπ} ,

(2.3.3) AutφM={$eAutM|there exists TeAutΨ(@): Φo$=foφ} ,

(2.3.4) Auty® = {0eAut0|there exists

and

(2.3.5) Aut Ψ{β) = {TeOAff(/?3)

LEMMA. Let Ψ: Q)-+R3 be a conformal CMC-immersion with metric

(2.3.6) ds2= — eudzdz

where u = u(z, z): <2)-+R, and Hopf differential Edz2. Let geAut@. Then the following

are equivalent:

1. The automorphism g is in Aut«p Q).
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2. The functions u and E transform under g as

(2.3.7) eiuoβ)iz'*)\g'(z)\2 = euiz-sr),

(2.3.8) (Eog)(z)(g'(z))2 = E(z).

PROOF. Let us define the immersion Ψι = Ψ°g. Then Ψ1: @->R3 is also a CMC-

immersion. By the definition of u we have

(2.3.9) euιiz^ = e{uo9)iz^\gf(z)\2 .

Since the Hopf differential is a holomorphic quadratic form we get

(2.3.10) £1(z) = (£o f l fχzχ f lf'(z))2.

We have geAutΨ@ if and only if Ψt and Ψ give the same surface up to a proper

Euclidean motion. By the fundamental theorem of surface theory this is the case if and

only if both surfaces have the same first and second fundamental form, which by Eqs.

(2.3.6) and the well-known expression

(2.3.11) n=U
2\ ί(E-E)

for the second fundamental form is equivalent to EX=Eand uι=u. This, together with

Eq. (2.3.9) and Eq. (2.3.10), proves the lemma. •

COROLLARY. The elements of A\xtΨ ® a c t a s selfisometries of{β, Ψ), i.e. Aut^ 3) a

PROOF. By Eq. (2.3.7) and the definition (2.3.6) of w, the metric ds2 is invariant

under geKvXΨQ).

2.4. We will draw some further conclusions from the automorphicity of the Hopf

differential, Eq. (2.3.8). We recall that CMC-surfaces with Hopf differential identically

zero are part of a round sphere. Such surfaces will be called spherical.

PROPOSITION. Let (M, Φ) be a CMC-surface with simply connected cover {β, Ψ),

3> = C. Then either E=0 or the group \soΨ Q) a Aut C of selfisometries of(β, Ψ) consists

only of rigid motions of the plane, i.e., every gelsoΨ Q) can be written as g: zh^-az + b,

with a, beCand \a\ = l.

PROOF. Let us assume, that there exists an automorphism g in Iso^ Q) c= Aut C,

which is of the form

(2.4.1) g(z) = az + b

with α, b being complex constants and | a | φ 1.

Case I: If bΦO then we can, by a biholomorphic change of coordinates
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(2.4.2)

turn g into a scaling with rotation g(z) = az. Let us also define E: Q)-*Cby Edz2 = Edz2,

then

(2.4.3) E\
(a-l)2

The Hopf differential E transforms under g according to

(2.4.4) I (Eog)(z)\ \g\z) | 2 = | E(z) | .

We therefore get for all neZ\

(2.4.5) \ E ( a n z ) \ - \ a 2 n \ = \ E ( z ) \ .

For I a | > 1 this implies that the absolute value of E is decreasing from the fixed point

z = 0 of g in all directions in the z-plane to zero. Since E is holomorphic in z, this gives

E=0 and therefore £ = 0 .

If I a I < 1, consider the inverse g ~ι e Iso^ Q)\

1 b
(2.4.6) g~\z) = — z .

a a

Since | I/a | > 1 we can use the first part of the proof again.

Case Π: If b = 0 then Eq. (2.4.4) gives directly

(2.4.7) \E(anz)\ = \a-2n\\E(z)\.

We can therefore argue in the same way as in the first case. •

From the results of this section we can draw the following conclusion for Iso^(^),

if 9 = C\

THEOREM. Let (M, Φ) be a complete, nonspherίcal CMC-surface with universal

covering immersion {β, Ψ) and @ι = C. Let Iso»p Q) a Aut Q) be the group of self-isometries

of{β, Ψ). Let Edz2 be the Hopf differential of {C, Ψ).

1. If lsoΨ C contains the group of all rotations around a fixed point, then, up to a

bίholomorphic change of coordinates, we have E=d(z — zo)
m, where deC\{0}

and m = 0, 1, 2, . . . is an integer.

2. IflsoΨ C contains a one-parameter group ZΓ of translations, then E=aebz with

complex constants a, b, aΦO.

PROOF. 1. Without loss of generality we can choose zo = 0. Let & = {gφe

Aut C\gφ(z) = eιφz, φe[0, 2π)} be the one-parameter group of rotations around the

origin. Clearly, \E\ is invariant under all automorphisms in ^cz l so^^. Therefore, for

each φeR,WQ get E(gφ(z)) = eιθE(z), where θ = θ(φ) eR depends linearly on φ. It follows,
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since Eis holomorphic, that θ = mφ, m a nonnegative integer, and, up to a biholomorphic

change of coordinates, E=dzm, deC. Since by assumption EψO, we have dφO.

2. \E\ and therefore also the set of zeroes of E is invariant under the group 3Γ.

Since the set of zeroes of a holomorphic function is discrete, it follows, that the

holomorphic function E(z) has no zeroes. Thus, ln(E) and its derivative are entire

functions. Let us write the group 3~ as

(2.4.8) ^ = {gr\gr(z)

Then for all reR and some D G C \ { 0 } we have E(gr(z)) = eirφE(z), with some φe [0, 2π).

Therefore, the logarithmic derivative of E is constant along any orbit of 2Γ, whence it

is a globally constant function. It follows, that E(z) = ebz+C for some complex constants

b, c. Setting a = ecφ0 gives the desired statement. •

COROLLARY. Let (M, Φ), (C, Ψ) and I s o ^ be defined as in Theorem 2.4.

1. If IsoΨ@ contains the one-parameter group 01 of rotations around a fixed point

zoeC, then either \soΨ£) = $ or Φ(M) is a cylinder.

2. If ΛsOψQ) contains a one-parameter group ^Γ of translations', then either Φ(M)

is a cylinder, or Iso«p 3> = 3~ x Q, or Iso«p Q) — 3~ x Q x R, where x denotes the

product of sets, Q is a, possibly trivial, discrete group of translations, not contained

in ZΓ, and R is the group generated by the \WP-rotation around a fixed point,

z->2z o-z, zoeC.

PROOF. The first part follows immediately from Theorem 2.4 and the fact that,

due to (2.3.8), isometries leaves the zeroes of E fixed. To prove the second part it is

enough to remark that, by (2.3.7), the given isometry groups are the only possibilities

for a nonconstant function u, i.e. for a noncylindrical surface. •

REMARK. The immersions considered in the theorem and in the corollary will be

investigated in more detail in Section 2.12.

2.5. In the next sections we will investigate some properties of the groups defined

in Definition 2.3. We begin with the following.

LEMMA, (a) Let g e Autπ <2) andg e AutMbe as in (2.3.2), then g is uniquely defined.

(b) Let geAutφM and f e Aut Ψ(β) be as in (2.3.3), then f is uniquely defined.

(c) Let geKwtψQ) and Te Aut Ψ(@) be as in (2.3.4), then T is uniquely defined.

PROOF, (a) Assume g and g' both satisfy (2.3.2), then g(π(z)) = g'(π(z)) for all

). This implies g = g\ since π is surjective.

(b) A proper Euclidean motion in R3 is determined uniquely by its restriction to

an afrine two dimensional subspace. If we choose a point zeM, then for each pointy

of the affine tangent plane Φ(z) + dΦ(TzM), p = Φ(z) + dΦ(v), we have

(2.5.1)
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Therefore T is uniquely determined.

(c) Similarly. •

REMARK. It actually follows from the proof, the T is already determined by the

restriction of g to an arbitrary open subset of M.

2.6. Using Lemma 2.5 we define the following maps:

DEFINITION.

(2.6.1) π: Aut π ^->AutM,

where g and g are as in (2.3.2),

(2.6.2) φ: AutφM-OAff(/? 2),

where g and T are as in (2.3.3), and

(2.6.3) ψ: AutΨ@-> OAff(R3),

where g and T are as in (2.3.4).

By Lemma 2.5, φ and ψ are group homomorphisms. Also note that the images of

φ and ψ are contained in Aut Ψ{β).

THEOREM, (a) The groups Aut^ 3) and Autφ M are closed Lie subgroups of Aut 3)

and Aut M, respectively.

(b) 77ze maps π, (/> α/?J ̂  are analytic homomorphisms of Lie groups.

PROOF, (a) Let gneA\xtΨ3 be a sequence which converges to geAut@. Then

gn converges uniformly on each compact subset of 3). In particular, ψogn = fnoψ

converges uniformly to Ψ°g on each sufficiently small closed ball around any point

ze3). Therefore, also the differentials converge, whence (fn)^dzΨ = RψndzΨ converges,

where we have written Tn = (Rfn, tψj as in (2.3.1). This implies that Rψn converges to

a rotation R in R3. Since also fnoψ = tfn + Rψn°Ψ converges, tfn-+t for some teR3.

Altogether, this shows fn-+T=(R,t). But now ψogn^>ψog = foψ. This shows that

Te Aut Ψ(3f) and geAutΨ3. The argument for Aut φ M is similar.

(b) We know that Aut M and Aut 3) are Lie groups and, by the argument above,

we know that Aut^ 3) and Autφ M are closed subgroups of Aut 3) and Aut M, respec-

tively. Therefore, with the induced topology Ku\ΨQ) and AutφM are Lie groups. We

show that in this topology the maps φ and ψ are continuous, from which analyticity

follows [7, Th. Π.2.6].

Assume gn-*g in Aut«p^. Then gn converges to g uniformly on each compact subset

of 3). In particular, ψogn = fnoψ converges to ψog = foψ on each sufficiently small

closed ball around any point z e § . By the proof of Lemma 2.5, T and Tn are uniquely

determined by the restriction of g and gn to an arbitrary open subset of 3. Therefore,

Tn converges to T. This shows that φ is continuous. For φ we proceed analogously.
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For π the claim is trivial. •

2.7. We will need the following.

THEOREM. We retain the notation of Section 2.3. If M with the metric induced by

Φ is complete, then for every Euclidean motion Te Aut Ψ(β) there exists a geAutΨ@,

such that ψog = To ψ, i.e., φ maps AuίΨ!3 onto Aut Ψ{β). The automorphism g is unique

up to multiplication with an element ofKεrφ.

PROOF. Let f be a Euclidean motion, which leaves the image Ψ{β) invariant. Let

us choose two arbitrary points z 0 and zγ in Q), such that Ψ(zί) = TΨ(z0). Then, since

Ψ is locally injective and conformal, for each such pair (z0, zx) there exists an open

neighbourhood Uo of z 0 and an open neighbourhood Ux of z l 5 such that 7Ό ψ(z) = Ψ(h(z)),

zeU0, defines an orientation preserving isometry h: U0-*Uί.

Since M is complete, also Q) is complete [7, Prop. 1.10.6]. Thus, Q) is an analytic,

complete, simply connected manifold. Therefore, by [7, Sect. 1.11], the local isometry

h can be extended to a unique, global, orientation preserving self-isometry g e Aut Q) of

9, such that g\Uo = h. By the definition of h we have Ψ(g(z)) = TΨ(z) on Uo. Since all

occuring maps are analytic, we get To ψ= ψog on Q). Uniqueness of g up to an element

of Ker φ is trivial. Π

The only group still to be discussed is Aut Ψ(@). Unfortunately, in general

Aut Ψ(β) doesn't seem to be closed in OAff(/?3). In Section 2.10 we will give a simple

condition on (M, Φ), under which Aut Ψ(Q)) can be shown to be closed.

However, here we are able to conclude:

COROLLARY. If(M,Φ) is complete, then φ: Amv^-»Aut Ψ(@) is surjective. In

particular, Aut Ψ(@) = Aut^ ^/Ker φ is a Lie group.

Theorem 2.7 and Corollary 2.7 have well known equivalents for the map π. The

arguments leading to Eq. (2.2.4) prove the following

PROPOSITION. Let M be a Riemann surface with simply connected cover π: ̂ —>M.

With the notation as above we have:

(a) For every $ e A u t M there exists a geAutπ^, such that πog = gon.

(b) The map ft: Autπ 2->Aut M is surjective.

2.8. We want to investigate, how the groups defined in Section 2.3 are related to

each other by the maps π, φ and φ.

For every geπ~x(Aut0M) we have

(2.8.1) Ψog = φoπog =

hence

(2.8.2) π~\Autφ M)^AutΨ
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and φ = φoπ on π~1(AutφM).

For geKerπ we have ψog = φonog = φoπ=Ψ. Therefore,

(2.8.3)

We also recall that Ker π = Γ, the Fuchsian group of M.

LEMMA. Let (M, Φ) be a CMC-immersion with Ker φ = Ker π. Then the following

holds:

(a) (π)"* (Autφ M) = Autp 2.

(b) φ : AutφM->Aut Ψ{β) is an injective group homomorphism.

If, in addition, (M, Φ) is complete, them

(c) The action offeAut Ψ(β) can be lifted to an action on M, i.e., φ is surjective.

(d) φ : AutφM—>-Aιit Ψ(@) is a group isomorphism.

PROOF, (a) Since K e r ^ = Kerπ, we have that Autpί^ is in the normalizer of

= Γ, whence Autp 3) a Autπ &, by (2.2.3). Therefore, for geAutΨ^ we have

(2.8.4) Φo π(g) oπ = φoπog=ψog = ψ(g) oψ = \jj{g) o φ o n 9

and π(g) e Autφ Mfollows, i.e., AλxiΨ Q) c π~ x(Autφ M). Now (a) follows from Eq. (2.8.2).

(b) From Eq. (2.8.1) and (a) it follows that ψ = φ°π on A u t ^ , which implies

Kerφ = {id} and therefore (b).

(c) Let TeAutΨ(^). Since (M,Φ) is complete, there exists, by Theorem 2.7,

geAλxiψS), such that f=φ(g). From (a) it follows that there exists $eAutφM, such

that g = π(g), whence f=φ(g). The map φ is therefore surjective.

(d) follows from (b) and (c). •

PROPOSITION, (a) Ker φ is a discrete subgroup of AmV ® and a c ί s freely and

discontinuously on Q).

(b) M' = Ker φ \@ is a Riemann surface.

(c) Let π ' : £&—>M' denote the natural projection. Then there exists an immersion

Φ' of M' into R3, such that the following diagram commutes:

(2.8.5)

φ>

(d) For the CMC-immersion (M', Φ') as above we define π' and φ' as in Section

2.6. Then

(2.8.6)

PROOF, (a) Since φ: Autp ^->OAff(/?3) is a continuous homomorphism of Lie
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groups, Kerφ is, with the induced topology, a Lie subgroup of Autp^. Therefore, if

Kerφ were nondiscrete, it would contain a one-parameter subgroup γ(ή. Hence

Ψ(y(t).z) = Ψ(z) for all zeQ) and all teR. This implies y(t).z = z for all z e ^ and all

teR, whence y(ί) = /for all ί, a contradiction.

Now let us assume that g e Ker φ has a fixed point z0 e Q). Then

(2.8.7) Ψ(g(z)) = Ψ(z) for all z e Q),

(2.8.8) 0(*o) = *o.

Taking into account the injectivity of the derivative of Ψ one gets by differentiating

Eq. (2.8.7) at z = z0,

(2.8.9) θ'(zo)=l.

In the case of Q> = Cone has g(z) = az + b, with a,beC. It follows from Eqs. (2.8.9) and

(2.8.8) that g = id.

In the case of Q) being the unit circle we can view g as an isometry w.r.t. the

Bergmann metric on 2). This together with [7, Lemma 1.11.2] implies again g = id.

It remains to be proved that Kerφ acts discontinuously, i.e. that there is a point

zoe@, such that the orbit of Ker φ through z0 is discrete. For the unit circle this follows

from the discreteness of Kerφ and [3, Theorem IV.5.4]. For Q) = C it is trivial, since

then, by the arguments above, Ker φ is a discrete group of translations.

(b) Since by (a), Kerφ is a Fuchsian or elementary group, it follows that

M=Kerφ \@ is a Riemann surface (see e.g. [3, Section IV.5]).

(c) From the definition of Kerφ and M' it is clear that Ψ factors through M'.

This defines an immersion Φ': Mf->R3. If π ' : Q)^M' is the natural projection, then

ΦΌπ'=ψ and (2.8.5) follows.

(d) is clear from the definition of M'. •

The last lemma shows that for our purposes it is actually enough to restrict our

attention to surfaces with

(2.8.10)

For these surfaces the conclusions of Lemma 2.8 hold.

2.9. The following proposition shows what it means for the symmetry group

A m > ^ that Aut Ψ{β) is not discrete.

PROPOSITION. Let (M, Φ) be a CM.C-immersion with simply connected cover @),

which is complete w.r.t. the induced metric and admits a one parameter group of Euclidean

motions PczAut Ψ(@). Then KvXΨQ) also contains a one parameter group.

PROOF. Let P={fx, xeR} be a one parameter subgroup of Aut Ψ(@), where

Aut Ψ(@) carries the Lie group structure stated in Corollary 2.7. Let A aQ) be an open
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subset such that Ψ is injective on A. Let aeA be arbitrary. Since f0Ψ(a)=Ψ(a)eΨ(A),

there exists some ε>0 and an open subset AεczA, such that TxΨ(Aε)czΨ(A) for all

| x | < ε . Therefore, by Theorem 2.7, there exists an automorphism gxeAut@, \x\<ε,

satisfying ψogx = Tχoψ, which is unique up to multiplication with an element in Kerφ.

In addition, it follows from the proof of Theorem 2.7 that we can choose gx such that

(2.9.1) gx(Aε)<=A.

Since Ker φ is discrete, the condition (2.9.1) determines gx uniquely, if A is small enough.

This shows that gx+y = gxgy for all sufficiently small x, y e R. For x^O we have TX-*TO = /,

therefore ψogx-+ψ uniformly on 3. This shows that gx converges to an element of

Kerφ. Since Kerφ acts freely on 3>, Eq. (2.9.1) implies gx-*g0 = I for x-+0. This shows

that ω: x->gx is a continuous and thus analytic (see [7, Th. II.2.6]) homomorphism

from some interval ( —ε, ε), ε>0, into Autp^. For an arbitrary xeR we write

x = mε/2 + r, where re[0, ε/2) and meZ are uniquely determined. The definition

(2.9.2) gx

extends ω to a one-parameter subgroup of AmV 3, which finishes the proof. •

2.10. It remains to be investigated under which circumstances the existence of a

cluster point of Aut Ψ(β) implies dim Aut Ψ(β) > 1. This is certainly the case, if Aut Ψ(3))

is closed in OAff(/?3).

To this end we introduce the notion of an admissible immersion.

DEFINITION. Let (M, Φ) be an immersed manifold in R3. A pointp e Φ(M) is called

admissible, if there is an open neighbourhood U of p in /?3, such that the intersection

Φ(M)n U is closed in U. The immersion (M, Φ) is called admissible, if Φ(M) contains

at least one admissible point.

We think it is fair to say that, basically, every surface of interest is admissible.

Most surfaces studied actually belong to the smaller class of locally closed surfaces (see

[8, II.2]), for which each point of the image is admissible. Among the locally closed

surfaces are e.g. the immersed surfaces with closed image Φ(M) in /?3, especially compact

submanifolds of R3, and immersed surfaces (M, Φ), for which Φ is proper (see e.g. [10,

1.2.30]).

Also note that, geometrically speaking, a surface has to return infinitely often to

each neighbourhood of each of its nonadmissible points. A nonadmissible surface is

therefore in a sense a two-dimensional analog of a Peano curve.

REMARK. It is important to note that admissibility is a property of the image

Φ(M) of the immersion Φ. We don't claim that it is preserved under isometries. In

particular, for an admissible surface it may well be, that not all members of the associated

family are admissible.
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The definition of admissible surfaces allows us to describe a large class of surfaces,
for which Aut Ψ(@) is closed.

THEOREM. If(M, Φ) is a complete, admissible surface in R2 and(β, Ψ) is the simply
connected cover of M with the covering immersion Ψ = Φoπ, then the group Aut Ψ{β) is
closed in OAff(/?3).

PROOF. Let Tn e Aut Ψ{@) be a sequence of symmetry transformations of Ψ{Qι)
which converges to ΓeOAff(/?3). Therefore, also the sequence T~ι converges in
OAίf(/?3).

Since (M, Φ) is admissible, there exists an admissible point p e Ψ(@), together with
an open ball B(p, ε) of radius ε< 1 around p in R3, such that B(p, ε) n Ψ(β) is closed in
B(p,ε).

Without loss of generality we can assume that p and the whole bounded sequence
{T~ 1(p)} lies in B(0, 1/2). Otherwise we first apply a scaling transformation of/?3, which
changes neither the admissibility of (M, Φ) nor the group structure of Aut Ψ(&)).

We take TVeΛ ŝuch that \\f— Tn\\ <εβ for n>N, where || || denotes the operator
norm.

We choose p'=f^1{p) and z''e§. such that p' = Ψ(z'). Since fN is a Euclidean
motion we have that TN(B(p\ ε)) = B(p, ε).

For all qeB(p',ε/3)nΨ(@) we get \q\<\q-p'\ + \p'\<Φ + 1/2<1, therefore, if
n>N,

(2.10.1)

Thus we have fn(q)eB(p, 5ε/6)n Φ(β) for all n>N and {Tn(q),n>N} cB(p, ε). Now we
know that B(p, ε)n Ψ(β) is closed in B(p, ε), and that fn(q) converges by assumption
to T(q)eR3. Therefore, the limit f(q) is in Ψ(@). Since Ψ is an immersion, there exists
an open neighbourhood A of z' which is mapped into B(p\ ε/3) by Ψ. Therefore, if we
choose ZEQ), such that p = Ψ{z\ then T induces an isometry g of A onto an open
neighbourhood BaQi of z, such that Toψ= ψog on A. By [7, Sect. 1.11], this isometry
can be extended globally to a unique automorphism geAuti^. Since all maps are
analytic and globally defined, the relation foψ=ψog holds on the whole of <$. It
follows that g e Aut^ 9 and T e Aut Ψ{9). •

COROLLARY. Let (M, Φ) and 3ι be as in Theorem 2.10. If Aut ^(β) is nondiscrete,
then also Aut»p Q) is nondiscrete.

PROOF. By the assumptions, Aut Ψ(Q)) is closed in OAff(/?3) and nondiscrete. It
therefore contains a one parameter group and the corollary follows from Proposition
2.9 above. •

Finally, we state the following result for the translational parts of the elements of
Aut
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PROPOSITION. If{M, Φ) is admissible and complete, and Aut Ψ{Θ) is discrete, then

the set £f = {t\ T=(R, t)e Aut Ψ(@)} of translations is discrete.

PROOF. Assume, J2? is not discrete. Then there exists a ί e i f and a sequence

{fw}c:j2f, tnφt, such that tn converges to t. Since the set of rotations is compact, we

obtain a subsequence fn = (Rn,tn)e Aut Ψ(@), which converges in OAff(/?3). Since by

Theorem 2.10, Aut Ψ(β) is closed, this sequence converges in Aut Ψ(@) to some f. But

then Tn = T for sufficiently large n, since Aut Ψ{β) is discrete. This shows that tn = t for

sufficiently large n, a contradiction. •

2.11. As examples for the discussion in this chapter, let us investigate two well

known classes of CMC-surfaces, the Delaunay and the Smyth surfaces.

We recall that a Delaunay surface is defined as a complete, immersed surface of

constant mean curvature which is generated in R3 by rotating a curve around a given

axis. We will restrict the definition without loss of generality to an arbitrary but fixed

mean curvature HΦQ and exclude the degenerate case of the sphere.

Let us translate two well known facts about Delaunay surfaces into our language:

PROPOSITION. 1. Let (M, Φ) be a noncylindrical CMC-immersion with universal

covering immersion (β, Ψ), such that Φ(M) is a Delaunay surface. Then Φ(M) is generated

by rotating the roulette of an ellipse (unduloid) or a hyperbola (nodoid) along the line on

which the conic rolled.

2. Let S<=R3 be a Delaunay surface. Then there exists a CMC-immersion (M, Φ)

with universal covering immersion (β, Ψ), @ = C, such that

• S=Φ{M\

• Autipi^ contains a one parameter group ZΓ of translations, which is mapped by

the surjective homomorphism φ: Autp®-*Aut Ψ{Qi) to the group of rotations

around the axis of revolution of the Delaunay surface.

PROOF. 1. Well known, see e.g. [2].

2. Such immersions (with Φ=Ψ, M = <3 = C) are explicitly constructed in [9].

D

REMARK. Besides of being periodic, the roulette of an ellipse or hyperbola has

another important property: In each of its periods there is a unique point of maximal

distance from the line A on which the conic rolls. The roulette is symmetric w.r.t. the

reflection at any line perpendicular to A, which passes through such a point of maximal

distance from A. The Delaunay surface is therefore invariant under a 180°-rotation

around any axis which is perpendicular to the axis of revolution A and passes through

a parallel of maximal radius.

Let us recall again that in the discussion of Delaunay surfaces we exclude the

catenoid, the roulette of the parabola, which is a minimal surface. Since we also exclude

the sphere, we get the following result, the proof of which is an exercise in elementary
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geometry:

LEMMA. Each Delaunay surface determines its axis of revolution uniquely.

A simple argument using Proposition 2.11 gives the following.

COROLLARY. Let (M, Φ) be as in Proposition 2.11. Let A be the generating axis of

the Delaunay surface Φ(M). Then, as a set, Aut Ψ(Θ) can be written as

(2.11.1) AutΨ(@) = @xQx{I, R} ,

where $ is the one-parameter group of rotations around A, Q is a nontrivial discrete group

of translations along A, and R is a 180°-rotation around an axis which is perpendicular

to A.

Smyth [9] introduced for every integer m > 0 a one-parameter family of conformal

immersions

(2.11.2) Ψ?:C-+R3, ceC\{0} ,

with constant mean curvature, such that the induced metric is complete and invariant

under the one-parameter group of rotations around z — 0 in C. We will call these surfaces

Smyth surfaces. The Hopf differential of (C, Ψ?) is czmdz2, and therefore each (C, Ψ?)

has an umbilic of order m at the origin. For m = 0 the family Ψ™ contains the cylinder.

We will call a Smyth surface nondegenerate, if its image in R3 is not a cylinder.

Two surfaces in R3 will be called congruent if they are related by a proper Euclidean

motion of R3. Recall also the definition of the associated family.

The following results were proved by Smyth [9]:

THEOREM. Let (M, Φ), with covering immersion {β, Ψ), be a complete, immersed

surface of constant mean curvature, admitting a one-parameter group of self-isometries.

Then the following holds:

1. The simply connected cover of the Riemann surface M is Q) = C.

2. The associated family of(β, Ψ) contains either a Delaunay or a Smyth surface,

i.e., {β, Ψ) is isometric to the simply connected cover of a Delaunay or a Smyth

surface.

3. The surface {β, Ψ) admits a one-parameter group P of self-isometries which is

(a) a one-parameter group of translations (P = R) in case of the Delaunay

surfaces,

(b) a one-parameter group of rotations around a fixed point in C (P^S1) in

case of the Smyth surfaces.

2.12. With the results in the previous section we can also easily derive the

uniformization of Delaunay and Smyth surfaces.

PROPOSITION. 1. Each Delaunay surface is conformally equivalent to the cylinder,
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i.e., its simply connected cover is C and the Fuchsίan group is a one-parameter group of

translations.

2. Each nondegenerate Smyth surface is conformally equivalent to C.

3. For a nondegenerate Smyth surface we have

(2.12.1)

PROOF. We already know from Theorem 2.11 that both, Delaunay and Smyth

surfaces, have, as Riemann surfaces, the simply connected cover C. Therefore, by Lemma

2.2, they are biholomorphically equivalent to the plane, the cylinder or a torus and the

Fuchsian group is either trivial or it is a discrete group of translations.

1. is clear.

2. Let Ψ: C-+R3 be an immersion such that Ψ(β) = Ψ™(9) is a Smyth surface

for some parameters meN, ceC. Assume that the Fuchsian group of the surface

contains a nontrivial translation. Then, by Theorem 2.11, the group A\xtΨ@ satisfies

the assumptions of the first part of Lemma 2.4. Therefore, Ψ(β) is a cylinder. For a

nondegenerate Smyth surface this gives M= C— Q), i.e., the Smyth surface is conformally

equivalent to the complex plane.

3. From 2, it follows that π = id and Autπ Q) = Aut 2 = Aut M, therefore Ker π =

{ •

We continue with the following.

LEMMA. 1. For each noncylindrical Delaunay surface SczR3, there exists a

CMC-immersion (M, Φ) with Φ(M) = S, such that

(2.12.2) Ken/f = K e r π ,

(2.12.3) A u t φ M ^ A u t Ψ{3)),

and, as a product of sets, we have

(2.12.4)

where ?Γ c Aut C is a one-parameter group of translations, Q a Aut C is a discrete group

of translations with one generator, and R = {I, Rπ} a Aut C is the group generated by the

inversion Rπ: z i—> — z.

2. If'(C, Ψ= Ψ™) is a nondegenerate Smyth surface, then

(2.12.5)

and

(2.12.6)

where 01 is a finite group of rotations around z = 0 in C.

PROOF. 1. The equations (2.12.2) and (2.12.3) follow easily from Proposition
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2.11, Proposition 2.8, and Corollary 2.11. Furthermore, with the definitions in Corollary

2.11 we can describe the group AutφM, and, by the identification of M with a subset

of C, also Autψ *3), explicitly:

• The group f̂ c= Aut Ψiβ) is identified in Aut M with the set of translations parallel

to the imaginary axis in C. We therefore have £Γ = φ~1(^).

• The group Q c Aut Ψ(β) is identified in Aut M with the group Q of translations

in C which leave if invariant. We therefore have φ~1(Q) = Q.

• The rotation R is identified in AutM with a 180°-rotation around an arbitrary

fixed point ze<£. We choose z = 0. Then R is identified with Rπ: z^—z up to

an automorphism i n f c j ; We therefore have φ~γ(β x {/, R}) = $~ x {/, Rπ}.

Since φ is a surjective homomorphism and since Aut Ψ(3)) = $ x Qx {I, R}, we have

(2.12.7)

Since with Theorem 2.4,

(2.12.8) f x g x {/, #π} cz Autp 3) c= Iso^ ® c ^ x ρ x {/, Rπ} ,

we get I s o ^ ^ = F x Q x {/, Rπ}, and therefore Eq. (2.12.4).

2. For the immersions Ψ™, the metric \/2eudzdz and, by the well-known equation

(2.12.9) K=H2-4\E\2e~2u

for the Gauβ curvature K also | is | is invariant under the one-parameter group of

rotations around z = 0. Therefore, by Corollary 2.3 and Theorem 2.4, we have that

either Aut^ Q) is contained in the group of rotations around a fixed point, or Ψ{β} is

a cylinder. Therefore, for a nondegenerate Smyth surface, Ker φ a Aut^ 3) consists only

of rotations. But since, by Proposition 2.8, Keri/f acts freely on M=C, this implies that

Ker φ = {id} = Ker π and, with Corollary 2.7, φ: Autp Q)^ Aut *F(^) is an isomorphism

of Lie groups, i.e.,

(2.12.10) Aut?P(®)^Autp0.

Let geAutΨ@. Then gf is a rotation around z = 0, i.e., g(z) = eiθz for some θe[0, 2π).

By Eq. (2.3.8) and Corollary 2.4, we get that e

i{m + 2)θ=l for some integer m>0. This

shows that AuV Q) is a discrete group of rotations around z = 0 in C, finishing the proof.

D
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