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HOMOGENEOUS FRACTIONAL INTEGRALS ON HARDY SPACES
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Abstract. Mapping properties for the homogeneous fractional integral operator 7β>α

on the Hardy spaces Hp(Rn) are studied. Our results give the extension of Stein-Weiss and

Taibleson-Weiss's results for the boundedness of the Riesz potential operator Ia on the Hardy
spaces HP(Rn).

1. Introduction and results. Let Sn l denote the unit sphere in Euclidean rc-space
Rn. Suppose 0 < a < n, and let Ω e Lr(Sn~l) with r > 1 be homogeneous of degree zero
on Rn. Then we define the homogeneous fractional integral operator T^,a by

JRn \x-y\n

When a = 0, we denote 7^,0 by 7^, and the integration is taken by the Cauchy principal
value. Since the operator 7^,α is closely connected with the singular integral operator 7b,
TΩ,CI plays an important roles in the study for homogeneous operator ΎQ. For example, re-
cently the authors applied several results on TΩ^ to a study of a mapping property for a class
of multilinear singular integral operator with homogeneous kernel [4]. As an application of
this mapping property, in [4] we obtained the Lp boundedness of the commutator [7^, b]
formed by the homogeneous singular integral operator TΩ with a function b in BM O.

In 1971, Muckenhoupt and Wheeden [7] proved the weighted (Lp, Lq) boundedness of
TΩ,U for power weight when 1 < p < n/ct. In 1998, we obtained the weighted (Lp , Lq)
boundedness of TΩ,a for A(p, q) weight [2]. Moreover, when p = 1, the (L1, £"/("-«).<»)
boundedness of TΩ^ can also be found in [1] (unweighted) and in [5] (with power weights).
For p = n/cί, an exponential integral inequality of 7β>α was proved in [3].

On the other hand, the Hardy-Littlewood-Sobolev theorem showed that the Riesz poten-
tial operator Ia is bounded from Lp to Lq . In 1960, Stein and Weiss [10] used the theory of
harmonic functions of several variables to prove that Ia is bounded from H{ to Ln/(n~a\ in
1980, using the molecular characterization of the real Hardy spaces, Taibleson and Weiss [11]
proved that Ia is also bounded from Hp to Lq or Hq , where 0 < p < 1 and l/q = l/p—ot/n.

Since the Riesz potential operator Ia is essentially the homogeneous fractional integral
operators 7β>α when Ω = 1, by comparing mapping properties of Ia and 7β>α, it is natural
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to ask whether the homogeneous fractional integral operator TΩ^ has the same mapping

properties on Hp as those of the Riesz potential operator Ia.

The purpose of this paper is to answer this question. Using the atomic-molecular de-

composition of Hp, we prove that if Ω satisfies a class of Z/-Dini conditions on 51""1, then

TΩ,CI is bounded from Hp to Lq or Hq for some p < 1. Thus, we verify that Stein-Weiss's

conclusion (for p = 1) and Taibleson-Weiss's conclusion (for some p < 1) hold also for

Before stating our results, let us recall the definition of the Z/-Dini condition.

We say that Ω satisfies the Z/-Dini condition if Ω e Lr(Sn~l) with r > 1 is homoge-

neous of degree zero on R n, and

Γ 1 ωr(8)
I dδ < oo,

JO °

where ωr(8) denotes the integral modulus of continuity of order r of Ω defined by

α \ 1 / r

\Ω(px'} -Ω(xf)\rdxf\
'"-' /

and p is a rotation in Rn and \p\ = \\p-I\\.

Now, let us formulate our results as follows.

THEOREM 1. Let 0 < ot < n, and let Ω e Lr(Sn~l)for r > n/(n — a) be homoge-

neous of degree zero on Rn. If Ω satisfies the Lr-Dinί condition, then there is a C > 0 such

that\\TΩ^f\\Ln,(n-a) <C\\f\\Hι.

THEOREM 2. Let 0 < a < 1, n/(n + α) < p < 1, l/q = l/p - a/n and Ω G

Lr(Sn~}) with r > n/(n — a) be homogeneous of degree zero on Rn. If the integral modulus

of continuity ωr(δ) of order r of Ω satisfies

(1.1)

then there is a C > 0 such that \\TΩt(Xf\\L<ι < C \ \ f \ \ H p

Theorems 1 and 2 give the (Hp, Lq) boundedness of TΩ& The following theorem will

give the (Hp, Hq) boundedness of 7β,α.

THEOREM 3. Let 0 < a < 1/2, l/q = l/p - a/n and let Ω e Lr(Sn~l) with

r > 1/(1 — 2a) be homogeneous of degree zero on Rn. If for a < β < I the integral modulus

of continuity ωr (δ) of order r of Ω satisfies

(1.2)
Jo

then for n/(n + β) < p < n/(n +α), there is a C > 0 such that \\TΩ^f\\Hq < C \\f\\ HP-

In the following the letter C will denote a constant which varies at each occurrence.
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2. Some preliminary facts. In this section we give the (Lp , Lq) boundedness of

the fractional integral operator with rough kernel 7b?Qf, which will be used in the proof of

Theorems 1 through 3.

PROPOSITION 1. LetO < a < n, I < p < n/a, l/q = l / p - a/n and let Ω e

Lr(Sn~l) with r > n/(n — a) be homogeneous of degree zero on Rn . Then 7b,α is an

operator of type (p, q).

To prove Proposition 1, let us first give some lemmas.

LEMMA 1 (see [1]). Let 0 < a < n, r > n/(n - a) and let Ω e Lr(Sn~l) be

homogeneous of degree zero onRn. Then for any λ > 0 and any f e L1,

|{jt e R" : \(TΩ,af)(x)\ > λ}\ < C |

where C is independent ofλ andf.

LEMMA 2 (see [5]). Suppose thatO < a < n, and Ω e Lr(Sn~{) with r > 1. Then

there is a C > 0 dependent only on n and GL such that (Mβ?α/)(;c) < C(T\a\,a)(\f\)(x),

where MΩ^ denotes the homogeneous fractional maximal operator defined by

= sup -ί- ί \Ω(x - y ) f ( y ) \ d y .
ί>0 * J\x-y\<t

LEMMA 3 (see [2]). Suppose that 0 < a < n, and Ω e Lr(Sn~l) with r > 1. Then

for any 0 < ε < min{α, n — α}, there is a C = C(n, α, ε) such that

Proof of Proposition 1.

It is easy to see that under the conditions of Proposition 1 , MQ ,a is of weak-type ( 1 , n / (n —

or)) (by Lemmas 1 and 2) and of type (n/a, oo). Thus, by the Marcinkiewicz interpolation

theorem, we get the (Lp ', L^)-boundedness (I < p < n/a) of Mn,a under the conditions of

Proposition 1, i.e.,

(2.1) l |Λfβ,«/HL« <C\\f\\LP.

Since r > n/(n—a), we can chooses > Owithε < min{α, n—a] so small that l/q—ε/n > 0,

l/q+ε/n < 1 andr > n/[n — (a+ε)}. By letting \/q\ = l/q—ε/n and \jqι = l/q+ε/n,

we have

- (α - ε)/n .

Noting that r > n/[n — (α + ε)] > n/(n — a) > n/[n — (a — ε)], by (2.1) it follows that

(2.2) l|Λfo.α+β/!lι«ι < C\\f\\LP and \\MΩt0t-Bf\\Ln < C\\f\\LP .
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Hence, if we denote l\ = 2q\/q and /2 = 2#2/g% then l\,h > 1 and l / / ι + 1//2 = l By
Lemma 3, Holder's inequality for / i , /2 and (2.2), we get

α
l/9/ι / /. \ 1/9/2

1/291 / /• \ 1/292α \ 91 / /•
[(Mβfα+β/)W]^^) /

\n J \JR

This proves Proposition 1 .

In the proof of Theorem 1 through 3, we need the following fact.

LEMMA 4. Suppose that 0 < α < n , r > l , and Ω satisfies the U -Dini condition. If

there is a constant αo > 0 such that \y\ < a$R, then

(LR<\x\<2R

Ω(x-y) Ω(x) r

 dχ

x-

< CRn/

^\y\/2R<δ<\y\/R

Using a method similar to that in the proof of Lemma 5 in [7], we can prove Lemma 4.

We omit the detail here.

3. Proofs of Theorems 1 and 2. Let us first give the proof of Theorem 1. By the

atomic decomposition theory of Hardy spaces [9], it is sufficient to prove that there is a con-

stant C such that for any (1, /, 0)-atom a(x), the inequality

(3-1) \\(TΩ,a^)M\\L^ < C

holds, where / > 1 and q = n/(n — a}. To do so, we take 1 < l\ < /2 < oo, such that

1//1 — 1//2 = oί/n. Without loss of generality, we may assume that a(x} is (1, / i , 0)-atom
supported in a ball B = J5(0, d) with center at zero and radius d. That means

(i) supp(f l)c#; (ϋ) \\a\\Lι} < \B\l/ll~l (iii) I a(x}dx = 0.

We have

) l/9
•'= h + h

J2B

Applying Holder's inequality and Proposition 1, we get

^ / / 2 <r Γ*\\n\\ , I J ? | l / 9 ~ ~ l / / 2 <- C
^ C \\a r / ι \D\ ^ C .
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For /2, by the vanishing condition (iii) of a(x), we have

157

(3.2) I2< I \a(y)\f]( f
JB j^{ \J2id<\.

Noting that r > n/(n —a) = q, therefore

Ω(x-y) Ω(x)

\x-y\n~a \x\n~a d x ) dy.

(3.3) \J2Jd<\x\<'<\x\<2J+]d

Ω(x

\χ-

j »yi(l

-y)
y\n-a

/q-Vr)

Ω(X)

\x\n-a

\J2Jd<\x

q \^ι
dx\

\<2J+]d

q

Ω(x

\x-
-y}

y\n-«

Ω(x)

\x\n-<*
dx

l/r

Applying Lemma 4, we get

it

\J2Jd<(3.4) <\x\<2J+ld

Ω(x-y) Ω(x)

\χ-y\n~a \χ\n~a

l / r

i r
— + /
27 J\:

ωr(δ)
dδ

\y\/2J+ld

By (3.3), (3.4) and the Lr-Dini condition, we get

00 / r

Σ,(fj^l \J2Jd<\x\<

Ω(x - y) Ω(x)

\x-y\"-a \x\n~a dx

(3.5)

<C\ 1 +

Thus, by (3.2) and (3.5)

\y\/2jd

\y\/2J+]d
-dδ

Γ 1 ( 5\\

L ~~δ~

C0r(δ)

'\y\/2J+*d δ

d δ ] < oo.

dδ

h < C ί \a(y)\dy < C\\a\\Lιλ \B\l'l'\ < C .
JB

Hence we complete the proof of Theorem 1.

The proof of Theorem 2 is similar to that of Theorem 1. Here we only give the main

steps of the proof. Taking 1 < l\ < IΊ < oo such that \/l\ — 1//2 = 1/p — l/# = ot/n.

Let a(x) be (/?, / i , 0)-atom supported in the ball B(Q, d). We need to prove (3.1) for the atom

a(x). As in the proof of Theorem 1, we give the estimates for I\ and /2, respectively. Using
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Holder's inequality and Proposition 1, we can easily obtain the estimates of I\. On the other
hand, by (3.3) and (3.4), we get

!/<?00 / r

Σ,(fj^ί \J2Jd<\x\<2J+ld

Ω(x-y) Ω(x)

(3.6)

\x-y\n~a \x\n-<*

ί ι r\y\/2Jd[/p-v J _l + /
I 2 / J\y\/2J+*d

-dδ

< C\B\l/p~l ωr(S)

\y\/2J+<d
dδ

Using the conditions of Theorem 2, we get n ( l / p — 1) — 1 < n(\/p — 1) — a < 0. If
p > n/(n + a), then n ( l / p — 1) — a < 0. In this case, by (3.6) and (1.1) we have

°° / (

^ΐ \Λ^<|^|<2^^

Ω(x-y) Ω(x)

\x-y\»-«
dx

< C\B\l/p~l -!)-«] r1^)
JS

If p = n/(n + α), then «(!//? — 1) — a = 0. In this case, by (3.6) and (1.1) we have

oo / /.

Σ,((j^ί \J2Jd<\x\<2J+ld

Ω(x-y) Ω(x)

\x-y\n-<* \x\n-<*

< C\B\l/p~l V I 2j[n(l/p~{}~l] +
7 = 1 1

Finally, from the discussion above and (3.2) we have

I2<C\B\l/P~l I \a(y)\dy<C\B\lIP
J B

The conclusion of Theorem 2 is proved.

4. Proof of Theorem 3. Since r > n/(n — α), we can choose 1 < l\ < /2 so that

1//1 — 1//2 = l/p — l/q = oί/n and n/(n — a) < /2 < r. Take ε so that l/# — 1 <
ε < (β - a)/n < (1 — ά)/n. Denote OQ = \ — \/q + ε,b$ = \ — \/h + ε and let a(x)
be a (p, / i , 0)-atom supported in the ball J3(0, J). By the atomic-molecular decomposition
theory of real Hardy spaces [9], it suffices to show that Tn^a is a (q, /2, 0, ε)-molecule for
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proving Theorem 3. This means that we need to verify that (TΩ,aa)(x) satisfies the following
conditions:

(i) \x\nb°(Ta.aa)(x) e L'2;

(ϋ) λfι2(Ta,aa) := \\TΩ,aa\\a^bϋ\\\ - \n^(TΩ,aa)(.)\\^'bϋ < oo;

(in) f(TΩ,aa)(x)dx=0.
Moreover, we also need to show that there is a constant C > 0, independent of a(x), such that

C.

Let us begin with proving (i). Write

:= /i + /2

Noting that w/(n — α) < /2 < r and l / / ι — 1//2 = α/n, by Proposition 1 we have

(4.1) Jι < C\B\b«\\TΩ,aa\\Ll2 <

On JΊ, by the vanishing condition of a(x) we get

(4-2) h < / \a(y)\
OO

iΣ
2Jd<\x\<2J+ld

Ω(x-y} Ω(x)

\x-y\n-a \χ\n~a ^^dx] dy.

Applying Holder's inequality and (3.4), we get

J2Jd<\x\<2J+ld

Ω(x-y) Ω(x)

\x-y\n~a \x\n-<*
\x\nbQl2dx

2Jd<\x\<2J+^d

\J2Jd<\x\<

Ω(x-y} Ω(x)

x - yl \x\n~a dx\
\/r

2J+}d

' j_ fM/2ίd M
27 J\y\l2i^d S

^ ^ | _ j

f^2J" ωr(δ]

J[y\/2^d ~^β
dδ\ .
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Since ε < (β — a)/n < (1 — α)/n, we have nε + a — 1 < nε + ot — β < 0. Thus, by the
inequality above, (4.2) and (1.2) we have

J2 <
n V L^+ *-1) +2^"β+α-« /' ̂ SM f£ί I Λ 5'+^ j yβ

By (4.1) and (4.3) we know that (i) holds and

° n b ° a ) ( )\\l-°

From the process of the proof above, it is easy to check that the constant C is independent of
the atom a(x). Hence, it remains to verify (iii) to complete the proof of Theorem 3.

To this end, we first show that (TΩ,aa)(x) e Ll(Rn). Write

ί \(TΩ,aά)(x)\dx = I \(TΩt0td)(x)\dx + f \(TΩ,aa)(x)\dx := £ι + £2
JRn J\x\<\ J\x\>\

Clearly, E\ < C by TΩ#a(x) e L/2. On the other hand, by b^ - l/l'2 = ε > 0 and

\x\nbQ(TΩ,aa)W e L/2, we have

i f < ^ M / \ 1 / / 2

E2 < III - Γ*°(Γoαα)(.)||,/2 - / \x\(~nb^dx < oc.

Therefore, (TΩ,aa)(ξ) e C(Rn). In order to verify

f(TΩ,aa)(x)dx = (ΓβfβflKθ) - 0,

it is sufficient to prove

(4.4) limo(Γβ,αflK§) = 0.

We know that (TΩ,aa)\ξ) = a(ξ) (ί?(-)/| - Γ~αK£), and

Thus,

oo

< C-h^]|f}(^)|, where
7 = 1

'}"-") '

Below we give the estimate of \Kj(ξ)\ for any j > 1.
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LEMMA 5. Suppose that 0 < a < 1/2, and Ω e Lr(Sn~l) with r > 1/(1 - 2α) is

homogeneous of degree zero on Rn. Then there are C and σ > 0, such that 2a < σ < \/r' <

1 and for j > 1

\K](ξ)\ <C2(θί-σ/VJ\ξ\-σ/2.

PROOF. Denote

r-2-/

(4.5)

where

\K,(ξ)\ = ί ™-e-*>* *dx = f ,-/,(*)*
J2J-><M<2J \X\n~a J2I-I t

f
Js"

From [6], we have

(4.6) -2πitξ (θ-φ) dt
< Cmn{l,\2Jξ (θ - φ)\~

On the other hand, by the conditions of Lemma 5, we get 2α < l / r ' ' . Hence we can choose

σ > 0 so that 2a < σ < l/r ' < 1. Using the interpolation method, from (4.6) we obtain

- (θ - φ)\~σ = \ξ'(θ-φ)\~σ,(4.7)

where ξ' - ξ / \ ξ \ . Thus, by (4.5) we get

Since

by (4.7) and the conclusion in [6] (noting that Ω e Lr(Sn ') and σr' < 1), we get

\K*j(ξ)\ < C2aJ ( ίf \Ω(Θ)Ω(Φ)\ \ξ'(θ - φ)Γadθdφ] \2Jξ -°'2

\ / / c/i—1 x/ CM — 1 /\t/ «/ O X O /

<C2aj\2jξΓσ/2.

Thus, we complete the proof of Lemma 5.

Now let us return to the proof of Theorem 3. Applying the conclusion of Lemma 5, we
have

(4.8)

On the other hand, for ά(ξ) we have

(4.9) = \ ί
\JB

2ni^x - \}dx <C f \a(x}\ \ξ\ \x\dx < C\ξ\ .
JB
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Thus, by (4.8) and (4.9) we get

(4.10) |(7β,αflK§)| < \a(ξ)\

By the choice of σ we know that 1 - σ/2 > 0. Thus, (4.4) holds by (4.10). Hence
,aa)(x) satisfies the condition (iii) and Theorem 3 follows.
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