HOMOGENEOUS FRACTIONAL INTEGRALS ON HARDY SPACES

YONG DING AND SHANZHEN LU

(Received September 18, 1998, revised April 22, 1999)

Abstract. Mapping properties for the homogeneous fractional integral operator $T_{\Omega,\alpha}$ on the Hardy spaces $H^p(\mathbb{R}^n)$ are studied. Our results give the extension of Stein-Weiss and Taibleson-Weiss's results for the boundedness of the Riesz potential operator I_{α} on the Hardy spaces $H^p(\mathbb{R}^n)$.

1. Introduction and results. Let S^{n-1} denote the unit sphere in Euclidean n-space \mathbb{R}^n . Suppose $0 < \alpha < n$, and let $\Omega \in L^r(S^{n-1})$ with $r \ge 1$ be homogeneous of degree zero on \mathbb{R}^n . Then we define the homogeneous fractional integral operator $T_{\Omega,\alpha}$ by

$$(T_{\Omega,\alpha}f)(x) = \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) dy.$$

When $\alpha=0$, we denote $T_{\Omega,0}$ by T_{Ω} , and the integration is taken by the Cauchy principal value. Since the operator $T_{\Omega,\alpha}$ is closely connected with the singular integral operator T_{Ω} , $T_{\Omega,\alpha}$ plays an important roles in the study for homogeneous operator T_{Ω} . For example, recently the authors applied several results on $T_{\Omega,\alpha}$ to a study of a mapping property for a class of multilinear singular integral operator with homogeneous kernel [4]. As an application of this mapping property, in [4] we obtained the L^p boundedness of the commutator $[T_{\Omega}, b]$ formed by the homogeneous singular integral operator T_{Ω} with a function b in BMO.

In 1971, Muckenhoupt and Wheeden [7] proved the weighted (L^p, L^q) boundedness of $T_{\Omega,\alpha}$ for power weight when $1 . In 1998, we obtained the weighted <math>(L^p, L^q)$ boundedness of $T_{\Omega,\alpha}$ for A(p,q) weight [2]. Moreover, when p=1, the $(L^1, L^{n/(n-\alpha),\infty})$ boundedness of $T_{\Omega,\alpha}$ can also be found in [1] (unweighted) and in [5] (with power weights). For $p=n/\alpha$, an exponential integral inequality of $T_{\Omega,\alpha}$ was proved in [3].

On the other hand, the Hardy-Littlewood-Sobolev theorem showed that the Riesz potential operator I_{α} is bounded from L^p to L^q . In 1960, Stein and Weiss [10] used the theory of harmonic functions of several variables to prove that I_{α} is bounded from H^1 to $L^{n/(n-\alpha)}$. In 1980, using the molecular characterization of the real Hardy spaces, Taibleson and Weiss [11] proved that I_{α} is also bounded from H^p to L^q or H^q , where $0 and <math>1/q = 1/p - \alpha/n$.

Since the Riesz potential operator I_{α} is essentially the homogeneous fractional integral operators $T_{\Omega,\alpha}$ when $\Omega \equiv 1$, by comparing mapping properties of I_{α} and $T_{\Omega,\alpha}$, it is natural

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B25.

Key words and phrases. Fractional integral, homogeneous kernel, L^r -Dini condition, H^p space.

The research was supported by National Natural Science Foundation (Grant: 19971010, Grant: 19131080) and Doctoral Programme Foundation of Institution of Higher Education (Grant: 98002703) of China.

to ask whether the homogeneous fractional integral operator $T_{\Omega,\alpha}$ has the same mapping properties on H^p as those of the Riesz potential operator I_{α} .

The purpose of this paper is to answer this question. Using the atomic-molecular decomposition of H^p , we prove that if Ω satisfies a class of L^r -Dini conditions on S^{n-1} , then $T_{\Omega,\alpha}$ is bounded from H^p to L^q or H^q for some $p \leq 1$. Thus, we verify that Stein-Weiss's conclusion (for p = 1) and Taibleson-Weiss's conclusion (for some p < 1) hold also for $T_{\Omega,\alpha}$.

Before stating our results, let us recall the definition of the L^r -Dini condition.

We say that Ω satisfies the L^r -Dini condition if $\Omega \in L^r(S^{n-1})$ with $r \ge 1$ is homogeneous of degree zero on \mathbb{R}^n , and

$$\int_0^1 \frac{\omega_r(\delta)}{\delta} d\delta < \infty,$$

where $\omega_r(\delta)$ denotes the integral modulus of continuity of order r of Ω defined by

$$\omega_r(\delta) = \sup_{|\rho| < \delta} \left(\int_{S^{n-1}} |\Omega(\rho x') - \Omega(x')|^r dx' \right)^{1/r}$$

and ρ is a rotation in \mathbb{R}^n and $|\rho| = ||\rho - I||$.

Now, let us formulate our results as follows.

THEOREM 1. Let $0 < \alpha < n$, and let $\Omega \in L^r(S^{n-1})$ for $r > n/(n-\alpha)$ be homogeneous of degree zero on \mathbb{R}^n . If Ω satisfies the L^r -Dini condition, then there is a C > 0 such that $||T_{\Omega,\alpha}f||_{L^{n/(n-\alpha)}} \le C||f||_{H^1}$.

THEOREM 2. Let $0 < \alpha < 1$, $n/(n+\alpha) \le p < 1$, $1/q = 1/p - \alpha/n$ and $\Omega \in L^r(S^{n-1})$ with $r > n/(n-\alpha)$ be homogeneous of degree zero on \mathbb{R}^n . If the integral modulus of continuity $\omega_r(\delta)$ of order r of Ω satisfies

(1.1)
$$\int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta^{1+\alpha}} d\delta < \infty,$$

then there is a C > 0 such that $||T_{\Omega,\alpha} f||_{L^q} \le C ||f||_{H^p}$.

Theorems 1 and 2 give the (H^p, L^q) boundedness of $T_{\Omega,\alpha}$. The following theorem will give the (H^p, H^q) boundedness of $T_{\Omega,\alpha}$.

THEOREM 3. Let $0 < \alpha < 1/2$, $1/q = 1/p - \alpha/n$ and let $\Omega \in L^r(S^{n-1})$ with $r > 1/(1-2\alpha)$ be homogeneous of degree zero on \mathbb{R}^n . If for $\alpha < \beta \le 1$ the integral modulus of continuity $\omega_r(\delta)$ of order r of Ω satisfies

(1.2)
$$\int_0^1 \frac{\omega_r(\delta)}{\delta^{1+\beta}} d\delta < \infty,$$

then for $n/(n+\beta) , there is a <math>C > 0$ such that $||T_{\Omega,\alpha}f||_{H^q} \le C||f||_{H^p}$.

In the following the letter C will denote a constant which varies at each occurrence.

2. Some preliminary facts. In this section we give the (L^p, L^q) boundedness of the fractional integral operator with rough kernel $T_{\Omega,\alpha}$, which will be used in the proof of Theorems 1 through 3.

PROPOSITION 1. Let $0 < \alpha < n, 1 < p < n/\alpha, 1/q = 1/p - \alpha/n$ and let $\Omega \in L^r(S^{n-1})$ with $r > n/(n-\alpha)$ be homogeneous of degree zero on \mathbb{R}^n . Then $T_{\Omega,\alpha}$ is an operator of type (p,q).

To prove Proposition 1, let us first give some lemmas.

LEMMA 1 (see [1]). Let $0 < \alpha < n, r \ge n/(n-\alpha)$ and let $\Omega \in L^r(S^{n-1})$ be homogeneous of degree zero on \mathbb{R}^n . Then for any $\lambda > 0$ and any $f \in L^1$,

$$\left|\left\{x \in \mathbf{R}^n : \left| (T_{\Omega,\alpha}f)(x) \right| > \lambda\right\}\right| \le C \left(\frac{1}{\lambda} \|f\|_{L^1}\right)^{n/(n-\alpha)}$$

where C is independent of λ and f.

LEMMA 2 (see [5]). Suppose that $0 < \alpha < n$, and $\Omega \in L^r(S^{n-1})$ with $r \ge 1$. Then there is a C > 0 dependent only on n and α such that $(M_{\Omega,\alpha}f)(x) \le C(T_{|\Omega|,\alpha})(|f|)(x)$, where $M_{\Omega,\alpha}$ denotes the homogeneous fractional maximal operator defined by

$$(M_{\Omega,\alpha}f)(x) = \sup_{t>0} \frac{1}{t^{n-\alpha}} \int_{|x-y|< t} |\Omega(x-y)f(y)| dy.$$

LEMMA 3 (see [2]). Suppose that $0 < \alpha < n$, and $\Omega \in L^r(S^{n-1})$ with $r \ge 1$. Then for any $0 < \varepsilon < \min\{\alpha, n - \alpha\}$, there is a $C = C(n, \alpha, \varepsilon)$ such that

$$|(T_{\Omega,\alpha}f)(x)| \le C[(M_{\Omega,\alpha+\varepsilon}f)(x)]^{1/2}[(M_{\Omega,\alpha-\varepsilon}f)(x)]^{1/2}.$$

Proof of Proposition 1.

It is easy to see that under the conditions of Proposition 1, $M_{\Omega,\alpha}$ is of weak-type $(1, n/(n-\alpha))$ (by Lemmas 1 and 2) and of type $(n/\alpha, \infty)$. Thus, by the Marcinkiewicz interpolation theorem, we get the (L^p, L^q) -boundedness $(1 of <math>M_{\Omega,\alpha}$ under the conditions of Proposition 1, i.e.,

Since $r > n/(n-\alpha)$, we can choose $\varepsilon > 0$ with $\varepsilon < \min\{\alpha, n-\alpha\}$ so small that $1/q - \varepsilon/n > 0$, $1/q + \varepsilon/n < 1$ and $r > n/[n - (\alpha + \varepsilon)]$. By letting $1/q_1 = 1/q - \varepsilon/n$ and $1/q_2 = 1/q + \varepsilon/n$, we have

$$1/q_1 = 1/p - (\alpha + \varepsilon)/n$$
 and $1/q_2 = 1/p - (\alpha - \varepsilon)/n$.

Noting that $r > n/[n - (\alpha + \varepsilon)] > n/(n - \alpha) > n/[n - (\alpha - \varepsilon)]$, by (2.1) it follows that

$$(2.2) || M_{\Omega,\alpha+\varepsilon} f ||_{L^{q_1}} \le C ||f||_{L^p} \text{ and } || M_{\Omega,\alpha-\varepsilon} f ||_{L^{q_2}} \le C ||f||_{L^p}.$$

Hence, if we denote $l_1 = 2q_1/q$ and $l_2 = 2q_2/q$, then $l_1, l_2 > 1$ and $1/l_1 + 1/l_2 = 1$. By Lemma 3, Hölder's inequality for l_1, l_2 and (2.2), we get

$$\begin{split} \|(T_{\Omega,\alpha}f)(x)\|_{L^{q}} &\leq C \left(\int_{\mathbf{R}^{n}} [(M_{\Omega,\alpha+\varepsilon}f)(x)]^{q/2} [(M_{\Omega,\alpha-\varepsilon}f)(x)]^{q/2} dx \right)^{1/q} \\ &\leq C \left(\int_{\mathbf{R}^{n}} [(M_{\Omega,\alpha+\varepsilon}f)(x)]^{l_{1}q/2} dx \right)^{1/ql_{1}} \left(\int_{\mathbf{R}^{n}} [(M_{\Omega,\alpha-\varepsilon}f)(x)]^{l_{2}q/2} dx \right)^{1/ql_{2}} \\ &= C \left(\int_{\mathbf{R}^{n}} [(M_{\Omega,\alpha+\varepsilon}f)(x)]^{q_{1}} dx \right)^{1/2q_{1}} \left(\int_{\mathbf{R}^{n}} [(M_{\Omega,\alpha-\varepsilon}f)(x)]^{q_{2}} dx \right)^{1/2q_{2}} \\ &\leq C \|f\|_{L^{p}}. \end{split}$$

This proves Proposition 1.

In the proof of Theorem 1 through 3, we need the following fact.

LEMMA 4. Suppose that $0 < \alpha < n, r > 1$, and Ω satisfies the L^r -Dini condition. If there is a constant $a_0 > 0$ such that $|y| < a_0 R$, then

$$\left(\int_{R<|x|<2R} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^r dx \right)^{1/r} \\
\leq C R^{n/r-(n-\alpha)} \left\{ \frac{|y|}{R} + \int_{|y|/2R<\delta<|y|/R} \frac{\omega_r(\delta)}{\delta} d\delta \right\}.$$

Using a method similar to that in the proof of Lemma 5 in [7], we can prove Lemma 4. We omit the detail here.

3. Proofs of Theorems 1 and 2. Let us first give the proof of Theorem 1. By the atomic decomposition theory of Hardy spaces [9], it is sufficient to prove that there is a constant C such that for any (1, l, 0)-atom a(x), the inequality

$$||(T_{\Omega,\alpha}a)(x)||_{L^q} \le C$$

holds, where l > 1 and $q = n/(n - \alpha)$. To do so, we take $1 < l_1 < l_2 < \infty$, such that $1/l_1 - 1/l_2 = \alpha/n$. Without loss of generality, we may assume that a(x) is $(1, l_1, 0)$ -atom supported in a ball B = B(0, d) with center at zero and radius d. That means

(i)
$$\sup(a) \subset B$$
; (ii) $\|a\|_{L^{l_1}} \le |B|^{1/l_1-1}$; (iii) $\int a(x)dx = 0$.

We have

$$||T_{\Omega,\alpha}a||_{L^q} \leq \left(\int_{2B} |(T_{\Omega,\alpha}a)(x)|^q dx\right)^{1/q} + \left(\int_{(2B)^C} |(T_{\Omega,\alpha}a)(x)|^q dx\right)^{1/q} := I_1 + I_2.$$

Applying Hölder's inequality and Proposition 1, we get

$$I_1 \leq C \|T_{\Omega,\alpha} a\|_{L^{l_2}} |B|^{1/q-1/l_2} \leq C \|a\|_{L^{l_1}} |B|^{1/q-1/l_2} \leq C \,.$$

For I_2 , by the vanishing condition (iii) of a(x), we have

$$(3.2) I_2 \le \int_B |a(y)| \sum_{i=1}^\infty \left(\int_{2^j d \le |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^q dx \right)^{1/q} dy.$$

Noting that $r > n/(n - \alpha) = q$, therefore

(3.3)
$$\left(\int_{2^{j} d \le |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{q} dx \right)^{1/q}$$

$$\le C (2^{j} d)^{n(1/q-1/r)} \left(\int_{2^{j} d < |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{r} dx \right)^{1/r} .$$

Applying Lemma 4, we get

(3.4)
$$\left(\int_{2^{j}d \leq |x| < 2^{j+1}d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{r} dy \right)^{1/r} \\ \leq C (2^{j}d)^{n/r - (n-\alpha)} \left\{ \frac{1}{2^{j}} + \int_{|y|/2^{j+1}d}^{|y|/2^{j+1}d} \frac{\omega_{r}(\delta)}{\delta} d\delta \right\}.$$

By (3.3), (3.4) and the L^r -Dini condition, we get

$$\sum_{j=1}^{\infty} \left(\int_{2^{j} d \le |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{q} dx \right)^{1/q}$$

$$\leq C \sum_{j=1}^{\infty} (2^{j} d)^{n(1/q-1/r)} \cdot (2^{j} d)^{n/r-(n-\alpha)} \left\{ \frac{1}{2^{j}} + \int_{|y|/2^{j+1} d}^{|y|/2^{j} d} \frac{\omega_{r}(\delta)}{\delta} d\delta \right\}$$

$$\leq C \sum_{j=1}^{\infty} \left\{ \frac{1}{2^{j}} + \int_{|y|/2^{j+1} d}^{|y|/2^{j} d} \frac{\omega_{r}(\delta)}{\delta} d\delta \right\}$$

$$\leq C \left(1 + \int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta} d\delta \right) < \infty.$$

Thus, by (3.2) and (3.5)

$$I_2 \le C \int_B |a(y)| dy \le C ||a||_{L^{l_1}} |B|^{1/l_1'} \le C.$$

Hence we complete the proof of Theorem 1.

The proof of Theorem 2 is similar to that of Theorem 1. Here we only give the main steps of the proof. Taking $1 < l_1 < l_2 < \infty$ such that $1/l_1 - 1/l_2 = 1/p - 1/q = \alpha/n$. Let a(x) be $(p, l_1, 0)$ -atom supported in the ball B(0, d). We need to prove (3.1) for the atom a(x). As in the proof of Theorem 1, we give the estimates for I_1 and I_2 , respectively. Using

Hölder's inequality and Proposition 1, we can easily obtain the estimates of I_1 . On the other hand, by (3.3) and (3.4), we get

$$\sum_{j=1}^{\infty} \left(\int_{2^{j} d \le |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{q} dx \right)^{1/q}$$

$$\leq C \sum_{j=1}^{\infty} (2^{j} d)^{n(1/p-1)} \left\{ \frac{1}{2^{j}} + \int_{|y|/2^{j+1} d}^{|y|/2^{j} d} \frac{\omega_{r}(\delta)}{\delta} d\delta \right\}$$

$$\leq C |B|^{1/p-1} \sum_{j=1}^{\infty} \left\{ 2^{j[n(1/p-1)-1]} + 2^{j[n(1/p-1)-\alpha]} \int_{|y|/2^{j+1} d}^{|y|/2^{j+1} d} \frac{\omega_{r}(\delta)}{\delta^{1+\alpha}} d\delta \right\}.$$

Using the conditions of Theorem 2, we get $n(1/p-1)-1 < n(1/p-1)-\alpha \le 0$. If $p > n/(n+\alpha)$, then $n(1/p-1)-\alpha < 0$. In this case, by (3.6) and (1.1) we have

$$\begin{split} \sum_{j=1}^{\infty} \left(\int_{2^{j} d \le |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{q} dx \right)^{1/q} \\ & \le C|B|^{1/p-1} \sum_{j=1}^{\infty} \left\{ 2^{j[n(1/p-1)-1]} + 2^{j[n(1/p-1)-\alpha]} \int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta^{1+\alpha}} d\delta \right\} \\ & \le C|B|^{1/p-1} \left(1 + \int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta^{1+\alpha}} d\delta \right) \le C|B|^{1/p-1} \,. \end{split}$$

If $p = n/(n + \alpha)$, then $n(1/p - 1) - \alpha = 0$. In this case, by (3.6) and (1.1) we have

$$\begin{split} \sum_{j=1}^{\infty} \left(\int_{2^{j} d \le |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{q} dx \right)^{1/q} \\ & \le C|B|^{1/p-1} \sum_{j=1}^{\infty} \left\{ 2^{j[n(1/p-1)-1]} + \int_{|y|/2^{j+1} d}^{|y|/2^{j} d} \frac{\omega_{r}(\delta)}{\delta^{1+\alpha}} d\delta \right\} \\ & \le C|B|^{1/p-1} \left(1 + \int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta^{1+\alpha}} d\delta \right) \le C|B|^{1/p-1} \,. \end{split}$$

Finally, from the discussion above and (3.2) we have

$$I_2 \le C|B|^{1/p-1} \int_B |a(y)| dy \le C|B|^{1/p-1} ||a||_{L^{l_1}} |B|^{1/l_1'} \le C.$$

The conclusion of Theorem 2 is proved.

4. Proof of Theorem 3. Since $r > n/(n-\alpha)$, we can choose $1 < l_1 < l_2$ so that $1/l_1 - 1/l_2 = 1/p - 1/q = \alpha/n$ and $n/(n-\alpha) < l_2 < r$. Take ε so that $1/q - 1 < \varepsilon < (\beta - \alpha)/n \le (1 - \alpha)/n$. Denote $a_0 = 1 - 1/q + \varepsilon$, $b_0 = 1 - 1/l_2 + \varepsilon$ and let a(x) be a $(p, l_1, 0)$ -atom supported in the ball B(0, d). By the atomic-molecular decomposition theory of real Hardy spaces [9], it suffices to show that $T_{\Omega,\alpha}a$ is a $(q, l_2, 0, \varepsilon)$ -molecule for

proving Theorem 3. This means that we need to verify that $(T_{\Omega,\alpha}a)(x)$ satisfies the following conditions:

- (i) $|x|^{nb_0}(T_{\Omega,\alpha}a)(x) \in L^{l_2};$
- (ii) $\mathcal{N}_{l_2}(T_{\Omega,\alpha}a) := \|T_{\Omega,\alpha}a\|_{L^{l_2}}^{a_0/b_0}\||\cdot|^{nb_0}(T_{\Omega,\alpha}a)(\cdot)\|_{L^{l_2}}^{1-a_0/b_0} < \infty;$
- (iii) $\int (T_{\Omega,\alpha}a)(x)dx = 0.$

Moreover, we also need to show that there is a constant C > 0, independent of a(x), such that

$$\mathcal{N}_{l_2}(T_{\Omega,\alpha}a) \leq C$$
.

Let us begin with proving (i). Write

$$\begin{aligned} |||\cdot|^{nb_0}(T_{\Omega,\alpha}a)(\cdot)||_{L^{l_2}} &\leq |||\cdot|^{nb_0}(T_{\Omega,\alpha}a)(\cdot)\chi_{2B}(\cdot)||_{L^{l_2}} + |||\cdot|^{nb_0}(T_{\Omega,\alpha}a)(\cdot)\chi_{(2B)}c(\cdot)||_{L^{l_2}} \\ &:= J_1 + J_2 \,. \end{aligned}$$

Noting that $n/(n-\alpha) < l_2 < r$ and $1/l_1 - 1/l_2 = \alpha/n$, by Proposition 1 we have

$$(4.1) J_1 \le C|B|^{b_0} ||T_{\Omega,\alpha}a||_{L^{l_2}} \le C|B|^{b_0} ||a||_{L^{l_1}}.$$

On J_2 , by the vanishing condition of a(x) we get

$$(4.2) J_2 \le \int_B |a(y)| \sum_{i=1}^\infty \left(\int_{2^j d \le |x| < 2^{j+1} d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{l_2} |x|^{nb_0 l_2} dx \right)^{1/l_2} dy.$$

Applying Hölder's inequality and (3.4), we get

$$\begin{split} \left(\int_{2^{j}d \leq |x| < 2^{j+1}d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{l_{2}} |x|^{nb_{0}l_{2}} dx \right)^{1/l_{2}} \\ & \leq \left(\int_{2^{j}d \leq |x| < 2^{j+1}d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(x)}{|x|^{n-\alpha}} \right|^{r} dx \right)^{1/r} \\ & \times \left(\int_{2^{j}d \leq |x| < 2^{j+1}d} |x|^{nb_{0}l_{2} \cdot (r/l_{2})'} dx \right)^{1/[l_{2}(r/l_{2})']} \\ & \leq C(2^{j}d)^{n/r - (n-\alpha)} \left\{ \frac{1}{2^{j}} + \int_{|y|/2^{j+1}d}^{|y|/2^{j}d} \frac{\omega_{r}(\delta)}{\delta} d\delta \right\} \cdot (2^{j}d)^{nb_{0}} (2^{j}d)^{n(1/l_{2}-1/r)} \\ & \leq C(2^{j}d)^{n\varepsilon + \alpha} \left\{ \frac{1}{2^{j}} + \int_{|y|/2^{j+1}d}^{|y|/2^{j}d} \frac{\omega_{r}(\delta)}{\delta} d\delta \right\} \\ & \leq C|B|^{\varepsilon + \alpha/n} \left\{ 2^{j(n\varepsilon + \alpha - 1)} + 2^{j(n\varepsilon + \alpha - \beta)} \int_{|y|/2^{j+1}d}^{|y|/2^{j+1}d} \frac{\omega_{r}(\delta)}{\delta^{1+\beta}} d\delta \right\} \,. \end{split}$$

Since $\varepsilon < (\beta - \alpha)/n \le (1 - \alpha)/n$, we have $n\varepsilon + \alpha - 1 \le n\varepsilon + \alpha - \beta < 0$. Thus, by the inequality above, (4.2) and (1.2) we have

$$(4.3) J_{2} \leq C|B|^{\varepsilon+\alpha/n} \sum_{j=1}^{\infty} \left\{ 2^{j(n\varepsilon+\alpha-1)} + 2^{j(n\varepsilon+\alpha-\beta)} \int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta^{1+\beta}} d\delta \right\} \int_{B} |a(y)| dy$$

$$\leq C|B|^{\varepsilon+\alpha/n} \left(1 + \int_{0}^{1} \frac{\omega_{r}(\delta)}{\delta^{1+\beta}} d\delta \right) \|a\|_{L^{l_{1}}} |B|^{1/l_{1}'}$$

$$= C|B|^{b_{0}} \|a\|_{L^{l_{1}}}.$$

By (4.1) and (4.3) we know that (i) holds and

$$\mathcal{N}_{l_{2}}(T_{\Omega,\alpha}a) = \|T_{\Omega,\alpha}a\|_{L^{l_{2}}}^{a_{0}/b_{0}} \||\cdot|^{nb_{0}}(T_{\Omega,\alpha}a)(\cdot)\|_{L^{l_{2}}}^{1-a_{0}/b_{0}}$$

$$\leq C \|a\|_{L^{l_{1}}}^{a_{0}/b_{0}} \cdot |B|^{b_{0}(1-a_{0}/b_{0})} \|a\|_{L^{l_{1}}}^{1-a_{0}/b_{0}}$$

$$\leq C \|a\|_{L^{l_{1}}} |B|^{b_{0}-a_{0}} \leq C.$$

From the process of the proof above, it is easy to check that the constant C is independent of the atom a(x). Hence, it remains to verify (iii) to complete the proof of Theorem 3.

To this end, we first show that $(T_{\Omega,\alpha}a)(x) \in L^1(\mathbb{R}^n)$. Write

$$\int_{\mathbf{R}^n} |(T_{\Omega,\alpha}a)(x)| dx = \int_{|x|<1} |(T_{\Omega,\alpha}a)(x)| dx + \int_{|x|\geq 1} |(T_{\Omega,\alpha}a)(x)| dx := E_1 + E_2.$$

Clearly, $E_1 \leq C$ by $T_{\Omega,\alpha}a(x) \in L^{l_2}$. On the other hand, by $b_0 - 1/l_2' = \varepsilon > 0$ and $|x|^{nb_0}(T_{\Omega,\alpha}a)(x) \in L^{l_2}$, we have

$$E_2 \leq \||\cdot|^{nb_0} (T_{\Omega,\alpha}a)(\cdot)\|_{L^{l_2}} \cdot \left(\int_{|x|>1} |x|^{(-nb_0)l_2'} dx\right)^{1/l_2'} < \infty.$$

Therefore, $(T_{\Omega,\alpha}a)(\xi) \in C(\mathbf{R}^n)$. In order to verify

$$\int (T_{\Omega,\alpha}a)(x)dx = (T_{\Omega,\alpha}a)\hat{}(0) = 0,$$

it is sufficient to prove

$$\lim_{|\xi| \to 0} (T_{\Omega,\alpha}a)(\xi) = 0.$$

We know that $(T_{\Omega,\alpha}a)(\xi) = \hat{a}(\xi) \cdot (\Omega(\cdot)/|\cdot|^{n-\alpha})(\xi)$, and

$$\left(\frac{\Omega(\cdot)}{|\cdot|^{n-\alpha}}\right)^{\widehat{}}(\xi) = \int_{|x|<1} \frac{\Omega(x)}{|x|^{n-\alpha}} e^{-2\pi i \xi \cdot x} dx + \sum_{j=1}^{\infty} \int_{2^{j-1} \le |x|<2^j} \frac{\Omega(x)}{|x|^{n-\alpha}} e^{-2\pi i \xi \cdot x} dx.$$

Thus,

$$\left| \left(\frac{\Omega(\cdot)}{|\cdot|^{n-\alpha}} \right)^{\widehat{}}(\xi) \right| \leq C + \sum_{j=1}^{\infty} |\widehat{K_j}(\xi)|, \quad \text{where} \quad K_j(x) = \frac{\Omega(x)}{|x|^{n-\alpha}} \chi_{[2^{j-1}, 2^j)}(|x|).$$

Below we give the estimate of $|\widehat{K}_j(\xi)|$ for any $j \geq 1$.

LEMMA 5. Suppose that $0 < \alpha < 1/2$, and $\Omega \in L^r(S^{n-1})$ with $r > 1/(1-2\alpha)$ is homogeneous of degree zero on \mathbb{R}^n . Then there are C and $\sigma > 0$, such that $2\alpha < \sigma < 1/r' \le 1$ and for $j \ge 1$

$$|\widehat{K_i}(\xi)| \le C2^{(\alpha - \sigma/2)j} |\xi|^{-\sigma/2}.$$

PROOF. Denote

(4.5)
$$|\widehat{K_j}(\xi)| = \left| \int_{2^{j-1} \le |x| < 2^j} \frac{\Omega(x)}{|x|^{n-\alpha}} e^{-2\pi i \xi \cdot x} dx \right| = \left| \int_{2^{j-1}}^{2^j} t^{\alpha} I_t(\xi) \frac{dt}{t} \right|,$$

where

$$I_t(\xi) = \int_{S^{n-1}} e^{-2\pi i \xi \cdot t\theta} \Omega(\theta) d\theta.$$

From [6], we have

(4.6)
$$\left| \int_{2^{j-1}}^{2^j} e^{-2\pi i t \xi \cdot (\theta - \phi)} \frac{dt}{t} \right| \le C \min\{1, |2^j \xi \cdot (\theta - \phi)|^{-1}\}.$$

On the other hand, by the conditions of Lemma 5, we get $2\alpha < 1/r'$. Hence we can choose $\sigma > 0$ so that $2\alpha < \sigma < 1/r' \le 1$. Using the interpolation method, from (4.6) we obtain

$$(4.7) \qquad \left| \int_{2^{j-1}}^{2^j} e^{-2\pi i t \xi \cdot (\theta - \phi)} \frac{dt}{t} \right| \le C |2^j \xi \cdot (\theta - \phi)|^{-\sigma} = C |2^j \xi|^{-\sigma} \cdot |\xi'(\theta - \phi)|^{-\sigma},$$

where $\xi' = \xi/|\xi|$. Thus, by (4.5) we get

$$|\widehat{K_j}(\xi)|^2 \leq \left(\int_{2^{j-1}}^{2^j} t^{2\alpha} \frac{dt}{t}\right) \left(\int_{2^{j-1}}^{2^j} |I_t(\xi)|^2 \frac{dt}{t}\right) \leq C 2^{2\alpha j} \left(\int_{2^{j-1}}^{2^j} |I_t(\xi)|^2 \frac{dt}{t}\right).$$

Since

$$|I_t(\xi)|^2 = \iint_{S^{n-1}\times S^{n-1}} \Omega(\theta) \overline{\Omega(\phi)} e^{-2\pi i t \xi \cdot (\theta - \phi)} d\theta d\phi \,,$$

by (4.7) and the conclusion in [6] (noting that $\Omega \in L^r(S^{n-1})$ and $\sigma r' < 1$), we get

$$|\widehat{K_{j}}(\xi)| \leq C2^{\alpha j} \left(\iint_{S^{n-1} \times S^{n-1}} |\Omega(\theta) \overline{\Omega(\phi)}| |\xi'(\theta - \phi)|^{-\alpha} d\theta d\phi \right)^{1/2} |2^{j} \xi|^{-\sigma/2}$$

$$\leq C2^{\alpha j} |2^{j} \xi|^{-\sigma/2}.$$

Thus, we complete the proof of Lemma 5.

Now let us return to the proof of Theorem 3. Applying the conclusion of Lemma 5, we have

$$(4.8) \left| \left(\frac{\Omega(\cdot)}{|\cdot|^{n-\alpha}} \right)^{\widehat{}}(\xi) \right| \leq C + \sum_{j=1}^{\infty} |\widehat{K_j}(\xi)| \leq C + C \sum_{j=1}^{\infty} 2^{(\alpha-\sigma/2)j} |\xi|^{-\sigma/2} \leq C (1 + |\xi|^{-\sigma/2}).$$

On the other hand, for $\hat{a}(\xi)$ we have

$$(4.9) \left| \int_{\mathbb{R}^n} a(x) e^{-2\pi i \xi \cdot x} dx \right| = \left| \int_{\mathbb{R}} a(x) [e^{-2\pi i \xi \cdot x} - 1] dx \right| \le C \int_{\mathbb{R}} |a(x)| \, |\xi| \, |x| dx \le C |\xi| \, .$$

Thus, by (4.8) and (4.9) we get

$$(4.10) \qquad |(T_{\Omega,\alpha}a)\hat{(}\xi)| \leq |\hat{a}(\xi)| \cdot \left| \left(\frac{\Omega(\cdot)}{|\cdot|^{n-\alpha}} \right) \hat{(}\xi) \right| \leq C(|\xi| + |\xi|^{1-\sigma/2}).$$

By the choice of σ we know that $1 - \sigma/2 > 0$. Thus, (4.4) holds by (4.10). Hence $(T_{\Omega,\alpha}a)(x)$ satisfies the condition (iii) and Theorem 3 follows.

ACKNOWLEDGMENT. The authors would like to express their gratitude to the referee for his very valuable comments.

REFERENCES

- [1] S. CHANILLO, D. WATSON AND R. L. WHEEDEN, Some integral and maximal operators related to star-like, Studia Math. 107 (1993), 223–255.
- [2] Y. DING AND S. Z. LU, Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math. 50 (1998), 29–39.
- [3] Y. DING AND S. Z. LU, The $L^{p_1} \times L^{p_2} \times \cdots \times L^{p_k}$ boundedness for some rough operators, J. Math. Anal. Appl. 203 (1996), 166–186.
- [4] Y. DING AND S. Z. LU, Hardy spaces estimates for a class of multilinear homogeneous operators, Sci. China Ser. A 42 (1999), 1270–1278.
- [5] Y. DING, Weak type bounds for a class of rough operators with power weights, Proc. Amer. Math. Soc. 125 (1997), 2939–2942.
- [6] J. DUOANDIKOETXEA AND J. L. RUBIO DE FRANCIA, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541–561.
- [7] D. KURTZ AND R. L. WHEEDEN, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362.
- [8] B. MUCKENHOUPT AND R. L. WHEEDEN, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249–258.
- [9] E. M. STEIN, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N. J., 1993.
- [10] E. M. STEIN AND G. WEISS, On the theory of harmonic functions of several variables I: The theory of H^p spaces, Acta Math. 103 (1960), 25–62.
- [11] M. H. TAIBLESON AND G. WEISS, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149.

DEPARTMENT OF MATHEMATICS
BEIJING NORMAL UNIVERSITY
BEIJING, 100875
PEOPLE'S REPUBLIC OF CHINA
E-mail addresses: dingy@bnu.edu.cn

lusz@bnu.edu.cn