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KENMOTSU TYPE REPRESENTATION FORMULA FOR SURFACES
WITH PRESCRIBED MEAN CURVATURE IN THE 3-SPHERE
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Abstract. Our primary object of this paper is to give a representation formula for a

surface with prescribed mean curvature in the (metric) 3-sphere by means of a single com-
ponent of the generalized Gauss map. For a CMC (constant mean curvature) surface, we

derive another representation formula by means of the adjusted Gauss map. These formulas

are spherical versions of the Kenmotsu representation formula for surfaces in the Euclidean
3-space. Spin versions of them are obtained as well.

Introduction. Let S3(c2) be the 3-sphere of constant curvature c2 (c > 0). In this

paper, we give a representation formula for surfaces with prescribed (not necessarily constant)

mean curvature in S3(c2), as a spherical version of the Kenmotsu representation formula [8]

for surfaces in the Euclidean 3-space E3. Hence we call it the Kenmotsu type representation

formula. This is given via an integrable differential equation of first order in terms of the mean

curvature and a single component of the generalized Gauss map.

In Section 1, we review the generalized Gauss map of a surface in S3(c2) (cf. [7]). This

is decomposed into two maps from M to the unit 2-sphere S2. Using a single component,

we describe explicitly the induced metric and the Hopf differential. In Section 2, we show

that each component of the generalized Gauss map satisfies a nonlinear partial differential

equation of second order. We call each of them the spherical GH equation, because if we put

c = 0, it reduces to the generalized harmonic map equation (abbreviated to GH equation) for

the Gauss map of a surface in E3. When H is constant, these turn out to be the harmonic map

equation. Each spherical GH equation is the integrability condition for a surface with mean

curvature H in §3(c2), from which we obtain the Kenmotsu type representation formula in

S3(c2). In [2], we clarified the mechanism of obtaining the Kenmotsu representation formula

in E3. This mechanism is now valid for the case of surfaces in non-flat 3-space forms. In Sec-

tion 3, we concentrate on constant mean curvature (abbreviated to CMC) surfaces in S3(c2).

By the Lawson correspondence [11], any CMC surface M in §3(c2) locally corresponds to

an isometric non-minimal CMC surface MO in E3, together with its associated S ̂ family

{Mθ}θe[-π,π) Bobenko [4] also gave the correspondence at 'adapted frame level'. In terms

of the Gauss map of MO , we shall derive another representation formula for M from these

1991 Mathematics Subject Classification. Primary 53A10; Secondary 53C42, 58E20.

* Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education,

Science, Sports and Culture, Japan, No. 09740051.
** Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports

and Culture, Japan, No. 09640102.



96 R. AIYAMA AND K. AKUTAGAWA

results. When θ — 0 particularly, we call it the Kenmotsu-Bryant type representation formula
(see Remark 3.2).

The Kenmotsu type and Kenmotsu-Bryant type representation formulas (locally) de-
scribe a CMC surface in S3(c2) by a single non-holomorphic harmonic map to S2, in con-
trast to the study in [7], [14] and [12], where a specific pair of non-holomorphic harmonic
maps to S2 is used to describe these surfaces. In [3], we study some global properties of this
correspondence.

Recently, many mathematicians (cf. [9], [10]) have applied spinor representations to the
study of surfaces in E3. The spinor representation adopted in [10] is a spin version of the
Kenmotsu representation formula for surfaces in E3 (including the Weierstrass representation
formula for minimal surfaces in E3). In Section 4, we give spin versions of the Kenmotsu
type and the Kenmotsu-Bryant type representation formulas in S3(c2).

The authors would like to thank Professors Reiko Miyaoka and Masaaki Umehara for
helpful discussions.

1. Generalized Gauss maps of surfaces in S3(c2). Let M be a Riemann surface
with an isothermal coordinate z = x + \f--\y, and / a conformal immersion from M into the
Euclidean 4-space E4 — (R4, ( , )). The generalized Gauss map of / is defined by

0 = [/z] : M-> G2,2,

where G2,2 stands for the Grassmann manifold of oriented 2-planes in E4, and at each point,
the oriented complex null line [fz] in C4 is identified with the oriented 2-plane spanned by /,x
and fy. Identify E4 with the linear hull R - SU(2) of the special unitary group Si/(2) by the
map

where

1\ / 0 V^T\ _ /V^T 0 \ Λ 0>
o; ' 52. - ^v/zγ o

and (x, x) = detx. Note that the unit 2-sphere S2 is realized in su(2) = spanfe^, e^, 63} = E3

by

S2 = {[h] := he3_h* I h e SU(2)} = Sί/(2)/ί/(l),

where ί/(l) = {h# = (sin#)e3 + (cos<9)e4|# e [-π, π)}. The linear Lie group SU(2) x

SU(2) acts isometrically on E4 by

g - x = gixg* (g = (gi, g2) e SU(2) x SU(2), x e E4).

Since it acts also transitively on G2?2, S
2 x S2 is identified with G2?2 through

S2 x S2 3 ([gi], [g2]) H> [gi^ng^] e G2,2,

where #12 = (l/2)(ei_ — ̂ /^ϊe^). Therefore, we can decompose the generalized Gauss map

g of / into (0ι, £2) : M -> §2 x S2.
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From now on, let / be a conformal immersion from M into S3(c2) = ( l / c ) S U ( 2 ) .

Regard S3(c2) as the symmetric space

= (SU(2) x SU(2))/Δ

1 1
= f - g e4 = -gιg21 c — c = (gι,g2)eS£/(2)χSϊ/(2)

where A = {(h, h) h e 5t/(2)}. A map F : M -» Si/ (2) x St/(2) is called a framing

of / if / = (1/c)^7 64. On every contractible open set £/ of M, we can uniquely choose a

framing map £ = (£ι , £2) of / such that TV := 8 - es is a unit normal vector field and 8 - EU

is a vector field of type (1, 0), up to the right action of a £/(l)-valued function. We call it the

adapted framing of / on U. Since [SiE^S^] — [/zl» we conclude that

and &

Regarding S2 as the extended complex plane C = C U {00} by the stereographic projection

we have

Let 0 = eλdz be the dual (1, 0)-form to £ - E\ι on U. Then the induced metric is given

by f*ds2 = φ - φ = e2λ\dz\2 and dφ = — x/— ϊp Λ φ, where p stands for the connection
form of f*ds2. We denote by H the mean curvature of / and by Φ = Qφ φ its Hopf

differential, where stands for the complex bilinear inner product on C2. The pullback

£-ld£ = ε~ldE\ Θ £^d£ι of the Maurer-Cartan form on SU (2) x St/(2) by the adapted

framing £ — (£\ , 82) is given by

(1.1)

/ - -
(H + V^Tc)0 4-

For a map g : M -> S2 = C, put ^(^) = [ 4 g z ( g ) z / ( l + |^|2)2]ί/z dz, which is called the
Hopf differential of g.

PROPOSITION 1.1. TTze induced metric f*ds2 and the Hopf differential Φ of fare

given by

* , 2

(1.3)
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and the Gauss curvature K off is given by

PROOF. Because of

(G\)ι

j j
and

it follows from (1.1) that

(1-4)

Then the equation (1.4) with Qi = Qi/Pi implies the expressions (1.2) and (1.3). D

REMARK 1.2. Since f*ds2 is positive definite on M, Q — (G\,Gi) is nowhere-

holomoφhic. From (1.3), anti-holomorphic points of Q correspond to umbilic points of /.

COROLLARY 1.3. Each component Qi (i = 1,2) of the generalized Gauss map Q

satisfies the following Beltrami equations'.

Φ(Qι)-z = (H

2. Kenmotsu type representation formula in S3(c2). In this section, we give an

integrability condition for a conformal immersion / : M -> S3(c2) in terms of the mean

curvature H and a single component of the generalized Gauss map Q = (Q\, C/2).

For every contractible open set U of M and a map Ή — (h,h) : U ^> Δ, £ΉΓ^ =

(S\h~l, ^2/2-1) : U —> Si/(2) x SU(2) is a framing of /. When we choose h = 82

(resp. h — £j), the new framing is given by (c/, €4) (resp. (64, c/*)). Therefore, the map

S = cf : M -> Si/(2) satisfies ~~ ~~

(2.1) S~ldS--

(2.2)

where

1 -ί

It follows from (1.4) combined with (1.2) that

(2.3) P?φ = —

= -c(<χ\ -

We note that each α, is a global section of Γ*(1 0)M <g> Q^ Γ(1 0)S2. Put μ, = -c(a\ - α*)
and μ^2 = c(a.ι — αp. Then these are su(2)-valued 1-forms on M. The equations ddS —
ddS* = 0, equivalently, dμ, + μ; Λ μ, = 0 (i = 1, 2) imply the following
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THEOREM 2. 1 . The generalized Gauss map Q = (Q\, £2) of a conformal immersion

f : M — > §3(c2) with mean curvature H satisfies the following equations:

<Z4)

202 1
(2-5)

Conversely, the equation (2.5) (resp. (2.4)) is the integrability condition for the equation

(2.1)(nesp.(2.2)).

THEOREM 2.2 (Kenmotsu type representation formula in S3(c2)). Let M be a simply

connected Rίemann surface with a reference point ZQ and H a real-valued smooth function on

M. For a non-holomorphίc smooth map v : M -> C satisfying

2v 1 / 2v 1
resp. vz; -- τ V 7Zl + |v | H - J

define a smooth \-form ω on M by

z. ω = - •== - dz

Also define an sί(2; C)-valued \-form a and an su(2)-valued \-form μ on M by

oί = I ι ω , μ = c(a — α*).

Then there exists uniquely a smooth map S : M —^ Si/(2) such that <S(zo) = €4

S~ldS = μ (resp. S~ldS = -μ). Put f = (l/c)5 (resp. f = (l/c)5*). Then f :

M —> S3(c2) is a conformal immersion outside [w G M | v^(w) = 0} with prescribed mean

curvature H and the generalized Gauss map Q = (<S[υ], v) (resp. Q = (v, <S*[v]). Moreover,

the induced metric is given by f*ds2 = (1 -f |v|2)2ω ώ and the Hopf differential by Φ —

In the above theorem, <S[v] (at z G M) stands for the linear fractional transformation of

v(z) <ECby<S(z) G Si/(2).

REMARK 2.3. Putting c = 0 in (2.4) and (2.5), we obtain the generalized harmonic

map (GH) equation for Gauss maps of surfaces in E3. In the Kenmotsu representation formula

[8] in E3, the GH equation gives the compatibility condition for existence of surfaces. When

H is constant, the equations (2.4), (2.5) and the GH equation are the equation for harmonic

maps into the standard metric 2-sphere S2 (cf. [7]).

REMARK 2.4. In [7], Theorem 4.10 combined with Proposition 4.11 asserts the ex-

istence of a surface in S3(c2) with prescribed generalized Gauss map, which is a pair of

complex functions satisfying some relations. On the other hand, the Kenmotsu type repre-

sentation formula is given via the integrable differential equation of first order by means of a

single complex function satisfying the spherical GH equation (2.4) (or (2.5)).
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3. Kenmotsu-Bryant type representation formula for CMC surfaces in S3 (c2). In

this section, we confine our argument to CMC surfaces, and prove that the Kenmotsu type

representation formula can be adjusted to the Kenmotsu-Bryant type representation formula

through the Lawson correspondence at adapted frame level. For a harmonic map v : M — >

S2, the Kenmotsu type formula represents a pair of CMC H surfaces in S3(c2) with Hopf

differentials (H ± */^ΐc)~lφ(v), but, in contrast, the Kenmotsu-Bryant type formula below

represents another CMC H surface with the Hopf differential (H2 -f c2)~1/2<p(v).

Let HQ (> c) be a positive constant, and put Hc = J H^ — c2. Let M be a contractible

Riemann surface with an isothermal coordinate z and a metric ds2 = e2λ\dz\2. We denote its

connection form by p and put φ = eλdz. Let Φ = Qφ φ be a holomorphic quadratic differ-

ential form on M. Lawson [11] and Bobenko [5, Theorem 14.1] proved that the integrability

conditions for the following differential equations are identical (cf. [6]):

^ I Λ c-ijc J-1 I(3.1) εwidε[θ] = -- — I _ ] (θ e -TT, π)) ,[θ] - p

and the pair of solutions E\ = £[0C], 82 = £[-0c] ' M -> SU(2) for θ — θc := arg(//c +

Λ/^ΪC) is the adapted framing of an isometric immersion / : M -> S3(c2) with CMC

H = Hc and the Hopf differential Φ . Moreover, a solution £[0] for θ = 0 is the adapted

framing of an isometric immersion /o : M -> E3 with CMC HQ and the Hopf differential

Φ, that is, [£[0]] is the normal vector field of /o and E[Q\E\2Ei™ is a vector field of type

(1,0). We note that for any θ, a solution 8[θ] of (3. 1) gives the adapted framing £[#jh#/2 of an

isometric immersion /Q : M -> E3 with CMC HQ and the Hopf differential Φ[#] = <?vCΓ^Φ.

The Gauss map Q[θ] = [£[0]h0/2] = [%]] : M -^ S2 of /Q is a harmonic map satisfying

P(0[0]) = H0e^~wΦ (cf. [8], [12], [14]).

By a similar argument to that in Section 2, if we choose h = 8[β] for any θ, we can obtain

a representation formula for / in terms of G\β]

THEOREM 3.1. Let M be a simply connected Riemann surface with a reference point

Zθ, and let H be a non-negative constant. Put HQ — V//2 + c2 and θc = arg(// + \f^\c).

For a non-holomorphic harmonic map v : M — >• S2 = C and θ e [— TT, π), define an

5l(2; C)-valued l-form ct[θ] by

v -

define su(2)-valued l-forms μ<[0],ι,

Then there exists uniquely a smooth map F = (T\, JF2) : M ->• SU(2) x SC/(2)

T^dT\ = μ,[θ],ι, FildF2 = μ[θ],2 and f(zo) = (£4,54). P«ί / = (l

Then f : M -» S3 (c2) « α conformal CMC H immersion outside isolated degenerate points
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{z e M\ω(z) = 0} with the Hopf differential Φ = (l/HQ)e~^I'Iθφ(v\ where f^ds1 =

[2\v-z\/(Ho(\ + \v\2))fdz'dz. The generalized Gauss map off is given by Q = CFifυ], J^M).

REMARK 3.2. The Bryant formula ([5], [15]) represents a CMC c surface M in the

hyperbolic 3-space of constant curvature — c1 by means of the pair of a holomorphic 1-form

and a holomorphic map G to C, where G is the Gauss map of a minimal surface MQ in E3, and

MO corresponds to M through the canonical Lawson correspondence (see [15, Theorem 3.1]).

Hence, in the case of θ = 0 in Theorem 3.1, we call it the Kenmotsu-Bryant representation

formula and £/[0] the adjusted Gauss map of / (cf. [1]).

4. Spin versions of representation formulas. In this section, we give spin versions

of the Kenmotsu type and the Kenmotsu-Bryant type representation formulas for surfaces in

S3(c2). Using the framing method, we will modify the approach by Kusner and Schmitt [10]

in spin calculus. We then treat a spin structure on a Riemann surface M as a complex line

bundle whose square is the holomorphic tangent bundle T^^M of M . Given a conformal

immersion / from M into S3(c2), a spin structure Spin(M) on M is induced canonically

from the pullback of the unique spin structure Spin(S2) on S2 via a single component of

the generalized Gauss map or the adjusted Gauss map. We give the condition that the lift

ψ : Spin(M) -> Spin(S2) induces the integrable differential equation for /.

4.1. The spin structure on the Riemann 2-sphere S2. First, we review the spin struc-

ture on the Riemann 2-sphere S2 (see [13] for the general theory of spin bundles over Riemann

surfaces).

Let P -> S2 be the unitary frame bundle. The fiber Fx on x = [g] 6 S2 (g € 5ί/(2)) is

given by

Then the t/(l)-bundle P can be regarded as SU(2)/ ± 54. Recall that the group Spin(2) is

considered as the double cover of ί/(l), and SU(2) is the (unique) principal Spin (2) -bundle

PonS 2.

For the representation p_ : Spin (2) -> Aut(C); p_(h0) — e^~*θ , there is an associated

complex line bundle

Spin(S2) = S^(P) := P xp_ C,

which is called the minus spin bundle associated to P and we will regard it as the spin structure

on S2. Excepting the image 0(§2) of the zero-section, we can identify Spin(S2) with

R* SU(2) (R* = R \ { 0 } ) b y

Spin(§2) \ 0(§2) -> R* S£/(2) ,

[(g, w)] = [(gh0, r)] h-> rφθ = g ί ̂  \

(g G 5ί/(2), w = r e w G C* = C \ {0}) .
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We then obtain the following projections

Spin(§2) D R* SC/(2) 3 s - Γ ] ~—
\S2 S\

lσ

3 s£12s* =

§2 (= C) 3 [(det(s)-]s] = (detsΓ2se3S*(= s \ / s 2 ) .

Moreover, Spin(§2) \ 0(§2) is considered as a Z2-bundle on Γ(1'0)§2 \ 0(§2).

4.2. A spinor representation of a bundle map of Γ(1'0)M into Γ(1'0)S2. Let (M, ds2}

be an oriented connected Riemannian 2-manifold and y a smooth map from M to S2. Let h

be a local lift of y, that is, h is a smooth map on every contractible open set U of M into

SU(2) satisfying y = [h]. Take an isothermal coordinate z on U with ds2 = e2λ\dz\2 and put

φ = e

λdz. Put

a = hEl2h*φ= (^ iMω,

where

h=(q ~P ) , y ( = g > o y ) = -, ω = -p2φ.
\P 1 ) P

If (α, y) is a (fiber metric preserving) bundle map of the holomorphic tangent bundle Γ^'^M

into Γ(1'0)S2 (that is, α e Γ(Γ*(1'0)M <g) υ"1^1'0^2)), α is locally described as above.

For a bundle map (α, y) of Γ(1 0)M into Γ(1'0)S2, let 5 = 51" be the (unique) pullback

bundle of Spin(S2) under α. Then S defines a spin structure on M, that is, S is the minus

spin bundle associated to the spin bundle PM on M defined uniquely from S. Moreover, the

lift ψ : S -^ Spin(§2) of a is described by a pair (ψ\(z, z)Vdz, ψι(z, z)Vdz) of smooth

sections of the plus spin bundle S+ associated to PM, where we consider ψ merely as the

map from S \ 0(M) to C2 \ {0} identified with R* SU(2) by

"l!2J eR.5ί/(2).

(We remark that ψ maps the zero spinor on M to the zero spinor on S2.) We call ψ =

(ψ\\fdz, faVdz) the spinor representation of the bundle map (α, y) : T^^M —> Γ^'°^S2.

For the dual 0* to φ, «/φ* is considered as a basic local section of the minus spin bundle

S. Since ψ is the lift of a = hE\2hφ, we obtain ψ(^/φ*) = h. Then

(4.1) ψ

and hence

(4.2) v

Now we define the Dime operator I]) for the spinor representation ψ = (ψ\(z, z)\fdz,

, z)\fdz) which is a smooth section of S+ 0 S+, as the original Dirac operator <f for the
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section i o ψ = (ψ\(z, z)\fdz, ψ2(z, z)Vdz) of S+ θ S~:

f ψ\^/dz\
— ^ =2i

4.3. Spinor representation for surfaces in §3(c2). Let / : M — >> S3(c2) be an isomet-

ric immersion, and v the second (resp. first) component $2 (resp. Q\) of the generalized Gauss

map of /. Recall that the bundle map (α, v) is given by

(4.3) α=α2 = (\/c)f~ldf (resp. α = α} = -(l/cX/T^/*) .

By using the spinor representation ψ — ($r \\fdi, faVdz) of (α?, v) combined with (4.1), we

obtain
2 2 2 2 4 2

f*ds = (\ψ} | + \ψ2\\dz\ = \ Ψ \ \ d z

It follows from (2.3) combined with (4.2) that

(4.4) ψ ψψ = (c + ̂ /^ΪH)\ψ\4 (resp. ψ - ̂  - (-c

where // is the mean curvature of /. Moreover, from (1.3) combined with (4.2), the Hopf

differential Φ is given by

Φ = J~Ξ\(ψ - φϊr}dz dz .

The integrability condition for (4.3) is the following

(4.5) dot - dα* = c[α Λ ot*] (resp. 3α - 9α* = -c[α Λ α*]) .

We remark that α. can be described by

,
— \Ψ2

Then the above equation (4.5) combined with (4.4) implies the following results.

PROPOSITION 4.1 . The spinor representation ψ ofoti € Γ (Γ*(1'0)M ® ̂ Γ1 Γ(1'0)§2)

satisfies the following non-linear Dirac equation:

φψ = (c + v^T//)|ιAlV (re sp. W - (-c -h v

THEOREM 4.2 (Spin version of Kenmotsu type representation formula). Let M be a

simply connected Riemann surface "with a reference point ZQ ond H a real-valued smooth

function on M. For a nowhere-vanishing (C1 -valued smooth function ψ — (ψ\, ψ2) : M — > C2

satisfying

(resp. tyψ - (-c

define an 5ί(2; C)-valued l-form a and an $u(2)-valued \-form μ by

, (a = I 2 . . ]dz , μ = c(α - a*
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Then there exists uniquely a smooth map S : M —> SU(2) such that <S(zo) — ^4 and

S~l dS = μ (resp. S~ldS = -μ). Put f = (\/c)S (resp. f = (l/c)«S*). Then f : M ->
§3(c2) is a conformal immersion with prescribed mean curvature //, and v = ψ\/ψι is the
second (resp. first) component of the generalized Gauss map Q off.

Similarly, we can represent a CMC surface in S3(c2) with the adjusted Gauss map v =
C/[θ] is terms of the spinor representation ψ of a e Γ(Γ*(1'0)M ® G^T^S2).

THEOREM 4 . 3 (Spin version of Kenmotsu-Bryant type representation formula). Let M
be a simply connected Riemann surface with a reference point ZQ, and let H be a non-negative
constant. Put HQ = VH2 + c2. For a nowhere-vanishing C2 -valued smooth function iff =

(^1* ^2) : M — > C2 satisfying

define an sί(2; C)-valued l-form a and two $u(2)-valued l-forms μ\, μ2 by

^ot = ( ~ I dz ,
\ -to2 Vl to/

- \[{c - V^Ϊ(H - #o)}<* - (c + ^Π(H - HQ)}a*] ,

Then there exists uniquely a smooth map J- = (F\, ^2) M -> SU(2) x SU(2) such
that F~ldf\ = μi, J^dfi = μ2 and F(ZQ) = (£4,64). Put f = (\/c)F\F*. Then

f : M — >• S3(c2) w <3 conformal CMC H immersion. The induced metric f*ds2 on M and the
Hopf differential Φ are given by

f*ds2 = \ψ\4\dz\2 , Φ = V^ΪW 9Ψ)dz - dz .

The generalized Gauss map of/is given by Q = C^itVo/V^L ^zt^i/^])- (^1/^2 ^ ̂
adjusted Gauss map Q\Q\ of f.)
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