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THE BRAIDINGS OF MAPPING CLASS GROUPS AND LOOP SPACES
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Abstract. The disjoint union of mapping class groups forms a braided monoidal cat-
egory. We give an explicit expression of braidings in terms of both their actions on the fun-
damental group of the surface and the standard Dehn twists. This braided monoidal category
gives rise to a double loop space. We prove that the action of little 2-cube operad does not
extend to the action of little 3-cube operad by showing that the Browder operation induced by
2-cube operad action is nontrivial. A rather simple expression of Reshetikhin-Turaev repre-
sentation is given for the sixteenth root of unity in terms of matrices with entries of complex
numbers. We show by matrix calculation that this representation is symmetric with respect to
the braid structure.

1. Introduction. The braided monoidal category has been playing a key role in the

quantum theory and its related topics for about a decade. In the homotopy theoretic point of

view, a braided monoidal category gives rise to a double loop space. Precisely speaking, the

gorup completion of the nerve of a braided monoidal category has the same homotopy type

as a double loop space ([4]). In this paper we deal with the braid structure on the orientable

surfaces with one boundary component. We give an explicit description of the braiding of the

mapping class groups, and then investigate the loop space structure resulting from it.

Let Γgy i be the mapping class group of the orientable surface of genus g with one bound-

ary component. It was noticed by Miller ([10]) that there is an action of the little 2-cube

operad on the disjoint union of Γ^i's extending the product which is induced by a kind of

connected sum of surfaces. Although he did not provide any explicit description of the action

of the little 2-cube operad, from this he induced the theorem that the group completion of the

disjoint union of BΓgys has the homotopy type of a double loop space, because, in general,

the action of the little n-cube operad gives rise to an n-fold loop space ([8]). On the other

hand, since a braided monoidal category gives rise to a double loop space, we may conjecture

that there should be a certain structure of a braided monoidal category on the disjoint union

of the mapping class groups Γg, \ 's.

In Section 2, we first show (Theorem 2.4) that the disjoint union of Γ^Γs is a braided

monoidal category with the product induced by the connected sum. By the connected sum of

the surfaces Sg, \ and Sh, I , we mean attaching a pair of pants to the surfaces along the boundary

circles of the surfaces. Hence the group completion of \Jg>o B Γg, \ has the homotopy type of a

double loop space. We provide an explicit algebraic description of the braiding of LJ#>o Γ9t \,
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regarding Γ9i \ as the subgroup of the automorphism group of the fundamental group of the

surface S9i 1 that consists of the automorphisms fixing the fundamental relator.

Let x\, yi,... , xg, yg be the generators of the free group π\ Sg, \, which are represented

by the loops of the surface S9i \ that are parallel to the standard Dehn twists a\, b\,... ,ag,bg,

respectively, of Figure 1. We should first determine the orientations of the loops represent-

ing x\, y\,... , xg, yg, which are compatible with our description of the actions of the Dehn

twists on {x\,y\,... , xg, yg) and that of the fundamental relator. It is very important to

note that the fundamental relator is given by R = [y\, x\][y2, xi\ [yg, Xg] rather than

[x\, y\]" ' [xg, yg] The formula (2.8) gives the explicit description of the (1, l)-braiding

of mapping class group of 52, i in term of the standard Dehn twists. There is an action of little

2-cube operad on LJp>o ̂ ^gΛ- We P r o v e (Theorem 2.11) that this action does not extend to

the action of 3-cube operad. We prove this by showing that the Browder operation applied to

a class in //o(A,i) is nontrivial. Here the explicit formula for the braiding plays a key role.

Turaev and Reshetikhin introduced an invariant of ribbon graphs which is derived from

the theory of quantum groups and is a generalization of Jones polynomials. These invari-

ants were extended to those of 3-manifolds and of mapping class groups (cf. [11], [12], [6]).

The definitions are abstract and a little complicated, since they are defined through quantum

groups. Wright ([14]) computed the Reshetikhin-Turaev invariant of mapping class groups

explicitly in the case r = 4, that is, at the sixteenth root of unity. For each h e Γ5)o, we can

find the corresponding (colored) ribbon graph, whose Reshetikhin-Turaev invariant turns out

to be an automorphism of the 1-dimensional summand of Vkχ 0 Vkχ * <g) (g> Vkβ <g) Vke*,

which we denote by Vr,g. We get this ribbon graph using the Heegaard splitting and the

surgery theory of 3-manifolds. Wright showed as a result of her calculation that the restric-

tion of this invariant to the Torelli subgroup of Γ9to is equal to the sum of the Birman-Craggs

homeomorphisms. The dimension of V^g equals 2g~xQg + 1), so the Reshetikhin-Turaev

invariant of h e Γ9to, when r = 4, is a 2#~1(2^ + 1) x 2#~1(2£ + 1) matrix with entries

of complex numbers. Wright proved a very interesting lemma that there is a natural one-to-

one correspondence between the basis vectors of V^g and the Z/2-quadratic forms of Arf

invariant zero. In Section 3, we express the Reshetikhin-Turaev representation p4 of mapping

class groups in easier words than Wright's description. We describe p\ at genus 2 in terms of

1 0 x 1 0 matrices. A calcultion of 10 x 10 matrices gives a proof that the Reshetikhin-Turaev

representation is symmetric.

The author is grateful to Professor Zbigniew Fiedorowicz for his help and useful conver-

sations. The first form of (2.8) was discovered by him. The author thanks Fukuoka University

for their hospitality while he was visiting there from August 1997 to August 1998.

2. Braided monoidal category and loop spaces. Let Sg^ be a compact connected

orientable surface of genus g with k boundary components. The mapping class group Γg^

is the group of isotopy classes of orientation preserving self-diffeomorphisms of Sg^ fixing

the boundary of 5 ^ that consists of k disjoint circles. We also have the following alternative

definition Γg^ = πoDiff+(Sg^). A Dehn twist along a simple closed curve γ is an isotopy
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class of a homeomorphism h, supported in a tubular neighborhood N of γ, obtained as fol-

lows: We regard N as an annulus in the Euclidean plane with its usual orientation. Then h is

the identity outside N, and inside N the concentric circles rotate counterclockwise while the

rotation's angle increases from 0 to 2π going inwards. The composition of Dehn twists (or

homeomorphisms) of Sg^ will be written from left to right, that is, the mapping class group

Γ9tk acts on π\Sg^ on the right. We in this paper mainly deal with the case k = 0 and k = 1.

Both Γg$ and Γ p j are generated by the Dehn twists a\,... ,ag,b\,... , bg, ω\,... , ωg-\

of Figure 1 (cf. [13]). We call these Dehn twists the standard Dehn twists.

FIGURE 1. Dehn twists.

There exists an obvious surjection Γ9t\ -> Γg$. Wajnryb ([13]) showed that both Γg%\

and Γg$ are generated by 2g + 1 Dehn twists a\, ai,b\,... , bg, ω\,... , ωg-\. We now

recall the definition of a strict braided monoidal category. We will deal with strict monoidal

categories. This does not lead to a loss of generality because according to MacLane's co-

herence theorem, any (braided) monoidal category is equivalent to a certain strict (braided)

monoidal category (cf. [12], Remark XI. 1.4).

DEFINITION 2.1. A (strict) monoidal category (C, <8>, E) is a category C together with

a functor ® : C x C -> C (called tensor product) and an object E (called the unit object)

satisfying

(a) 0 is strictly associative, and

(b) E is a strict 2-sided unit for ®.

DEFINITION 2.2. A (strict) monoidal category (C, <g>, E) is called a (strict) braided

monoidal category if for each pair of objects (A, B) there exists a natural commutativity

isomorphism ^ : A ( 8 i f i - > f i 0 A satisfying

(a) βλ,E = βε,A = 1Λ for each object A, and

(b) the following braid relations hold:

βλ®B,c = (βλ,c 0 1/0 o (1Λ 0 βB,c) and βA,B®c = (1* <S> βλ,c) o (βA,B 0 lc)

The isomorphism βA,B is called a braiding. The naturality of the braiding means that for

any morphisms / : A -> A\ g : B —• β r , we have

Note that the equalities in (b) of Definition 2.2 implies the following Yang-Baxter equality:

d c 0 βA,B)(βA,c 0 1*)(1A 0 βB,c) = (ββ,c 0 1A)Ua β βλ,c)(βA,B 0 lc)
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In the homotopy theoretic point of view, a braided monoidal category has the following re-

markable property in the coherence problem:

LEMMA 2.3 ([4]). The group completion of the classifying space of a braided monoidal

category is the homotopy type of a double loop space.

This lemma implies that there is a certain connection between braided monoidal cate-

gories and the mapping class groups Γ9,\, in view of Miller's proposition (Proposition 2.1,

[10]) in which he claims that there is an action of the little square operad of disjoint squares

in D2 on the disjoint union of the Diff+XS^iVs, extending the F-product that is induced by

the connected sum. Here let us describe the F-product more precisely. The F-product

D i f f + ^ O x Diff+ (ShΛ) -> Dif i r+iS^i)

is obtained by attaching a pair of pants (a sphere with three boundary components) to the

surfaces Sg,\ and Sh,\ along the fixed boundary circles and extending the identity map on the

boundary to the whole pants.

From the standard result of May for the loop spaces ([8]), Miller concluded, in his propo-

sition, that the group completion of LJp>o & Diff1" (5P, i) (the disjoint union of B Diff^ (Sg, \) 's)

is a double loop space. He needed the proposition mainly for using a remarkable aspect of the

homology of mapping class groups, which is the following: lim_»//*(# Diff^(S^i); Q) is a

commutative, cocommutative, associative, coassociative Hopf algebra. His sketchy proof of

the proposition, however, is a little obscure. We, in this paper, are going to take another route

that leads us to a similar destination. Instead of finding an action of the little 2-cube operad

we find a braid structure in the collection of the mapping class groups which is supposed to

give us a double loop space structure. By the disjoint union of Γ^Γs we mean the category

whose objects are [</], g e Z, g > 0 and whose morphisms satisfy

We denote this category by LJ^>o Γg,\.

THEOREM 2.4. The disjoint union of Γg, \ 's is a braided monoidal category.

PROOF. Let jq, v i , . . . ,xg,yg be the generators of the fundamental group of Sg,\

which are represented by the Dehn twists a\,b\,... ,ag, bg, respectively (Figure 1). The

mapping class group Γg, \ can be identified with the subgroup of the automorphism group of

the free group on JCI , y\,... , xg, yg that consists of the automorphisms fixing the fundamen-

tal relator R = [y\, x\][y2, X2] * [yg, *g\- The binary operation on LJ^>o Γg, 1 induced by the

F-product can be identified with the operation taking the free product of the automorphisms.

The (r, s)-braiding βΓjS on the free group on x\, y\,... , Jcr+5, vr+>y is given by:

x\ ι-+ Sxs+\S~ι, vi H> S ^ + i S Γ 1 , . . . ,

xr h* Sxs+rS~λ, yr ι-> Sys+rS~X ,

^ v i , . . . ,
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where S = [yi,x\][y2,X2]m — [ys>X
braiding are equal to the identity.

The (r, s)-braiding fixes the fundamental relator R:

*r+s '""*• Xs > 3V+s I"""*" ^ J »

v^,^] . Note that both the (r, 0)-braiding and the (0, L

, xr+s]

S[ys+u ~ι[r, xs+r]S~ι[yi,xi] Si xs] = R .

It is easy to see that the (r, .s)-braiding satisfies the equalities in (b) of Definition 2.2, that is,

we have

βr®s,t = (βr,t 0 1,)(1Γ 0 βsj) and βr,s®t = (ls 0 βrJ)(βr,s ® If)

D

Note that in the proof of Theorem 2.4 we have chosen the fundamental relator R as

[ y u x ύ ' [ y g , Xg\ r a t h e r t h a n [ * i , y ι ] - > [ x g , y g ] .

Theorem 2.4 explains the pseudo double loop space structure on the union of the classi-

fying spaces of the mapping class groups observed by Miller. From Lemma 2.3 and Theorem

2.4 we get the following:

THEOREM 2.5. The group completion <?/]_L>o B Γg, \ has the homotopy type of a dou-

ble loop space.

We should take the group completion of the resulting topological monoid in order to have

reasonable connected components. Here as the group completion of LJ#>o BΓ9t \ we may take

ΩB([}g>0 BΓgΛ). See [9] for more details.

The Braid Structure. We now express the braid structure of the collection of mapping

class groups more explicitly so that we could extract more applications from it and could

handle the braided monoidal structure more easily. First let us express explicitly the (1, 1)-

braiding on genus 2 surface. /2,i is generated by the Dehn twists a\, b\, a2, b2, ω\. Let jq,

yi, *2, y2 be generators of πi52,i which are represented by the loops parallel to a\, b\, a2,

&2, respectively. Here it is very important to determine the orientations of the loops which

represent the generators JCI, y\, xi, yι. It is given as in Figure 2.

F I G U R E 2.
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Here we may think that the base point lies at the boundary of the surface. It is important

to note that the fundamental relator, which is represented by the loop along the boundary, is

[vi, *i]lj2> *i] rather than [JCI, vi][>2, yi\- Let z\ be the loop on Sg$ which represents the

Dehn twist ω\. We now choose the orientation of z\ as in Figure 3. Then z\ is expressed in

terms of the generators x\,y\, X2, yi as in Figure 3.

z\

FIGURE 3.

In πiS2,i, we have z\ = x{

 ly2X2y2

 l F°Γ a n arbitrary genus g (g > 1), the orientations

of the generators of π\ Sg, \, which are represented by the loops parallel to the Dehn twists a\,

&i,... ,ag, bg, are given in the same way as in Figure 2, and the fundamental relator should

be [vi, *i] [vp, Xg\ rather than [JCI, y\] [JC ,̂ yg] in our formation.

We regard the Dehn twists a\, b\, a2, b2, ω\ as automorphisms of π\Sg,\, which is the

free group on the generators {JCI , y\, X2, J2}. Then the Dehn twists act as follows:

: x\ VI

where zi = xχ

 ι V2JC2J2 ! These automorphisms fix the generators that do not appear in the

list.

We now find the explicit expression of the braiding, which is an element of Γ2,1, and acts

o n π i S ^ i = {̂jci,)Ί,jc2,;y2} as follows:

(2.6)
x\ 1-̂  [yi,χ\]χ2[χuy\], y\ H> [VI,

X2 *-+ X\ , V2 H> Vi .

The braiding is as follows:

LEMMA 2.7. 77*e (1, \)-braiding β\,\ for the monoidal structure in genus 2 is given
by

(2.8) β\Λ = {a

We can easily confirm that the formula (2.8) satisfies (2.6). Here the Dehn twists act on

the right on π\Sg,\.
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The braid group of all braidings in the mapping class group of genus g is generated by

βi = (aibiaiΫ{ai+\bi+\(aibiai)~xωiaibiaϊbi)-2>

for i — 1, 2 , . . . , g — 1. We can obtain the following formula for the (r, s)-braiding in terms

of the braiding generators:

βr,s = (βsβs-l βl)(βs+lβs '-'β2)- {βr+s-\ " ' βr)

or alternatively as

(βsβs+l ' βr+s-\)(βs-\βs ' ' ' βr+s-l) ' ' ' (βlβl ' ' ' βr)

REMARK 2.9. It has been believed by some people that the (r, r)-braiding squared

equals a Dehn twist around the fixed boundary of the surface 52r,i (cf. [7]). However, we can

easily see that our braiding βr,r does not satisfy it. We can see, for example, that β\ χ (or

βj~j) acts on the fundamental group of 52,1 in a different way from the Dehn twist around the

boundary, which acts as follows:

jci h* R~xx\R, vi ι-> R~ιy\R ,

x2 H> R~ιx2R, yi *-+ R~ιy2R,

where R = [yu x\][yi, xϊ\.

REMARK 2.10. The braid structure gives rise to the double loop space structure, so it

is supposed to be related to the Browder operation of the homology of mapping class groups.

Let D : Big -> Γg^ be the obvious map given by

if i is odd,1 /+!
2

o)i_ if i is even.

Cohen in [3] dealt with this map D and the following commutative diagram:

BpfΓ9Λ • ΓP9Λ

where θ is the group analogue of the Browder operation. The braiding structure (2.8) plays a

key role in the explicit formula for θ : B2 f A j -* Γι,u which should be given as follows:

The group completion of ]_L>o BΓg\ has the double loop space structure. There exists

the Browder operation of homology induced by the action of little 2-cube operad. In the

following theorem we prove that the double loop space structure of the group completion of

JJ^ > 0 BΓg,\ does not support the action of little 3-cube operad on LL>0 BΓg\. We get this

by snowing that the Browder operation induced by the little 2-cube operad action is nontrivial.
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THEOREM 2.11. Let X = \Ag>o BΓ9r\. The action of little 2-cube operad on X does

not extend to the action of little 3-cube operad.

PROOF. Consider the action map φ : C2(2) x X2 -> X of the little 2-cube operad C2. If

the action extends to the action of little 3-cube operad C3, we have the following commutative

diagram:

C2(2) x X2

\ φ

I x
/

C3(2) x X2

Recall that Cn(2) has the same homotopy type as Sn~ι (cf. [8]). By taking the homology

we get:
H*(Sι x X2)

/
H*(S2 x X2)

The map 0* : Hi(X) 0 Hj(X) -> Hi+j+\(X), which is induced by the action map φ, is

called the Browder operation. From the commutativity of this diagram we have that θ* should

be trivial. Hence for the proof of the theorem it suffices to show that the Browder operation

on the homology of X is nontrivial. By restricting the map φ to each connected component,

we get the map

Sι x BΓgΛ x BΓgΛ -• BΓ2g,\ .

This map is, in the group level, denoted by the map

Θ:B2J ΓgΛ -• ΓlgΛ

as described in Remark 2.10. In order to show that 0* is nonzero it suffices to show that

<9* : H0(BΓlΛ) 0 H0(BΓlΛ) -• Hγ(BΓ2Λ)

is nonzero. The image of the map 0* equals that of the homology homeomorphism a :

H\(Sι) -> H\(BΓ2,\) induced by the map Sι -> BΓ2,\, which is the restriction of the map

S{ x B Γ\, 1 x B Γ\, 1 -> B Γ2,1. The map a sends the generator of H\ (Sι) to the abelianization

class of

which is nonzero. Note that the isomorphism H\ ( ) = ( )ab is natural. D

3. Reshetikhin-Turaev Representation. Reshetikhin and Turaev ([11], [12]) defined

the invariants of ribbon groups, of 3-manifolds and of maping class groups shortly after Wit-

ten's 3-dimensional interpretation of the Jones polynomial of a link. Wright ([14]) described

the Reshetikhin-Turaev invariant of mapping class groups more explicitly in the case r = 4.
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For each h e Γg$ we need the corresponding ribbon graph, whose Reshetikhin-Turaev in-

variant turns out to be a 2g~xQβ + 1) x 2g~xQβ + 1) matrix with entries of complex num-

bers. More precisely, the Reshetikhin-Turaev invariant is the projective representation ρr,g :

Γg$ -• End(Vr^), where Vr,g is the 1-dimensional summand of V* 10 V*1 *® ® V*»® V***

and dim(V4fp) = 29~ι(29 + 1). Let N(g) = 29~ι(29 + 1). By a Z/2-quadratic form of Arf

invariant zero we mean a 2 x # matrix

( mi m2

in M2χg(Z/2) satisfying Σf=i m * ^ = 0. It is easy to see that the number of Z/2-quadratic

forms of Arf invariant zero equals N(g). We denote m(a) = Σf = 1 m, . Wright proved the

following beautiful lemma.

LEMMA 3.1 ([14], §4.1, Lemma 3). There is a natural one-to-one correspondence

between basis vectors υ, ofV^g and Z / 2-quadratic forms α; of Arf invariant zero.

Reshetikhin-Turaev's definition of the quantum invariant is quite abstract and compli-

cated, since it comes through a quantum group theory. Wright in [14] described p^g in an

explicit form. In the following theorem we express her description in easier words.

THEOREM 3.2. Let gbe a natural number. Let a\,... , a2g-\(23+1) be Z/2-quadratic

forms of Arf invariant zero. Regard α, 's as the basis vectors of V^9. Let t be the sixteenth root

of unity. Then the images under P4 = p^g of the generators a^, bk, (Ok of Γg$ {see Figure 1),

up to a scalar multiple, are as follows:

(a) PAiβu) is a N(g) x N(g) matrix that (i) interchanges α, and OLJ if the k-th column

ofcii equals IA and the k-th column ofctj equals I. J and all other columns are the same,

and (ii) maps all other basis elements α/ to Pai.

(b) PAΦIC) is a N(g) x N(g) matrix that (i) interchanges cti and ctj if the k-th column

of at equals (Λ and that ofoίj equals (Λ and all other columns are the same, and (ii) maps

all other basis elements α/ to Pai.

(c) p4((0k) is a N(g) x Λf(#) matrix that (i) interchanges α; and —OLJ if a^k+l =

( j and akrk+l = ί Λ, (ii) interchanges α/ and oίj if m(ai) = m(ctj) = 0 and

ls (pn) =ls (cίj) + 1 for all s, and (iii) maps all other basis elements α/ toPai.

We now express the map p^ in terms of 10 x 10 matrices in the case g = 2. Such an

explicit expression would provide us with a good vision of the Reshetikhin-Turaev invariant

of mapping class groups and its related topics.

EXAMPLE 3.3. Let g = 2. Then N(2) = 10. Let αi = Q jj), a2 = Q °^j,

/0 1\ /0 0\ /0 0\ /0 1\ /I 0\ /I 0\
α3 =

 Vo o)
 a4 =

 Vi oj'
 a5
 = Vi i>

 α6 =
 Vi oj

 aΊ
 = Vo oj'

 αs =
 Vo iJ'
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«9 = ( n) ' α i ° = (i i ) b e m e Z/2-quadratic forms of Arf invariant zero which are

regarded as basis vectors of V ^ Then we have P4(a\) : a\ <-> c*4, «2 <-> #5, #3 «> (*6 Thus

is the following matrix:

/0 0 0 1 0 0 0 0 0 0 \

0
0
1

0
0

0

0

0

Similarly, we have

0
0
0
1

0

0

0

0
0

0
0
0
0
1

0

0

0
0

0
0
0
0
0

0

0

0
0

1
0
0
0
0

0

0

0
0

0
1

0
0
0

0

0

0
0

0
0
0
0
0

P
0

0
0

0
0
0
0
0

0

P
0
0

0
0
0
0
0

0

0

P
0

0
0
0
0
0

0

0

0

h

a\

5, Oίη O

6, aη ^>

«4, a\

Let MN(9)(C) be the ring of Λf(p) x Λ (̂̂ ) matrices of complex numbers. Theorem 3.2 de-

scribes the map p4,g : Γg%\ -> MN(9)(C) up to scalar for g > 1. Let M(C) be the disjoint

union of the monoids M^{g){C) foτg> 1. We may regard M(C) as a category as usual, that

is, objects are the integers N(g), g> 1 and

if gφh.

Let LJp>i /"p.i denote the category which is the disjoint union of mapping class groups Γ9t\

for g>~l.

THEOREM 3.4. For r = 4, ί/ze Reshetikhin-Turaev representation is symmetric, that

is, the obvious functor p4 : LL>i /^,i —> M(C) has the property that for each braiding βr>s,

P4(βr,s)2 is equivalent to the identity matrix up to scalar.

PROOF. Let B\ be the image, under ̂ 4,2 : Γ2,\ -> Aut(V4,2), of

β\ = (a\b\a\) (a
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Then we have

B\ =

0

0

0

0

0

0

0

0

V 0

0

0
0

Γ6

0

0

0

0

0

0

0

0

0

0

0

0

Γ6

0

0
0

0
t-6

0

0

0

0

0

0

0

0

0

0

0

0

Γ6

0
0

0

0
0

0

0

0
0
0

0
0

Γ6

0

0

0

0

t-6

0

0

0

0

0

0

0

0

0

0

0

0

t-6

0
0

0
0

0

0

0

0

0

0

0

0

Γ6

0

0

0

0

0

0

0

0

0

t1)

Hence B\ equals the identity matrix up to scalar. D
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