ISOMETRIC DEFORMATIONS OF FLAT TORI IN THE 3-SPHERE WITH NONCONSTANT MEAN CURVATURE

YOSHIHISA KITAGAWA

(Received October 14, 1998, revised April 19, 1999)

Abstract. For an isometric immersion f of a flat torus into the unit 3-sphere, we show that if the mean curvature of f is not constant, then the immersion f admits a nontrivial isometric deformation preserving the total mean curvature.

1. Introduction. Let S^3 be the 3-dimensional standard unit sphere in the Euclidean space \mathbb{R}^4 . For each θ satisfying $0 < \theta < \pi/2$, we consider the *Clifford torus* $M_{\theta} \subset S^3$ defined by

$$M_{\theta} = \{ x \in \mathbf{R}^4 : x_1^2 + x_2^2 = \cos^2 \theta, x_3^2 + x_4^2 = \sin^2 \theta \}.$$

The Clifford torus M_{θ} is a flat Riemannian manifold equipped with the metric induced by the inclusion map $i_{\theta} : M_{\theta} \to S^3$. In [2] the author proved that every isometric deformation of $i_{\theta} : M_{\theta} \to S^3$ is trivial. Incidentally, it is easy to see that if M is a flat torus isometrically embedded in S^3 with constant mean curvature, then there exists a Clifford torus M_{θ} which is congruent to M. So we obtain

THEOREM 1.1. If $f : M \to S^3$ is an isometric embedding of a flat torus M into S^3 with constant mean curvature, then every isometric deformation of the embedding f is trivial.

On the other hand there are many flat tori isometrically immersed in S^3 with nonconstant mean curvature. In this paper we deal with isometric deformations of these surfaces. To state the result we recall the notion of congruence of immersions. For i = 1, 2, let $f_i : X_i \rightarrow Y$ be an immersion of a smooth manifold X_i into a Riemannian manifold Y. The immersions f_1 and f_2 are said to be *congruent* if there exist an isometry $A : Y \rightarrow Y$ and a diffeomorphism $\rho : X_1 \rightarrow X_2$ such that $A \circ f_1 = f_2 \circ \rho$. We shall write $f_1 \equiv f_2$ if f_1 and f_2 are congruent. The main result of this paper is the following theorem.

THEOREM 1.2. If $f : M \to S^3$ is an isometric immersion of a flat torus M into S^3 with nonconstant mean curvature, then there exists a smooth one-parameter family of isometric immersions $f_t : M \to S^3$, $t \in \mathbf{R}$, such that $f_0 = f$ and

- (1) $f_t \neq f_s \text{ for all } s \neq t$,
- (2) the total mean curvature of f_t does not depend on t.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C42.

Partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

REMARK. The total mean curvature of the immersion f_t is given by $\int_M H_t d\sigma$, where H_t denotes the mean curvature function of f_t , and $d\sigma$ denotes the volume element of the flat torus M.

The outline of this paper is as follows. In Section 2 we introduce some geometric invariants of a periodic regular curve $\gamma : \mathbf{R} \to S^2$. We denote by $K(\gamma)$ (resp. $L(\gamma)$) the total geodesic curvature (resp. the length) of the closed curve $\gamma | [0, l]$, where l > 0 is the minimum period of γ . Furthermore, using the curve $\hat{\gamma} = \dot{\gamma}/|\dot{\gamma}|$ in the unit tangent bundle of S^2 , we define $I(\gamma)$ to be the homology class represented by the closed curve $\hat{\gamma} | [0, l]$.

In Section 3 we explain a method for constructing all the flat tori in S^3 . A pair $\Gamma = (\gamma_1, \gamma_2)$ of periodic regular curves $\gamma_i : \mathbf{R} \to S^2$ is said to be a *periodic admissible pair* if the geodesic curvature of γ_1 is greater than that of γ_2 and some auxiliary conditions are satisfied (see Definition 3.1). Each periodic admissible pair Γ induces a flat torus M_{Γ} and an isometric immersion $f_{\Gamma} : M_{\Gamma} \to S^3$. Furthermore the immersion f_{Γ} is a primitive immersion (see Definition 3.2). Conversely, if $f : M \to S^3$ is a primitive isometric immersion of a flat torus M into S^3 , then there exists a periodic admissible pair Γ such that $f \equiv f_{\Gamma}$ (Theorem 3.1).

In Section 4 we study the intrinsic structure of the flat torus M_{Γ} . For each periodic admissible pair $\Gamma = (\gamma_1, \gamma_2)$, we set

$$K_i(\Gamma) = K(\gamma_i), \quad L_i(\Gamma) = L(\gamma_i), \quad I_i(\Gamma) = I(\gamma_i),$$

and define $W(\Gamma)$ to be a lattice of \mathbb{R}^2 whose generators can be written in terms of $K_i(\Gamma)$, $L_i(\Gamma)$ and $I_i(\Gamma)$. Then it is shown that the flat torus $\mathbb{R}^2/W(\Gamma)$ is isometric to the flat torus M_{Γ} (Theorem 4.1).

In Section 5 we deal with the extrinsic structure of the immersion f_{Γ} . For each smooth even function $\beta : \mathbf{R} \to \mathbf{R}$, we construct a functional E_{β} which is defined on the set of all periodic admissible pairs, and show that $E_{\beta}(\Gamma) = E_{\beta}(\overline{\Gamma})$ if $f_{\Gamma} \equiv f_{\overline{\Gamma}}$ (Theorem 5.1). Furthermore we show that the total mean curvature of f_{Γ} can be written in terms of $K_i(\Gamma)$, $L_i(\Gamma)$ and $I_i(\Gamma)$ (Theorem 5.3).

In Sections 6 and 7 we give the proof of Theorem 1.2. To establish the theorem we may assume that the immersion $f: M \to S^3$ is primitive. By Theorem 3.1 there exists a periodic admissible pair $\Gamma = (\gamma_1, \gamma_2)$ satisfying $f \equiv f_{\Gamma}$. Since the mean curvature of f_{Γ} is not constant, we see that either γ_1 or γ_2 is not a circle. Using this fact, we construct a smooth even function β and a smooth one-parameter family of periodic admissible pairs Γ_t satisfying

$$\Gamma_0 = \Gamma$$
, $K_i(\Gamma_t) = K_i(\Gamma)$, $L_i(\Gamma_t) = L_i(\Gamma)$, $I_i(\Gamma_t) = I_i(\Gamma)$,

and $E_{\beta}(\Gamma_s) \neq E_{\beta}(\Gamma_t)$ for all $s \neq t$. So the assertion of Theorem 1.2 follows from Theorems 4.1, 5.1 and 5.3.

REMARK. In Theorem 1.1 the word "embedding" cannot be replaced by the word "immersion". In fact, there is a flat torus M and a Riemannian covering $\pi : M \to M_{\theta}$ such that the composition $i_{\theta} \circ \pi : M \to S^3$ admits a nontrivial isometric deformation. The Riemannian coverings as above will be classified in [4].

2. Preliminaries. Let SU(2) be the group of all 2×2 unitary matrices with determinant 1. Its Lie algebra $\mathfrak{su}(2)$ consists of all 2×2 skew Hermitian matrices of trace 0. The adjoint representation of SU(2) is given by

$$\operatorname{Ad}(a)x = axa^{-1},$$

where $a \in SU(2)$ and $x \in \mathfrak{su}(2)$. We set

$$\langle x, y \rangle = -\frac{1}{2} \operatorname{trace}(xy) \quad \text{for} \quad x, y \in \mathfrak{su}(2) \,.$$

Then it follows that \langle , \rangle is a positive definite and Ad-invariant inner product on $\mathfrak{su}(2)$. Furthermore we consider the orthonormal basis of $\mathfrak{su}(2)$ given by

$$e_1 = \begin{bmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{bmatrix}.$$

Note that

$$[e_1, e_2] = 2e_3$$
, $[e_2, e_3] = 2e_1$, $[e_3, e_1] = 2e_2$

where [,] denotes the Lie bracket on $\mathfrak{su}(2)$. For i = 1, 2, 3, let E_i be the left invariant vector field on SU(2) corresponding to e_i . We endow SU(2) with the Riemannian metric \langle , \rangle such that $\langle E_i, E_j \rangle = \delta_{ij}$. Then SU(2) is isometric to the unit 3-sphere S^3 , and so we identify S^3 with SU(2).

Let S^2 be the unit sphere in $\mathfrak{su}(2)$ defined by $S^2 = \{x \in \mathfrak{su}(2) : |x| = 1\}$. The unit tangent bundle of S^2 , denoted by US^2 , can be identified with a subset of $S^2 \times S^2$ as follows:

$$US^{2} = \{(x, v) \in S^{2} \times S^{2} : \langle x, v \rangle = 0\},\$$

where the canonical projection $p_1: US^2 \to S^2$ is given by $p_1(x, v) = x$. Define $p_2: S^3 \to US^2$ by

(2.1)
$$p_2(a) = (\operatorname{Ad}(a)e_3, \operatorname{Ad}(a)e_1).$$

The map p_2 is a double covering such that $p_2(-a) = p_2(a)$ for all $a \in S^3$. We now consider a regular curve $\gamma : \mathbf{R} \to S^2$, and define $\hat{\gamma} : \mathbf{R} \to US^2$ by

(2.2)
$$\hat{\gamma}(s) = (\gamma(s), \gamma'(s)/|\gamma'(s)|).$$

Then there exists a curve $c : \mathbf{R} \to S^3$ satisfying $p_2(c(s)) = \hat{\gamma}(s)$. By [3, Lemma 2.2] we obtain

(2.3)
$$c(s)^{-1}c'(s) = \frac{1}{2}|\gamma'(s)|\{e_2 + k(s)e_3\},\$$

where k(s) denotes the geodesic curvature of $\gamma(s)$. Note that

(2.4)
$$k(s) = \langle \gamma''(s), J(\gamma'(s)) \rangle / |\gamma'(s)|^3,$$

where J denotes the almost complex structure on S^2 defined by

(2.5)
$$J(v) = \frac{1}{2}[x, v] \text{ for } v \in T_x S^2.$$

We now assume that the curve $\gamma : \mathbf{R} \to S^2$ is periodic with the minimum period l > 0. The length and the total geodesic curvature of γ are given by

(2.6)
$$L(\gamma) = \int_0^l |\gamma'(s)| ds, \quad K(\gamma) = \int_0^l k(s) |\gamma'(s)| ds$$

Furthermore define $I(\gamma)$ to be the element of the homology group $H_1(US^2)$ represented by the closed curve $\hat{\gamma}|[0, l]$. Note that $H_1(US^2) \cong \mathbb{Z}_2$. Since p_2 is a double covering and $p_2(a) = p_2(-a)$ for all $a \in S^3$, we obtain

(2.7)
$$c(s+l) = \begin{cases} c(s) & \text{if } I(\gamma) = 0, \\ -c(s) & \text{if } I(\gamma) = 1. \end{cases}$$

3. Construction of flat tori in S^3 . In this section we explain a method for constructing all the flat tori in S^3 , which was established in [1] and [3].

DEFINITION 3.1. Let $\Gamma = (\gamma_1, \gamma_2)$ be a pair of regular curves $\gamma_i : \mathbf{R} \to S^2, i = 1, 2$. The pair Γ is said to be an *admissble pair* if it satisfies the following conditions (3.1)–(3.3).

(3.1)
$$\hat{\gamma}_1(0) = \hat{\gamma}_2(0) = (e_3, e_1),$$

(3.2)
$$|\gamma'_i(s)|\sqrt{1+k_i(s)^2} = 2$$
 for $i = 1, 2,$

(3.3)
$$k_1(s_1) > k_2(s_2)$$
 for all $(s_1, s_2) \in \mathbf{R}^2$,

where $k_i(s)$ denotes the geodesic curvature of $\gamma_i(s)$.

Let $\Gamma = (\gamma_1, \gamma_2)$ be an admissible pair. Then it follows from (3.1) that there exist curves $c_i : \mathbf{R} \to S^3$, i = 1, 2, such that

(3.4)
$$p_2(c_i(s)) = \hat{\gamma}_i(s), \quad c_i(0) = e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

By (2.3) and (3.2) we obtain $|c'_i(s)| = 1$. Using the group structure on S^3 , we define F_{Γ} : $\mathbf{R}^2 \to S^3$ by

(3.5)
$$F_{\Gamma}(s_1, s_2) = c_1(s_1)c_2(s_2)^{-1}.$$

By [1, Lemma 3.8, Theorem 4.2] we see that the map F_{Γ} is a flat asymptotic Tchebychef immersion (FAT for short). For the definition of FAT, we refer the reader to [1, p. 460]. So the map F_{Γ} is an immersion which induces a flat Riemannian metric g_{Γ} on \mathbb{R}^2 . Let $\alpha_i(s)$ be the function defined by

(3.6)
$$\cot \alpha_i(s) = k_i(s), \quad 0 < \alpha_i(s) < \pi.$$

Then (3.3) implies $\alpha_1(s_1) < \alpha_2(s_2)$. Using (3.2), we obtain

(3.7)
$$\sin \alpha_i(s) = \frac{1}{2} |\gamma_i'(s)|, \quad \cos \alpha_i(s) = \frac{1}{2} k_i(s) |\gamma_i'(s)|.$$

So it follows from (2.3) that

$$c_i^{-1}(s)c_i'(s) = \sin \alpha_i(s)e_2 + \cos \alpha_i(s)e_3.$$

Hence the components of the Riemannian metric g_{Γ} for the local coordinates (s_1, s_2) satisfy

(3.8)
$$g_{11} = g_{22} = 1$$
, $g_{12} = -\cos(\alpha_2(s_2) - \alpha_1(s_1))$

Furthermore the components of the second fundamental form of the immersion $F_{\Gamma}(s_1, s_2)$ satisfy

(3.9)
$$h_{11} = h_{22} = 0, \quad h_{12} = \sin(\alpha_2(s_2) - \alpha_1(s_1)),$$

where the unit normal is defined by

$$\xi = (\partial F_{\Gamma}/\partial s_1) \times (\partial F_{\Gamma}/\partial s_2)/|(\partial F_{\Gamma}/\partial s_1) \times (\partial F_{\Gamma}/\partial s_2)|.$$

We now consider the group

$$G(\Gamma) = \{ \rho \in \operatorname{Diff}(\mathbb{R}^2) : F_{\Gamma} \circ \rho = F_{\Gamma} \},\$$

where Diff(\mathbb{R}^2) denotes the group of all diffeomorphisms of \mathbb{R}^2 . Then we obtain the 2dimensional flat Riemannian manifold $M_{\Gamma} = (\mathbb{R}^2, g_{\Gamma})/G(\Gamma)$ and the isometric immersion $f_{\Gamma} : M_{\Gamma} \to S^3$ satisfying $f_{\Gamma} \circ \pi_{\Gamma} = F_{\Gamma}$, where π_{Γ} denotes the canonical projection of \mathbb{R}^2 onto M_{Γ} . It is easy to see that the immersion $f_{\Gamma} : M_{\Gamma} \to S^3$ is primitive in the sense of the following definition.

DEFINITION 3.2. An immersion $f : X \to Y$ of a smooth manifold X into a smooth manifold Y is said to be *primitive* if the identity map of X is the only diffeomorphism ϕ : $X \to X$ satifying $f \circ \phi = f$.

It follows from [1, Theorem 2.3] that the group $G(\Gamma)$ consists of parallel translations of \mathbb{R}^2 , and so M_{Γ} is orientable. Furthermore it follows from [1, Theorem 5.1] that M_{Γ} is compact if and only if Γ is periodic, where the admissible pair $\Gamma = (\gamma_1, \gamma_2)$ is said to be *periodic* if both γ_1 and γ_2 are periodic regular curves. So we see that every periodic admissible pair Γ induces a flat torus M_{Γ} and a primitive isometric immersion $f_{\Gamma} : M_{\Gamma} \to S^3$. Conversely, we obtain the following theorem.

THEOREM 3.1 ([3]). Let $f : M \to S^3$ be a primitive isometric immersion of a flat torus M. Then there exists a periodic admissible pair Γ such that $f \equiv f_{\Gamma}$.

We conclude this section with the following theorem.

THEOREM 3.2. Let $\Gamma = (\gamma_1, \gamma_2)$ be an admissible pair, and let $k_i(s)$ denote the geodesic curvature of $\gamma_i(s)$. Then the mean curvature of f_{Γ} is constant if and only if both $k_1(s)$ and $k_2(s)$ are constant.

PROOF. By (3.8) and (3.9) the mean curvature H of F_{Γ} is given by

(3.10)
$$H = \cot(\alpha_2(s_2) - \alpha_1(s_1)).$$

So (3.6) implies the assertion of Theorem 3.2.

4. The intrinsic structure of M_{Γ} . Let $\Gamma = (\gamma_1, \gamma_2)$ be a periodic admissible pair. Using the homology class $I(\gamma_i)$ defined in Section 2, we set

$$I(\Gamma) = (I(\gamma_1), I(\gamma_2)),$$

and define $W(\Gamma)$ to be the lattice of \mathbf{R}^2 whose generators are given by the following:

(4.1)
$$\begin{cases} v_1, v_2 & \text{if } I(\Gamma) = (0, 0), \\ 2v_1, v_2 & \text{if } I(\Gamma) = (1, 0), \\ v_1, 2v_2 & \text{if } I(\Gamma) = (0, 1), \\ v_1 \pm v_2 & \text{if } I(\Gamma) = (1, 1), \end{cases}$$

where

(4.2)
$$v_1 = \frac{1}{2}(K(\gamma_1), L(\gamma_1)), \quad v_2 = \frac{1}{2}(-K(\gamma_2), -L(\gamma_2)).$$

We now identify the lattice $W(\Gamma)$ with a group of parallel translations of \mathbb{R}^2 . In this section we show that the flat torus M_{Γ} is isometric to the flat torus $(\mathbb{R}^2, g_0)/W(\Gamma)$, where g_0 denotes the canonical flat Riemannian metric on \mathbb{R}^2 . Using the functions $\alpha_1(s)$ and $\alpha_2(s)$ given by (3.6), we set

$$x_1(s_1, s_2) = \int_0^{s_1} \cos \alpha_1(s) ds - \int_0^{s_2} \cos \alpha_2(s) ds ,$$
$$x_2(s_1, s_2) = \int_0^{s_1} \sin \alpha_1(s) ds - \int_0^{s_2} \sin \alpha_2(s) ds ,$$

and define $\Phi_{\Gamma}: \mathbf{R}^2 \to \mathbf{R}^2$ by

(4.3)
$$\Phi_{\Gamma}(s_1, s_2) = (x_1(s_1, s_2), x_2(s_1, s_2))$$

THEOREM 4.1. Let $\Gamma = (\gamma_1, \gamma_2)$ be a periodic admissible pair, and let g_{Γ} be the Riemannian metric on \mathbb{R}^2 induced by the immersion $F_{\Gamma} : \mathbb{R}^2 \to S^3$. Then the map Φ_{Γ} is an isometry of $(\mathbb{R}^2, g_{\Gamma})$ onto (\mathbb{R}^2, g_0) , and

$$W(\Gamma) = \{ \Phi_{\Gamma} \circ \rho \circ \Phi_{\Gamma}^{-1} : \rho \in G(\Gamma) \}.$$

In particular, the flat torus M_{Γ} is isometric to the flat torus $(\mathbf{R}^2, g_0)/W(\Gamma)$.

PROOF. By (3.8) it is easy to see that $g_{\Gamma} = \Phi_{\Gamma}^* g_0$, and so Φ_{Γ} is an isometry of $(\mathbb{R}^2, g_{\Gamma})$ onto (\mathbb{R}^2, g_0) . Since the group $G(\Gamma)$ consists of parallel traslations of \mathbb{R}^2 and the quotient space $\mathbb{R}^2/G(\Gamma)$ is compact, the group $G(\Gamma)$ can be identified with a lattice of \mathbb{R}^2 . It follows from [3, Theorem 4.1] that the lattice $G(\Gamma)$ has the following generators.

(4.4)
$$\begin{cases} (l_1, 0), (0, l_2) & \text{if } I(\Gamma) = (0, 0), \\ (2l_1, 0), (0, l_2) & \text{if } I(\Gamma) = (1, 0), \\ (l_1, 0), (0, 2l_2) & \text{if } I(\Gamma) = (0, 1), \\ (l_1, l_2), (l_1, -l_2) & \text{if } I(\Gamma) = (1, 1), \end{cases}$$

where l_i denotes the minimum period of $\gamma_i(s)$. For $m_1, m_2 \in \mathbb{Z}$, we consider the parallel translation $\rho : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$\rho(s_1, s_2) = (s_1 + m_1 l_1, s_2 + m_2 l_2).$$

Since $\alpha_i(s + l_i) = \alpha_i(s)$, it follows from (3.7) and (4.2) that

$$\Phi_{\Gamma}(\rho(s_1, s_2)) = \Phi_{\Gamma}(s_1, s_2) + m_1 \left(\int_0^{l_1} \cos \alpha_1(s) ds, \int_0^{l_1} \sin \alpha_1(s) ds \right)$$
$$+ m_2 \left(-\int_0^{l_2} \cos \alpha_2(s) ds, -\int_0^{l_2} \sin \alpha_2(s) ds \right)$$
$$= \Phi_{\Gamma}(s_1, s_2) + m_1 v_1 + m_2 v_2.$$

So we obtain

$$\Phi_{\Gamma} \circ \rho \circ \Phi_{\Gamma}^{-1}(x_1, x_2) = (x_1, x_2) + m_1 v_1 + m_2 v_2.$$

Hence it follows from (4.1) and (4.4) that $\Phi_{\Gamma} \circ \rho \circ \Phi_{\Gamma}^{-1} \in W(\Gamma)$ if and only if $\rho \in G(\Gamma)$. This completes the proof of Theorem 4.1.

5. Extrinsic invariants of f_{Γ} . Let $\gamma : \mathbf{R} \to S^2$ be a periodic regular curve with the minimum period l > 0. For each smooth function $\beta : \mathbf{R} \to \mathbf{R}$, we define $E_{\beta}(\gamma)$ by

(5.1)
$$E_{\beta}(\gamma) = \frac{1}{2} \int_0^l \beta(\tau_{\gamma}(s)) \sqrt{1 + k(s)^2} |\gamma'(s)| ds \,,$$

where k(s) denotes the geodesic curvature of $\gamma(s)$, and

(5.2)
$$\tau_{\gamma}(s) = 2k'(s)(1+k(s)^2)^{-3/2}|\gamma'(s)|^{-1}$$

Furthermore for each periodic admissible pair $\Gamma = (\gamma_1, \gamma_2)$, we set

$$E_{\beta}(\Gamma) = E_{\beta}(\gamma_1) + E_{\beta}(\gamma_2).$$

The aim of this section is to prove the following theorem.

THEOREM 5.1. Let Γ and $\overline{\Gamma}$ be periodic admissible pairs such that $f_{\Gamma} \equiv f_{\overline{\Gamma}}$. Then $E_{\beta}(\Gamma) = E_{\beta}(\overline{\Gamma})$ for any smooth even function β .

It is easy to see that $f_{\Gamma} \equiv f_{\bar{\Gamma}}$ implies $F_{\Gamma} \equiv F_{\bar{\Gamma}}$. So Theorem 5.1 follows from the following lemma.

LEMMA 5.2. Let $\Gamma = (\gamma_1, \gamma_2)$ and $\overline{\Gamma} = (\overline{\gamma}_1, \overline{\gamma}_2)$ be periodic admissible pairs. If $F_{\Gamma} \equiv F_{\overline{\Gamma}}$, then $E_{\beta}(\Gamma) = E_{\beta}(\overline{\Gamma})$ for any smooth even function β .

PROOF. Let $c_i(s)$ and $\bar{c}_i(s)$ be the curves in S^3 defined by (3.4). Then

(5.3)
$$F_{\Gamma}(s_1, s_2) = c_1(s_1)c_2(s_2)^{-1}, \quad F_{\bar{\Gamma}}(s_1, s_2) = \bar{c}_1(s_1)\bar{c}_2(s_2)^{-1}.$$

By (3.2) and (5.1) we obtain

(5.4)
$$E_{\beta}(\gamma_i) = \int_0^{l_i} \beta(\tau_{\gamma_i}(s)) ds , \quad E_{\beta}(\bar{\gamma}_i) = \int_0^{\bar{l}_i} \beta(\tau_{\bar{\gamma}_i}(s)) ds ,$$

where l_i (resp. \bar{l}_i) denotes the minimum period of γ_i (resp. $\bar{\gamma}_i$). Let $\kappa_i(s)$ be the curvature of the curve $c_i(s)$. Since $|c'_i| = 1$, it follows from [1, Lemmas 3.7 and 3.8] that

$$\kappa_i = |D_{c'_i}c'_i| = |\alpha'_i|,$$

where *D* denotes the Riemannian connection on S^3 , and α_i is the function defined by (3.6). Differentiating (3.6), we have $\alpha'_i(s) = -k'_i(s) \sin^2 \alpha_i(s)$, where $k_i(s)$ denotes the geodesic curvature of $\gamma_i(s)$. So it follows from (3.7) and (5.2) that $\alpha'_i(s) = -\tau_{\gamma_i}(s)$. Hence

(5.5)
$$\kappa_i(s) = |\tau_{\gamma_i}(s)|.$$

Similarly we obtain

(5.6)
$$\bar{\kappa}_i(s) = |\tau_{\bar{\gamma}_i}(s)|,$$

where $\bar{\kappa}_i(s)$ denotes the curvature of the curve $\bar{c}_i(s)$.

Let g_{ij} (resp. \bar{g}_{ij}) and h_{ij} (resp. \bar{h}_{ij}) denote the first and second fundamental forms of the immersion $F_{\Gamma}(s_1, s_2)$ (resp. $F_{\bar{\Gamma}}(s_1, s_2)$). Since $F_{\Gamma} \equiv F_{\bar{\Gamma}}$, there exist an isometry A of S^3 and a diffeomorphism ρ of \mathbb{R}^2 such that $A \circ F_{\Gamma} = F_{\bar{\Gamma}} \circ \rho$. Then we obtain

$$g_{ij} = \sum_{kl} \bar{g}_{kl}(\rho) \frac{\partial \rho_k}{\partial s_i} \frac{\partial \rho_l}{\partial s_j}, \quad h_{ij} = \pm \sum_{kl} \bar{h}_{kl}(\rho) \frac{\partial \rho_k}{\partial s_i} \frac{\partial \rho_l}{\partial s_j}$$

where $\rho(s_1, s_2) = (\rho_1(s_1, s_2), \rho_2(s_1, s_2))$. So it follows from (3.8) and (3.9) that the Jacobi matrix of the diffeomorphism $\rho : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies the following relation.

(5.7)
$$\frac{\partial(\rho_1, \rho_2)}{\partial(s_1, s_2)} = \begin{bmatrix} a_1 & 0\\ 0 & a_2 \end{bmatrix} \quad \text{or} \quad \frac{\partial(\rho_1, \rho_2)}{\partial(s_1, s_2)} = \begin{bmatrix} 0 & a_2\\ a_1 & 0 \end{bmatrix},$$

where $|a_1| = |a_2| = 1$.

We now consider the first case of (5.7). Then we obtain

$$\rho(s_1, s_2) = (a_1s_1 + b_1, a_2s_2 + b_2).$$

Since $A \circ F_{\Gamma} = F_{\overline{\Gamma}} \circ \rho$, it follows from (5.3) that

$$A(c_1(s_1)c_2(s_2)^{-1}) = \bar{c}_1(a_1s_1 + b_1)\bar{c}_2(a_2s_2 + b_2)^{-1}$$

Since $c_1(0) = c_2(0) = e$, the relation above implies

$$(R \circ A)c_1(s) = \tilde{c}_1(a_1s + b_1), \quad (L \circ A)c_2(s)^{-1} = \tilde{c}_2(a_2s + b_2)^{-1},$$

where R denotes the right translation by $\bar{c}_2(b_2)$, and L denotes the left translation by $\bar{c}_1(b_1)^{-1}$. So there exist isometries A_1 and A_2 of S^3 such that

(5.8)
$$c_i(s) = A_i \bar{c}_i (a_i s + b_i).$$

This shows that $\kappa_i(s) = \bar{\kappa}_i(a_i s + b_i)$. Since $\beta : \mathbf{R} \to \mathbf{R}$ is an even function, it follows from (5.5) and (5.6) that

(5.9)
$$\beta(\tau_{\gamma_i}(s)) = \beta(\tau_{\bar{\gamma}_i}(a_i s + b_i)).$$

By (2.7) and (5.8) we obtain

$$c_i(s+l_i) = A_i \bar{c}_i(a_i s+b_i+a_i \bar{l}_i) = \pm A_i \bar{c}_i(a_i s+b_i) = \pm c_i(s)$$

Since $p_2(\pm c_i(s)) = \hat{\gamma}_i(s)$, we obtain $\hat{\gamma}_i(s + \bar{l}_i) = \hat{\gamma}_i(s)$, and so $\gamma_i(s + \bar{l}_i) = \gamma_i(s)$. Hence \bar{l}_i/l_i must be an integer. Similarly we see that l_i/\bar{l}_i is an integer, and so we have $l_i = \bar{l}_i$. Therefore

$$\int_0^{l_i} \beta(\tau_{\gamma_i}(s)) ds = \int_0^{\bar{l}_i} \beta(\tau_{\bar{\gamma}_i}(a_i s + b_i)) ds = \int_0^{\bar{l}_i} \beta(\tau_{\bar{\gamma}_i}(s)) ds ,$$

where the first equality follows from (5.9), and the second equality follows from the fact that $\tau_{\bar{\gamma}_i}(s)$ is \bar{l}_i -periodic. Hence (5.4) implies

$$E_{\beta}(\gamma_1) = E_{\beta}(\bar{\gamma}_1), \quad E_{\beta}(\gamma_2) = E_{\beta}(\bar{\gamma}_2).$$

For the second case of (5.7), in the same way as above, we obtain

$$E_{\beta}(\gamma_1) = E_{\beta}(\bar{\gamma}_2), \quad E_{\beta}(\gamma_2) = E_{\beta}(\bar{\gamma}_1).$$

This completes the proof of Lemma 5.2.

We conclude this section with the following theorem.

THEOREM 5.3. Let $\Gamma = (\gamma_1, \gamma_2)$ be a periodic admissible pair, and let H be the mean curvature of the isometric immersion $f_{\Gamma} : M_{\Gamma} \to S^3$. Then

$$\int_{M_{\Gamma}} H d\sigma = \frac{c}{4} \{ K(\gamma_1) K(\gamma_2) + L(\gamma_1) L(\gamma_2) \}, \quad c = \begin{cases} 1 & \text{if } I(\Gamma) = (0,0), \\ 2 & \text{if } I(\Gamma) \neq (0,0), \end{cases}$$

where $d\sigma$ denotes the volume element of the flat torus M_{Γ} .

PROOF. Let $l_i > 0$ be the minimum period of γ_i , and let ξ_1 and ξ_2 denote the generators of the lattice $G(\Gamma)$ given by (4.4). We consider the domain

$$D = \{x\xi_1 + y\xi_2 : 0 \le x \le 1, 0 \le y \le 1\} \subset \mathbf{R}^2.$$

Since D is a fundamental domain of $G(\Gamma)$, it follows from (3.8) and (3.10) that

$$\int_{M_{\Gamma}} H d\sigma = \int_{D} \cos(\alpha_2(s_2) - \alpha_1(s_1)) ds_1 ds_2$$
$$= c \int_{0}^{l_2} ds_2 \int_{0}^{l_1} \cos(\alpha_2(s_2) - \alpha_1(s_1)) ds_1$$

where the second equality follows from the fact that the function $\alpha_i(s)$ is l_i -periodic. On the other hand (3.7) implies

$$\cos(\alpha_2(s_2) - \alpha_1(s_1)) = \frac{1}{4} (k_1(s_1)k_2(s_2) + 1)|\gamma_1'(s_1)||\gamma_2'(s_2)|.$$

This completes the proof.

6. Proof of Theorem 1.2.

LEMMA 6.1. Let $f: M \to S^3$ be a primitive isometric immersion of a flat torus M, and let $\pi: \overline{M} \to M$ be a Riemannian covering. If $\rho: \overline{M} \to \overline{M}$ is a diffeomorphism satisfying the relation $f \circ \pi \circ \rho = f \circ \pi$, then $\pi \circ \rho = \pi$.

291

PROOF. Since \overline{M} is a complete connected flat surface and $f \circ \pi : \overline{M} \to S^3$ is an isometric immersion, it follows from [5] that there exists a covering $T : \mathbb{R}^2 \to \overline{M}$ such that

$$\bar{g}\left(\frac{\partial T}{\partial s_i},\frac{\partial T}{\partial s_i}\right) = 1, \quad \bar{h}\left(\frac{\partial T}{\partial s_i},\frac{\partial T}{\partial s_i}\right) = 0 \quad \text{for } i = 1, 2,$$

where \bar{g} denotes the Riemannian metric on \bar{M} , and \bar{h} denotes the second fundamental form of the immersion $f \circ \pi : \bar{M} \to S^3$. Note that the immersion $F = f \circ \pi \circ T$ is a FAT.

Since T is a universal covering, there exist $\bar{\rho} \in \text{Diff}(\mathbb{R}^2)$ such that $T \circ \bar{\rho} = \rho \circ T$. Using the relation $f \circ \pi \circ \rho = f \circ \pi$, we obtain $F \circ \bar{\rho} = F$, and so it follows from [1, Theorem 2.3] that $\bar{\rho}$ is a parallel translation of \mathbb{R}^2 . Let ϕ be a covering transformation of π . We take $\bar{\phi} \in \text{Diff}(\mathbb{R}^2)$ such that $T \circ \bar{\phi} = \phi \circ T$. Since $\pi \circ \phi = \pi$, in the same way as above, we see that $\bar{\phi}$ is a parallel translation of \mathbb{R}^2 . Hence $\bar{\rho} \circ \bar{\phi} = \bar{\phi} \circ \bar{\rho}$, and so we obtain

$$\rho \circ \phi = \phi \circ \rho.$$

Since the covering π is regular, it follows from (6.1) that there exists a diffeomorphism ρ' : $M \to M$ such that $\pi \circ \rho = \rho' \circ \pi$. Then

$$f \circ \rho' \circ \pi = f \circ \pi \circ \rho = f \circ \pi$$
.

Hence $f \circ \rho' = f$. Since the immersion f is primitive, we see that $\rho' = 1$, and so $\pi \circ \rho = \pi$.

LEMMA 6.2. Let f_1 and f_2 be primitive isometric immersions of a flat torus M into S^3 , and let $\pi : \overline{M} \to M$ be a Riemannian covering. If $f_1 \circ \pi \equiv f_2 \circ \pi$, then $f_1 \equiv f_2$.

PROOF. Since $f_1 \circ \pi \equiv f_2 \circ \pi$, there exist an isometry A of S^3 and a diffeomorphism ρ of \overline{M} such that $A \circ f_1 \circ \pi = f_2 \circ \pi \circ \rho$. We now denote by $G(\pi)$ the covering transformation group of π . Then, for each $\phi \in G(\pi)$, we obtain

$$f_2 \circ \pi \circ \rho \circ \phi \circ \rho^{-1} = A \circ f_1 \circ \pi \circ \phi \circ \rho^{-1} = A \circ f_1 \circ \pi \circ \rho^{-1} = f_2 \circ \pi.$$

So it follows from Lemma 6.1 that $\pi \circ \rho \circ \phi \circ \rho^{-1} = \pi$. Hence

(6.2)
$$\rho \circ \phi \circ \rho^{-1} \in G(\pi)$$
 for all $\phi \in G(\pi)$.

Since the covering π is regular, it follows from (6.2) that there exists a diffeomorphism ρ' : $M \to M$ satisfying the relation $\pi \circ \rho = \rho' \circ \pi$. Then

$$A \circ f_1 \circ \pi = f_2 \circ \pi \circ \rho = f_2 \circ \rho' \circ \pi$$
.

Hence $A \circ f_1 = f_2 \circ \rho'$, and so $f_1 \equiv f_2$.

By Lemma 6.2 it is easy to see that Theorem 1.2 follows from the following theorem.

THEOREM 6.3. If $f: M \to S^3$ is a primitive isometric immersion of a flat torus Minto S^3 with nonconstant mean curvature, then there exists a smooth one-parameter family of primitive isometric immersions $f_t: M \to S^3$, $t \in \mathbf{R}$, such that $f_0 = f$ and $f_t \neq f_s$ for all $s \neq t$. Furthermore the total mean curvature of the immersion f_t is equal to that of f_0 for all $t \in \mathbf{R}$.

292

PROOF. By Theorem 3.1 there exists a periodic admissible pair $\Gamma = (\gamma_1, \gamma_2)$ such that $f \equiv f_{\Gamma}$. So we may assume that $f = f_{\Gamma}$ and $M = M_{\Gamma}$. Since the mean curvature of f_{Γ} is not constant, it follows from Theorem 3.2 that either $k_1(s)$ or $k_2(s)$ is not constant, where $k_i(s)$ denotes the geodesic curvature of $\gamma_i(s)$. Without loss of generality, we may assume that $k_1(s)$ is not constant.

We now use the following theorem which will be proved in Section 7.

THEOREM 6.4. Let $\gamma : \mathbf{R} \to S^2$ be a periodic regular curve whose geodesic curvature k(s) satisfies $|\gamma'(s)|\sqrt{1+k(s)^2} = 2$. If k(s) is not constant, then there exist a smooth even function $\beta : \mathbf{R} \to \mathbf{R}$ and a smooth one-parameter family of periodic regular curves $\gamma_t : \mathbf{R} \to S^2$, $-\varepsilon < t < \varepsilon$, such that $\gamma_0(s) = \gamma(s)$ and

- (1) $|\gamma_t'(s)|\sqrt{1+k_t(s)^2}=2,$
- (2) $K(\gamma_t) = K(\gamma), L(\gamma_t) = L(\gamma), E_\beta(\gamma_t) = E_\beta(\gamma) + t$,
- (3) $I(\gamma_t) = I(\gamma)$,

where $k_t(s)$ denotes the geodesic curvature of $\gamma_t(s)$.

So there exist a smooth even function β and a smooth one-parameter family of periodic regular curves $\gamma_1^t : \mathbf{R} \to S^2$, $t \in \mathbf{R}$, such that $\gamma_1^0(s) = \gamma_1(s)$ and

(6.3)
$$\Gamma_t = (\gamma_1^t, \gamma_2)$$
 is a periodic admissible pair,

(6.4)
$$K(\gamma_1^t) = K(\gamma_1), \quad L(\gamma_1^t) = L(\gamma_1), \quad I(\gamma_1^t) = I(\gamma_1),$$

(6.5)
$$E_{\beta}(\gamma_1^s) \neq E_{\beta}(\gamma_1^t) \text{ for all } s \neq t.$$

By (6.3) we obtain the flat torus M_{Γ_t} and the primitive isometric immersion $f_{\Gamma_t} : M_{\Gamma_t} \to S^3$. For each Γ_t , define $\Phi_{\Gamma_t} : \mathbf{R}^2 \to \mathbf{R}^2$ in the same way as (4.3). Then it follows from Theorem 4.1 that the map Φ_{Γ_t} induces the isometry $\phi_t : M_{\Gamma_t} \to (\mathbf{R}^2, g_0)/W(\Gamma_t)$. On the other hand, (6.4) implies that $W(\Gamma_t) = W(\Gamma)$. So we obtain the primitive isometric immersion $f_t : M \to S^3$ defined by

$$f_t = f_{\Gamma_t} \circ \phi_t^{-1} \circ \phi_0$$

We now show that the family $f_t, t \in \mathbf{R}$, satisfies the properties required in Theorem 6.3. Since $\Gamma_0 = \Gamma$, we obtain $f_0 = f_{\Gamma} = f$. By (6.5) it follows from Theorem 5.1 that $f_{\Gamma_s} \neq f_{\Gamma_t}$ for all $s \neq t$, and so

$$f_s \neq f_t$$
 for all $s \neq t$

Let H_t denote the mean curvature of the immersion f_t . Since $f_t \equiv f_{\Gamma_t}$, it follows from (6.4) and Theorem 5.3 that

$$\int_M H_t d\sigma = \int_M H_0 d\sigma \quad \text{for all} \quad t \in \mathbf{R} \,,$$

where $d\sigma$ denotes the volume element of the flat torus M. To establish the property that the map $(t, x) \mapsto f_t(x)$ is smooth, we consider the maps $Q_1 : \mathbf{R} \times \mathbf{R}^2 / W(\Gamma) \to S^3$ and $Q_2 : \mathbf{R} \times \mathbf{R}^2 \to \mathbf{R} \times \mathbf{R}^2 / W(\Gamma)$ defined by

$$Q_1(t, p) = f_{\Gamma_t}(\phi_t^{-1}(p)), \quad Q_2(t, x_1, x_2) = (t, \pi(x_1, x_2)),$$

where π denotes the canonical projection of \mathbb{R}^2 onto $\mathbb{R}^2/W(\Gamma)$. Note that the map Q_2 is a local diffeomorphism. Furthermore we define the diffeomorphism $Q_3 : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R} \times \mathbb{R}^2$ by

$$Q_3(t, s_1, s_2) = (t, \Phi_{\Gamma_t}(s_1, s_2)).$$

Then it follows that

$$Q_1(Q_2(Q_3(t, s_1, s_2))) = F_{\Gamma_t}(s_1, s_2),$$

and so the map $Q_1 \circ Q_2 \circ Q_3 : \mathbf{R} \times \mathbf{R}^2 \to S^3$ is smooth. Since the map $Q_2 \circ Q_3$ is a local diffeomorphism, we see that the map Q_1 is smooth. Hence the map $(t, x) \mapsto f_t(x)$ is smooth. This completes the proof of Theorem 6.3.

7. Deformations of periodic regular curves in S^2 . The aim of this section is to prove Theorem 6.4. We first prove the following lemma.

LEMMA 7.1. Let U be an open subset of \mathbb{R}^n which contains the origin $o \in \mathbb{R}^n$. Let $f: U \times \mathbb{R} \to \mathbb{R}^m$ be a continuous map such that $f_x : \mathbb{R} \to \mathbb{R}^m$ is nonconstant and periodic for all $x \in U$, where $f_x(s) = f(x, s)$. Suppose that there exists a continuous positive function $l: U \to \mathbb{R}^+$ satisfying

(1) $f_x(s+l(x)) = f_x(s)$ for all $(x, s) \in U \times \mathbf{R}$,

(2) l(o) is the minimum period of $f_o(s)$.

Then there exists an open neighborhood U' of the origin o in U such that the minimum period of $f_x(s)$ is equal to l(x) for all $x \in U'$.

PROOF. For each $x \in U$, let $\overline{l}(x) > 0$ be the minimum period of $f_x(s)$, and let $q(x) = l(x)/\overline{l}(x)$. Note that q(x) is a positive integer. Now assume that the assertion of the lemma is not true. Then there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in U such that $q(x_n) \ge 2$ and $\lim_{n\to\infty} x_n = o$. We first consider the case where the sequence $q(x_n)$ is bounded. Then we may assume that there exists an integer $p \ge 2$ such that $q(x_n) = p$ for all n. Hence

$$f_{x_n}(s) = f_{x_n}(s + l(x_n)) = f_{x_n}(s + l(x_n)/p).$$

Letting *n* tend to infinity, we have $f_o(s) = f_o(s + l(o)/p)$. So the minimum period of $f_o(s)$ is smaller than l(o). This is a contradiction.

Now consider the other case. Then we may assume that $\lim_{n\to\infty} q(x_n) = \infty$. For each $s \in \mathbf{R}$, let s_n be the real number such that $(s_n - s)/\overline{l}(x_n)$ is an integer and

$$0\leq s_n<\bar{l}(x_n)\,.$$

Then $f_{x_n}(s) = f_{x_n}(s_n)$ and $0 \le s_n < l(x_n)/q(x_n)$. Letting *n* tend to infinity, we have $f_o(s) = f_o(0)$, which shows that $f_o(s)$ is constant. This is a contradiction.

LEMMA 7.2. Let $\gamma : \mathbf{R} \to S^2$ be a periodic regular curve parametrized by arclength, and let l > 0 be the minimum period of $\gamma(s)$. If the geodesic curvature of $\gamma(s)$ is not constant, then there exist a smooth even function $\beta : \mathbf{R} \to \mathbf{R}$ and a smooth one-parameter family of periodic regular curves $\gamma_t : \mathbf{R} \to S^2$, $-\varepsilon < t < \varepsilon$, such that

- (1) $\gamma_0(s) = \gamma(s)$,
- (2) the minimum period of $\gamma_t(s)$ is equal to l,

(3)
$$K(\gamma_t) = K(\gamma), L(\gamma_t) = L(\gamma), E_\beta(\gamma_t) = E_\beta(\gamma) + t.$$

PROOF. Let k(s) be the geodesic curvature of $\gamma(s)$, and let $\tau(s) = \tau_{\gamma}(s)$. Since $|\gamma'(s)| = 1$, it follows from (5.2) that

(7.1)
$$\tau(s) = 2k'(s)(1+k(s)^2)^{-3/2}$$

Since $\tau = 2(k/\sqrt{1+k^2})'$ and k(l) = k(0), we obtain

$$\int_0^l \tau(s) ds = 0.$$

If $\tau(s)$ is constant, then $\tau(s) = 0$, and so k'(s) = 0. This contradicts the assumption that the geodesic curvature of $\gamma(s)$ is not constant. Hence $\tau(s)$ is not constant. So there exists a real number s_0 such that

(7.2)
$$\tau(s_0) \neq 0, \quad \tau'(s_0) \neq 0.$$

We now choose a smooth even function $\beta : \mathbf{R} \to \mathbf{R}$ such that

(7.3)
$$\beta^{(i)}(\tau(s_0)) = \begin{cases} 0 & \text{if } 0 \le i \le 5, \\ \text{nonzero} & \text{if } i = 6, \end{cases}$$

where $\beta^{(i)}$ denotes the *i*-th derivative of the function β .

Let $f_1(s)$, $f_2(s)$ and $f_3(s)$ be *l*-periodic smooth functions which will be specified later. For each $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, define $p_x : \mathbb{R} \to S^2$ by

$$p_x(s) = \cos\left(\sum_{i=1}^3 f_i(s)x_i\right)\gamma(s) + \sin\left(\sum_{i=1}^3 f_i(s)x_i\right)\nu(s), \quad \nu(s) = J(\gamma'(s)),$$

where J denotes the almost complex structure given by (2.5). Let $B_{\delta}(o)$ denote the δ neighborhood of the origin $o \in \mathbb{R}^3$. Since $p_o(s) = \gamma(s)$ and $p_x(s + l) = p_x(s)$, there exists a positive number δ such that for each $x \in B_{\delta}(o)$ the map $p_x : \mathbb{R} \to S^2$ is a periodic regular curve. By Lemma 7.1 we may assume that the minimum period of $p_x(s)$ is equal to lfor all $x \in B_{\delta}(o)$. So we obtain

$$L(p_x) = \int_0^l |p'_x(s)| ds, \quad K(p_x) = \int_0^l k_x(s) |p'_x(s)| ds \quad \text{for} \quad x \in B_{\delta}(o),$$

where $k_x(s)$ denotes the geodesic curvature of $p_x(s)$. Furthermore

$$E_{\beta}(p_x) = \frac{1}{2} \int_0^l \beta(\tau_x(s)) \sqrt{1 + k_x(s)^2} |p'_x(s)| ds \quad \text{for} \quad x \in B_{\delta}(o) \,,$$

where $\tau_x(s) = 2k'_x(s)(1 + k_x(s)^2)^{-3/2} |p'_x(s)|^{-1}$. Therefore we obtain the smooth map F: $B_{\delta}(o) \rightarrow \mathbf{R}^3$ defined by

$$F(x) = (K(p_x), L(p_x), E_\beta(p_x)).$$

We now show that for a suitable choice of the functions $f_j(s)$, the Jacobi matrix of F is non-singular at the origin o. By a straightforward calculation we obtain

(7.4)
$$\frac{\partial}{\partial x_j} L(p_x) \bigg|_{x=o} = -\int_0^l k(s) f_j(s) ds \,,$$

(7.5)
$$\frac{\partial}{\partial x_j} K(p_x) \bigg|_{x=o} = \int_0^l f_j(s) ds \,,$$

(7.6)
$$\frac{\partial}{\partial x_j} E_{\beta}(p_x) \bigg|_{x=o} = \int_0^l \sum_{i=1}^3 a_i(s) f_j^{(i)}(s) ds \,,$$

where $f_i^{(i)}(s)$ denote the *i*-th derivatives of the functions $f_j(s)$, and the functions $a_i(s)$ are given by

(7.7)
$$a_1 = \beta'(\tau), \quad a_2 = \frac{k}{2\sqrt{1+k^2}}\beta(\tau) - \frac{3kk'}{(1+k^2)^2}\beta'(\tau), \quad a_3 = \frac{1}{1+k^2}\beta'(\tau).$$

Since the functions $a_i(s)$ and $f_j(s)$ are *l*-periodic, it follows from integration by parts that

(7.8)
$$\frac{\partial}{\partial x_j} E_{\beta}(p_x) \Big|_{x=o} = \int_0^l u_{\beta}(s) f_j(s) ds \,,$$

where $u_{\beta}(s) = \sum_{i=1}^{3} (-1)^{i} a_{i}^{(i)}(s)$. We now specify the functions $f_{j}(s)$ as follows:

 $f_1(s) = 1$, $f_2(s) = -k(s)$, $f_3(s) = u_\beta(s)$.

Then it follows from (7.4), (7.5) and (7.8) that the Jacobi matrix of F at the origin o is given by

$$F'(o) = [c_{ij}], \quad c_{ij} = \int_0^l f_i(s) f_j(s) ds.$$

By using (7.7), the function $u_{\beta}(s)$ can be written as $u_{\beta}(s) = \sum_{i=0}^{4} b_i(s)\beta^{(i)}(\tau(s))$. Since $b_4(s) = \tau'(s)^3/(1+k(s)^2)$, it follows from (7.2) and (7.3) that

$$u'_{\beta}(s_0) = 0, \quad u''_{\beta}(s_0) \neq 0.$$

On the other hand, (7.1) and (7.2) imply $k'(s_0) \neq 0$. Hence

(7.9)
$$\det \begin{bmatrix} f_1(s_0) & f_2(s_0) & f_3(s_0) \\ f'_1(s_0) & f'_2(s_0) & f'_3(s_0) \\ f''_1(s_0) & f''_2(s_0) & f''_3(s_0) \end{bmatrix} = -\det \begin{bmatrix} 1 & k(s_0) & u_\beta(s_0) \\ 0 & k'(s_0) & u'_\beta(s_0) \\ 0 & k''(s_0) & u''_\beta(s_0) \end{bmatrix} \neq 0.$$

Let ξ_1, ξ_2, ξ_3 be real numbers satisfying the following relation.

$$\sum_{j=1}^{3} c_{ij} \xi_j = 0 \quad \text{for} \quad i = 1, 2, 3.$$

Since $\sum_{i,j=1}^{3} c_{ij}\xi_i\xi_j = 0$, we obtain

$$\int_0^l \left| \sum_{i=1}^3 \xi_i f_i(s) \right|^2 ds = 0.$$

Hence $\sum_{i=1}^{3} \xi_i f_i(s) = 0$ for all $s \in \mathbf{R}$, and so

$$\sum_{i=1}^{3} \xi_i f_i(s_0) = \sum_{i=1}^{3} \xi_i f_i'(s_0) = \sum_{i=1}^{3} \xi_i f_i''(s_0) = 0.$$

Therefore it follows from (7.9) that $\xi_1 = \xi_2 = \xi_3 = 0$. This implies that the matrix F'(o) is non-singular.

Using the inverse function theorem, we see that there exists a positive number ε such that the map $F : B_{\delta}(o) \to \mathbb{R}^3$ carries a neighborhood of the origin o diffeomorphically onto the ε -neighborhood of $F(o) \in \mathbb{R}^3$. Since $F(o) = (K(\gamma), L(\gamma), E_{\beta}(\gamma))$, we obtain a smooth curve $x : (-\varepsilon, \varepsilon) \to B_{\delta}(o)$ such that

$$F(x(t)) = (K(\gamma), L(\gamma), E_{\beta}(\gamma) + t), \quad x(0) = o.$$

Then the smooth one-parameter family of the periodic regular curves $\gamma_t(s) = p_{x(t)}(s)$ satisfies the required properties (1)–(3).

PROOF OF THEOREM 6.4. Let $\theta : \mathbf{R} \to \mathbf{R}$ be the diffeomorphism given by

$$\theta(s) = \int_0^s |\gamma'(x)| dx \, ,$$

and let $\bar{\gamma} : \mathbf{R} \to S^2$ be the curve defined by $\bar{\gamma}(\theta(s)) = \gamma(s)$. Then $\bar{\gamma}$ is a regular curve parametrized by arclength, and its geodesic curvature \bar{k} satisfies $\bar{k}(\theta(s)) = k(s)$. Since $|\gamma'(s)|\sqrt{1+k(s)^2} = 2$, we obtain

$$s = \frac{1}{2} \int_0^{\theta(s)} \sqrt{1 + \bar{k}(x)^2} dx$$
.

So it follows that γ is *m*-periodic if and only if $\bar{\gamma}$ is $\theta(m)$ -periodic. Hence the minimum period of $\bar{\gamma}$ is equal to $\theta(l)$, where *l* denotes the minimum period of γ . Since \bar{k} is not constant, Lemma 7.2 implies that there exist a smooth even function β and a smooth one-parameter family of periodic regular curves $\bar{\gamma}_t : \mathbf{R} \to S^2, -\varepsilon < t < \varepsilon$, such that

(7.10)
$$\bar{\gamma}_0 = \bar{\gamma}$$
, $K(\bar{\gamma}_t) = K(\bar{\gamma})$, $L(\bar{\gamma}_t) = L(\bar{\gamma})$, $E_\beta(\bar{\gamma}_t) = E_\beta(\bar{\gamma}) + t$,

and the minimum period of $\bar{\gamma}_t$ is equal to $\theta(l)$.

We now consider the smooth one-parameter family of the diffeomorphisms $\theta_t : \mathbf{R} \to \mathbf{R}$, $-\varepsilon < t < \varepsilon$, defined by the following relation:

(7.11)
$$s = \frac{1}{2} \int_0^{\theta_t(s)} |\bar{\gamma}_t'(x)| \sqrt{1 + \bar{k}_t(x)^2} dx,$$

where \bar{k}_t denotes the geodesic curvature of $\bar{\gamma}_t$. Furthermore we consider the smooth oneparameter family of regular curves $\gamma_t : \mathbf{R} \to S^2$, $-\varepsilon < t < \varepsilon$ given by

$$\gamma_t(s) = \overline{\gamma}_t(\theta_t(s))$$

Since $\bar{\gamma}_0 = \bar{\gamma}$ and $|\bar{\gamma}'| = 1$, we obtain $\theta_0(s) = \theta(s)$ and so $\gamma_0(s) = \gamma(s)$. We set

$$l_t = \frac{1}{2} \int_0^{\theta(l)} |\bar{\gamma}_t'(x)| \sqrt{1 + \bar{k}_t(x)^2} dx \, .$$

Then it follows that $\theta_t(l_t) = \theta(l)$ and $l_0 = l$. Since $\bar{\gamma}_t$ is $\theta(l)$ -periodic, we obtain $\theta_t(s + l_t) = \theta_t(s) + \theta(l)$. Hence

(7.12)
$$\gamma_t(s+l_t) = \gamma_t(s) \,.$$

We now show that the family γ_t , $-\varepsilon < t < \varepsilon$, satisfies the properties (1)–(3) required in Theorem 6.4. Let $k_t(s)$ denote the geodesic curvature of $\gamma_t(s)$. Then it follows that $k_t(s) = \bar{k}_t(\theta_t(s))$, and so (7.11) implies

$$|\gamma_t'(s)|\sqrt{1+k_t(s)^2}=2.$$

Since $l_0 = l$ and $\gamma_0(s) = \gamma(s)$, the minimum period of $\gamma_0(s)$ is equal to l_0 . Hence, using (7.12) and Lemma 7.1, we may assume that the minimum period of $\gamma_t(s)$ is equal to l_t for $-\varepsilon < t < \varepsilon$. So we obtain

$$L(\gamma_t) = \int_0^{l_t} |\gamma_t'(s)| ds = \int_0^{l_t} |\bar{\gamma}_t'(\theta_t(s))| \theta_t'(s) ds = \int_0^{\theta(l)} |\bar{\gamma}_t'(x)| dx = L(\bar{\gamma}_t),$$

where the third equality follows from the relation $\theta_t(l_t) = \theta(l)$. Similarly we obtain $K(\gamma_t) = K(\bar{\gamma}_t)$ and $E_\beta(\gamma_t) = E_\beta(\bar{\gamma}_t)$. Hence (7.10) implies that

$$K(\gamma_t) = K(\gamma_0), \quad L(\gamma_t) = L(\gamma_0), \quad E_\beta(\gamma_t) = E_\beta(\gamma_0) + t.$$

Since l_t is continuous in t, the closed curves $\hat{\gamma}_0|[0, l_0]$ and $\hat{\gamma}_t|[0, l_t]$ represent the same homology class in $H_1(US^2)$. Hence

$$I(\gamma_t) = I(\gamma_0)$$
.

This completes the proof of Theorem 6.4.

REFERENCES

[1] Y. KITAGAWA, Periodicity of the asymptotic curves on flat tori in S^3 , J. Math. Soc. Japan 40 (1988), 457–476.

[2] Y. KITAGAWA, Rigidity of the Clifford tori in S^3 , Math. Z. 198 (1988), 591–599.

[3] Y. KITAGAWA, Embedded flat tori in the unit 3-sphere, J. Math. Soc. Japan 47 (1995), 275–296.

[4] Y. KITAGAWA, Deformable flat tori in S^3 with constant mean curvature, preprint.

[5] J. D. MOORE, Isometric immersions of space forms in space forms, Pacific J. Math. 40 (1972), 157-166.

DEPARTMENT OF MATHEMATICS UTSUNOMIYA UNIVERSITY UTSUNOMIYA 321–8505 JAPAN

E-mail address: kitagawa@cc.utsunomiya-u.ac.jp

298