ISOMETRIC DEFORMATIONS OF FLAT TORI IN THE 3-SPHERE WITH NONCONSTANT MEAN CURVATURE

Yoshinisa Kitagawa

(Received October 14, 1998, revised April 19, 1999)

Abstract

For an isometric immersion f of a flat torus into the unit 3-sphere, we show that if the mean curvature of f is not constant, then the immersion f admits a nontrivial isometric deformation preserving the total mean curvature.

1. Introduction. Let S^{3} be the 3 -dimensional standard unit sphere in the Euclidean space \boldsymbol{R}^{4}. For each θ satisfying $0<\theta<\pi / 2$, we consider the Clifford torus $M_{\theta} \subset S^{3}$ defined by

$$
M_{\theta}=\left\{x \in \boldsymbol{R}^{4}: x_{1}^{2}+x_{2}^{2}=\cos ^{2} \theta, x_{3}^{2}+x_{4}^{2}=\sin ^{2} \theta\right\} .
$$

The Clifford torus M_{θ} is a flat Riemannian manifold equipped with the metric induced by the inclusion map $i_{\theta}: M_{\theta} \rightarrow S^{3}$. In [2] the author proved that every isometric deformation of $i_{\theta}: M_{\theta} \rightarrow S^{3}$ is trivial. Incidentally, it is easy to see that if M is a flat torus isometrically embedded in S^{3} with constant mean curvature, then there exists a Clifford torus M_{θ} which is congruent to M. So we obtain

THEOREM 1.1. If $f: M \rightarrow S^{3}$ is an isometric embedding of a flat torus M into S^{3} with constant mean curvature, then every isometric deformation of the embedding f is trivial.

On the other hand there are many flat tori isometrically immersed in S^{3} with nonconstant mean curvature. In this paper we deal with isometric deformations of these surfaces. To state the result we recall the notion of congruence of immersions. For $i=1$, 2, let $f_{i}: X_{i} \rightarrow Y$ be an immersion of a smooth manifold X_{i} into a Riemannian manifold Y. The immersions f_{1} and f_{2} are said to be congruent if there exist an isometry $A: Y \rightarrow Y$ and a diffeomorphism $\rho: X_{1} \rightarrow X_{2}$ such that $A \circ f_{1}=f_{2} \circ \rho$. We shall write $f_{1} \equiv f_{2}$ if f_{1} and f_{2} are congruent. The main result of this paper is the following theorem.

THEOREM 1.2. If $f: M \rightarrow S^{3}$ is an isometric immersion of a flat torus M into S^{3} with nonconstant mean curvature, then there exists a smooth one-parameter family of isometric immersions $f_{t}: M \rightarrow S^{3}, t \in \boldsymbol{R}$, such that $f_{0}=f$ and
(1) $f_{t} \not \equiv f_{s}$ for all $s \neq t$,
(2) the total mean curvature of f_{t} does not depend on t.

[^0]REMARK. The total mean curvature of the immersion f_{t} is given by $\int_{M} H_{t} d \sigma$, where H_{t} denotes the mean curvature function of f_{t}, and $d \sigma$ denotes the volume element of the flat torus M.

The outline of this paper is as follows. In Section 2 we introduce some geometric invariants of a periodic regular curve $\gamma: \boldsymbol{R} \rightarrow S^{2}$. We denote by $K(\gamma)$ (resp. $L(\gamma)$) the total geodesic curvature (resp. the length) of the closed curve $\gamma \mid[0, l]$, where $l>0$ is the minimum period of γ. Furthermore, using the curve $\hat{\gamma}=\dot{\gamma} /|\dot{\gamma}|$ in the unit tangent bundle of S^{2}, we define $I(\gamma)$ to be the homology class represented by the closed curve $\hat{\gamma} \mid[0, l]$.

In Section 3 we explain a method for constructing all the flat tori in S^{3}. A pair $\Gamma=$ (γ_{1}, γ_{2}) of periodic regular curves $\gamma_{i}: \boldsymbol{R} \rightarrow S^{2}$ is said to be a periodic admissible pair if the geodesic curvature of γ_{1} is greater than that of γ_{2} and some auxiliary conditions are satisfied (see Definition 3.1). Each periodic admissible pair Γ induces a flat torus M_{Γ} and an isometric immersion $f_{\Gamma}: M_{\Gamma} \rightarrow S^{3}$. Furthermore the immersion f_{Γ} is a primitive immersion (see Definition 3.2). Conversely, if $f: M \rightarrow S^{3}$ is a primitive isometric immersion of a flat torus M into S^{3}, then there exists a periodic admissible pair Γ such that $f \equiv f_{\Gamma}$ (Theorem 3.1).

In Section 4 we study the intrinsic structure of the flat torus M_{Γ}. For each periodic admissible pair $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$, we set

$$
K_{i}(\Gamma)=K\left(\gamma_{i}\right), \quad L_{i}(\Gamma)=L\left(\gamma_{i}\right), \quad I_{i}(\Gamma)=I\left(\gamma_{i}\right),
$$

and define $W(\Gamma)$ to be a lattice of \boldsymbol{R}^{2} whose generators can be written in terms of $K_{i}(\Gamma)$, $L_{i}(\Gamma)$ and $I_{i}(\Gamma)$. Then it is shown that the flat torus $\boldsymbol{R}^{2} / W(\Gamma)$ is isometric to the flat torus M_{Γ} (Theorem 4.1).

In Section 5 we deal with the extrinsic structure of the immersion f_{Γ}. For each smooth even function $\beta: \boldsymbol{R} \rightarrow \boldsymbol{R}$, we construct a functional E_{β} which is defined on the set of all periodic admissible pairs, and show that $E_{\beta}(\Gamma)=E_{\beta}(\bar{\Gamma})$ if $f_{\Gamma} \equiv f_{\bar{\Gamma}}$ (Theorem 5.1). Furthermore we show that the total mean curvature of f_{Γ} can be written in terms of $K_{i}(\Gamma)$, $L_{i}(\Gamma)$ and $I_{i}(\Gamma)$ (Theorem 5.3).

In Sections 6 and 7 we give the proof of Theorem 1.2. To establish the theorem we may assume that the immersion $f: M \rightarrow S^{3}$ is primitive. By Theorem 3.1 there exists a periodic admissible pair $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ satisfying $f \equiv f_{\Gamma}$. Since the mean curvature of f_{Γ} is not constant, we see that either γ_{1} or γ_{2} is not a circle. Using this fact, we construct a smooth even function β and a smooth one-parameter family of periodic admissible pairs Γ_{t} satisfying

$$
\Gamma_{0}=\Gamma, \quad K_{i}\left(\Gamma_{t}\right)=K_{i}(\Gamma), \quad L_{i}\left(\Gamma_{t}\right)=L_{i}(\Gamma), \quad I_{i}\left(\Gamma_{t}\right)=I_{i}(\Gamma),
$$

and $E_{\beta}\left(\Gamma_{s}\right) \neq E_{\beta}\left(\Gamma_{t}\right)$ for all $s \neq t$. So the assertion of Theorem 1.2 follows from Theorems 4.1, 5.1 and 5.3.

Remark. In Theorem 1.1 the word "embedding" cannot be replaced by the word "immersion". In fact, there is a flat torus M and a Riemannian covering $\pi: M \rightarrow M_{\theta}$ such that the composition $i_{\theta} \circ \pi: M \rightarrow S^{3}$ admits a nontrivial isometric deformation. The Riemannian coverings as above will be classified in [4].
2. Preliminaries. Let $S U(2)$ be the group of all 2×2 unitary matrices with determinant 1. Its Lie algebra $\mathfrak{s u}(2)$ consists of all 2×2 skew Hermitian matrices of trace 0 . The adjoint representation of $S U(2)$ is given by

$$
\operatorname{Ad}(a) x=a x a^{-1}
$$

where $a \in S U$ (2) and $x \in \mathfrak{s u}(2)$. We set

$$
\langle x, y\rangle=-\frac{1}{2} \operatorname{trace}(x y) \quad \text { for } \quad x, y \in \mathfrak{s u}(2) .
$$

Then it follows that \langle,$\rangle is a positive definite and Ad-invariant inner product on \mathfrak{s u}(2)$. Furthermore we consider the orthonormal basis of $\mathfrak{s u}(2)$ given by

$$
e_{1}=\left[\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right], \quad e_{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad e_{3}=\left[\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right] .
$$

Note that

$$
\left[e_{1}, e_{2}\right]=2 e_{3}, \quad\left[e_{2}, e_{3}\right]=2 e_{1}, \quad\left[e_{3}, e_{1}\right]=2 e_{2}
$$

where [,] denotes the Lie bracket on $\mathfrak{s u}(2)$. For $i=1,2,3$, let E_{i} be the left invariant vector field on $S U(2)$ corresponding to e_{i}. We endow $S U(2)$ with the Riemannian metric \langle,$\rangle such$ that $\left\langle E_{i}, E_{j}\right\rangle=\delta_{i j}$. Then $S U(2)$ is isometric to the unit 3-sphere S^{3}, and so we identify S^{3} with $S U(2)$.

Let S^{2} be the unit sphere in $\mathfrak{s u}(2)$ defined by $S^{2}=\{x \in \mathfrak{s u}(2):|x|=1\}$. The unit tangent bundle of S^{2}, denoted by $U S^{2}$, can be identified with a subset of $S^{2} \times S^{2}$ as follows:

$$
U S^{2}=\left\{(x, v) \in S^{2} \times S^{2}:\langle x, v\rangle=0\right\},
$$

where the canonical projection $p_{1}: U S^{2} \rightarrow S^{2}$ is given by $p_{1}(x, v)=x$. Define $p_{2}: S^{3} \rightarrow$ $U S^{2}$ by

$$
\begin{equation*}
p_{2}(a)=\left(\operatorname{Ad}(a) e_{3}, \operatorname{Ad}(a) e_{1}\right) \tag{2.1}
\end{equation*}
$$

The map p_{2} is a double covering such that $p_{2}(-a)=p_{2}(a)$ for all $a \in S^{3}$. We now consider a regular curve $\gamma: \boldsymbol{R} \rightarrow S^{2}$, and define $\hat{\gamma}: \boldsymbol{R} \rightarrow U S^{2}$ by

$$
\begin{equation*}
\hat{\gamma}(s)=\left(\gamma(s), \gamma^{\prime}(s) /\left|\gamma^{\prime}(s)\right|\right) . \tag{2.2}
\end{equation*}
$$

Then there exists a curve $c: \boldsymbol{R} \rightarrow S^{3}$ satisfying $p_{2}(c(s))=\hat{\gamma}(s)$. By [3, Lemma 2.2] we obtain

$$
\begin{equation*}
c(s)^{-1} c^{\prime}(s)=\frac{1}{2}\left|\gamma^{\prime}(s)\right|\left\{e_{2}+k(s) e_{3}\right\} \tag{2.3}
\end{equation*}
$$

where $k(s)$ denotes the geodesic curvature of $\gamma(s)$. Note that

$$
\begin{equation*}
k(s)=\left\langle\gamma^{\prime \prime}(s), J\left(\gamma^{\prime}(s)\right)\right\rangle /\left|\gamma^{\prime}(s)\right|^{3}, \tag{2.4}
\end{equation*}
$$

where J denotes the almost complex structure on S^{2} defined by

$$
\begin{equation*}
J(v)=\frac{1}{2}[x, v] \quad \text { for } \quad v \in T_{x} S^{2} . \tag{2.5}
\end{equation*}
$$

We now assume that the curve $\gamma: \boldsymbol{R} \rightarrow S^{2}$ is periodic with the minimum period $l>0$. The length and the total geodesic curvature of γ are given by

$$
\begin{equation*}
L(\gamma)=\int_{0}^{l}\left|\gamma^{\prime}(s)\right| d s, \quad K(\gamma)=\int_{0}^{l} k(s)\left|\gamma^{\prime}(s)\right| d s \tag{2.6}
\end{equation*}
$$

Furthermore define $I(\gamma)$ to be the element of the homology group $H_{1}\left(U S^{2}\right)$ represented by the closed curve $\hat{\gamma} \mid[0, l]$. Note that $H_{1}\left(U S^{2}\right) \cong Z_{2}$. Since p_{2} is a double covering and $p_{2}(a)=p_{2}(-a)$ for all $a \in S^{3}$, we obtain

$$
c(s+l)=\left\{\begin{align*}
c(s) & \text { if } I(\gamma)=0 \tag{2.7}\\
-c(s) & \text { if } I(\gamma)=1
\end{align*}\right.
$$

3. Construction of flat tori in S^{3}. In this section we explain a method for constructing all the flat tori in S^{3}, which was established in [1] and [3].

DEFINITION 3.1. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a pair of regular curves $\gamma_{i}: \boldsymbol{R} \rightarrow S^{2}, i=1,2$. The pair Γ is said to be an admissble pair if it satisfies the following conditions (3.1)-(3.3).

$$
\begin{gather*}
\hat{\gamma}_{1}(0)=\hat{\gamma}_{2}(0)=\left(e_{3}, e_{1}\right) \tag{3.1}\\
\left|\gamma_{i}^{\prime}(s)\right| \sqrt{1+k_{i}(s)^{2}}=2 \quad \text { for } \quad i=1,2 \tag{3.2}\\
k_{1}\left(s_{1}\right)>k_{2}\left(s_{2}\right) \quad \text { for all } \quad\left(s_{1}, s_{2}\right) \in R^{2} \tag{3.3}
\end{gather*}
$$

where $k_{i}(s)$ denotes the geodesic curvature of $\gamma_{i}(s)$.
Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be an admissible pair. Then it follows from (3.1) that there exist curves $c_{i}: \boldsymbol{R} \rightarrow S^{3}, i=1,2$, such that

$$
p_{2}\left(c_{i}(s)\right)=\hat{\gamma}_{i}(s), \quad c_{i}(0)=e=\left[\begin{array}{ll}
1 & 0 \tag{3.4}\\
0 & 1
\end{array}\right]
$$

By (2.3) and (3.2) we obtain $\left|c_{i}^{\prime}(s)\right|=1$. Using the group structure on S^{3}, we define F_{Γ} : $\boldsymbol{R}^{2} \rightarrow S^{3}$ by

$$
\begin{equation*}
F_{\Gamma}\left(s_{1}, s_{2}\right)=c_{1}\left(s_{1}\right) c_{2}\left(s_{2}\right)^{-1} \tag{3.5}
\end{equation*}
$$

By [1, Lemma 3.8, Theorem 4.2] we see that the map F_{Γ} is a flat asymptotic Tchebychef immersion (FAT for short). For the definition of FAT, we refer the reader to [1, p. 460]. So the map F_{Γ} is an immersion which induces a flat Riemannian metric g_{Γ} on \boldsymbol{R}^{2}. Let $\alpha_{i}(s)$ be the function defined by

$$
\begin{equation*}
\cot \alpha_{i}(s)=k_{i}(s), \quad 0<\alpha_{i}(s)<\pi \tag{3.6}
\end{equation*}
$$

Then (3.3) implies $\alpha_{1}\left(s_{1}\right)<\alpha_{2}\left(s_{2}\right)$. Using (3.2), we obtain

$$
\begin{equation*}
\sin \alpha_{i}(s)=\frac{1}{2}\left|\gamma_{i}^{\prime}(s)\right|, \quad \cos \alpha_{i}(s)=\frac{1}{2} k_{i}(s)\left|\gamma_{i}^{\prime}(s)\right| \tag{3.7}
\end{equation*}
$$

So it follows from (2.3) that

$$
c_{i}^{-1}(s) c_{i}^{\prime}(s)=\sin \alpha_{i}(s) e_{2}+\cos \alpha_{i}(s) e_{3}
$$

Hence the components of the Riemannian metric g_{Γ} for the local coordinates (s_{1}, s_{2}) satisfy

$$
\begin{equation*}
g_{11}=g_{22}=1, \quad g_{12}=-\cos \left(\alpha_{2}\left(s_{2}\right)-\alpha_{1}\left(s_{1}\right)\right) . \tag{3.8}
\end{equation*}
$$

Furthermore the components of the second fundamental form of the immersion $F_{\Gamma}\left(s_{1}, s_{2}\right)$ satisfy

$$
\begin{equation*}
h_{11}=h_{22}=0, \quad h_{12}=\sin \left(\alpha_{2}\left(s_{2}\right)-\alpha_{1}\left(s_{1}\right)\right) \tag{3.9}
\end{equation*}
$$

where the unit normal is defined by

$$
\xi=\left(\partial F_{\Gamma} / \partial s_{1}\right) \times\left(\partial F_{\Gamma} / \partial s_{2}\right) /\left|\left(\partial F_{\Gamma} / \partial s_{1}\right) \times\left(\partial F_{\Gamma} / \partial s_{2}\right)\right| .
$$

We now consider the group

$$
G(\Gamma)=\left\{\rho \in \operatorname{Diff}\left(\boldsymbol{R}^{2}\right): F_{\Gamma} \circ \rho=F_{\Gamma}\right\}
$$

where $\operatorname{Diff}\left(\boldsymbol{R}^{2}\right)$ denotes the group of all diffeomorphisms of \boldsymbol{R}^{2}. Then we obtain the 2dimensional flat Riemannian manifold $M_{\Gamma}=\left(\boldsymbol{R}^{2}, g_{\Gamma}\right) / G(\Gamma)$ and the isometric immersion $f_{\Gamma}: M_{\Gamma} \rightarrow S^{3}$ satisfying $f_{\Gamma} \circ \pi_{\Gamma}=F_{\Gamma}$, where π_{Γ} denotes the canonical projection of \boldsymbol{R}^{2} onto M_{Γ}. It is easy to see that the immersion $f_{\Gamma}: M_{\Gamma} \rightarrow S^{3}$ is primitive in the sense of the following definition.

Definition 3.2. An immersion $f: X \rightarrow Y$ of a smooth manifold X into a smooth manifold Y is said to be primitive if the identity map of X is the only diffeomorphism ϕ : $X \rightarrow X$ satifying $f \circ \phi=f$.

It follows from [1, Theorem 2.3] that the group $G(\Gamma)$ consists of parallel translations of \boldsymbol{R}^{2}, and so M_{Γ} is orientable. Furthermore it follows from [1, Theorem 5.1] that M_{Γ} is compact if and only if Γ is periodic, where the admissible pair $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ is said to be periodic if both γ_{1} and γ_{2} are periodic regular curves. So we see that every periodic admissible pair Γ induces a flat torus M_{Γ} and a primitive isometric immersion $f_{\Gamma}: M_{\Gamma} \rightarrow$ S^{3}. Conversely, we obtain the following theorem.

THEOREM 3.1 ([3]). Let $f: M \rightarrow S^{3}$ be a primitive isometric immersion of a flat torus M. Then there exists a periodic admissible pair Γ such that $f \equiv f_{\Gamma}$.

We conclude this section with the following theorem.
THEOREM 3.2. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be an admissible pair, and let $k_{i}(s)$ denote the geodesic curvature of $\gamma_{i}(s)$. Then the mean curvature of f_{Γ} is constant if and only if both $k_{1}(s)$ and $k_{2}(s)$ are constant.

Proof. By (3.8) and (3.9) the mean curvature H of F_{Γ} is given by

$$
\begin{equation*}
H=\cot \left(\alpha_{2}\left(s_{2}\right)-\alpha_{1}\left(s_{1}\right)\right) \tag{3.10}
\end{equation*}
$$

So (3.6) implies the assertion of Theorem 3.2.
4. The intrinsic structure of M_{Γ}. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a periodic admissible pair. Using the homology class $I\left(\gamma_{i}\right)$ defined in Section 2, we set

$$
I(\Gamma)=\left(I\left(\gamma_{1}\right), I\left(\gamma_{2}\right)\right),
$$

and define $W(\Gamma)$ to be the lattice of \boldsymbol{R}^{2} whose generators are given by the following:

$$
\begin{cases}v_{1}, v_{2} & \text { if } I(\Gamma)=(0,0) \tag{4.1}\\ 2 v_{1}, v_{2} & \text { if } I(\Gamma)=(1,0) \\ v_{1}, 2 v_{2} & \text { if } I(\Gamma)=(0,1), \\ v_{1} \pm v_{2} & \text { if } I(\Gamma)=(1.1)\end{cases}
$$

where

$$
\begin{equation*}
v_{1}=\frac{1}{2}\left(K\left(\gamma_{1}\right), L\left(\gamma_{1}\right)\right), \quad v_{2}=\frac{1}{2}\left(-K\left(\gamma_{2}\right),-L\left(\gamma_{2}\right)\right) \tag{4.2}
\end{equation*}
$$

We now identify the lattice $W(\Gamma)$ with a group of parallel translations of \boldsymbol{R}^{2}. In this section we show that the flat torus M_{Γ} is isometric to the flat torus $\left(\boldsymbol{R}^{2}, g_{0}\right) / W(\Gamma)$, where g_{0} denotes the canonical flat Riemannian metric on \boldsymbol{R}^{2}. Using the functions $\alpha_{1}(s)$ and $\alpha_{2}(s)$ given by (3.6), we set

$$
\begin{aligned}
& x_{1}\left(s_{1}, s_{2}\right)=\int_{0}^{s_{1}} \cos \alpha_{1}(s) d s-\int_{0}^{s_{2}} \cos \alpha_{2}(s) d s \\
& x_{2}\left(s_{1}, s_{2}\right)=\int_{0}^{s_{1}} \sin \alpha_{1}(s) d s-\int_{0}^{s_{2}} \sin \alpha_{2}(s) d s
\end{aligned}
$$

and define $\Phi_{\Gamma}: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ by

$$
\begin{equation*}
\Phi_{\Gamma}\left(s_{1}, s_{2}\right)=\left(x_{1}\left(s_{1}, s_{2}\right), x_{2}\left(s_{1}, s_{2}\right)\right) \tag{4.3}
\end{equation*}
$$

THEOREM 4.1. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a periodic admissible pair, and let g_{Γ} be the Riemannian metric on \boldsymbol{R}^{2} induced by the immersion $F_{\Gamma}: \boldsymbol{R}^{2} \rightarrow S^{3}$. Then the map Φ_{Γ} is an isometry of $\left(\boldsymbol{R}^{2}, g_{\Gamma}\right)$ onto $\left(\boldsymbol{R}^{2}, g_{0}\right)$, and

$$
W(\Gamma)=\left\{\Phi_{\Gamma} \circ \rho \circ \Phi_{\Gamma}^{-1}: \rho \in G(\Gamma)\right\}
$$

In particular, the flat torus M_{Γ} is isometric to the flat torus $\left(\boldsymbol{R}^{2}, g_{0}\right) / W(\Gamma)$.
Proof. By (3.8) it is easy to see that $g_{\Gamma}=\Phi_{\Gamma}^{*} g_{0}$, and so Φ_{Γ} is an isometry of $\left(\boldsymbol{R}^{2}, g_{\Gamma}\right)$ onto ($\boldsymbol{R}^{2}, g_{0}$). Since the group $G(\Gamma)$ consists of parallel traslations of \boldsymbol{R}^{2} and the quotient space $\boldsymbol{R}^{2} / G(\Gamma)$ is compact, the group $G(\Gamma)$ can be identified with a lattice of \boldsymbol{R}^{2}. It follows from [3, Theorem 4.1] that the lattice $G(\Gamma)$ has the following generators.

$$
\begin{cases}\left(l_{1}, 0\right),\left(0, l_{2}\right) & \text { if } I(\Gamma)=(0,0) \tag{4.4}\\ \left(2 l_{1}, 0\right),\left(0, l_{2}\right) & \text { if } I(\Gamma)=(1,0) \\ \left(l_{1}, 0\right),\left(0,2 l_{2}\right) & \text { if } I(\Gamma)=(0,1) \\ \left(l_{1}, l_{2}\right),\left(l_{1},-l_{2}\right) & \text { if } I(\Gamma)=(1,1)\end{cases}
$$

where l_{i} denotes the minimum period of $\gamma_{i}(s)$. For $m_{1}, m_{2} \in \boldsymbol{Z}$, we consider the parallel translation $\rho: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ given by

$$
\rho\left(s_{1}, s_{2}\right)=\left(s_{1}+m_{1} l_{1}, s_{2}+m_{2} l_{2}\right)
$$

Since $\alpha_{i}\left(s+l_{i}\right)=\alpha_{i}(s)$, it follows from (3.7) and (4.2) that

$$
\begin{aligned}
\Phi_{\Gamma}\left(\rho\left(s_{1}, s_{2}\right)\right)= & \Phi_{\Gamma}\left(s_{1}, s_{2}\right)+m_{1}\left(\int_{0}^{l_{1}} \cos \alpha_{1}(s) d s, \int_{0}^{l_{1}} \sin \alpha_{1}(s) d s\right) \\
& +m_{2}\left(-\int_{0}^{l_{2}} \cos \alpha_{2}(s) d s,-\int_{0}^{l_{2}} \sin \alpha_{2}(s) d s\right) \\
= & \Phi_{\Gamma}\left(s_{1}, s_{2}\right)+m_{1} v_{1}+m_{2} v_{2} .
\end{aligned}
$$

So we obtain

$$
\Phi_{\Gamma} \circ \rho \circ \Phi_{\Gamma}^{-1}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)+m_{1} v_{1}+m_{2} v_{2} .
$$

Hence it follows from (4.1) and (4.4) that $\Phi_{\Gamma} \circ \rho \circ \Phi_{\Gamma}^{-1} \in W(\Gamma)$ if and only if $\rho \in G(\Gamma)$. This completes the proof of Theorem 4.1.
5. Extrinsic invariants of f_{Γ}. Let $\gamma: \boldsymbol{R} \rightarrow S^{2}$ be a periodic regular curve with the minimum period $l>0$. For each smooth function $\beta: \boldsymbol{R} \rightarrow \boldsymbol{R}$, we define $E_{\beta}(\gamma)$ by

$$
\begin{equation*}
E_{\beta}(\gamma)=\frac{1}{2} \int_{0}^{l} \beta\left(\tau_{\gamma}(s)\right) \sqrt{1+k(s)^{2}}\left|\gamma^{\prime}(s)\right| d s, \tag{5.1}
\end{equation*}
$$

where $k(s)$ denotes the geodesic curvature of $\gamma(s)$, and

$$
\begin{equation*}
\tau_{\gamma}(s)=2 k^{\prime}(s)\left(1+k(s)^{2}\right)^{-3 / 2}\left|\gamma^{\prime}(s)\right|^{-1} . \tag{5.2}
\end{equation*}
$$

Furthermore for each periodic admissible pair $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$, we set

$$
E_{\beta}(\Gamma)=E_{\beta}\left(\gamma_{1}\right)+E_{\beta}\left(\gamma_{2}\right) .
$$

The aim of this section is to prove the following theorem.
ThEOREM 5.1. Let Γ and $\bar{\Gamma}$ be periodic admissible pairs such that $f_{\Gamma} \equiv f_{\bar{\Gamma}}$. Then $E_{\beta}(\Gamma)=E_{\beta}(\bar{\Gamma})$ for any smooth even function β.

It is easy to see that $f_{\Gamma} \equiv f_{\bar{\Gamma}}$ implies $F_{\Gamma} \equiv F_{\bar{\Gamma}}$. So Theorem 5.1 follows from the following lemma.

LEMMA 5.2. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ and $\bar{\Gamma}=\left(\bar{\gamma}_{1}, \bar{\gamma}_{2}\right)$ be periodic admissible pairs. If $F_{\Gamma} \equiv F_{\bar{\Gamma}}$, then $E_{\beta}(\Gamma)=E_{\beta}(\bar{\Gamma})$ for any smooth even function β.

Proof. Let $c_{i}(s)$ and $\bar{c}_{i}(s)$ be the curves in S^{3} defined by (3.4). Then

$$
\begin{equation*}
F_{\Gamma}\left(s_{1}, s_{2}\right)=c_{1}\left(s_{1}\right) c_{2}\left(s_{2}\right)^{-1}, \quad F_{\bar{\Gamma}}\left(s_{1}, s_{2}\right)=\bar{c}_{1}\left(s_{1}\right) \bar{c}_{2}\left(s_{2}\right)^{-1} \tag{5.3}
\end{equation*}
$$

By (3.2) and (5.1) we obtain

$$
\begin{equation*}
E_{\beta}\left(\gamma_{i}\right)=\int_{0}^{l_{i}} \beta\left(\tau_{\gamma_{i}}(s)\right) d s, \quad E_{\beta}\left(\bar{\gamma}_{i}\right)=\int_{0}^{\bar{l}_{i}} \beta\left(\tau_{\bar{\gamma}_{i}}(s)\right) d s \tag{5.4}
\end{equation*}
$$

where l_{i} (resp. \bar{l}_{i}) denotes the minimum period of γ_{i} (resp. $\bar{\gamma}_{i}$). Let $\kappa_{i}(s)$ be the curvature of the curve $c_{i}(s)$. Since $\left|c_{i}^{\prime}\right|=1$, it follows from [1, Lemmas 3.7 and 3.8] that

$$
\kappa_{i}=\left|D_{c_{i}^{\prime}} c_{i}^{\prime}\right|=\left|\alpha_{i}^{\prime}\right|
$$

where D denotes the Riemannian connection on S^{3}, and α_{i} is the function defined by (3.6). Differentiating (3.6), we have $\alpha_{i}^{\prime}(s)=-k_{i}^{\prime}(s) \sin ^{2} \alpha_{i}(s)$, where $k_{i}(s)$ denotes the geodesic curvature of $\gamma_{i}(s)$. So it follows from (3.7) and (5.2) that $\alpha_{i}^{\prime}(s)=-\tau_{\gamma_{i}}(s)$. Hence

$$
\begin{equation*}
\kappa_{i}(s)=\left|\tau_{\gamma_{i}}(s)\right| . \tag{5.5}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
\bar{\kappa}_{i}(s)=\left|\tau_{\bar{\gamma}_{i}}(s)\right|, \tag{5.6}
\end{equation*}
$$

where $\bar{\kappa}_{i}(s)$ denotes the curvature of the curve $\bar{c}_{i}(s)$.
Let $g_{i j}$ (resp. $\bar{g}_{i j}$) and $h_{i j}$ (resp. $\bar{h}_{i j}$) denote the first and second fundamental forms of the immersion $F_{\Gamma}\left(s_{1}, s_{2}\right)\left(\right.$ resp. $\left.F_{\bar{\Gamma}}\left(s_{1}, s_{2}\right)\right)$. Since $F_{\Gamma} \equiv F_{\bar{\Gamma}}$, there exist an isometry A of S^{3} and a diffeomorphism ρ of \boldsymbol{R}^{2} such that $A \circ F_{\Gamma}=F_{\bar{\Gamma}} \circ \rho$. Then we obtain

$$
g_{i j}=\sum_{k l} \bar{g}_{k l}(\rho) \frac{\partial \rho_{k}}{\partial s_{i}} \frac{\partial \rho_{l}}{\partial s_{j}}, \quad h_{i j}= \pm \sum_{k l} \bar{h}_{k l}(\rho) \frac{\partial \rho_{k}}{\partial s_{i}} \frac{\partial \rho_{l}}{\partial s_{j}},
$$

where $\rho\left(s_{1}, s_{2}\right)=\left(\rho_{1}\left(s_{1}, s_{2}\right), \rho_{2}\left(s_{1}, s_{2}\right)\right)$. So it follows from (3.8) and (3.9) that the Jacobi matrix of the diffeomorphism $\rho: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ satisfies the following relation.

$$
\frac{\partial\left(\rho_{1}, \rho_{2}\right)}{\partial\left(s_{1}, s_{2}\right)}=\left[\begin{array}{cc}
a_{1} & 0 \tag{5.7}\\
0 & a_{2}
\end{array}\right] \quad \text { or } \quad \frac{\partial\left(\rho_{1}, \rho_{2}\right)}{\partial\left(s_{1}, s_{2}\right)}=\left[\begin{array}{cc}
0 & a_{2} \\
a_{1} & 0
\end{array}\right],
$$

where $\left|a_{1}\right|=\left|a_{2}\right|=1$.
We now consider the first case of (5.7). Then we obtain

$$
\rho\left(s_{1}, s_{2}\right)=\left(a_{1} s_{1}+b_{1}, a_{2} s_{2}+b_{2}\right) .
$$

Since $A \circ F_{\Gamma}=F_{\bar{\Gamma}} \circ \rho$, it follows from (5.3) that

$$
A\left(c_{1}\left(s_{1}\right) c_{2}\left(s_{2}\right)^{-1}\right)=\bar{c}_{1}\left(a_{1} s_{1}+b_{1}\right) \bar{c}_{2}\left(a_{2} s_{2}+b_{2}\right)^{-1}
$$

Since $c_{1}(0)=c_{2}(0)=e$, the relation above implies

$$
(R \circ A) c_{1}(s)=\bar{c}_{1}\left(a_{1} s+b_{1}\right), \quad(L \circ A) c_{2}(s)^{-1}=\bar{c}_{2}\left(a_{2} s+b_{2}\right)^{-1},
$$

where R denotes the right translation by $\bar{c}_{2}\left(b_{2}\right)$, and L denotes the left translation by $\bar{c}_{1}\left(b_{1}\right)^{-1}$. So there exist isometries A_{1} and A_{2} of S^{3} such that

$$
\begin{equation*}
c_{i}(s)=A_{i} \bar{c}_{i}\left(a_{i} s+b_{i}\right) . \tag{5.8}
\end{equation*}
$$

This shows that $\kappa_{i}(s)=\bar{\kappa}_{i}\left(a_{i} s+b_{i}\right)$. Since $\beta: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is an even function, it follows from (5.5) and (5.6) that

$$
\begin{equation*}
\beta\left(\tau_{\gamma_{i}}(s)\right)=\beta\left(\tau_{\bar{\gamma}_{i}}\left(a_{i} s+b_{i}\right)\right) . \tag{5.9}
\end{equation*}
$$

By (2.7) and (5.8) we obtain

$$
c_{i}\left(s+\bar{l}_{i}\right)=A_{i} \bar{c}_{i}\left(a_{i} s+b_{i}+a_{i} \bar{l}_{i}\right)= \pm A_{i} \bar{c}_{i}\left(a_{i} s+b_{i}\right)= \pm c_{i}(s) .
$$

Since $p_{2}\left(\pm c_{i}(s)\right)=\hat{\gamma_{i}}(s)$, we obtain $\hat{\gamma}_{i}\left(s+\bar{l}_{i}\right)=\hat{\gamma_{i}}(s)$, and so $\gamma_{i}\left(s+\bar{l}_{i}\right)=\gamma_{i}(s)$. Hence \bar{l}_{i} / l_{i} must be an integer. Similarly we see that l_{i} / \bar{l}_{i} is an integer, and so we have $l_{i}=\bar{l}_{i}$. Therefore

$$
\int_{0}^{l_{i}} \beta\left(\tau_{\gamma_{i}}(s)\right) d s=\int_{0}^{\bar{l}_{i}} \beta\left(\tau_{\bar{\tau}_{i}}\left(a_{i} s+b_{i}\right)\right) d s=\int_{0}^{\bar{l}_{i}} \beta\left(\tau_{\bar{\gamma}_{i}}(s)\right) d s,
$$

where the first equality follows from (5.9), and the second equality follows from the fact that $\tau_{\bar{\gamma}_{i}}(s)$ is \bar{l}_{i}-periodic. Hence (5.4) implies

$$
E_{\beta}\left(\gamma_{1}\right)=E_{\beta}\left(\bar{\gamma}_{1}\right), \quad E_{\beta}\left(\gamma_{2}\right)=E_{\beta}\left(\bar{\gamma}_{2}\right) .
$$

For the second case of (5.7), in the same way as above, we obtain

$$
E_{\beta}\left(\gamma_{1}\right)=E_{\beta}\left(\bar{\gamma}_{2}\right), \quad E_{\beta}\left(\gamma_{2}\right)=E_{\beta}\left(\bar{\gamma}_{1}\right) .
$$

This completes the proof of Lemma 5.2.
We conclude this section with the following theorem.
THEOREM 5.3. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a periodic admissible pair, and let H be the mean curvature of the isometric immersion $f_{\Gamma}: M_{\Gamma} \rightarrow S^{3}$. Then

$$
\int_{M_{\Gamma}} H d \sigma=\frac{c}{4}\left\{K\left(\gamma_{1}\right) K\left(\gamma_{2}\right)+L\left(\gamma_{1}\right) L\left(\gamma_{2}\right)\right\}, \quad c= \begin{cases}1 & \text { if } I(\Gamma)=(0,0), \\ 2 & \text { if } I(\Gamma) \neq(0,0),\end{cases}
$$

where d σ denotes the volume element of the flat torus M_{Γ}.
Proof. Let $l_{i}>0$ be the minimum period of γ_{i}, and let ξ_{1} and ξ_{2} denote the generators of the lattice $G(\Gamma)$ given by (4.4). We consider the domain

$$
D=\left\{x \xi_{1}+y \xi_{2}: 0 \leq x \leq 1,0 \leq y \leq 1\right\} \subset \boldsymbol{R}^{2} .
$$

Since D is a fundamental domain of $G(\Gamma)$, it follows from (3.8) and (3.10) that

$$
\begin{aligned}
\int_{M_{\Gamma}} H d \sigma & =\int_{D} \cos \left(\alpha_{2}\left(s_{2}\right)-\alpha_{1}\left(s_{1}\right)\right) d s_{1} d s_{2} \\
& =c \int_{0}^{l_{2}} d s_{2} \int_{0}^{l_{1}} \cos \left(\alpha_{2}\left(s_{2}\right)-\alpha_{1}\left(s_{1}\right)\right) d s_{1}
\end{aligned}
$$

where the second equality follows from the fact that the function $\alpha_{i}(s)$ is l_{i}-periodic. On the other hand (3.7) implies

$$
\left.\cos \left(\alpha_{2}\left(s_{2}\right)-\alpha_{1}\left(s_{1}\right)\right)=\frac{1}{4}\left(k_{1}\left(s_{1}\right) k_{2}\left(s_{2}\right)+1\right)\left|\gamma_{1}^{\prime}\left(s_{1}\right)\right| \gamma_{2}^{\prime}\left(s_{2}\right) \right\rvert\, .
$$

This completes the proof.

6. Proof of Theorem 1.2.

Lemma 6.1. Let $f: M \rightarrow S^{3}$ be a primitive isometric immersion of a flat torus M, and let $\pi: \bar{M} \rightarrow M$ be a Riemannian covering. If $\rho: \bar{M} \rightarrow \bar{M}$ is a diffeomorphism satisfying the relation $f \circ \pi \circ \rho=f \circ \pi$, then $\pi \circ \rho=\pi$.

Proof. Since \bar{M} is a complete connected flat surface and $f \circ \pi: \bar{M} \rightarrow S^{3}$ is an isometric immersion, it follows from [5] that there exists a covering $T: \boldsymbol{R}^{2} \rightarrow \bar{M}$ such that

$$
\bar{g}\left(\frac{\partial T}{\partial s_{i}}, \frac{\partial T}{\partial s_{i}}\right)=1, \quad \bar{h}\left(\frac{\partial T}{\partial s_{i}}, \frac{\partial T}{\partial s_{i}}\right)=0 \quad \text { for } i=1,2,
$$

where \bar{g} denotes the Riemannian metric on \bar{M}, and \bar{h} denotes the second fundamental form of the immersion $f \circ \pi: \bar{M} \rightarrow S^{3}$. Note that the immersion $F=f \circ \pi \circ T$ is a FAT.

Since T is a universal covering, there exist $\bar{\rho} \in \operatorname{Diff}\left(\boldsymbol{R}^{2}\right)$ such that $T \circ \bar{\rho}=\rho \circ T$. Using the relation $f \circ \pi \circ \rho=f \circ \pi$, we obtain $F \circ \bar{\rho}=F$, and so it follows from [1, Theorem $2.3]$ that $\bar{\rho}$ is a parallel translation of \boldsymbol{R}^{2}. Let ϕ be a covering transformation of π. We take $\bar{\phi} \in \operatorname{Diff}\left(\boldsymbol{R}^{2}\right)$ such that $T \circ \bar{\phi}=\phi \circ T$. Since $\pi \circ \phi=\pi$, in the same way as above, we see that $\bar{\phi}$ is a parallel translation of \boldsymbol{R}^{2}. Hence $\bar{\rho} \circ \bar{\phi}=\bar{\phi} \circ \bar{\rho}$, and so we obtain

$$
\begin{equation*}
\rho \circ \phi=\phi \circ \rho . \tag{6.1}
\end{equation*}
$$

Since the covering π is regular, it follows from (6.1) that there exists a diffeomorphism ρ^{\prime} : $M \rightarrow M$ such that $\pi \circ \rho=\rho^{\prime} \circ \pi$. Then

$$
f \circ \rho^{\prime} \circ \pi=f \circ \pi \circ \rho=f \circ \pi
$$

Hence $f \circ \rho^{\prime}=f$. Since the immersion f is primitive, we see that $\rho^{\prime}=1$, and so $\pi \circ \rho=\pi$.

Lemma 6.2. Let f_{1} and f_{2} be primitive isometric immersions of a flat torus M into S^{3}, and let $\pi: \bar{M} \rightarrow M$ be a Riemannian covering. If $f_{1} \circ \pi \equiv f_{2} \circ \pi$, then $f_{1} \equiv f_{2}$.

Proof. Since $f_{1} \circ \pi \equiv f_{2} \circ \pi$, there exist an isometry A of S^{3} and a diffeomorphism ρ of \bar{M} such that $A \circ f_{1} \circ \pi=f_{2} \circ \pi \circ \rho$. We now denote by $G(\pi)$ the covering transformation group of π. Then, for each $\phi \in G(\pi)$, we obtain

$$
f_{2} \circ \pi \circ \rho \circ \phi \circ \rho^{-1}=A \circ f_{1} \circ \pi \circ \phi \circ \rho^{-1}=A \circ f_{1} \circ \pi \circ \rho^{-1}=f_{2} \circ \pi
$$

So it follows from Lemma 6.1 that $\pi \circ \rho \circ \phi \circ \rho^{-1}=\pi$. Hence

$$
\begin{equation*}
\rho \circ \phi \circ \rho^{-1} \in G(\pi) \text { for all } \phi \in G(\pi) . \tag{6.2}
\end{equation*}
$$

Since the covering π is regular, it follows from (6.2) that there exists a diffeomorphism ρ^{\prime} : $M \rightarrow M$ satisfying the relation $\pi \circ \rho=\rho^{\prime} \circ \pi$. Then

$$
A \circ f_{1} \circ \pi=f_{2} \circ \pi \circ \rho=f_{2} \circ \rho^{\prime} \circ \pi
$$

Hence $A \circ f_{1}=f_{2} \circ \rho^{\prime}$, and so $f_{1} \equiv f_{2}$.
By Lemma 6.2 it is easy to see that Theorem 1.2 follows from the following theorem.
THEOREM 6.3. If $f: M \rightarrow S^{3}$ is a primitive isometric immersion of a flat torus M into S^{3} with nonconstant mean curvature, then there exists a smooth one-parameter family of primitive isometric immersions $f_{t}: M \rightarrow S^{3}, t \in \boldsymbol{R}$, such that $f_{0}=f$ and $f_{t} \not \equiv f_{s}$ for all $s \neq t$. Furthermore the total mean curvature of the immersion f_{t} is equal to that of f_{0} for all $t \in \boldsymbol{R}$.

Proof. By Theorem 3.1 there exists a periodic admissible pair $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ such that $f \equiv f_{\Gamma}$. So we may assume that $f=f_{\Gamma}$ and $M=M_{\Gamma}$. Since the mean curvature of f_{Γ} is not constant, it follows from Theorem 3.2 that either $k_{1}(s)$ or $k_{2}(s)$ is not constant, where $k_{i}(s)$ denotes the geodesic curvature of $\gamma_{i}(s)$. Without loss of generality, we may assume that $k_{1}(s)$ is not constant.

We now use the following theorem which will be proved in Section 7.
THEOREM 6.4. Let $\gamma: \boldsymbol{R} \rightarrow S^{2}$ be a periodic regular curve whose geodesic curvature $k(s)$ satisfies $\left|\gamma^{\prime}(s)\right| \sqrt{1+k(s)^{2}}=2$. If $k(s)$ is not constant, then there exist a smooth even function $\beta: \boldsymbol{R} \rightarrow \boldsymbol{R}$ and a smooth one-parameter family of periodic regular curves $\gamma_{t}: \boldsymbol{R} \rightarrow$ $S^{2},-\varepsilon<t<\varepsilon$, such that $\gamma_{0}(s)=\gamma(s)$ and
(1) $\left|\gamma_{t}^{\prime}(s)\right| \sqrt{1+k_{t}(s)^{2}}=2$,
(2) $K\left(\gamma_{t}\right)=K(\gamma), L\left(\gamma_{t}\right)=L(\gamma), E_{\beta}\left(\gamma_{t}\right)=E_{\beta}(\gamma)+t$,
(3) $I\left(\gamma_{t}\right)=I(\gamma)$,
where $k_{t}(s)$ denotes the geodesic curvature of $\gamma_{t}(s)$.
So there exist a smooth even function β and a smooth one-parameter family of periodic regular curves $\gamma_{1}^{t}: \boldsymbol{R} \rightarrow S^{2}, t \in \boldsymbol{R}$, such that $\gamma_{1}^{0}(s)=\gamma_{1}(s)$ and

$$
\begin{equation*}
\Gamma_{t}=\left(\gamma_{1}^{t}, \gamma_{2}\right) \text { is a periodic admissible pair, } \tag{6.3}
\end{equation*}
$$

$$
\begin{equation*}
K\left(\gamma_{1}^{t}\right)=K\left(\gamma_{1}\right), \quad L\left(\gamma_{1}^{t}\right)=L\left(\gamma_{1}\right), \quad I\left(\gamma_{1}^{t}\right)=I\left(\gamma_{1}\right) \tag{6.4}
\end{equation*}
$$

$$
\begin{equation*}
E_{\beta}\left(\gamma_{1}^{s}\right) \neq E_{\beta}\left(\gamma_{1}^{t}\right) \quad \text { for all } \quad s \neq t \tag{6.5}
\end{equation*}
$$

By (6.3) we obtain the flat torus $M_{\Gamma_{t}}$ and the primitive isometric immersion $f_{\Gamma_{t}}: M_{\Gamma_{t}} \rightarrow S^{3}$. For each Γ_{t}, define $\Phi_{\Gamma_{t}}: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ in the same way as (4.3). Then it follows from Theorem 4.1 that the map $\Phi_{\Gamma_{t}}$ induces the isometry $\phi_{t}: M_{\Gamma_{t}} \rightarrow\left(\boldsymbol{R}^{2}, g_{0}\right) / W\left(\Gamma_{t}\right)$. On the other hand, (6.4) implies that $W\left(\Gamma_{t}\right)=W(\Gamma)$. So we obtain the primitive isometric immersion $f_{t}: M \rightarrow S^{3}$ defined by

$$
f_{t}=f_{\Gamma_{t}} \circ \phi_{t}^{-1} \circ \phi_{0} .
$$

We now show that the family $f_{t}, t \in \boldsymbol{R}$, satisfies the properties required in Theorem 6.3. Since $\Gamma_{0}=\Gamma$, we obtain $f_{0}=f_{\Gamma}=f$. By (6.5) it follows from Theorem 5.1 that $f_{\Gamma_{s}} \neq f_{\Gamma_{t}}$ for all $s \neq t$, and so

$$
f_{s} \not \equiv f_{t} \quad \text { for all } \quad s \neq t
$$

Let H_{t} denote the mean curvature of the immersion f_{t}. Since $f_{t} \equiv f_{\Gamma_{t}}$, it follows from (6.4) and Theorem 5.3 that

$$
\int_{M} H_{t} d \sigma=\int_{M} H_{0} d \sigma \quad \text { for all } \quad t \in \boldsymbol{R},
$$

where $d \sigma$ denotes the volume element of the flat torus M. To establish the property that the map $(t, x) \mapsto f_{t}(x)$ is smooth, we consider the maps $Q_{1}: \boldsymbol{R} \times \boldsymbol{R}^{2} / W(\Gamma) \rightarrow S^{3}$ and $Q_{2}: \boldsymbol{R} \times \boldsymbol{R}^{2} \rightarrow \boldsymbol{R} \times \boldsymbol{R}^{2} / W(\Gamma)$ defined by

$$
Q_{1}(t, p)=f_{\Gamma_{t}}\left(\phi_{t}^{-1}(p)\right), \quad Q_{2}\left(t, x_{1}, x_{2}\right)=\left(t, \pi\left(x_{1}, x_{2}\right)\right),
$$

where π denotes the canonical projection of \boldsymbol{R}^{2} onto $\boldsymbol{R}^{2} / W(\Gamma)$. Note that the map Q_{2} is a local diffeomorphism. Furthermore we define the diffeomorphism $Q_{3}: \boldsymbol{R} \times \boldsymbol{R}^{2} \rightarrow \boldsymbol{R} \times \boldsymbol{R}^{2}$ by

$$
Q_{3}\left(t, s_{1}, s_{2}\right)=\left(t, \Phi_{\Gamma_{t}}\left(s_{1}, s_{2}\right)\right)
$$

Then it follows that

$$
Q_{1}\left(Q_{2}\left(Q_{3}\left(t, s_{1}, s_{2}\right)\right)\right)=F_{\Gamma_{t}}\left(s_{1}, s_{2}\right)
$$

and so the map $Q_{1} \circ Q_{2} \circ Q_{3}: \boldsymbol{R} \times \boldsymbol{R}^{2} \rightarrow S^{3}$ is smooth. Since the map $Q_{2} \circ Q_{3}$ is a local diffeomorphism, we see that the map Q_{1} is smooth. Hence the map $(t, x) \mapsto f_{t}(x)$ is smooth. This completes the proof of Theorem 6.3.
7. Deformations of periodic regular curves in S^{2}. The aim of this section is to prove Theorem 6.4. We first prove the following lemma.

Lemma 7.1. Let U be an open subset of \boldsymbol{R}^{n} which contains the origin $o \in \boldsymbol{R}^{n}$. Let $f: U \times \boldsymbol{R} \rightarrow \boldsymbol{R}^{m}$ be a continuous map such that $f_{x}: \boldsymbol{R} \rightarrow \boldsymbol{R}^{m}$ is nonconstant and periodic for all $x \in U$, where $f_{x}(s)=f(x, s)$. Suppose that there exists a continuous positive function $l: U \rightarrow \boldsymbol{R}^{+}$satisfying
(1) $f_{x}(s+l(x))=f_{x}(s)$ for all $(x, s) \in U \times \boldsymbol{R}$,
(2) $l(o)$ is the minimum period of $f_{o}(s)$.

Then there exists an open neighborhood U^{\prime} of the origin o in U such that the minimum period of $f_{x}(s)$ is equal to $l(x)$ for all $x \in U^{\prime}$.

Proof. For each $x \in U$, let $\bar{l}(x)>0$ be the minimum period of $f_{x}(s)$, and let $q(x)=$ $l(x) / \bar{l}(x)$. Note that $q(x)$ is a positive integer. Now assume that the assertion of the lemma is not true. Then there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in U such that $q\left(x_{n}\right) \geq 2$ and $\lim _{n \rightarrow \infty} x_{n}=o$. We first consider the case where the sequence $q\left(x_{n}\right)$ is bounded. Then we may assume that there exists an integer $p \geq 2$ such that $q\left(x_{n}\right)=p$ for all n. Hence

$$
f_{x_{n}}(s)=f_{x_{n}}\left(s+\bar{l}\left(x_{n}\right)\right)=f_{x_{n}}\left(s+l\left(x_{n}\right) / p\right)
$$

Letting n tend to infinity, we have $f_{o}(s)=f_{o}(s+l(o) / p)$. So the minimum period of $f_{o}(s)$ is smaller than $l(o)$. This is a contradiction.

Now consider the other case. Then we may assume that $\lim _{n \rightarrow \infty} q\left(x_{n}\right)=\infty$. For each $s \in \boldsymbol{R}$, let s_{n} be the real number such that $\left(s_{n}-s\right) / \bar{l}\left(x_{n}\right)$ is an integer and

$$
0 \leq s_{n}<\bar{l}\left(x_{n}\right) .
$$

Then $f_{x_{n}}(s)=f_{x_{n}}\left(s_{n}\right)$ and $0 \leq s_{n}<l\left(x_{n}\right) / q\left(x_{n}\right)$. Letting n tend to infinity, we have $f_{o}(s)=f_{o}(0)$, which shows that $f_{o}(s)$ is constant. This is a contradiction.

Lemma 7.2. Let $\gamma: \boldsymbol{R} \rightarrow S^{2}$ be a periodic regular curve parametrized by arclength, and let $l>0$ be the minimum period of $\gamma(s)$. If the geodesic curvature of $\gamma(s)$ is not constant, then there exist a smooth even function $\beta: \boldsymbol{R} \rightarrow \boldsymbol{R}$ and a smooth one-parameter family of periodic regular curves $\gamma_{t}: \boldsymbol{R} \rightarrow S^{2},-\varepsilon<t<\varepsilon$, such that
(1) $\gamma_{0}(s)=\gamma(s)$,
(2) the minimum period of $\gamma_{t}(s)$ is equal to l,
(3) $K\left(\gamma_{t}\right)=K(\gamma), L\left(\gamma_{t}\right)=L(\gamma), E_{\beta}\left(\gamma_{t}\right)=E_{\beta}(\gamma)+t$.

Proof. Let $k(s)$ be the geodesic curvature of $\gamma(s)$, and let $\tau(s)=\tau_{\gamma}(s)$. Since $\left|\gamma^{\prime}(s)\right|=1$, it follows from (5.2) that

$$
\begin{equation*}
\tau(s)=2 k^{\prime}(s)\left(1+k(s)^{2}\right)^{-3 / 2} \tag{7.1}
\end{equation*}
$$

Since $\tau=2\left(k / \sqrt{1+k^{2}}\right)^{\prime}$ and $k(l)=k(0)$, we obtain

$$
\int_{0}^{l} \tau(s) d s=0
$$

If $\tau(s)$ is constant, then $\tau(s)=0$, and so $k^{\prime}(s)=0$. This contradicts the assumption that the geodesic curvature of $\gamma(s)$ is not constant. Hence $\tau(s)$ is not constant. So there exists a real number s_{0} such that

$$
\begin{equation*}
\tau\left(s_{0}\right) \neq 0, \quad \tau^{\prime}\left(s_{0}\right) \neq 0 \tag{7.2}
\end{equation*}
$$

We now choose a smooth even function $\beta: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that

$$
\beta^{(i)}\left(\tau\left(s_{0}\right)\right)= \begin{cases}0 & \text { if } 0 \leq i \leq 5, \tag{7.3}\\ \text { nonzero } & \text { if } i=6\end{cases}
$$

where $\beta^{(i)}$ denotes the i-th derivative of the function β.
Let $f_{1}(s), f_{2}(s)$ and $f_{3}(s)$ be l-periodic smooth functions which will be specified later. For each $x=\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{R}^{3}$, define $p_{x}: \boldsymbol{R} \rightarrow S^{2}$ by

$$
p_{x}(s)=\cos \left(\sum_{i=1}^{3} f_{i}(s) x_{i}\right) \gamma(s)+\sin \left(\sum_{i=1}^{3} f_{i}(s) x_{i}\right) v(s), \quad \nu(s)=J\left(\gamma^{\prime}(s)\right),
$$

where J denotes the almost complex structure given by (2.5). Let $B_{\delta}(o)$ denote the δ neighborhood of the origin $o \in \boldsymbol{R}^{3}$. Since $p_{o}(s)=\gamma(s)$ and $p_{x}(s+l)=p_{x}(s)$, there exists a positive number δ such that for each $x \in B_{\delta}(o)$ the map $p_{x}: \boldsymbol{R} \rightarrow S^{2}$ is a periodic regular curve. By Lemma 7.1 we may assume that the minimum period of $p_{x}(s)$ is equal to l for all $x \in B_{\delta}(o)$. So we obtain

$$
L\left(p_{x}\right)=\int_{0}^{l}\left|p_{x}^{\prime}(s)\right| d s, \quad K\left(p_{x}\right)=\int_{0}^{l} k_{x}(s)\left|p_{x}^{\prime}(s)\right| d s \quad \text { for } \quad x \in B_{\delta}(o)
$$

where $k_{x}(s)$ denotes the geodesic curvature of $p_{x}(s)$. Furthermore

$$
E_{\beta}\left(p_{x}\right)=\frac{1}{2} \int_{0}^{l} \beta\left(\tau_{x}(s)\right) \sqrt{1+k_{x}(s)^{2}}\left|p_{x}^{\prime}(s)\right| d s \quad \text { for } \quad x \in B_{\delta}(o)
$$

where $\tau_{x}(s)=2 k_{x}^{\prime}(s)\left(1+k_{x}(s)^{2}\right)^{-3 / 2}\left|p_{x}^{\prime}(s)\right|^{-1}$. Therefore we obtain the smooth map F : $B_{\delta}(o) \rightarrow R^{3}$ defined by

$$
F(x)=\left(K\left(p_{x}\right), L\left(p_{x}\right), E_{\beta}\left(p_{x}\right)\right)
$$

We now show that for a suitable choice of the functions $f_{j}(s)$, the Jacobi matrix of F is non-singular at the origin o. By a straightforward calculation we obtain

$$
\begin{equation*}
\left.\frac{\partial}{\partial x_{j}} L\left(p_{x}\right)\right|_{x=o}=-\int_{0}^{l} k(s) f_{j}(s) d s \tag{7.4}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{\partial}{\partial x_{j}} E_{\beta}\left(p_{x}\right)\right|_{x=o}=\int_{0}^{l} \sum_{i=1}^{3} a_{i}(s) f_{j}^{(i)}(s) d s \tag{7.6}
\end{equation*}
$$

where $f_{j}^{(i)}(s)$ denote the i-th derivatives of the functions $f_{j}(s)$, and the functions $a_{i}(s)$ are given by

$$
\begin{equation*}
a_{1}=\beta^{\prime}(\tau), \quad a_{2}=\frac{k}{2 \sqrt{1+k^{2}}} \beta(\tau)-\frac{3 k k^{\prime}}{\left(1+k^{2}\right)^{2}} \beta^{\prime}(\tau), \quad a_{3}=\frac{1}{1+k^{2}} \beta^{\prime}(\tau) \tag{7.7}
\end{equation*}
$$

Since the functions $a_{i}(s)$ and $f_{j}(s)$ are l-periodic, it follows from integration by parts that

$$
\begin{equation*}
\left.\frac{\partial}{\partial x_{j}} E_{\beta}\left(p_{x}\right)\right|_{x=o}=\int_{0}^{l} u_{\beta}(s) f_{j}(s) d s \tag{7.8}
\end{equation*}
$$

where $u_{\beta}(s)=\sum_{i=1}^{3}(-1)^{i} a_{i}^{(i)}(s)$.
We now specify the functions $f_{j}(s)$ as follows:

$$
f_{1}(s)=1, \quad f_{2}(s)=-k(s), \quad f_{3}(s)=u_{\beta}(s)
$$

Then it follows from (7.4), (7.5) and (7.8) that the Jacobi matrix of F at the origin o is given by

$$
F^{\prime}(o)=\left[c_{i j}\right], \quad c_{i j}=\int_{0}^{l} f_{i}(s) f_{j}(s) d s
$$

By using (7.7), the function $u_{\beta}(s)$ can be written as $u_{\beta}(s)=\sum_{i=0}^{4} b_{i}(s) \beta^{(i)}(\tau(s))$. Since $b_{4}(s)=\tau^{\prime}(s)^{3} /\left(1+k(s)^{2}\right)$, it follows from (7.2) and (7.3) that

$$
u_{\beta}^{\prime}\left(s_{0}\right)=0, \quad u_{\beta}^{\prime \prime}\left(s_{0}\right) \neq 0
$$

On the other hand, (7.1) and (7.2) imply $k^{\prime}\left(s_{0}\right) \neq 0$. Hence

$$
\operatorname{det}\left[\begin{array}{ccc}
f_{1}\left(s_{0}\right) & f_{2}\left(s_{0}\right) & f_{3}\left(s_{0}\right) \tag{7.9}\\
f_{1}^{\prime}\left(s_{0}\right) & f_{2}^{\prime}\left(s_{0}\right) & f_{3}^{\prime}\left(s_{0}\right) \\
f_{1}^{\prime \prime}\left(s_{0}\right) & f_{2}^{\prime \prime}\left(s_{0}\right) & f_{3}^{\prime \prime}\left(s_{0}\right)
\end{array}\right]=-\operatorname{det}\left[\begin{array}{ccc}
1 & k\left(s_{0}\right) & u_{\beta}\left(s_{0}\right) \\
0 & k^{\prime}\left(s_{0}\right) & u_{\beta}^{\prime}\left(s_{0}\right) \\
0 & k^{\prime \prime}\left(s_{0}\right) & u_{\beta}^{\prime \prime}\left(s_{0}\right)
\end{array}\right] \neq 0 .
$$

Let $\xi_{1}, \xi_{2}, \xi_{3}$ be real numbers satisfying the following relation.

$$
\sum_{j=1}^{3} c_{i j} \xi_{j}=0 \quad \text { for } \quad i=1,2,3
$$

Since $\sum_{i, j=1}^{3} c_{i j} \xi_{i} \xi_{j}=0$, we obtain

$$
\int_{0}^{l}\left|\sum_{i=1}^{3} \xi_{i} f_{i}(s)\right|^{2} d s=0
$$

Hence $\sum_{i=1}^{3} \xi_{i} f_{i}(s)=0$ for all $s \in \boldsymbol{R}$, and so

$$
\sum_{i=1}^{3} \xi_{i} f_{i}\left(s_{0}\right)=\sum_{i=1}^{3} \xi_{i} f_{i}^{\prime}\left(s_{0}\right)=\sum_{i=1}^{3} \xi_{i} f_{i}^{\prime \prime}\left(s_{0}\right)=0
$$

Therefore it follows from (7.9) that $\xi_{1}=\xi_{2}=\xi_{3}=0$. This implies that the matrix $F^{\prime}(o)$ is non-singular.

Using the inverse function theorem, we see that there exists a positive number ε such that the map $F: B_{\delta}(o) \rightarrow \boldsymbol{R}^{3}$ carries a neighborhood of the origin o diffeomorphically onto the ε-neighborhood of $F(o) \in \boldsymbol{R}^{3}$. Since $F(o)=\left(K(\gamma), L(\gamma), E_{\beta}(\gamma)\right)$, we obtain a smooth curve $x:(-\varepsilon, \varepsilon) \rightarrow B_{\delta}(o)$ such that

$$
F(x(t))=\left(K(\gamma), L(\gamma), E_{\beta}(\gamma)+t\right), \quad x(0)=o .
$$

Then the smooth one-parameter family of the periodic regular curves $\gamma_{t}(s)=p_{x(t)}(s)$ satisfies the required properties (1)-(3).

Proof of Theorem 6.4. Let $\theta: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be the diffeomorphism given by

$$
\theta(s)=\int_{0}^{s}\left|\gamma^{\prime}(x)\right| d x
$$

and let $\bar{\gamma}: \boldsymbol{R} \rightarrow S^{2}$ be the curve defined by $\bar{\gamma}(\theta(s))=\gamma(s)$. Then $\bar{\gamma}$ is a regular curve parametrized by arclength, and its geodesic curvature \bar{k} satisfies $\bar{k}(\theta(s))=k(s)$. Since $\left|\gamma^{\prime}(s)\right| \sqrt{1+k(s)^{2}}=2$, we obtain

$$
s=\frac{1}{2} \int_{0}^{\theta(s)} \sqrt{1+\bar{k}(x)^{2}} d x
$$

So it follows that γ is m-periodic if and only if $\bar{\gamma}$ is $\theta(m)$-periodic. Hence the minimum period of $\bar{\gamma}$ is equal to $\theta(l)$, where l denotes the minimum period of γ. Since \bar{k} is not constant, Lemma 7.2 implies that there exist a smooth even function β and a smooth one-parameter family of periodic regular curves $\bar{\gamma}_{t}: \boldsymbol{R} \rightarrow S^{2},-\varepsilon<t<\varepsilon$, such that

$$
\begin{equation*}
\bar{\gamma}_{0}=\bar{\gamma}, \quad K\left(\bar{\gamma}_{t}\right)=K(\bar{\gamma}), \quad L\left(\bar{\gamma}_{t}\right)=L(\bar{\gamma}), \quad E_{\beta}\left(\bar{\gamma}_{t}\right)=E_{\beta}(\bar{\gamma})+t, \tag{7.10}
\end{equation*}
$$ and the minimum period of $\bar{\gamma}_{t}$ is equal to $\theta(l)$.

We now consider the smooth one-parameter family of the diffeomorphisms $\theta_{t}: \boldsymbol{R} \rightarrow \boldsymbol{R}$, $-\varepsilon<t<\varepsilon$, defined by the following relation:

$$
\begin{equation*}
s=\frac{1}{2} \int_{0}^{\theta_{t}(s)}\left|\bar{\gamma}_{t}^{\prime}(x)\right| \sqrt{1+\bar{k}_{t}(x)^{2}} d x \tag{7.11}
\end{equation*}
$$

where \bar{k}_{t} denotes the geodesic curvature of $\bar{\gamma}_{t}$. Furthermore we consider the smooth oneparameter family of regular curves $\gamma_{t}: \boldsymbol{R} \rightarrow S^{2},-\varepsilon<t<\varepsilon$ given by

$$
\gamma_{t}(s)=\bar{\gamma}_{t}\left(\theta_{t}(s)\right) .
$$

Since $\bar{\gamma}_{0}=\bar{\gamma}$ and $\left|\bar{\gamma}^{\prime}\right|=1$, we obtain $\theta_{0}(s)=\theta(s)$ and so $\gamma_{0}(s)=\gamma(s)$. We set

$$
l_{t}=\frac{1}{2} \int_{0}^{\theta(l)}\left|\bar{\gamma}_{t}^{\prime}(x)\right| \sqrt{1+\bar{k}_{t}(x)^{2}} d x
$$

Then it follows that $\theta_{t}\left(l_{t}\right)=\theta(l)$ and $l_{0}=l$. Since $\bar{\gamma}_{t}$ is $\theta(l)$-periodic, we obtain $\theta_{t}\left(s+l_{t}\right)=$ $\theta_{t}(s)+\theta(l)$. Hence

$$
\begin{equation*}
\gamma_{t}\left(s+l_{t}\right)=\gamma_{t}(s) . \tag{7.12}
\end{equation*}
$$

We now show that the family $\gamma_{t},-\varepsilon<t<\varepsilon$, satisfies the properties (1)-(3) required in Theorem 6.4. Let $k_{t}(s)$ denote the geodesic curvature of $\gamma_{t}(s)$. Then it follows that $k_{t}(s)=$ $\bar{k}_{t}\left(\theta_{t}(s)\right)$, and so (7.11) implies

$$
\left|\gamma_{t}^{\prime}(s)\right| \sqrt{1+k_{t}(s)^{2}}=2 .
$$

Since $l_{0}=l$ and $\gamma_{0}(s)=\gamma(s)$, the minimum period of $\gamma_{0}(s)$ is equal to l_{0}. Hence, using (7.12) and Lemma 7.1, we may assume that the minimum period of $\gamma_{t}(s)$ is equal to l_{t} for $-\varepsilon<t<\varepsilon$. So we obtain

$$
L\left(\gamma_{t}\right)=\int_{0}^{l_{t}}\left|\gamma_{t}^{\prime}(s)\right| d s=\int_{0}^{l_{t}}\left|\bar{\gamma}_{t}^{\prime}\left(\theta_{t}(s)\right)\right| \theta_{t}^{\prime}(s) d s=\int_{0}^{\theta(l)}\left|\bar{\gamma}_{t}^{\prime}(x)\right| d x=L\left(\bar{\gamma}_{t}\right),
$$

where the third equality follows from the relation $\theta_{t}\left(l_{t}\right)=\theta(l)$. Similarly we obtain $K\left(\gamma_{t}\right)=$ $K\left(\bar{\gamma}_{t}\right)$ and $E_{\beta}\left(\gamma_{t}\right)=E_{\beta}\left(\bar{\gamma}_{t}\right)$. Hence (7.10) implies that

$$
K\left(\gamma_{t}\right)=K\left(\gamma_{0}\right), \quad L\left(\gamma_{t}\right)=L\left(\gamma_{0}\right), \quad E_{\beta}\left(\gamma_{t}\right)=E_{\beta}\left(\gamma_{0}\right)+t .
$$

Since l_{t} is continuous in t, the closed curves $\hat{\gamma}_{0} \mid\left[0, l_{0}\right]$ and $\hat{\gamma}_{t} \mid\left[0, l_{t}\right]$ represent the same homology class in $H_{1}\left(U S^{2}\right)$. Hence

$$
I\left(\gamma_{t}\right)=I\left(\gamma_{0}\right)
$$

This completes the proof of Theorem 6.4.

References

[1] Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S^{3}, J. Math. Soc. Japan 40 (1988), 457-476.
[2] Y. Kitagawa, Rigidity of the Clifford tori in S^{3}, Math. Z. 198 (1988), 591-599.
[3] Y. Kitagawa, Embedded flat tori in the unit 3-sphere, J. Math. Soc. Japan 47 (1995), 275-296.
[4] Y. Kitagawa, Deformable flat tori in S^{3} with constant mean curvature, preprint.
[5] J. D. Moore, Isometric immersions of space forms in space forms, Pacific J. Math. 40 (1972), 157-166.

Department of Mathematics

UTSUNOMIYA UNIVERSITY
UTSUNOMIYA 321-8505
JAPAN
E-mail address: kitagawa@cc.utsunomiya-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 53C42.
 Partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

