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Abstract. We shall give a saturation class for approximations by eigenfunction expan-
sions of the Laplacian in an open domain in the Euclidean space.

1. Introduction. Let Ω be an open domain in the n dimensional Euclidean space R n.

Consider the operator A = — Δ in L2(Ω) with the domain of definition D(A) = C™(Ω),

where Δ = d1 /dx\ + + 9 2 / 9 ^ is the Laplacian. Denote by A a nonnegative selfadjoint

extension of Λ. Let {kχ(t)} be a family of bounded piecewise smooth functions on [0, oo).

Suppose we have two constants κ\,K2 > 0 such that fcλ(θV* *2 £ L^O, oo),

(kλ(t) - l)/λ-KitK2 are uniformly bounded in λ and t e [0, oo), and (kλ(t) - l)/λ-KitK2

converge to a nonzero constant as λ —• oo for any t e [0, oo). Let
poopoo

h(r)= / h(t2)Jv(rt)tv+1dt,
Jo

where υ = n/2 — 2κ2 + 1 and Jv is the Bessel function of order v. We assume, furthermore,

the following conditions

(1.1)

(1.2)

and

(1.3)

Γ s2κ^xds I Γ

pOO

I rv+ιlλ(r)dr
JR

max
r 2V/2

as λ -> oo for any small R > 0.

We shall consider the approximation operator kχ(A) for / e L2(Ω). We say Δ/ 6

if for every compact set K in Ω there is a constant CK such that

\Lf(x)Ag(x)dx <CK\\9\\LHK)
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432 M. TANIGAKI

for any infinitely differentiable function g whose support is contained in K. Let {φε} be an

infinitely differentiable approximate identity with supports contained in {x\ \x\ < ε}. For a

function / on Ω and x e Ω, f is said to be regulated at x if / * φε(x) —• f(x) as ε -+ 0 + .

In 1970, Igari proved the following Theorem in [5].

THEOREM A. Suppose that there exist a complete orthonormal system {uj} of smooth

functions in L2(Ω) and a numerical sequence {λj}for which —AUJ = λjUj in Ω. Let

fj= ί f(x)u~(x)dx, feL2(Ω)
JΩ

and

λj<λ

Let 8 > (n + 3)/2 and f e L2(Ω) be regulated in Ω. Then the following hold.

(i) The following conditions are equivalent.

(ia)

λ Λ a

as λ —*• oo for every compact set K in Ω.

(ib) Δ/eL£(β).
(ii) The following conditions are equivalent.

(iia)

as λ —> oo for every compact set K in Ω.

(iib) Δ/ vanishes in Ω.

Our aim is to give a generalization of Theorem A. Let {kχ(t)} be a family of bounded

Borel functions on [0, oo). We can define the bounded operator kχ(A) in L2(Ω).

EXAMPLE 1. Suppose that there exist a complete orthonormal system {UJ} of smooth

functions in L2(Ω) and a sequence {λy } such that — AUJ = λjUj in Ω. Let

fj = f f(x)'u~Mdx , / G L2(Ω).
JΩ

Let A be the selfadjoint extension of — Δ defined by

D(A) = I / € L2(Ω); f>y

2|/y I2 < oo

and

7 = 1

2(For any / e L2(Ω) the spectral decomposition of / is given by

£((-00, f])/ =£/;«;
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and kχ(A) is defined by

oo

h(A)f = Σkλ(λj)fjUj , / e L2(Ω).

EXAMPLE 2. Let Ω = Rn. Let

f(ξ) = -TLTΓ f f(x)e-^xdx , / G L2(Rn).
V2π J/?«

In this case, there is a unique nonnegative selfadjoint extension A of — Δ defined by

D(A) = {/ G L 2 ( / Π ; l§| 2/(£) G L2(/T)}

and

A f(x) = -L^ f \ξ\2f(ξ)eiχ-ξdξ , / e D(A).
y/2τΐ JRn

Then the spectral decomposition of / G L2(Rn) is given by

1 ί ix ξ

V2πn J\ξ\2<t

and kχ(A) is defined by

kλ(A)f(x) = -Lj; ί h(\ξ\2)f\ξ)eiχ ϊdξ , / G L2(Rn).
V27Γ JRn

For ΛΓ2 > 0 and 1 < p < oo, we say (—A)K2f belongs to L^OC(Ω) if for every bounded

open set G in Ω with the closure G contained in Ω, there is a constant CG such that

f f(x)(-A)K2g(x)dx <CG\\g\\LpΊό)

JG

for any infinitely differentiable function g with support contained in G, where \/ p+\/ pf = 1.

Our results are stated as follows.

MAIN THEOREM. Let Ω be an open domain inRn and A be a nonnegative selfadjoint

extension of —A in Ω. Let {kχ(t)} be a family of bounded piecewise smooth functions on

[0, oo) and κuκ2 > 0 such that kλ(t)y/tn/2~2κ2^/2 e Lι(0, oo), XKH~K2[kk{t) - 1] are

uniformly bounded in λ and t G [0, oo), and λKιt~K2 [kχ (t) — 1] converge to a nonzero constant

as λ -> oofor any t G [0, oo).

Suppose that {kχ(t)} satisfies the conditions (1.1), (1.2) and (1.3) as λ -> oo. Letf be a

regulated function in L2(Ω). Furthermore, suppose that 1 < p < oo and f G L^0C(Ω). Then

the following hold.

(i) The following two conditions are equivalent.

(ia)

as λ —> oofor every compact set K in Ω.

(ib) (-Δ)**/€ I 4
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(ii) Let G C Ω be any open set.

(iia) Suppose that (—A)K2f vanishes in G. Then

\\h(A)f-f\\LP{K)=o(λ-κ')

as λ —> oo for any compact set K C G.

(ϋb) //

\\h(A)f-f\\LP(K)=o(λ-κ')

as λ -» σo for any compact set K C G, then (—A)K2f vanishes in G.

If 8 > (n + 3)/2 and jfcλ(r) = (1 - ί/λ2)^, then the conditions (1.1), (1.2) and (1.3) are

satisfied. Therefore we have the following:

COROLLARY 1. Let Ω be an open domain in Rn and Abe a nonnegative self adjoint

extension of— A in Ω. Let s\ = (1 — A/λ2)+ and 8 > (n + 3)/2. Let f be a regulated function

in L2(Ω). Suppose that 1 < p < oo and f e L^0C{Ω). Then the following hold.

(i) The following are equivalent.

(ia)

as λ —> σo for every compact set Kin Ω.

(ib) Δ/eLfoc(ί2).
(ii) Let G c Ω be any open set.

(iia) Suppose that Δ/ vanishes in G. Then

hlf ~ f\\LK(K) = O(λ~2)

as λ —>• oo for any compact set K C G.

(ϋb) //

\\4f - f\\L"(K) = O(λ-2)

as λ —> oofor any compact set K C G, then Δ/ vanishes in G.

Our main theorem follows from Theorem 1 in §2 and Theorem 2 in §3. Corollary 1 is

proved in §4.

The author is grateful to Professor Satoru Igari for his advice. The author also thanks the

referee and the editor for their careful reading.

2. Saturation of the approximation. Let Ω be an open domain in the n -dimensional

Euclidean space/?". Let

(2.1) A = Σ ^a(x)Da

\a\<m

be a differential operator, where a = (a\, α?2,... , an), \a\ = a\ + c*2 + + an, Da =

(-/) |α |(θ/ajci)αi . (d/dxn)
a" and aa e C°°(Ω). We consider A as an operator in L2(Ω)

with the domain of definition D(A) = C£°(Ω). Suppose that A is formally selfadjoint and
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semibounded. If A is a selfadjoint extension of A with the same lower bound c, then A can

be represented in the form of

/

oo

tE(dt).

Let {kχ(t)} be a family of bounded Borel functions on [c, oo), κ\, K2 > 0 and

Suppose that

(1) ψχ(t) are uniformly bounded in λ and t e [c, oo), and

(2) ψχ(t) converge to a nonzero constant C as λ -> oo for any t e [c, oo).

LEMMA 1. If f e L2(Ω) and g e D(AK*), then λ^ {kλ{A)f - /, g) -> C(f,AK2g)

as λ -> oo.

PROOF. By the definition of A:χ(A), we have

- f,g) = λ*' /kκι(kλ(λ)f - f,g) = λ*' / [*λ(f) - 1](£(Λ)/. 9)

/

oo

ψλ(t)tK2(f, E(dt)g) = {f,

= / Vα(O(/, £(Λ)AK25).
Jc

Let p = (/, E(-)AK2g) and |p | be the total variation of p. Then

pOO

/ | p | ( Λ ) < l l / l l L 2 ( Ω ) | | A ' f 2

5 | | L 2 ( β ) < o o .

Therefore, by Lebesgue's dominated convergence theorem, it follows that
POO

lim λκ'(kλ(A)f - f, g) = lim / ψk(t)p(dt)
λ—*OO λ-»OO Jc

/

OO /»00

lim ψλ{t)p{dt) = C / p(Λ) =
Thus Lemma 1 is proved.

Let G be an open subset in Ω with compact closure G and 1 < p < oo. We say

if

: = S UP < oo,

where l/p + l/pf = 1 and # is an infinitely differentiable function whose support is contained

inG.
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THEOREM 1. Let Ω be an open domain in Rn and A be a formally self adjoint semi-

bounded differential operator with coefficients in C°°{Ω) given by (2.1). Suppose that A is

a self adjoint extension of A with the same lower bound c. Let {kχ(t)} be a family of bounded

Borel functions on [c, σo) and κ\, K2 > 0 such that the sequence {ψλ(t)} of Borel functions

on [c, σo) given by (2.2) satisfies (1) and (2). Let f e L2(Ω), 1 < p < oo and G be any open

set in Ω with compact closure G. Then the following hold.

(i) //

as λ -* oo, then AK2f e LP(G).

(ϋ) //

as λ —> oo, then AKl f vanishes in G.

PROOF. Let g be an infinitely differentiable function and supp g be its support. Suppose

that supp g C G. Then by Lemma 1

(2.3) λκ'(kλ(A)f-fg)^C(fAK2g) as λ-> oo.

On the other hand, we have

(2.4) \λKι(kλ(A)f - f g)\ < λ"1 \\kλ(A)f - f\\LPφ)\\9\\L^φ)

If \\kλ(A)f - f\\LPφ) = 0(λ"*O as λ ̂  oo, then by (2.4) for any λ

W{kx(A)f-fg)\<Cr\\g\\LP^0)

with some constant C > 0. Therefore, by (2.3), we have

I J\χ)Ά Lg\x)ax — \\j,Λ g)\ ̂  c c \\9\\iPf(G)
J Ω

for any g. Thus (i) is proved.

If \\kχ(A)f — f\\LPφ) = o(λ~Kι) as λ —• oo, then in the same way as in (i), (ii) is

proved.

EXAMPLES. (1) Riesz summation: For K > 0 and 8 > 0, the Riesz summation is

given by the multiplier kλ(t) = [1 - (t/λ2)κ]δ+. In this case, (λ 2/t)κ [kχ(t) - 1] are uniformly

bounded in λ and t e [c, oo) with a constant c > 0 and

| ^ ^ , i n , ί ( , s ) s

for any t e [c, oo). Thus κ\ = 2/c, /Q = K and C = -8, where C is a constant in (2).

(2) Fejer-Korovkin summation is defined by

t \ πt 1 π πt 9

) + i λ 2

0
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In this case, (λ2/t)2[kχ(t) — 1] are uniformly bounded in λ and t e [c, oo) and

kχ(t) — 1 COS7ΓS — 1 t. cos2 πs — 1
lim -z—— = lim « =

) s2(cosπs + 1)
• 2 2

sin πs πΔ

= — lim —z =
S-++0 sz(cosπs + 1) 2

for any t e [c, oo). Thus κ\ = 4, κι = 2 and C = -7Γ2/2.

(3) Rogosinski summation is given by

Ί cos — - t < λ2 ,
A:λ(0 = { 2λ 2

( 0 t > λ2 .

In this case, (λ2/ί)2[&λ(O — 1] are uniformly bounded in λ and t e [c, oo) and

- • -' Λ - I c o s — s l Ί l ^ 2

for any t e [c, oo). Thus κ\ = 4, κι = 2 and C = —π2β.

(4) Jackson summation is given by

3 / ί \ 2 3

0 t > 2λ2 .

In this case, (λ2/t)2[kχ(t) — 1] are uniformly bounded in λ and ί 6 [c, oo) and

limλ^oo(λ2/02[A:λ(0 - 1] = -3/2. Thus κ\ = 4, K2 = 2 and C — -3/2.

(5) Gauss-Weierstrass summation: We consider the multiplier k™(t) = exp(—t/λ).

The function of t (λ/t)[kχ(t) — 1] is bounded uniformly in λ, and we have

hm : = lim = — hm e — — 1.

Thus κ\ = K2 = 1 and C = — 1. Poisson summation is given by the function kζ{t) =

exp(—Λ/Ί/X), and we have κ\ = 1 and /c2 = 1/2.

3. Estimates of kχ(A)f — f. The aim of this section is to prove the following theo-

rem.

THEOREM 2. Let Ω be an open domain in Rn and A be a nonnegative self adjoint

extension of —A in Ω. Suppose that K is a compact set in Ω and K' is a closed subset of

K with dist(^Γ/, Kc) > 0. Let {kχ(t)} be a family of bounded piecewise smooth functions on

[0, oo) such that kλ(t)^tn/2~2κ2^l/2 € L1 (0, oo) with a constant κ2 > 0 and kλ(0) = 1 for

any λ.
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Suppose that {kχ{t)} satisfies the conditions (1.1), (1.2) and (1.3) with a constant κ\ > 0

andO < R < άist(Kf, Kc). Let f be a regulated function in L2(Ω). Suppose that 1 < p < oo

and f e LP(K). Then the following hold.

(i) 7jf(-Δ)*2/ eLP(K),then

( ) as λ^oo.

(ii) // (- Δ)*2 / vanishes in K, then

\\h(A)f-f\\LP(KΊ=o(λ-^) as λ ^ σ o .

3.1 Generalized eigenfunction system. In order to prove Theorem 2, we shall use

the generalized eigenfunction system corresponding to an ordered representation of L2(Ω)

associated with the Laplace operator.

We shall begin with several definitions. We consider A = — Δ as an operator in L2(Ω)

with the domain of definition D(A) = C%°(Ω). Let A be a nonnegative selfadjoint extension

of A. Let 03 be the Borel field on R and E be the unique spectral measure corresponding to

A. For h € L2(Ω), we define the following closed subspace of L2(Ω):

HQi) : = {F(A)A; F is a Borel function on R and h e D(F(A))}

= {F(A)h; F e L2(R, <B, (E( )h, h))}.

If / e H(h), then we can write uniquely / = F(A)h, where F e L2(R, 93, (E( )h, A)) and

1/2

\F(t)\2(E(dt)h ,h)\ .

Therefore we can define an isomorphism Uh from H(h) onto L2(R, 03, (E( )h, h)) by

Uhf := F, which preserves inner products.

There exist a sequence of functions {hj} c L2(Ω) and a sequence of sets {ej} C 03,

called the set of multiplicity, with the following properties (see [3, XΠ.3.16] or [4, Chap.

14]):

(I)

j
2(That is, H{hj) are mutually orthogonal and span L2(Ω).

(II) R = e\ 2 έ?2 2

(Ill) (E(e)hj, hj) = (E(e Π ej)huhx) for any e € 03.
By (I), for / e L2(Ω) we can write uniquely

where Fj eL2(R, 03, (£( )Ay , Ay)) and

( \ \\f\\ <oc.(ΣfR \Fj(t)\2mdt)hj,hj)J = (T\\Fj(A)hj\\2

L2(Ω)\ = \\f\\L2(Ω)
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Therefore we can define an isometry U from L2{Ω) onto φ L2(R, 03, (E( )hj, hj)), which

is equivalent to say

L2(Ω) ί 2 V - Γ 2 1
\{Fj}; Fj e L 2 ( / ? , 0 3 , (E(-)hj, hi))and > / \Fj(t)\z(E(dt)h f, h ) < oo\ ,

I J
 JR J

and the correspondence is given by Uf := {Fj}. We denote Fj =: (Uf)j.

By (III) we have

y y

Let p := (E(-)h\, h\). Then U is an isomorphism from L2(Ω) onto φ ; L
2(βj, p) which

preserves inner products, that is, for any /, g e L2(Ω) it holds that

(3.1) (/, g)Li{Ω) = Σ l (Uf)j(t)(Ug)j(t)p(dt).
y JeJ

U is called an ordered representation of L2(Ω) with respect to A.

With these understood, there exists a sequence of functions {uj(x,t)} defined on the

product space of Ω x R such that the following conditions are satisfied (see [3, XII.3 and

XIV.6] or [4, Chap. 15]):

(i) The functions UJ(X, t) are dx x dp(t)-measurable and vanish outside Ω x ej,

where dx is the Lebesgue measure.

(ii) For any fixed t e R, each W;(JC, t) belongs C°°(Ω) and satisfies

(3.2) — AUJ(X, t) = tuj(x, t), x e Ω .

(iii) For each compact subset K of Ω and each bounded Borel set e in R

ess sup I \uj(x,t)\2p(dt) < oo.
xeK Je

(iv) For each/ e L2(Ω)

(3.3) (£//); (0 = [
Ω

where the integral exists in the sense of L2(ej, p).

(v) For each / e L2(Ω) and each e e 03

(3.4) /
y

where the integral exists and the series converges in the sense of L2(Ω).
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{UJ } is called the generalized eigenfunction system of A corresponding to U. By (v), for

/ 6 L2(Ω) we have

(3.5) f(x) =
j

and

(3.6) kλ(A)f(x) = Σf h(t)(Uf)j(t)uj(x, t)p{dt).

JJ*

3.2 Decomposition of kχ(A)f — f. Throughout what follows, Ω denotes an open

domain in Rn and A is a nonnegative self adjoint extension of — Δ. Let U denote an ordered

representation of L2(Ω) with respect to A, {UJ} the generalized eigenfunction system and p

the measure associated with U. We denote the gamma function by Γ, the unit sphere in Rn by

Sn~ι, the Lebesgue measure on the unit sphere Sn~ι by σ and the surface area 2^Jπn /Γ{n/2)

of Sn~ι by ωn. Let κ2 be a constant in (1.1), (1.2) and (1.3), and v = n/2 - 2κ2 + 1.

LEMMA 2. Let f e L2(Ω), x e Ω and R > 0. Then

kλ(A)f(x)-f(x)

t(Uf)j(t)uj(xj)p{dt) [*Iλ(ry+ιdr Γ ^ U i s d s

o Jo Jo ( v ^ ) u + 1

y/t

where

POO

Iλ(r)= / kλ(s2)Mrs)sv+ιds.

Jo

PROOF. First observe that the function kχ(t) is piecewise smooth on [0, oo) and
V is integrable on (0, oo). By HankeΓs integral formula ([2, p. 73, (60)]), we have

I poo poo
kλ(t) = —t / Jv(Vtr)rdr / kλ(s2)Jv(rs)sv+ιds

ΛΛ JO JO

1 f°°

Vt Jo
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Then, by (3.5), (3.6) and the fact that A:λ(0) = 1, we have

h(A)f(x) - f(x)

- h(O)}(Uf)j(t)uj(x, t)p(dt)

441

(Uf)j(t)uj(x9 t)p{dt) f
Jo

ί JΛftr) r^_
1 φv 2vΓ(v h(r)rdr

J

Now apply the formula ([7, p. 45])

VΓ 2vΓ(v + \)

Note that for the second term, we have

sds.

Thus we get Lemma 2.

3.3 Proof of Theorem 2. Let / be a regulated function in L2(Ω). Let Ĉ be a com-

pact set in Ω and ^ be a closed set in K with dist(£', £ c ) > 0. We choose 0 < R <

d i s t ^ , Kc). Let κ\ and κ2 be constants in (1.1), (1.2) and (1.3). Let v = n/2 - 2κ2 + 1 and

1 < p < oo. Suppose that / € L (̂ΛΓ) and (-A)K2f e LP(K). By Lemma 2, we have

1
\\h(A)f - f\\LP{Kf) < \\f\\LP{κ>)X ΊV

( ,

(3.7)
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LEMMA 3. We have

ΓIλ(r)rv+1dr Γ sds^ Γ t(Uf)j(t)uj(.,t)^^-p(dt)

Jo Jo ^γJo (/F)"+

PROOF. Let x e K' and 0 < s < R. Put

I z oo

9x

s(y) = 9s(χ-y)

If \y\ > 5, then gs(y) = 0 ([7, p. 404, (6)]). Therefore supp#£ C K C Ω. Then, by (3.3), we

have

(Ugx

s) j(t)= f gx

s(y)VJ{^7)dy= f gs(y)uj(x-y,
JΩ JΩ

t)dy

1 r i r°°
= ^TΓ / uj(χ ~ y> r ) ^ | m/2-i / Jv+\(sr)Jn/2-\(\y\r)dr

Uj(x-qw,t)σ(dw) / Jv+χ(sr)Jn/2-\(qr)dr.
5"-1 JO

On the other hand, by (3.2), wy ( j , ί) G C 0 0 ^ ) , and we have —Auj(y, t) = ίw7(v,

for y e Ω. Therefore, by the mean-value formula, we have

/ Uj(x — qw,t)σ(dw) = w2π
J sn

Thus, by HankeΓs formula, we have

*uj(x, t).

(Ugx

s)j(t) = -pr- Uj(x,t) / Jn/2-\(Vtq)qdq / Jv+λ(sr)Jn/2-\(qr)dr
rt

nιΔ ι

sv+\ Jo Jo

Uj(X,t).

We can assume that / e C™(Ω) by approximation. Then, by (3.1), we have

= -=Uτ Σ ί t*HUf)j(t)(Ug*s)j(t)p(dt)
y/2π j Jej

= ~^=κ ί [(-Δ)K2f(y)]gx

s(y)dy = -L* ί [{-Δ)^
V2π JΩ V2π JΩ
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Therefore we have

Iλ(r)r^dr Γ sdsj^ Γ t(Uf)j(t)uj(xj
Jo j Jo

= -^=κ ί h{r)rv+λdr Γ sds f [(-
V2π Jo Jo J\y\<s

= ^L^f sds f Iλ(r)rv+Xdr [ [(-
V27Γ Jo Js J\y\<s

Applying successively Minkowski's inequality for integral, we have

pR pr poo

/ Iλ{r)rv+λdr \ sdsYl t(Uf)j(t)uj(., t)
Jo Jo j Jo

-y)]gs(y)dy

< - y)λ9s(y)dy.

P(dt)\\

lλ{r)rv+{dr
\[ΐπn Jo

1 ΓR ίR

= -—t \ sds \ Iλ(r)rv+ιdr
V27Γ Jo Js

1 ίR CR

< -—n \ sds \ h{r)rv+xdr
V2π Jo Js

<-~n\\{-A)^f\\Lp{K) f sds
\/2π Jo

"LP{K')

-y)λgs(y)dy
\y\<s LP(K')

\y\<s
[(-Δ)K2f('-y)]gs(y)dy

LP{K')

ί \\(-A)K2f( -y)\\LP(κ>)\9s(y)\dy
J\y\<s\y\<s

Iλ(r)rv+ιdr \gs(y)\dy.

On the other hand, we have

L [g'mdy - ̂  L. w^dy \Γ ̂L.s

sv^1 Jo
Jv+l(sr)Jn/2-\(qr)dr

Γ(n/2)Γ((2v-n
ps

X I

Jo

- sv-n/2+\ '

where 2^1 (α, β;γ\z) is Gauss' hypergeometric function. Therefore the last term is bounded

by

CK2\\(-A)K2f\\LPiK) f s2K2~xds f Iλ(r)rv+ιdr
Jo Js

By the condition (1.1), we get the bound Cλ~κ^\\{-A)Kl f\\LP{K) for the last term. Thus

Lemma 3 is proved.

We shall use the following lemma ([1, p. 655]).
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LEMMA 4. Under the assumptions above, if K is a compact set contained in Ω, then

χ l / 2

\uj(x,t)\2p(dt)\ <

where CK is a constant independent ofT>0 andx e K.

LEMMA 5. We have

O y/t

as λ -> oo.

PROOF. We have, by Schwarz's inequality,

Γ
JR

\(Uf)j(t)\2p(dt)
/

Now, by (3.1), we have

\{Uf)j(t)\2p(dt)\ =

By Lemma 4, there exists a constant CK such that

max
τ<s<τ+ι

/

JR

1/2

Iλ(r)Jv(sr)rdr

uniformly in x e K. Therefore, by (1.3), we have

Γ
JR

uniformly in x e K as λ ->• oo. Thus Lemma 5 is proved.

We remark that | / ~ / λ (r)r y + 1 ί/r | = o(λ~Ki) by the assumption (1.2).
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By (3.7) together with Lemmas 3 and 5, \\kλ(A)f - f\\LP{K>) = O(X~^) as λ -> oo. If

(—A)K2f vanishes in K, then by Lemma 3.

ί Iλ(r)rv+ιdr Γ sdsY [ t(Uf)j(t)uj(;t)
Jo Jo j Jo

Jv+ι(Vts)
ιM-1

P(dt) = 0.

LP{K')

Therefore, by (3.7) and Lemma 5, we have \\kχ(A)f — f\\LP(κ') = °(λ Kι) a s λ —• oo.

Consequently, Theorem 2 is proved.

4. Applications of main theorem.

4.1 Proof of Corollary 1. Let kλ(t) = (1 - ί/λ2)^.. Then we have the formula (see

[2, p. 92, (34)])

Jn/2+δ(λr)Jn/2-\(Vtr)
dr,

and can take K2 = 1. We have

r oo
/ λ(r) = / kλ{t2)Jn/2-χ{rt)tn'2dt = 28Γ(δ + \)λn'2~6

Jo

To check the conditions (1.1), (1.2) and (1.3), let R > 0 and δ > (n - 3)/2. Then we have

= 2δΓ(δ + l)λn/2-δ

On the other hand, we have

t°° Jn,2+S(λr)

JR rs-«/2+i
dr

sds f f sds
o Us

C8λ~2 if δ > ( / i + l)/2.

We now apply the estimates (see [6, p. 202, Lemma 18.10 a])

Jn/2+δ(λr)Jn/2-\{sr) )

Cδ,R
λ-3^V2

λ-s

5 - λ

if 5 , λ > 0 ,

if 0 < s < λ ,

if 0 < λ < s .



446 M. TANIGAKI

Then we have

/ 00 r
JR

h(r)Jn/2-\(sr)rdr

1/2

max JR r*

If δ > (n + 3)/2, then the last term is o(λ~2). Thus Corollary 1 follows from Main theorem.

4.2 The Gauss-Weierstrass summation. Let k^(t) = e~^λ(λ —• oo). We then have

(4.1) exp Λ

(cf. [2, 7.7.3]). Let ί? be an open domain in Rn and A be a nonnegative selfadjoint extension

of-Δinί?.

COROLLARY 2. Let f be a regulated function in L2(Ω). Suppose that 1 < p < oo

/ G ̂ ( β ) . ΓA n̂ the following hold.

(i) The following are equivalent.

(ia)

as λ -^ oo for every compact set K in Ω.

(ib) Δ/GLfoc(ί2).

(ii) Let G C Ω be any open set.

(iia) Suppose that Δ/ vanishes in G. Then

\\k™(A)f-f\\L?(K)=o(λ-])

as λ —»• oo /or any compact set K C G.

(ϋb) //

as λ ^ oofor any compact set K C G, ί/ẑ « Δ/ vanishes in G.

PROOF. For the Gauss-Weierstrass summation method we take /C2 = 1. Let /? be a

small positive number. By (4.1), we have

•oo / oo /} \ n/2 poo I \r2\

j (^) ^ r""1 exp ί - ^ j rfr = ^λ"1),

pR I pR poo

/ jrfj / rn/2dr / k^{
JO Us JO

•G) jί
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and

I Z OO z OO 2\ /

\j Jnβ-\{sr)rdr I ft*'(t2)Jv(rt)tv+ιdt )

exp - — \dr\ =o

max
T<s<T+\

Thus Corollary 2 follows from Main theorem.
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