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SURFACES IN THE ANTI-DE SITTER 3-SPACE

REIKO AIYAMA*, KAZUO AKUTAGAWA** AND TOM Y. H. WAN***

(Received January 6, 1999, revised May 31, 1999)

Abstract. Problems related to minimal maps are studied. In particular, we prove an
existence result for the Dirichlet problem at infinity for minimal diffeomorphisms between
the hyperbolic discs. We also give a representation formula for a minimal diffeomorphism
between the hyperbolic discs by means of the generalized Gauss map of a complete maximal
surface in the anti-de Sitter 3-space.

Introduction. A smooth map u : M -> N is said to be a minimal map from a Rie-
mannian manifold (M, g) to another Riemannian manifold (N, h) if the graph u(M) of u is a
minimal submanifold of the product Riemannian manifold {M x N, gxh). We will see that,
at least in 2-dimension, the theory of minimal maps is closely related to the harmonic map
theory. It is well-known that the domain of a harmonic map between surfaces can be consid-
ered as a Riemann surface not necessary with a metric. However, the target surface has to be a
Riemann surface with a metric and the theory is sensitive to the metric structure. In particular,
the theory of harmonic maps between surfaces is not symmetric in the domain and the target.
Unlike the harmonic maps, the theory of minimal maps is obviously symmetric in the metrics.
Recently minimal maps were used in the studies of Lagrangian minimal submanifolds and the
construction of middle points in Teichmuller spaces [16], [9].

For general dimensions, we will prove a version of Ruh-Vilms theorem for minimal
Gauss maps (Theorems 1.3 and 1.4). As a corollary, we show that the Gauss map of an
immersed surface in the Euclidean 3-space E3 is minimal if and only if

TJ

= constant or K = 1,
1 — K

where H and K are the mean and Gauss curvatures of the surface, respectively.
In the main part of this paper, we will concentrate on the study of minimal maps between

the hyperbolic discs. First, we will prove an existence result for the Dirichlet problem at the
ideal boundary with quasi-symmetric boundary data of small dilatation. Next, we will study
a representation formula for such minimal maps.
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In order to give the representation formula for minimal maps between the hyperbolic

discs, we need a Kenmotsu type representation formula in the anti-de Sitter 3-space H\ of

constant negative curvature —1. One observes that the "generalized" Gauss map Q of a space-

like surface M in H\ can be decomposed into two maps G\ and Gi from M into the hyperbolic

disc D. Each component Gi satisfies a nonlinear partial differential equation of second order,

which is determined by the mean curvature H of the spacelike surface. In particular, when H

is constant, each component Gi is a (non-holomorphic) harmonic map intoD. Then, following

a similar argument as in [2], we will give a representation formula for spacelike surfaces in

H\ in terms of the mean curvature H and a single component of the generalized Gauss map,

say Gi- This is what we call a Kenmotsu type representation formula in H\ (see Section 3,

Remark 3.6). In this formula, a spacelike surface in H\ is represented as a solution of an in-

tegrable first order differential equation. Moreover, the components of the generalized Gauss

map are related to each other via this representation of the surface.

Having this Kenmotsu type representation formula, we describe a minimal map between

the hyperbolic discs by means of the generalized Gauss map of a maximal surface in ti\.

This can be considered as an analogue to representing a harmonic map from a surface into

the hyperbolic disc as the Gauss map of a constant mean curvature surface in the Minkowski

3-space.

This joint work was initiated during the Workshop on Analysis on Manifolds organized

by the Institute of Mathematical Science of the Chinese University of Hong Kong in the

summer of 1998. The authors would like to thank the organizers, especially Professor Luen-

Fai Tarn, for providing the great opportunity for us to discuss mathematics.

1. The equations for minimal maps. In this section, we will first derive a system of

equations for the minimal map and then use it to prove a version of Run-Vilms theorem.

THEOREM 1.1. A smooth map u : (M, g) —> (N, h) is minimal if and only if

tΐg(u)Vdu = 0,

where g(u) = g-\-u*h and tr^M) stands for the trace with respect to g(u). In local coordinates

xι on M and ua on N, it can be written as

where MΓ ^ and Nr^y are the Christoffel symbols for the Levi-Civita connections of g and h,

respectively.

PROOF. We first observe that the graph of u in M x TV is isometric to (M, g{u)). Or

equivalently, the map from (M, g{u)) into (M x N, g x h) defined by x \-> (JC, U(X)) is an

isometric embedding. It is well-known that an isometric immersion is a minimal immersion

if and only if it is harmonic (cf. [6]). Therefore, we conclude that u is a minimal map if and

only if JC \-^ (JC, U(X)) is a harmonic map with respect to the corresponding metrics. That is,

u must satisfy
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(12)
= 0,

where u® = dua/dxι. It is easy to see that the first equation in (1.2) is equivalent to

(1.3) for all fc,

ij

Γwhere MΓij are the Christoffel symbols for the Levi-Civita connection of g(μ). Putting this

into the second equation in (1.2), we see that the equation (1.1) is satisfied by a minimal map.

Conversely, we need to show that (1.1) implies both equations in (1.2). In fact, we only

need to show that (1.1) implies (1.3) which is equivalent to the first equation of (1.2). Then

(1.1) and (1.3) together imply the second equation in (1.2).

To simplify the calculation, we choose normal coordinates xι and ua centered at p e M

and u(p) e N respectively, and use M? to denote the covariant derivatives of M". Then we

need to show that at the center p, glJ\u)Mf/y (u) = 0. It is easy to find, at p,

dχk

Therefore, at p,

= (9u + «?«").* = Σ < " > " + «?«"*>

gUJ(u) -

ufua

}i) + (ufj

The equation (1.1) says exactly that Σi j 9ι* (u)u?s = 0 at /? for all a. Hence, we have proved

Σi j 91^ (U)M f*ij (u) = 0 at any point p e M. This completes the proof of the theorem. D

REMARK 1.2. From Theorem 1.1, it is easy to see that totally geodesic maps are min-

imal maps. Also, a conformal map is minimal if and only if it is harmonic. In particular, a

minimal isometric immersion in the sense that its mean curvature vector vanishes coincides

with a minimal map in our sense. So there will be no confusion when we refer to a minimal

isometric immersion.

We will now prove a Ruh-Vilms type theorem concerning hypersurfaces with minimal

Gauss maps. The Ruh-Vilms theorem [15] says that the Gauss map of a submanifold in

the Euclidean TV-space EN is harmonic if and only if its mean curvature vector is parallel.
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This theorem and its counterpart for spacelike submanifolds in Minkowski spaces [13], [7],
[5] are useful in constructing harmonic maps [5], [19], [20]. In the following, we will find
the necessary and sufficient condition for the Gauss map of an isometric immersion into a
Euclidean or Minkowski space to be minimal.

Let us demonstrate the Euclidean case. We will follow the calculation as in the notes by
Eells-Lemaire [6]. Let / : (Mn, g) -» EN be an isometric immersion and Q : (M, g) —•
G(N, n) be the Gauss map associated to / , where G(N, n) denotes the Grassmann manifold
of rc-planes in EN with the standard Riemannian metric. For any point xo € M, we consider
normal coordinates xι centered at xo. Then Q can be identified as the map

and we have

df d2f df df
A — Λ : r Λ —7 Λ Λ

dxJ~{ dxιdxJ dxJ+v dxn

Since / is an isometric immersion, we can choose an orthonormal basis {e\,... ,en, en+\,...
eN] ofEN such that

= - M * o ) for all i = 1 /i-
dxι

xo
Then, at JC0,

a2/ nijβr '
r=/i+l

where hr are the components of the second fundamental form Π/ = Vdf of / . Putting it

into the formula for dQ, we see that at xo,

T"7 ) = Σ ΣkUei Λ A eJ~l A e r A eJ + \ A Λ en .
7 = 1

On the other hand, for any vector field X,

d

,dxl

and hence at JCQ,

Note that we can identify sections in Γ(T*M<g>Q ιTG(N,n)) with sections in

Γ((8)2Γ*M 0 TML) via the identification

e\ A - Λ βj-\ Λ ^ r Λ βj + \ Λ Λ ^ θ e * ( 8 ) ^ ,

where TML is the normal bundle on M. Under this identification, we have

dQ = Vdf
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and hence the second fundamental form of Q is given by

where V1- is the connection on ®2T*M ® TM^. Furthermore, if we regard Vdf as a section

of (g)2Γ*M <g> f~ιTEN, we have

where (V W/)- 1 stands for the projection on Γ M 1 of We//.

By the last formula, we conclude that Q is minimal if and only if

1 = 0 ,

where tr^g) V* V* indicates that the trace is taken on the two marked vectors with respect to

the metric g(Q). In terms of local normal coordinates, this is

(1.5) giJ(g)hr

ijk=O for all k = 1,... , n and r = n + 1,... , N ,

where hr

ik are the components of the covariant derivative of Π/. Hence, the above result can

be written as

THEOREM 1.3. Let f : (M", g) —> EN be an isometric immersion. Then the Gauss

map Q is minimal if and only if

The difficulty in reading off information from Theorem 1.3 is due to the fact that there is

no good formula for the inverse of the metric g(G). With respect to the same local coordinates,

the metric g(Q) = (§/7(5)) is given by, at JCO>

N

(1.6) hj<S) = *U+ E
r=n+\k=\

To see this, we note that the standard Riemannian metric on G(N, n) is defined by requiring

{e\ A- - Aβj-i Aer Λe/+i Λ Λe π )j = i B ; r = n + i JV be orthonormal vectors. Hence by

(1.4), the (/, 7*)-component of the pull-back metric at xo is given by

r=n+\ k=\

By adding the metric on M, we get the formula (1.6). The formula (1.6) for glJ (Q) is compli-

cated due to the noncommutativity of the matrices {(Λ[ ) } n + 1 < r <^.

However, in codimension 1, this difficulty does not occur and we have the following

THEOREM 1.4. Let f : (Λfπ, g) -> EnΛ~x be an isometric immersion. Then the Gauss

map Q : (Mn, g) -> Sn is minimal if and only if

tϊg tan"1 Πf = constant.
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PROOF. Note that at the center of a normal coordinate system, t r ^ ) VΠ/ can be rep-

resented as

where Π = Π/ = (Λ/y ) We would like to formally integrate the above expression.

To do so, consider the matrix tan" 1 Π obtained by formally replacing x by Π in the

Taylor expansion of tan"1 x. That is,

t a n - i ΓT _ V^ ("""I) n2*+i

for those Π with all eigenvalues having absolute value smaller than 1. It is easy to see that

we can analytically extend the domain of definition of tan"1 Π to all real symmetric matrices.

In general, Vtan"1 Π / ( / + Π 2 ) " 1 VΠ. In fact, for those Π with absolute values of all

eigenvalues smaller than 1, we have

0 0 (— 1)*
Vtan"1 Π = V - — — ((VΠ)Π2* + ΓKVΠJΠ2*"1 + + Π 2*(VΠ)).

*=o 2k + l

However, using the fact that tr(Ai A 2 A*) = tr(A^Ai A^_i), we see that
oo

trVtan" 1 Π =

k=0

Therefore,

Π 2 ) " 1 V Π ) .

Vtrtan" 1 Π = t r ( (/+ Π 2 ) " 1 VΠ).

It can be shown that the above formula is true for all real symmetric Π. Therefore, we have

proved that the Gauss map Q is minimal if and only if

trtan"1 Πy = constant.

D

COROLLARY 1.5. If M1 is an immersed surface in E3, then the Gauss map of M is

minimal if and only if
TJ

= constant or K = 1,
1 — I\

where H and K are the mean and Gauss curvatures ofM in E3, respectively.

PROOF. By Theorem 1.4, we see that the Gauss map is minimal if and only if

trtan" 1 Π ^ Ξ constant,
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where Π M is the second fundamental form of M. Let λ/, / = 1, 2, be the principal curvatures

of M. Then tan"1 Π M has eigenvalues equal to tan" 1 λi and tan" 1 λ2, and hence

trtan" 1 Π ^ = tan"1 λj + tan" 1 λ2 = tan" 1 = tan"1 .
1 — λiλ 2 1 — K

This completes the proof of the corollary. D

Similar results to Theorems 1.3 and 1.4 also hold for isometric immersions into Minkowski

spaces. In particular, we have

COROLLARY 1.6. If M2 is a spacelike immersed surface in the Minkowski 3-space

L3, then the Gauss map ofM is minimal if and only if
TJ

= constant or K = — 1,
1 + K

where H and K are the mean and Gauss curvatures ofM in L3, respectively.

PROOF. Note that K = —λiλ2 for a spacelike surface in L3. D

2. Existence for minimal diffeomorphisms between the hyperbolic discs. In this

section, we prove an existence result for minimal diffeomorphisms between the hyperbolic

discs. Let Σ and Σ be two Riemann surfaces, and z and w be their isothermal coordinates.

Fix a metric σ2(w)\dw\2 on Σ. For any harmonic map u : Σ -> Σ, the Hopf differential

Φ(u) = φ(u)dz2 of u on Σ is defined by

Φ{u) = σ2(u)uzΰzdz2.

We need the following lemma which is due to R. Schoen in [16] implicitly.

LEMMA 2.1. Let Σi, i = 1,2, be two Riemannian 2-manifolds. Then a map u :

Σ\ -> Σ2 is a minimal map if and only if there exist a Riemann surface Σ homeomorphic to

Σ\ and two harmonic maps U[ from Σ to Σ{ such that u\ is a dijfeomorphism, u = w2 o M^1,

and

PROOF. If u : Σ\ -> Σ2 is a minimal map, then the induced metric determines a

conformal structure on the graph of u and hence gives rise to a Riemann surface Σ. By

the definition of minimal maps, the inclusion of Σ into the product manifold Σ\ x Σ2 with

product metric is a minimal immersion and hence is a conformal harmonic map. Hence, the

projections U[ are harmonic maps from Σ to Σ\, respectively, such that u — U2 o u\x. Simple

calculation shows that the (2, 0)-part of the pullback metric on Σ of the inclusion is given by

Φ(u\) + Φ(w2). Therefore, one concludes that

Conversely, if there exist Σ and U[ as in the statement, then we can consider the map

F : Σ —> Σ\ x Σ2 given by z H^ (U\(Z), U2(Z)). It is easy to verify that F is a conformal

harmonic map and hence the image of F is a minimal submanifold in Σ\ x Σ2. Since u\
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is a diffeomorphism, the graph of u = W2 o w"1 is exactly identical to the image of F as

submanifold. Therefore u is a minimal map. D

Now we consider the Dirichlet problem at infinity of the hyperbolic disc for minimal

diffeomorphisms analogous to that for harmonic maps. From the corresponding results for

harmonic maps [18], [19], it seems reasonable to consider a special class of boundary data,

namely quasi-symmetric functions. That is, for any quasi-symmetric function ψ : S1 -• S1,

we would like to find a quasi-conformal map u : D —• D such that u have the boundary data

φ and u is a minimal map with respect to the Poincare metric ds2

p = 4\dz\2/(l — \z\2)2 on

the unit disc D = {z e C\\z\ < I}. We would like to point out that the existence of the

corresponding problem for harmonic maps has not yet been solved completely, although there

are many partial results. We will use the method in [18] to obtain the following similar result

for minimal diffeomorphisms.

THEOREM 2.2. Any quasi-symmetric function with sufficiently small dilatation has a

quasi-conformal minimal diffeomorphic extension to the hyperbolic disc.

PROOF. AS in [18], we consider a map F from BQD(Z>) the space of bounded (with

respect to the Poincare metric) holomorphic quadratic differentials on D to BQD(D*) the

space of bounded (with respect to the Poincare metric) holomorphic quadratic differentials

on D* = C \ D. The map F is constructed as follows: Given any Φ e BQD(D), we solve

uniquely two quasi-conformal harmonic diffeomorphisms u\ and u^ from/) onto/) fixing 1,

i, and — 1 such that

Φ(u\) = Φ and Φ(u2) = — Φ.

The existence and uniqueness of u\ and ui are ensured by the result of Tarn-Wan [17]. Then

u = U2ou[x is a quasi-conformal map from D onto D fixing l,/,and—1. Hence, the complex

characteristic of u determines a class in the universal Teichmiiller space. Or it is equivalent to

say that U\QD is a normalized quasi-symmetric function, hence is an element in the universal

Teichmuller space. Therefore, it corresponds to an element in Ψ e BQD(D*) via the Bers

embedding. Then we define F(Φ) = Ψ. As in [18], we find that the complex characteristics

of the harmonic maps u \ and ui are given by

(2.1) μ\(z) = - -^- φ(z)e~zw{z) and μ2(z) = —
4 4

where 0 is the coefficient of Φ, i.e., Φ = φ(z)dz2, and w; is the unique solution of the equation

where ||0||(z) = (1 - |z | 2) 2 |0(z) |/4, such that 4e2 w ;(l - \z\2)~2\dz\2 defines a complete

metric on the unit disc. Then, from (2.1), the complex characteristic of u, denoted by μ(Φ),
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is given by

(2.2)

= - 2 -

where z = u~\ζ) and p(z) = 2/(1 - \z\2).

By [18], w and hence u\ depend real-analytically on Φ. Therefore, μ(Φ) is also real

analytic in Φ. It is then easy to see from (2.2) that the differential of μ(Φ) in the direction of

ψ = ψ{ζ)dζ2dX Φ = 0 is given by

Here we have used the fact that w = 0, u\(z) = z and hence u\Λ = 1 for Φ = 0. Then we

conclude, as in [18], that F is real-analytic and the differential of F at 0 is

forany ξ e D *

So DFo is invertible. Note that F(0) = 0, since both u\ and W2 are identity maps. Therefore,

the inverse function theorem implies that for any element Ψ e BQD(D*) with sufficiently

small norm, there exists a unique Φ e BQD(D) close to zero such that F(Φ) = Ψ. By the

definition of F, this is equivalent to the assertion of the theorem. D

3. Generalized Gauss maps of spacelike surfaces in H\ and Kenmotsu type repre-

sentation formula. Let E\ denote the pseudo-Euclidean 4-sρace endowed with linear coor-

dinates (x\, JC2, JC3, JC4) and the scalar product ( , •) given by x2 + JC| — x\ — x\. The anti-de

Sitter 3-space H3

{, which is a 3-dimensional Lorentzian manifold of constant curvature —1, is

defined as the following hyperquadric in E\\

Let 5 ί/( l , 1) be the linear group defined by

Sί/(1, 1) = {A egί(2;C)\hεh* = e,detA = 1), where ε=( l ° V

Identify E\ with the linear hull R S£/(l, 1) of Sί/(1, 1) by the map

X = (xi, X2, ̂ 3,^4) »-> X =
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The linear Lie group SU(l, 1) x SU(l, 1) acts isometrically onZ?2 by

g x = gixgj, g = (gi, gi) e 5ί/(l, 1) x SU(1,1), χeEJ=R 5ί/(l, 1).

\Moreover, SU(l, 1) x SU(1, 1) acts on H\ isometrically and transitively, and (SU(\, 1) x

SU(1, 1))/Z2 can be regarded as the identity component of the isometry group 0(2, 2) ofH*.

The isotropy group A at a point e e //j is given by {(h, εhε) | h e 5£/(l, 1)}, and hence

^ = (5t/(l, 1) x 5t/(l, l))/Δ

= {gig| I g = (gi, g2) € 5t / ( l , 1) x 5£/(l, 1)}.

Let # 2 be the hyperbolic 2-space realized in the subspace L3 = span{ei, e2, e4} of Zs2 =
RSU(1, l)by

# 2 = {[h] := hh* I h e 5ί/(l, 1)} = 5t/(l, l ) / ί / ( l ) .

We can regard //2 as the hyperbolic disc D by the stereographic projection

Now, let M be a Riemann surface and / : M —> H\ a conformal immersion. Since

/ gives rise to a spacelike surface in H\, M has to be noncompact. (We may assume that

the orientation of M is compatible with the one induced by the canonical time-orientation of

H\ C E\.) Take an isothermal coordinate z — x + \[—ϊy on M, and denote the induced

metric f*ds2 by e2λ\dz\2. The generalized Gauss map of / is given by (cf. [14])

where G\ 2 is the Grassmann manifold of spacelike oriented 2-planes in E\, and the oriented

complex null line [fz] in C\ = E\ <g>C is considered as the spacelike oriented 2-plane spanned

by fx and fy in E\. Since 5ί/(l, 1) x 5ί/(l, 1) acts transitively on G\ 2 , G 2 2 can also be

realized as the homogeneous space (cf. [1]):

= ίtgiίei. - V ^ ϊ ^ g J ] I g = (gi, g2) e 5ί/(l, 1) x 51/(1, 1)},

where ί/(l) = {cos#e + \/^Tsin#ε | θ e [—π, π)}. Moreover G 2 2 can be identified with

D x Dby the map

DxD = H2xH23 ([gi], [g2]) ^ [ g ^ - V ^ e 2 ) g ^ ] e G * 2 .

Therefore, the generalized Gauss map Q : M —• G 2 2 of / is decomposed into two compo-

nents G = (Gι,g2): M -> DxD.

A map F = (Fuft) : M -+ 5C/(1, 1) x 5ί/(l, 1) is called a framing of / if / =

J^i^ *. Let 5 = (£i, £2) : M -^ 5ί/(l, 1) x 5ί/(l, 1) be an adapted framing of / , that

is, 5 is a framing of / such that [fz] = [5i(ej_ — v^—Te^)^]. (Remark that the adapted

framing of / is determined uniquely up to the right action of a ί/(l)-valued function. We can
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choose an adapted framing globally on a contractible Riemann surface.) Then the components

Q\, Q2 : M ->• H2(= D) of the generalized Gauss map G of f can be given by

Si = [ £ 1 ] , &

and these are related as follows:

(3.1) Q\ = (/e)02(/β)*(=

where /[—Qj\ (at z € M) stands for the linear fractional transformation of — 02 (z) 6 Z> by

Using a similar method to the proof of [2, Proposition 1.1] (cf. [1]), we can describe the
induced metric and the Hopf differential in terms of the generalized Gauss map and the mean
curvature as follows.

PROPOSITION 3.1. Let f : M —> H\ be a conformal immersion with mean curvature

H and the generalized Gauss map Q = (Q\, Q2) : M —> D x D. Then the induced metric

f*ds2 on M and the Hopf differential Φf off are given by

(3.3) Φf = _

Gauss curvature K(= — 1 + H1 +

REMARK 3.2. Since f*ds2 is positive definite on M, Q = {Qx.Qi) is nowhere-

holomoφhic. From (3.3), anti-holomorphic points of Q correspond to umbilic points of / .

Furthermore, using a similar method to the proof of [2, Theorem 2.1], we can obtain the

following

THEOREM 3.3. Let f be a conformal immersion from a Riemann surface M to lί\ with

mean curvature H. Then the generalized Gauss map Q — (Q\, Qi) : M -> D xD satisfies the

following equations:

(3-4)

(3.5)

REMARK 3.4. When the mean curvature H is constant, the above equations (3.4) and

(3.5) imply that each component 0/, i = 1, 2, of Q is a harmonic map to the hyperbolic
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disc D (cf. [14]). For a harmonic map v : M -> D, the Hopf differential of v is given by

φ(v) = 4vz(v)z(l — \v\2)~2dz2. Then the Hopf differentials of Q\ and Qi are given by

φ(Qx) = (H - Λ / ^ Ϊ ) Φ / , Φ(G2) = (H

If / is a maximal surface in /73, that is, H = 0, then we obtain that Φ(<?i) + Φ(Qi) = 0.

Conversely, we can obtain the following representation formula for spacelike surfaces

with prescribed mean curvature in H\ by means of a single component of the generalized

Gauss map (similarly in [2, Theorem 2.2]).

THEOREM 3.5 (Kenmotsu type representation formula in H\). Let M be a simply con-

nected Riemann surface with a reference point ZQ and H a real-valued smooth function H on

M. For a non-holomorphic smooth map v : M —> D satisfying

define a smooth l-form ω on M by

2{v)zω = 1= τ-^dz ί resp. ω = = = dz I .

Also, define a gί(2; C)-valued l-form a and an 5u(l, l)-valued l-form μ by

( v 1 \

V v2 v )

Then there exists uniquely a smooth map f : M -> SU(l, I) such that f(zo) = e and

f~ιdf = μ. / (resp. f*):M^>H3isa conformal immersion outside {w e M\vι(w) =

0} with prescribed mean curvature H, and the generalized Gauss map Q = (/[—v], v)

(resp. Q = (v, t f[—v])). Moreover, the induced metric f*ds2 = (1 — |v | 2 ) 2 ω ώ αnJ

the Hopf differential Φf = (H + V z T)- 1 Φ(y) (r^p. = (H - VCΊ")- 1Φ(v)).

REMARK 3.6. In Theorems 3.3 and 3.5, if we replace the ambient space ti\ by

H\(—C2) (the anti-de Sitter 3-space of constant curvature — c2 (c > 0)), then the equations

satisfied by Q\ and Q2 change from (3.4), (3.5) to the following:

If we put c = 0, we can then obtain the generalized harmonic map equation satisfied by the

Gauss map of a spacelike surface in L 3 [4]. Spacelike surfaces in L 3 can also be represented

in terms of the mean curvature and the Gauss map [4], which is a Lorentzian version of the

Kenmotsu representation formula in E3 [8].
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4. Representation of minimal maps between the hyperbolic discs. Finally, we ap-

ply the Kenmotsu type representation formula, Theorem 3.5, to representing a minimal map

between the hyperbolic discs D as the composition Q\ o Q~ι of the generalized Gauss map

Q = (g{, Q2) of a maximal surface in lί\.

One easily observes that a composition of the generalized Gauss map of a maximal sur-

face in lί\ can be regarded as a minimal map, at least locally, between £>, by Lemma 2.1

and Remark 3.4. More precisely, let / : Σ -> H\ = 5ί/(l, 1) be a conformal maximal

immersion, where Σ is an arbitrary Riemann surface. Let g = (<5i, g2) Σ -> D x D be

its generalized Gauss map. Then, both components are harmonic maps from Σ into D and

the sum of the Hopf differentials is equal to zero (see Remark 3.4). Therefore, if one of the

components is a diffeomorphism, then according to Lemma 2.1, the generalized Gauss map

represents a minimal map fromD into itself. In this case, if g2 Σ -> D is a harmonic diffeo-

morphism, then we can use the relation (3.1) between £1 and £2 to write the corresponding

minimal map as

We would like to point out that, by Proposition 3.1, the Gauss curvature K of the confor-

mal maximal immersion / has a fixed sign if and only if one of the components of the gen-

eralized Gauss map is a local diffeomorphism, and hence, if and only if both components are

local diffeomorphisms. Suppose further that the curvature K of / is bounded away from zero

and the surface is complete, then both components of the generalized Gauss map are simul-

taneously orientation preserving or reversing local harmonic diffeomorphisms with bounded

dilatation. Therefore, by a result in [19, Theorem 13], both components are harmonic diffeo-

morphisms onto the hyperbolic disc. Hence, we obtain a minimal diffeomorphism between

the hyperbolic disc in this case. Moreover, this minimal map is in fact a quasi-conformal map

of the unit disc.

Conversely, we have the following

THEOREM 4.1. Any orientation preserving minimal diffeomorphism between the hy-

perbolic discs can be represented as the composition ζq o g~ι of the generalized Gauss map

g = (gu g2) of a complete maximal surface in H\.

PROOF. Given a minimal map u between the hyperbolic discs, Lemma 2.1 implies that

there exist a Riemann surface Σ homeomorphic to D and two harmonic maps w/, i = 1,2,

from Σ to D such that u2 is a diffeomorphism, u = u \ o u2

ι, and

Φ(uχ) + Φ(u2) Ξ=0.

(Note that we have interchanged the notation for the harmonic maps M/.) Since u2 is a diffeo-

morphism, either \u2,z\ or \u2-z\ is non-vanishing. We may assume that \u2-z\ > |w2,zl ^ 0

(i.e., «2 is orientation reversing), otherwise one can consider Έi. Then by Theorem 3.5, there

is a conformal maximal immersion / : D —• lί\ such that the second component of the gen-

eralized Gauss map is given by u2 (considered as a map fromD). Therefore, we only need to

show that the first component of the generalized Gauss map is equal to u \.
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By assumption, u is an orientation preserving minimal diffeomorphism onto D. Then

u\ is an orientation reversing diffeomorphism onto D as U2 is orientation reversing. Using

Proposition 3.1, the first component Q\ : D -> D of the generalized Gauss map satisfies

Since W2 is a diffeomorphism and the pullback metric u^ds2 is dominated, up to a constant

multiple, by \\du2\\2ds2, \\dii2\\2ds2 and hence | |3£i | | 2 ί/^ defines a complete metric on D.

By the same reason, ||3wi \\2ds2 defines a complete metric onZλ From the equation Φ(u\) =

Φ(Q\) (= φdz2) and the uniqueness result [17], [19] for complete solutions of

Δds2W = e2w-\\φ\\e-2w-\,

we obtain

(4.1) l|3ι«ill = 11301II (= ew).

Now, (4.1) together with the equation Φ(u\) = Φ(G\) implies that u\ is identically equal to

the first component Q\ of the generalized Gauss map up to an isometry. Finally, we note that

the induce metric f*ds2 is complete, since f*ds2 = \\du2\\2ds2. Therefore we have proved

the theorem. D

As a final remark, we would like to claim that Theorem 3.5 (Kenmotsu type represen-

tation formula) can be used, in principle, to construct minimal maps between the hyperbolic

discs as follow. By the existence results of Li and Tarn [10], [11], [12], and the second author

[3] for the Dirichlet problem at infinity of harmonic maps between Z>, one can get a noncon-

formal harmonic diffeomorphism of D by assigning suitable boundary data. Or, one can use

the result of Tarn-Wan [17] to obtain a nonconformal harmonic diffeomorphism by prescrib-

ing the Hopf differential. From such a harmonic diffeomorphism, one can use the Kenmotsu

type representation formula in ti\ to construct a complete maximal surface in H\. Then the

composition G\ o G^X of the generalized Gauss map Q — (Q\, Gί) is a minimal map between

D.
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