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WEIGHTED ESTIMATES FOR THE HANKEL TRANSFORM
TRANSPLANTATION OPERATOR
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Abstract. The Hankel transform transplantation operator is investigated by means of
a suitably established local version of the Calderén-Zygmund operator theory. This approach
produces weighted norm inequalities with weigintore general than previously considered
power weights. Moreover, it also allows to obtain weighted weak tyipd) inequalities,
which seem to be new even in the unweighted setting. As a typical application of the trans-
plantation, multiplier results in weighted” spaces with general weights are obtained for the
Hankel transform of any order greater thad by transplanting cosine transform multiplier
results.

1. Introduction. Givena > —1 and a suitable functiof on (0, c0), its Hankel
transform is defined by

Ha f (x) = fo NY20a () fO)dy. x> 0.

Here J,(x) denotes the Bessel function of the first kind of ordersee [7] or [14]. Then
(Ho o Ha)f = f and|[Ho fl2 = IIfl2, forany f € C(0,00), the space o™
functions with compact support (0, co). These two facts are known in the literature for
a > —1/2;in [2, Lemma 2.6] a proof valid for any > —1 was furnished. I1tx = —1/2,
thenJ_12(1) = (2/mt)Y? cost, therefore{_1,» becomes the cosine transform @ oo).

Guy [5] showed that the size of the Hankel transform of any suitable function, when
measured in the power weigh? norm, remains the same whatever the order of the Hankel
transform is. More precisely, giveny > —1/2,1< p < occand-1/p <a <1-1/p,
there is a constar@ = C(«, y, p, @) such that for every appropriate functigh

(1.1) CHHy Fllpa < Hafllpa < ClIHy Fllpa -
In another way, (1.1) may be expressed as

l(Ha o Hy) fllpa < Cllfllpas

where, for 1< p < oo and any real number,

00 1/p
||g||p,a=( /0 |g(x>x“|”dx> .
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Another proof of Guy’s transplantation theorem was delivered by Schindler [12]. She
found an explicit expression of integral kernel of the transplantation operator

TO[V ZHa OHy~

Due to a singularity along the diagonal, the corresponding integral was understood in the
principal value sense.

In [13] one of the authors extended Guy'’s result by enlarging the range of admissible pa-
rametersy andy to« > —1 andy > —1, and extending the range of power weight exponent
ato—(@+1/2)—1/p <a < (y +3/2) — 1/p. The result was obtained by transferring
Muckenhoupt’s transplantation theorem for Jacobi expansions to the Hankel transform set-
ting. In the restricted range > —1/2,y > —1/2 Schindler’s explicit kernel representation
was used to obtain the same conclusion. és done by djiting the integration into the
three regions: < y < x/2,x/2 <y < 3x/2and X /2 < y < oco. The splittirg brought an
advantage: while on both outer regions Hardy’s integral inequalities were applied, the integra-
tion on the inner region was treated by using local versions of the Hardy-Littlewood maximal
function and the Hilbert transform.

The present paper deals with the transplantation opefatar «, y > —1, initially
defined as a bounded operatorkbh from the (one-dimensional) Calderén-Zygmund theory
point of view, and the main purpose is to study weightéd 1 < p < oo, mapping properties
of Ty, with general weights allowed. Thessociated (Schindler's) kerndl,, (x, y) is a
Calderén-Zygmund kernel i&, y > 1/2, but it fails to satisfy the appropriate Hormander
condition when eithee < 1/2 ory < 1/2. In these cases problems occur on the regions
0 <y <x/2and /2 < y < oo. Therefore we split the operat@y, according to these
regions:

7&y 2172} +‘73; +'7§;:
where the kerneIKgy defining the integral operatoﬂg'y, i =1, 2 are given by

Koy (6, ¥) = Xitr,y) ; 0<y<e/2 Ky (x, ) ,
K2, (X, ) = Xi(x.y) ; 0<3x/2<y) Kary (%, 7).

ThenTaly andTan are easy to handle by means of weighted Hardy’s inequalities.

To treatTjV we introduce a notion of a local Calderén-Zygmund operator, which may
be of independent interest. A canonical example of such an operator is a local analogue of the
Hilbert transform

3x/2
Hof(x)=P.V./ f(y)dy, x>0,

x/2 Yy —X

considered (with a slight modification) by Andersen and Muckenhoupt in [1, Lemma 1]. We
prove that local Calderén-Zygmund operators, as well as the associated maximal truncated
integral operators, are bounded in weighfeti spaces, 1< p < oo, and satisfy weighted

weak type(l, 1) inequalities, with weights meeting a local, condition (which is weaker

than the usual , condition). Finally, we show thdl;f’y is, in fact, a local Calderén-Zygmund
operator, hence its mapping properties follow.
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Throughout the paper we use a fairly standard notation. Thus, for a nonnegative weight
w on (0, co) we write L? (w) andL1-*°(w) to denote the weightetl” and the weighted weak
L1 spaces (with respect to the Lebesgue meagu)y¢hat consist of all functiong on (0, o)

for which
o0 1/p
”f”pw = </(; If(x)w(x)lpdx) < 0

I fll preoqy = SUp(t/ w(x)dx) < 00,
t>0 {IfI>1}

respectively. Ifw = 1 we simplify the notation by writing.? and]|| - ||,, or LY and

|l - ll;10. Given 1 < p < oo, p’ denotes its conjugate,/p + 1/p’ = 1. By (f, g) we
mean fg’o f(x)g(x) dx whenever the integral makes sense. We will frequently write CZ to
abbreviate the term “Calderén-Zygmund”. The symia$ used to denote the set of positive
integers{1, 2, ...}.

The structure of the paper is as follows. In Section 2 we state the main results; these
are contained in Theorems 2.1 and 2.2. Section 3 is devoted to a study of the integral kernel
associated with the Hankel transplantation operator. In Section 4 we introduce a notion of
a local Calderdn-Zygmund operator and prove relevant mapping properties in weighted set-
ting. Finally, in Section 5 we provide proofs of the main results and make some additional
observations, including a refinement of Schindler’s singular integral representatifyy of
(Proposition 5.1). Definition and some basic properties of ldgalveights are contained in
the Appendix (Section 6), which is essentially self-contained.

The authors are highlyndebted to Jacek Dziubski for his valuable comments and
remarks and to the referee for very careful reading of the manuscript.

or

2. Preliminaries and statement of results. We will use the bounds

(2.1) L, =0@0%, t— 0",
and
(2.2) Je)=0a¢"Y?, t > 0.

A more precise description of behavior of the Bessel funcipf) at infinity is given by the
asymptotic formula (cf. [7, (5.11.6)])

(2.3) V1o (t) = /2/7(COSt + ag) + bat ~1SIN(t + ag) + O(72), t — 0.

A bit of comment is, perhaps, necessary on the question (ko H,) f is well-
defined forf € C2°(0, c0). If « > —1/2, then a natural assumption to make the integral
defining Hy g(x) convergent is to assumgeto be Lebesgue integrable (the integral kernels
(xy)Y2J,(xy), x > 0, are (uniformly) bounded on @ y < o00). Assume that,, y > —1
and f € C°(0,00). ThenH,, f(y) is a continuous function of & y < co and, by using
(2.1),

(2.4) H, f(y) =0’ ?), y—0F.



280 A. NOWAK AND K. STEMPAK

Moreover, by applying (2.3),
(2.5) Hy fO)=0(G72), y— o0

(using higher order asymptotics, better than (2.3), allows talgef (y) = O(y~*) with
arbitrarily largek). Note that (2.4) and (2.5) ensut¢, f (y) to be integrable and hence, for
a>—-1/2,He(H, f)(x), 0 < x < oo, makes sense. Inthe general casg > —1, (2.4) and
(2.5) show that the function — (xy)¥2J,(xy)H, f(y) is integrable and again the integral
definingM, (H, f)(x), 0 < x < oo, makes sense. Thus, from now on, Ky, we understand
the (unique) isometrical extension @rf of the operator which foif e C2°(0, c0) has the
integral representation

(2.6)  Tuyf(x) = / ” / 20 e ODY20, (1) f(Ddidy . x > 0.
0 0

Given a nonnegative weight functian(x) on (0, co), consider the following set of con-
ditions:

) 1/p r . 1/p
(2.7) sup(/ w(x)pxp(er?’/z)dx) </ w(x) P xP (V+l/2)dx> < 00,
r 0

r>0

r 1/p e , ) 1/p'
(2.8) SUp(/ w(x)pxp(aJrl/z)dx) </ wx) P x? (a+3/2)dx> < 00,
0 r

r>0

1 v 1/p v , 1/p
(2.9) sup (/ w(x)”dx) (/ w(x)™P dx) < 0.
O<u<v<2u V — U u u

We admit 1< p < oo when considering (2.7) and (2.8), andlp < oo when considering
(2.9). Here and later on, fgr = 1 or p = oo, integrals of the form appearing in (2.7)—(2.9)
have the usual interpretation. For example, wpea 1, the second factor in (2.7) is taken as
ess sup, (g, [w(x) "Lx? /2], Note that if a nonnegative weight on (0, co) satisfies any of
the conditions (2.7)—(2.9p¢ the condition (4.6)), thew is either identically 0 ow > 0 a.e.
(here the convention Ooo = 0 is used).

It is easily seen that for a power weight functiefix) = x4, a € R, (2.7) is satisfied if
andonly ifa < —1/p + (y + 3/2), (2.8) is satisfied if and only i > — (o + 1/2) — 1/p,
and (2.9) is satisfied for eaehe R. Condition (2.7) is necessary and sufficient for weighted
Hardy’s inequality
(2.10)

o x P 1/p 00 p 1/p
(/ ‘w(x)x(y+3/2)/ f@)dt dx) < C</ ‘w(x)x(wrl/z)f(x) dx)
0 0 0

to hold, while the condition (2.8) is necessary and sufficient for its dual version

00 00 P 1/p 00 P 1/p
(2.11) </ ‘w(x)x‘“'l/z/ f()dt dx) < C(/ ‘w(x)x“+3/2f(x) dx)
0 X 0
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to be satisfied, cf. [9]. The local,, condition (2.9) forw?” is, for 1 < p < oo, necessary and
sufficient for the estimate

/oo T, f(Owx)|Pdx < C/OO |f ()w(x)|Pdx
0 0

to hold, whereT, represents one of the two operators: eithgy, the local version of the
one-dimensional Hardy-Littlewood maximal operator

1
M, f(x) = sup
x—yl<x/2y — X

/y|f(t)|dt, x>0,

or H,, the local version of the Hilbert transform. The sufficiency part in the above is just a
version of [10, Lemma (9.6)], see also remarks following [13, Lemma 6.1]. Necessity of (2.9)
in case ofH, is stated in [1, Lemma 1] and in caseMf, is provided in Section 6, see Remark
6.4 below. In the casp = 1 the condition (2.9) is necessary and sufficient for the weighted
weak type (1,1) inequality

C o
/ w(x)dx < —/ [fOlwx)dx, A>0,
(x>0 |Hy f(x)|>2} A Jo

to hold, cf. [1, Lemma 1], and the same is true if we repléigeby M,,, see Section 6.
The main results of the paper are contained in the following two theorems.

THEOREM 2.1. Leta,y > —1,a # y,and1 < p < oo if |0 — y| # 2k for every
keN,orl<p<oifla —y| =2kfor somek € N. Let w(x) be a nonnegative weight
that satisfies: Condition (2.7)if « = y + 2k for somek € N; Condition (2.8)if y = o + 2k
for some k € N; Conditions (2.7), (2.8)and (2.9)if |« — y| # 2k for every k € N. Then

00 1/p 00 1/p
( / |Tayf(x)w<x)|l’dx) < c( / If(x)w(x)lpdx>
0 0

for all f € L?N L?(w). Consequently, T4, extendsto a bounded linear operator on L” (w).

In order to treat the weak type (1,1) inequalities for the transplantation operator, for a
given nonnegative weight functian(x) on (0, co), consider the following set of conditions:

% 1\ w(x) xv+1/2
2.12 su / <—) —dx)(esssup—) < 00,
( ) r>CE)< r x) xv+3/2 xe(0,r) w(x)
r 1
(2.13) supr‘”l/z(/ w(x)dx)(esssupT) <00,
r>0 0 x€(r,00) x@+3/29(x)
" (x 5 1
(2.14) sup</ <—> x"‘*”%(x)dx)(esssupT) <00.
r>0 0o \r xe(r,00) x4+ 2 (x)

In (2.12) and (2.14) we assume that there exists a positisech that the corresponding
guantities are finite. Moreover, (2.13) is considereddar (—1, —1/2] while (2.14) is taken
into account fow € (—1/2, 00).
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It is easily seen that for a power weight functiorix) = x4, a € R, (2.12) is satisfied if
and only ifa < y +1/2, (2.13) and (2.14) are satisfied if and only:if> —(« 4+ 3/2) (> if
a=-1/2).

Let P,, Oy, n real, denote the Hardy operators

Pnf(x)=x‘”/o f(dt, an(x)=x‘”/ f(ndt.

Condition (2.12) is necessary and sufficient for the inequality
C o
(2.15) / w(x)dx < —f | FO)Ix~ " Y2y (x)dx, A>0,
x>0 [Pyazaf (0)|>2) A Jo

to hold, cf. [1, Theorem 2] taken with = ¢ = 1,n = y + 3/2 > 0, U(x) = w(x) and
V(x) = x~+/2y(x). Condition (2.13) in the case € (—1, —1/2], or Condition (2.14) in
the caser € (—1/2, o0), are necessary and sufficient for the inequality

C o0
(2.16) / wx)dx < —/ | fO)x* T 2wx)dx, » >0,
(0>01 10— (at1/2 f(X)| =1} A Jo

to hold, cf. [1, Theorem 4] and [1, Theorem 5] taken wjth= ¢ = 1, n = —(a¢ + 1/2),
U(x) = w(x)andV (x) = x @32y (x).

THEOREM 2.2. Assumethato, y > —landa # y. Let w(x) beanonnegative weight
that satisfies: Condition (2.12)if « = y + 2k for somek € N; Condition (2.13)if y = o + 2k
for somek € Nand @ € (-1, —1/2]; Condition (2.14)if y = « + 2k for some k € N and
a € (—1/2, 00); Conditions (2.12), (2.9)with p = 1, and either (2.13)or (2.14)depending
onwhether @ € (—1, —1/2] or @ € (—1/2, 0), if |@ — y| # 2k for every k € N. Then

C o0
/ w(x)dx < —/ [f()|wkx)dx, Ar>0,
>0 [Ty f(0)|>2) r Jo
for all f € L2 LY(w). Consequently, T, extendsto a bounded linear operator from L(w)
to L1 (w).

A typical application of transplantation theorems is that for multipliers. We say that a

bounded measurable functienon (0, co) is anL? (w) multiplier for H,, provided

1Mo mHa )l pw < DIfllpow.  f€LZNLP(w).

Given anL”(w) multiplier m for H,, assume thatv is also such that for & > —1 the
transplantation inequality of Theorem 2.1 is satisfied and, in addition, the same is true for
the transplantation operat®y,, replacing7y, . Let C,,, andC,, denote constants appearing
there. Then, forf € L2N L?(w) we can write
”Hy (mH)/ f)”p,w = ”T}/OZHO( (mHy f)”pw

= C)/O(”HO( (mHOl(TO(}/ f))”p,w

< Cya DlTay flipw

< CraDCoyll fllp,w -
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This means that is anL?” (w) multiplier for ,,.
The above specified ® = —1/2 andy > —1 gives, by Theorem 2.1, the following.

COROLLARY 2.3. Lety > —1, 1 < p < oo and w be a given weight that satisfies

r 1/p I ) 1/p'
(2.17) sup(/ w(x)pdx) </ (xw(x))~P dx) < 0
r>0 0 r
and
00 1/p r , 1/p
(2.18) sup(/ (xlw(x))pdx> </ w(x) P dx) < 00
r>0 r 0

if y = —=1/2+ 2k for some k € N, or (2.17), (2.18), (2.7), (2.8)ith « replaced by y and
(2.9)if y # —1/2+ 2k for every k € N. If m isan L? (w) multiplier for the cosine transform
H_1/2, thenm isalso an L? (w) multiplier for H,,.

Consequently, we are enabled to derive weightédboundedness multiplier results,
with general weights, for the Hankel transform of arbitrary onder —1 by applying known
results (for instance those in [11]) for the Fourier transform, modified in an obvious man-
ner to the cosine transform. This improves previous Hankel multiplier results existing in the
literature, see references in [2].

For example, for the weight, ,(x) = x“ x(0,1(x) + xbx(l)oo) (x) both (2.17) and (2.18)
are satisfied provided1/p < a,b < 1 —1/p; itis easy to check, that (2.7) and (2.8) with
a = y are satisfied simultaneously whenevet/p — (y +1/2) < a,b < —1/p+(y +3/2),
whereas (2.9) is satisfied with aayb € R.

3. Theintegral kernel K,,,. Inthe caser, y > —1/2, o # y, Schindler [12] found
an explicit (singular) integral representation of the transplantation opefatos Hy o H,, :
forany f € C2°(0, 00),

(3-1) Tayf(x) = P.V./(; Kozy(xa »Sfdy + Cayf(x) s
whereCy, = cos(a — y)r/2) and, for 0< y < x, Kqy (x, y) is given by

2r 2)/2 2 y—a+2 2
((a+y+2)/2 x_(V+3/2)yV+1/2. 2F1(06+V+ ’ Yy —o+ Cy 41 ()’) )’
'y +DI'((c—y)/2) 2 2

while, for0 < x < y, Koy (x, y) equals

2
2l (@ +y +2)/2) @YD a+y+2’a—y+2;a+lg x
T+ ((y —a)/2) 2 2

(in Section 5 we will show that the formula (3.1) is valid for a wider rangexof and
for much more general functiong see Proposition 5.1 below). Moreover, it was shown
that the singularity along the diagonal is of the following form: with the consiat =
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4/(F (@ — )/ (y —a)/2)(y — ),

1
(3.2 Kay(x,y)zDay%+0<—log al ) x/2<y<ux,
x4 —y X xX—y
and
y 1 y
3.3 Koy(x,y) = Dya—5——+ O —log , x<y<3x/2.
ye—=x y y =X

(In fact (3.2) and (3.3) remain valid far, y > —1, see the proof of Proposition 5.1). In
the above formulas we considét(z)~! to be a continuous function with the sequence of
isolated zeroes in,0-1, -2, ... . Hence, ifo = y + 2k, k =1,2,...,thenKy, (x,y) =0
on 0 < x < y and, moreoverK,, (x,y) is continuous as a function considered on the
region 0 < y < x. Similarly, if y = a« + 2k, k = 1,2,..., thenKy,(x,y) = 0 on
0 < y < x and Ky, (x, y) is continuous on O< x < y. This is because, in the first case,
(y —a+2)/2 € {0,—-1,—2,...} which means thabFi((« + v +2)/2,(y — a + 2)/
2; y +1; 1) is a polynomial irr and the same is true, in the second casezfan(« + y +2)/
2, (a—y+2)/2,a+1;1). Itis clear, therefore, that the significance ofMRin (3.1) is only
forla —y| #2k, k=1,2,....

From now on, we assum&,, (x, y) to be defined (by the above formulas) tary >
—1. It seems that the restrictiom, y > —1/2 in [12] was caused only by assuming the
inversion and Plancherel’'s formulas to be validdor —1/2; as we have already mentioned,
they are valid fo—1 < « < —1/2 as well.

The result that follows shows that the keri&l, is indeed associated with the operator
Toy (in the CZ operator theory sense, cf. [3] or [4]). Our proof of this fact contains ideas and
arguments from [12]; we present it for the sake of completeness.

ProPOSITION 3.1. Letw,y > —1, o # y, and supposethat f, g € C°(0, oo) have
digoint supports. Then

(3.4) (Ho o Hy) f, g) = /0 /0 Koy (x, ¥) f(»)g(x)dxdy.
PROOF. First, note that
. e —d
(3.5) ((Ho o Hy) £, g) = (Hy f, Hag) = lim f Hyf(r)Hag(r>l.
p—0t Jo P

This is because fogp > 0 sufficiently small, such that + y + 2 — p > 0 to be precise, by
using (2.4), (2.5) and choosinrg> 0 sufficiently small, we have

e for0<r<1,
(3.6) IHy F(OHag®)|t ™ < c{ » ==
1=, for r > 1

with C independent op. Hence the dominated convergenkedrem is applicable. Since for
p sufficiently small the functiorit, f(1)Hq (1)t " is integrable, we have

(3.7) / Hyf(t)Hag([)ﬂ: Iim/ e_“Hyf(l)Hag(l)ﬂ-
0 1P 0 tP

c—0t
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Combining (3.5) and (3.7), we get
o0 o
(3.8) (Hy fi Hog) = lim lim /0 /0 Fgx)

p—>0t ¢c—0t

x (/oo e~ xt)Y2 I, (xt) y)Y20, (1) %)dxdy.
0

An application of Fubini's theorem was possible since

/ / / | g e ey)Y2((xt)® +xt) Y2 (1) 4+ (y1) V21 Pdrdxdy < o .
0 0 0

A detailed analysis (to be performed in a moment) then shows that entering withdim
under the double integral in (3.8) is possible. Moreoverxfef y,
. e dt © Jo(xt)J, (y1)
cty.\1/2 1/2 ar _ 1/2 a v
fim, fo T Rl () OV (1) = (xy) /0 prE
since the last integral is convergent in the Riemann sense4fy, o,y > —1 andp > 0.
Rewriting [14, p. 401 (2)], we see that the Weber-Schafheitlin integral

/"O Ju(x1) Ty (y1) dr
0

dt,

tp—1
equals
ny(aﬂ/erZ—p) F a+y+2—p y—a+2—p 1 y 2
ZP_le+2_pF(y+1)F(aig+p) 211 2 s 2 sV 5

if0 <y<ux,or
2

, (a+]/+2—,o a—y+2—p'a+l'(x>>
1 ) ) ) -
20=1yet2=p [ (o + 1) I (L572) 2 2 y

if0 < x < y. Thus, multiplying the above expressions (y)%? and denoting the outcome
by Ky (0; x, y) we see that the right side of (3.8) reduces to

v (g2

lim /0/0 F g Kay (p; x, y)dxdy .

p—0t
Finally, the assumption made on the supportg @ndg and parameter continuity of the hy-
pergeometric functiopF; easily justify an application of the dominated convergence theorem
in the last expression. This finishes proving (3.4).

We now return to justifying the possibility of entering with limg+ under the double
integral in (3.8). Recall that the supports pfand g are bounded, separated from zero and
such that the distance between them is gmettiian zero. Our task will be done once we check
that

ety 12 1/2 di
A e T (xt) 7y (xt)(y1) Jy(yt)t—p <M
with M independent ot € (0,1), x € suppf andy € suppg. Splitting the integration

into (0, 1) and(1, co) reduces the aim to an analogous estimate with the region of integration
(1, 00) in place of(0, c0).
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Sincet > 1, x > ¢, y > e forane > 0, we may use the asymptotic (2.3) to expand both
(x0)¥2Jy (xt) and(yt)Y/2J, (y1). Itis then readily seen that after multiplying both expansions,
out of the six resulting terms only the integral including the main terms makes a problem. For
any other integral we enter with the absolute value inside, beufid the sine and the cosine
by 1 and end up with a convergent integral not depending @nc suppf andy € suppg.

Thus, we are reduced to proving the uniform bound

<C,

o et d[
e cogxt + ay) COSyt + ay) )
1

which further reduces to showing that the integrals

> —ct dt o —cf dt
e “ coq(x £ y)t)—, e “sin((x £ y)t)—,
1 1P 1 tP

are bounded independently ofe (0,1), x € suppf, y € suppg. We consider the first
integral only; the reasoning for the remaining three integrals is analogous.
A change of variable = (x + y)t shows that the integral equals

9]

. du
(x + y)p’lf e 4/ ) cosy — .
x+y uf

Recalling thatm < x +y < M forsome O< m < M < oo and using the uniform
boundedness qfxﬁiy exp(—uc/(x + y)) codu)u—" du, we simplify our task to checking that

the integral
o0 . du
/ e cosu —
M uf

is a bounded function @f — 0. This, however, follows from the right continuity ét= 07,

since the integral
*° cosu
du
M uP

is convergent in the Riemann sense. ]

We end this section by establishing essential growth and smoothness regularity estimates
for Koy, .

PROPOSITION 3.2. Leta,y > —land|a —y| # 2k, k=0,1,2,.... Then

(3.9 |Kay(x’ I = ,
lx =yl

C
3.10 VK, < —
( ) | (xy(x »l = (x—y)2
hold in the local region 0 < x/2 < y < 3x/2, x # y. Moreover, if o,y > 1/2, then the
above estimates hold for all x, y > 0, x # y (infact (3.9)holdsfor all x,y > 0, x # yif
o,y > —1/2).
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PrROOF. The estimate (3.9) is a straightforward consequence of (3.2) and (3.3). Indeed,

if x/2 <y < x, thenusing (3.2) and the inequality log ¢, r > 1, we get
C C
+ < .

x+yEx—y) x—y x—y
The caser < y < 3x/2is treated in the same way, with the aid of (3.3).

Now consider the second estimate. In view of the symm&tyy(x, y) = Ky (y, x) it
is sufficient to prove (3.10) witl replaced by /dx. We will examine two cases, depending
on whethen(x, y) is below or above the diagonal.

|Kozy(x’ Il = |Day|

Case 1. O<x/2<y<unx.
By the differentiation rule [7, (9.2.2)]

d ab
(3.11) 92 2F1(a, b;c;2) = — 2Pia+ 1,b+1Lc+12)
we get
2
0 L a+y+2 —a+2
—Kay (x, y) = Da(a, y)x 772y +12 5y rrevy y+1 (2
0x 2 2 X
2
L a+y+4 y—a+4
+ Da(e, y)x ™7 9/ZyVJFE’/ZzFl( )2/ g 7 +2 G))

= Dl(aa )’)Pay(x’ y) + D2(“7 V)Q()[V(-x7 y) .
An application of (3.9) gives

C
[Key(x, y)| < r

C
P 3 = — K 3 S N
I ay(x I xl ay(x I y)z

X =y
Using the formula (see [7, (9.2.1), (9.2.6)])

(3.12) sFi(a,b;c;2) =

[coF1(a,b—1;¢;2) + (a —c)z 2F1(a, b; c+ 1; 2)],
c(1—2)

we obtain

2
+y+4 y—a+2
2F1<a v ’y v+ 2 (%) >

y y+5/2
|Q0[]/(-x7y)|icl(;> xz_yz

2 2
y+9/2 2
y 1 a+y+4 y—a+4 y
Ca| = F s ; 3’ z
+ 2(x> xz_yz 2 l< 2 2 y+ .
~ y - y2
= C1—5——IK. D+ Co—2 K, ,
lx2 — yzl Ol+l,)/+l(-x y)l + 2x(x2 — yz) I o()y+2(.x y)l

C
< :(|Ka+l,y+l()ﬁ W+ Ko, y+2(x, Y)I) -

By (3.9), the last expression is estimated from above€ by — y)~2.
Case 2. O<x <y <3x/2
Using (3.11), we get
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2
0 _ o a+y+2 a—y+2 x
—Kqy (x, y) = E1(a, y)x* Y2y =32,p Ll S T
ox 2 2 y

2
4 — 4
+ Eo(a, y)xt32y=e=1/2, p ety , il e o+ 2 a
2 2 y
= E1(a, y)Ray (x, y) + E2(a, ) Say (x, y) .

Now, the estimate (3.9) implies

| Rovy ( )|_—C| y( )| =< P
Ry (x, = Ky (x, .
o y o y ( )

The remaining part is treated with the aid of (3.12):

a+3/2 2
X 1 aty+4 a—y+2 (X
1Sy (X, )1 Ecl(;> m 2F1( 5 > > ;o + 2 ;
at+7/2 2
1 4 o— 4
10y X JF oa+y+ ’oz Yy + a3 x
2 2 y

y y2 — x2
y ~ X

V22 | Kat1.y+1(x, y)| + szllfowrz,y(x, I

C

(x =32

Finally, it is not difficult to show that itx, y > —1/2, then (3.9) and, itx, y > 1/2, then

(3.10) hold also in the regions @ y < x/2 and O< 3x/2 < y; we simply use the fact that

2F1 is bounded on [0,1/2]. m]

=C1

=

4. Local Calderén-Zygmund operators. It is clear that the CZ theory (specified to
R) works, with appropriate adjustments, when the underlying spa i®) equipped with
Lebesgue measutkc. Thus we use properly adjusted facts from the classic CZ theory (pre-
sented, for instance, in [4]) to the aforementioned setting without further comments.

LetA = {(x,x); x € Ry}, Ry = (0, 00), be the diagonal oR; x R;. We say, cf. [4,
p. 99], thatk : Ry x Ry \ A — Cis a standard kernel if, for, y, z > O,

4.1) IK (x,y)| < Clx — y| 7%,
(4.2) IK(x,y) — K(x,2)| < Cly —zllx —y|72 if |x -yl >2y—zl,
(4.3) IK(x,y) — K@z )| < Clx —zllx —y|™2 if |x —y| > 2x —z].

Note that by (4.2) and (4.3) standard kernels are continuous. Clearly, they also satisfy the
Hoérmander conditions

/ [K(x,y)— K(x,2)|dx <C,
(x>0 [x—y|>2]y—zl}

/ |K(x,y) — K(w, y)ldy <C,
(y>0; [x—y|>2x—wl}

forall x, y, w,z > 0.
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DEFINITION 4.1. Alocal standard kernelis a kerrét Ry x R, \ A — C supported
in the region
D={(x,y); 0<x/2<y=<3x/2},
and satisfying (4.1)—(4.3) db.

DEFINITION 4.2. An operatof is a local Calderon-Zygmund operator if:
(1) T is bounded or.?(0, cc);
(2) there exists a local standard kerfiehssociated witll" such that

oo r3x/2 o
(Tf, g)=/0 //2 K(x, y) f(y)g(x)dydx

forall f, g € C°(0, oo) with disjoint supports.

PrROPOSITION 4.1. Let K(x, y) bealocal standard kernel. Then K satisfies the fol-
lowing H6rmander type conditions:

(4.4) / [K(x,y) = K&, | f(X)|dx <CM4 f(y), y,zel,
(0,00)\21

(4.5) / [K(x,y) = K(w, MW fDMdy <CM4 f(x), x,wel,
(0,00)\21

for all intervals I C (0, c0). Here M. denotesthe (non-centered) Hardy-Littlewood maximal
function on (0, co),
1 v
Myf(x)= sup —— / [f(»ldy
O<u<x<v U — U Jy

and 2/ istheinterval with the same center as I and such that |27| = 2|I].

PROOF  We focus on proving (4.4) since the proof of (4.5) is entirely analogous. Let
I = (u,v) C (0,00). We may assume that< y < z < v; the analysis of the cage< y is
similar.

Since 2 = ((3u — v)/2, (3v — u)/2) the region of integration in (4.4), due to the
assumption on the support &f, is the set

(¥/2,3z/2\((Bu —v)/2, Bv —u)/2).
Note that the supports & (-, y) andK (-, z) overlap only onz/2, 3y/2). Thus, proving (4.4)
reduces to showing that each of the three integrals

I = i K (x, I fx)|dx, B1=(y/2,min{z/2, Bu —v)/2}),
1

I = . IK(x,y) = K, )l f()ldx, B2=(z/2,(Bu—v)/2)U(Bv—u)/2,3y/2),
2

I3 = /;3 |K(x, 2)|[f(x)ldx, Bz =(max3y/2, 3v—u)/2},3z/2),

is bounded by the right side of (4.4). Here we use the conventiorid¢hay = @ if a > b.
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Consider/ first. If v/u < 3/2, thenB1 = (y/2, z/2) and forx € (y/2, z/2) we have
y—x > y—z/2 > y/4(the last inequality follows from the fact that< v < 3u/2 < 3y/2).
Thus

z/2 Cc [3/? Cc /2
n< cf LG —f £ (Oldx < —f FCOldx < CM4 F(3).
yv/2 Iy - X| Y Jyj2 y Jyj2

If v/u > 3/2, then ¥4 > (3 — v/u)/2. Hence, forx € (y/2, min{z/2, Bu — v)/2}),
y —x > y/4. Thisis becauseyy4 > 3u/4 > (3u — v)/2, thereforey —x > y — (3u — v)/
2 > y/4. Consequently,

(3u—v)/2 Cc /2
I < c/ @, —/ f()ldx < CM4f(y).
v/2 ly — x| Y Jyr2

Consideringl>, we denotd = v — u and use the growth and smoothness conditions
(4.1), (4.2) to get

pc[ PSiwiarza [
B B

ZIX'—y 2|x__yP .

The last integral multiplied b¥is less than (the series below, in fact, terminates)

S £ ()] )
> 5 X(z/2.3y/2) (X)dx
=171 y

2] <|x—y|<2k+17y |X — y|

9]

1
<] — d
=1 Gy flxy<2Ml|f(x)|x<Z/z,3y/z>(x> x

k=—1
o0
=Y o
22 S x—y1<2 /2,3y /2)

< 4( 3 Z‘k)M+f(y).

k=-1

Finally, consideris. If v/u < 4/3, thenB3 = (3y/2, 3z/2) and forx € (3y/2, 3z/2)
we havex — z > 3y/2 — z > y/6 (the last inequality follows from the fact that< v <
4u/3 < 4y/3). Thus

3z/2 2y
Is < c/ SO, 5/ T LF@)ldx < CMAf ().
3 Yy Jy

v2 1x —z| 2
If v/u > 4/3, then(3 — u/v)/2 > 9/8. Hence, forx € (max{3y/2, Bv — u)/2}, 3z/2),
x —z > z/8. This is because®98 < /8 < (3v — u)/2, thereforex — z > (3v — u)/
2 — z > z/8. Accordingly,

|f(x)]dx

3z/2 If(x)| C 3z/2
I < cf dx < —f f)ldx < CMy f(). o
3y/2 1x —z| z Jo
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DEFINITION 4.3. Letl< p < oo andw be a nonnegative weight @, oco). We say
thatw? satisfies the (global}, condition if

1 v 1/p v AP
(4.6) sup (/ wp> (/ wp) <
O<u<v<oco UV — U u u

(if p = 1, then the second integral is understood as es(g_gypxrl). We then writew?” €
A,(0, 00) and denote the left side of (4.6) kiw? |4,

Given alocal CZ operatdf with the associated kerngl(x, y) and a nonnegative weight
w such thatw” € A,(0, c0), consider the truncated integrals

T.f (x) =/ K@) f(dy, x>0
{y>0; [x—y|>¢}

(well-defined for everye > 0, f € LP(w), 1 < p < oo, w? € A,(0,00)) and the
corresponding maximal operator

T f(x) = SU(I?ITsf(X)|~

An important consequence of Proposition 4.1 and the general CZ theory is the following.

PROPOSITION 4.2. Let T be a local Calderén-Zygmund operator and w a nonnega-
tive weight such that w?” € A, (0, oo). Then T extends to a bounded operator on L”(w) if
1 < p < o0, and to a w-weighted weak type (1, 1) operator, if p = 1. Moreover,

ITflpw < CpllwPla I fllpw, feLP(w), l<p<oo,
ITf N 1oy < Calwllaglflliw. f € Ltw),
with C,, independent of w. Analogous inequalities are also valid for 7*.

PrROOF. A careful analysis of the corresponding reasoning for the usual (global) CZ
operators (cf. for instance [4, Chapters 5, 7]) shows that the (global) standard estimates (4.2)
and (4.3) are exploited only to conclude (4.4) and (4.5). Hence, one can apply the estimates
from Proposition 4.1 directly. First, to obtain the unweightedl estimates or weak type
(1, 1) for T itis sufficient to use (4.4) and (4.5) with = 1, cf. [4, Theorem 5.10]. Next, to
obtain weighted.?” and weak typé&1l, 1) estimates fof” and7* we use (4.4) and (4.5) and
imitate the argument contained in the proofs of [4, Lemmas 5.15 and 7.9, Theorem 7.12]. The
conclusions of [4, Theorem 7.11 and 7.12, Corollary 7.13] then follow. O

It occurs that the results contained iroposition 4.2 may be strengthened by allowing
more general weights. This is the essence of the following theorem, which is the main result
of this section (for the definition and properties of lodal cIassesAl’;C, see Section 6).

THEOREM 4.3. Assumethat 7 isalocal Calder6n-Zygmund operator and let w be a
nonnegative weight on (0, o) such that w” € Ay ..
(@) Ifl< p < oo, thenT extendsto abounded linear operator on L? (w);

(b) if p =1, then T extendsto a bounded linear operator from L(w) to L1 (w);
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(c) the maximal operator T* isboundedon L?(w) if 1l < p < co;whenp =1, T*
satisfies w-weighted weak type (1, 1) inequality.
Moreover, the corresponding L? and weak type constants depend on w only through the local
A, normof w?.

PROOF. We shall use the argument from [1, Section 5], see also [10, p. 31], together
with Proposition 4.2. Let 1< p < oo, f € L?NLP(w), wP € A{;C and consider the
intervalsz, = [2",2""3), n € Z. Define the weightv, on (0, co) to be a restriction of the
weight on(—o0, co) which is equal tow on I,,, periodic with period 2/,,|, and symmetric
around the point’2 Then one verifies that the (global), norm ofw), is estimated from
above, up to a multiplicative constant independeniaindn, by the localA, norm of w?”

(more preciselyuw,anp < Zpr”Agmc < 2cp||w1’||A|/gC, see Section 6 for the notation and

the last inequality). Thus, denoting = fx,. J, = [2""1, 2"%?) and using the fact that
Tf(x)=Tf,(x)a.ex € J, (explained below) together with Proposition 4.2 we obtain

/0 ITf(x)w(x)I”dx=Z/J IT f () w, (x)|Pdx

neZ

< Cpllw”llAfgCZ/O | frn () wy (x)|Pdx

neZ

=:>,cp||w”||Agcf0 |F w1 dx

The identityT f (x) = T f,,(x) a.e.x € J, is a consequence of the weak associatiof @fith
the kernel supported in the regi®h Indeed, writef = f, + f x,)c; since the functiong,
and f x(i,c have disjoint supports, and far € J, the conditionx/2 < y < 3x/2 implies
y € I, it follows that

/JT(fxu,,)c)(x)dx:/O T (f x1,)e)(x) xa, (x)dx

oo r3x/2
:/0 //2 K (e, ) F O Xtye ) xa, (x)dyd x
=0.

Clearly, the same is true if we repladg by its arbitrary subinterval, thuB(f x(,)c)(x) =
0 a.e.x € J,. A careful reader surely observed that we have applied the weak association
condition to functions which are nd@f2°; nevertheless, this is not an obstacle, because of

Proposition 4.2 and an approximation argument.
Treatment of the case = 1 is analogous. Giveh > 0, define the level sets

Ey={x>0;|Tf(0)>1}, El={x>0;:|Tf(x)|> 1}
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and write
/ w(x)dx = Z/ XEp (X)wy (x)dx
EA neZ Jn
1 o0
< Callwl g A~ Z/ | fo () [wn (x)dx
neZ 0
1 o0
=3C1||w||A|1 AT / |f () w(x)dx.
oC 0
In a similar way we deal withT*. O

As it was already remarked in Section 2, the la¢glcondition is also necessary, at least
as the local Hilbert transform is concerneduifis a nonnegative weight of®, co) such that
H, is bounded or.”? (w) for some 1< p < oo, or satisfiesw-weighted weak typ&l, 1)
inequality if p = 1, thenw” must be a local , weight.

5. Proofs of the main results and final remarks. Recall thatTaly and Taz), denote
the integral operators

x/2 oo
TL £(x) = /0 Kay (e ) fOAy, T2, f(x) = /3  Kereo )12y
X
Note that due to the boundedness 6f on (0, 1/2) we have
(5.1) |Kay (x, y)| < Cx™ Y32y tl/2 0 <y < x/2,
(5.2) | Ky (x, y)| < Cx®TY2y=@F3/2 3y /2 <y < 0.

By takingp = 2 andw(x) = 1in (2.10) and (2.11) it follows thavfaly andTaZV are bounded
on L2(0, c0), see the estimates in the proof of Theorem 2.1 below. Thus

3 1 2
Ty, =Toy — Ty, — Ty,

is also bounded o , 00). Moreover, by Proposition 3. is associated wi e kerne

Iso bounded 0h2(0, c0). M by Proposition 3.17;3, ted with the kernel

K3, (x,y) = xp(x. ) Kay(x. y),

which by Proposition 3.2 is a local CZ kernel (tipeadient estimate (3.10) implies the smooth-
ness conditions (4.2) and (4.3)). THI}% is a local CZ operator.

PROOF OFTHEOREM2.1. Assumethatk p<ooandja — y| # 2k, k=0,1,2,....
An application of (5.1) and Hardy’s inequality (2.10), under the condition (2.7), gives

00 00 x/2 P
/ Ty, fw)|dx < € / <w(x) / x(”3/2)y”1/2|f(y)ldy> dx
0 0 0
00 p
< c/ <w(x)x—<V+1/2>xV+l/2|f(x)|> dx
0

- c/oo | fOw)| dx.
0
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Similarly, using (5.2) and Hardy’s inequality (2.11), under the condition (2.8), we get
o o0
/ [Ty f @) dx < C/ | owo|dx.
0 0

The corresponding.” inequality forTa3y is a consequence of Theorem 4.3.

Now, consider 1< p < ccandk = 1,2,... . If @« = y + 2k, thenK,, (x, y) vanishes
on the region O< x < y and, moreover, the hypergeometric function definkhg (x, y) is
bounded on O< y < x. Hence the estimate (5.1) holds fo0y < x and the desired result
follows by Hardy’s inequality (2.10). Whep = « + 2k, thenK,, (x,y) =00on0< y < x
andz Fy defining itis bounded on & x < y, so (5.2) holds for O< x < y and the conclusion
follows with the aid of Hardy’s inequality (2.11). ]

PROOF OFTHEOREM2.2. Argue as in the proof of Theorem 2.1, using weighted
weak type inequalities (2.15) and (2.16), instead of weighted Hardy’s inequalities (2.10) and
(2.11). O

The next result refines and enlarges Schindler’s singular integral representéfign of

PrROPOSITION5.1. Leta,y > —1, |@ —y| # 2k, k=0,1,.... Thentheextension
of T, (obtained in Theorems 2.1 and 2.2) acting on weighted L” spaces, 1 < p < oo, has
thesingular integral representation (3.1)valid for all f € L?(w), w being aweight satisfying
the conditions described in Theorem 2.1 if p > 1 or in Theorem2.2if p = 1.

ProoF. Recall that Schindler [12] proved that (3.1) holds fore CZ°, provided
a,y > —1/2. Here we claim that a detailed and careful analysis of Schindler's argument
[12, pp. 368-379] shows that (3.1) remains valid fore C2°(0, oo) whena, y > —1 (in
particular, (3.2) and (3.3) hold alsadfor y is in (—1, —1/2)). The conclusion of Proposition
5.1 then follows by standard arguments (see [4, Chapter 5, Section 4]), Theorem 4.3 (c), the
fact thatTD?y is a local CZ operator and the density©f° (0, co) in all weightedL? spaces
under consideration.

We now give merely an outline of necessary modifications of Schindler’s reasoning for
proving (3.1) under the aforementioned assumptions. The starting point is the formula (2.6)
(understood as iterative integral, with both inner and outer integrals Lebesgue integrable, no
application of Fubini’s theorem possible)high replaces the second formula in [12, Section
2]. The next point to be explained is the fact that the contribution of

1
/0/| ‘ a(xy)l/ZJa(xy)(yt)l/ZJV(yt)f(t)dtdy
x—t|<

tends to zero a& — O™ In view of (2.1) the absolute value of this expression is bounded by

1
Cx*tY/? / / L £ ()Y T2 aryetrHigy
0 J|x—r|<8
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and the required claim follows sing&)r? t1/2 is bounded or0, co) anda + y +1 > —1.
Another place to be modified is the result contained in [12, Lemma 2], which in our setting is

lim / Y P Hy F) @) Y2 (xy)dy = Ho (H, f)(x) .

p—0t Jo
The problem is in justifying the use of the dominated convergence theorem; this was already

done in the proof of Proposition 3.1. In all other places that need a modification a similar
reasoning is used. O

REMARK 5.2. By Proposition 3.2 the kernél,, (x, y) is a (global) standard kernel,
provideda, y > 1/2, | —y| # 2k, k = 0,1,....As it may be easily seen, the argument
used in the proof of Proposition 3.2 for showing (3.10) (the estimate used in proving (4.2) and
(4.3)) fails outsideD either ifa < 1/2 ory < 1/2. 1t is important to stress here, however,
that even in the case, y > 1/2 restricting the kernel t® brings an advantage: outsid®
we use Hardy’s inequalities while inside we deal with a local CZ operator which results
in admitting more weights. To be more precise, we shall show that fer < oo the
condition (4.6) implies (2.7) fop > —1/2 and (2.8) forx > —1/2 (we thank Oscar Ciaurri
for assistance in proving this) while in the cgse= 1 the condition (4.6) implies (2.12) for
y > —1/2 and either (2.14) fox > —1/2 or (2.13) fora« = —1/2. Indeed, in the case
1< p < oo, if w satisfies (4.6) ang > —1/2, > —1/2, thenw” € A, (0, co) and hence

(5-3) ||M+g||p,w = C”g”p,w .
SinceM dominates the Hardy operat®i,
1 X
—/ g)dt| <2M,g(x), x € (0,00),
x Jo

it follows that

|Pyiasaf ()] < [PL(f Ot~V 0)| < 2My (F(O) =Y T2 (x),
therefore
(5.4) 1Py +3/2f lpow < ClLf)x= Y+,

This is (2.10) hence, necessarily, satisfies (2.7). On the other hand,uif satisfies (4.6),
thenw™ " € A (0, 00) and hence (5.3) holds with—1 and p’ replacingw and p. Thus
(5.4) holds with the analogous replacement and, in addition, witplaced byy. It is easily
seen that the dual inequality to (5.4) with the aforementioned replacements is (2.11) hence,
necessarilyw satisfies (2.8).

In the casep = 1 the argument is similar. lfv satisfies (4.6) withp = 1, thenw €
A1(0, o0) and hence

My gl 1oy = Cllglw -
Consequently, givep > —1/2 it follows that

IPy+3/2f |l Lrooquy < ClILF@)x =0TV,
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This is (2.15) hence, necessarily satisfies (2.12). On the other handyifatisfies (4.6) with
p =1, then

v
/ w<Cessinfw(kx), 0<u<v<o.
v—uJ, x€(u,v)

This is theA; condition, readily seen to be equivalent with, w(x) < Cw(x) a.e., cf. [4, p.

134], which is necessary and sulfficient for
1My gw ™ oo < Cllgw oo

to hold, cf. [8, Theorem 4]. (Here is a shorgament of this fact: for sufficiency we can
assume thatgw 1|, < oo and then

1M+ (gw™tw)yw oo < lgw ol (Myw)w ™ oo < Cllgw™ oo ;

necessity is immediate.) Hence, givern- —1/2 we obtain
(5.5) 1Paraszfw oo < ClLF ()X~ w(0) oo .

Since the dual td.}(w) is L®(w™1) (with the pairingh — [5° he, ¢ € L®w ™1 1), itis
easily seen that the dual inequality to (5.5) is

10 —@+1/2 fllLw < Cllf )x4T¥2||1,,

which implies (2.16) hence, necessarily, either (2.14) it —1/2 or (2.13) ifa = —1/2
follows.

REMARK 5.3. Mapping properties dl’jy can be obtained in another way, by proving
the estimate
T2, f ()| < C(Mo f (x) + Ho f (1)),
see [13]. Nevertheless, the CZ approach is more insightful and results in some additional
profits, one of them being Proposition 5.1.

REMARK 5.4. As it was already pointed ouK,, is a standard kernel whenever
a,y >1/2, | —y| #2k, k=0,1,2,....Consequently, in such a case further mapping
properties of7,, follow by a general theory, cf. [4, Chapter 6]. For instanfg, extends
to a bounded operator frofit to L. It is worth noting that Kanjin [6] has recently proved
a stronger resultT,, extends to a bounded operator Bt wheneverr > —1/2 andy >
—-1/2.

6. Appendix: local A, theory. In this section we show that most of the basic proper-
ties of A, weights carry over locad , weights. Although some of the facts are not indispens-
able for the rest of the paper, they seem to be worthy of attention and therefore are presented.
The proofs are direct modifications of the corresponding proofs for (glebalyeights. We
give a part of them for the sake of convergerand completeness, mainly according to [4,
Chapter 7].

In what follows we shall denote

Ty ={lu,v); O<u<v<ku}, k>1.
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Observe, that if € Z; and[u, v) C I, then alsdu, v) € Z;. Given 1< p < oo andk > 1,

let A} . be the class of all nonnegative weighton (0, o) satisfying

1 1/p RN 4
(6.1) SUp—(/w) (/w"””) < 00.
1e I\ J1 I

If p = 1, then we understand the second integral as esasup. Note, thatw satisfies (2.9)
ifand only if w?” € A% .

PROPOSITION 6.1. Letl< p <oo. ThenA? = A)

k.loc 2.loc foranyk > 1.

PROOF. Clearly, A}, o C A}, joc Whenever 1< k1 < k2. To show the converse inclu-

sion we shall use the reasoning from the proof of [1, Lemma 1]. Letd < co. Notice first
that Holder's inequality gives

Vkyu 1/p Vkyu LN\
s () ([

and, consequently,

Vku 1-p Vkiu
(/ ' wl/(pl)> S(Jk——l)fpufp/ ' w.

Now, letw € A,fl’loc. Since the condition (6.1) fap is equivalent to

v v p—1
(6.2) (/ w)(/ w_l/(”_l)) <Clw—uw?, O<u<v<kiu,
u u

we obtain
kiu kiu kiu
/ w < / w < C(ky — 1)”14”(/ wl/(pl))
Vhkiu u u

\/k_lu 1-p
< C(kr — 1)17”1’(/ w—l/(P—l)>
u

Vkiu
SC(\/k—1+1)p/ w.

Iterating this process we conclude that

v Vkyu
/ w = Cpgkl,sz w, kwu<v<kou.
u u

Similar arguments show an analogous inequality/for—/(»=1 therefore (6.2) holds with
k1 replaced by, (and a new constaiit depending also oky andky).

In the casep = 1 essentially the same reasoning works hence we do not provide the
details. O

Thus the classiy . is in fact independent df > 1, hence it will be denoted by .

The condition (6.1) will be referred to as a locé), condition, and weights frorml’(’)C will

be called locald , weights. By theA,’:)loc constant (or norm) ofv € Af(’)c we mean the value
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of the left side in (6.1) and denote it lﬂyuHAp . Note that by the proof of Proposition 6.1 the

Ak loc andA;l’Ioc norms are comparable, the correspondmg constants being dependent only on
k,landp. The A}, norm ofw € Aj. will be simply called locald, norm and denoted by
lwllp -

Define fork > 1 a local version of the Hardy-Littlewood maximal function
Mg jocf (x) = sup — / [fDIdy .
xEIEIk |I|

PROPOSITION 6.2. Let1l < p < ocoandk > 1. The condition w € Aloc is necessary
for the local maximal function My o to satisfy the weighted weak type (p, p) inequality

o0
w({x > 0; My jocf(x) > A}) < /\%/ | f)Pwx)dx, Ar>0.
PROOF. Let f > 0 and, with the notatiorf (/) = [, f, letI € Z; be such thaf (1) >
0. Observe, thatif 0< A < f(1)/|I], then
I C{x>0; Mrjoc(xr f)(x) > A}.

Therefore, using the weighted weak ty@ge p) inequality for My joc, we see that

W(I)SE/f”w, 0<X< f(D/II,
a

with a constanC independent of andx. This gives

wo12) <[

which after substituting’ = xs, S C I, specializes to
(6.4) w(l )<||1||> < Cw(S).
Note that, after excluding the trivial cases= 0 andw = oo a.e, the above inequality
implies that 0< w < oo a.e.

Assume first thap = 1 and letA = essinf<; w(x). For eache > 0 there exists a set
Se C I of positive measure such that(x) < A + ¢ for x € S.. Now, (6.4) givesw(l)/
|I| < C(A + ¢) and hence

w(l)
1]

which is equivalent to the locad1 condition.

When 1< p < co we takef = w7 x; in (6.3) to get

p
w( )( /wlp/> < C/wl—p/
7] 1

which is easily seen to be equivalent to the la¢glcondition. 0

<Cw(x), aexel,
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PROPOSITION 6.3. Letk > 1L Ifl < p <ocandw? € Al’(’)c, then the local maximal

function Mg joc is bounded from L?(w) to L?(w). Moreover, if w € Aﬁm, then My joc IS
bounded from L1(w) to L1 (w). The corresponding L” and weak type (1, 1) constants

depend on w only through the local A, normof w?.

PrROOF We shall use the argument, which was already applied in the proof of Theorem
4.3. Letl, = [k", k"t3), n e Z. Define the weightw, on (—oo, c0) to be equalw on
I,, periodic with period 27,,|, and symmetric around the poikit. Then one verifies that the
(global) A, norm ofw}, is estimated from above by the loc&), norm ofw” times a constant
independent ofv andn. Thus, denotingf,, = fx;,. J, = [K"*1, k¥"*2) and observing that if
x € J, then the condition 6< u < x < v < ku impliesu, v € I,, we obtain forp > 1

/0 (M soc (00 dx = 3 [ (Musooy ()7 dx

neZ

=3 [asuw, o

neZ

<cy / | o )y ()] Pdx

neZ
= 36‘/00 | f()wx)|Pdx .
0

In the above we used weightéd inequality for the Hardy-Littlewood maximal functiaif .
Treatment of the case = 1 is analogous, see the proof of Theorem 4.3. O

REMARK 6.4. SinceM3z/ojocf < 2M, f < 2M> oc f, Propositions 6.2 and 6.3 remain
true with My joc replaced byM,,.

COROLLARY 6.5. Letl<p <oo, we AI’(’)C and I € 7; for somek > 1. Thereexists
a constant C depending only on k, p and the A”  norm of w such that for each measurable

loc
setScl

() =eui
) =

PROOF. In virtue of Proposition 6.3 the constafitin (6.4) depends only op and the

A o NOrM of w. O
PROPOSITION 6.6. Thelocal A1 condition is equivalent to

(6.5) Mp jocw(x) < Cw(x), a.e.x e (0,00),

with k > 1 fixed.

PrROOF. It is straightforward that (6.5) implies the locah condition. To prove the
converse, suppose that for eveng Z;
w(l)

—T;T— <Cw(x), aexel.
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Observe, that i is such thatMy jocw(x) > Cw(x), then there existg € Z; with rational
endpoints such that(/)/|I] > Cw(x), sox lies in a subset of of measure OTaking the
union of all such exceptional sets for all intervélg Z; with rational endpoints we conclude
that My jocw(x) > Cw(x) holds only on a set of measure zero. O

PROPOSITION 6.7.

(a) Alléc - Alqoc’ 1<p<gq;

(b) we Al ifandonlyif wl=? e Af(’)/c, 1<p<oo;
(¢) Ifwo,wye Aﬁ)c, then wowi*’7 € Afz)c, 1l<p<oc.

ProOF. Allthe statements are ratherect consequences of the loeg} condition; for
example, to check (a) we tallec 7, and write forp = 1

q-1 -1
(i / wl‘q/) <esssum(x) ! < C<w) ,
1] J; xel 1]

and wherp > 1 we use Hdlder’s inequality to get

qg—1 p—1 -1
(o)< ) se(3)”
1 J1 11 J; 1]
The remaining items are verified in a similar manner. |

PrROPOSITION 6.8 (Reverse Holder Inequality)Let 1 < p < oo, w € Al’(’)c and

k > 1. There exist constants C and ¢, depending only on p, k and the local A, norm of w,

such that
1/(1+e)
i/wl"’s <£ w, [el;.
1] J; 1l

PrRoOF. The reasoning is essentially the same as that for glabaleights, see [4,
Chapter 7, Section 2]. ad

The reverse Holder inequality has the following notable consequences.

COROLLARY 6.9.

€)) Aﬁ)c:qu; Alqoc’ 1l<p<oo;

(b) ifwe Al 1<p<oo, thenwlte e A for somes > 0;

(c) ifk>1landw e A, 1< p < oo, thenthereexists § > 0 such that

w(S) - C(@)S
w(l) — 1]
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