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Abstract. This paper is concerned with the study of the Borel summability of diver-
gent solutions for singularly perturbed inhomogeun first-order linear ordinary differential
equations which have a regularity at the origin. In order to assure the Borel summability of
divergent solutions, global analytic continuatiproperties for coefficients are required despite
the fact that the domain of the Borel sum is local.

1. Introduction and main result. In this paper we are concerned with the following
inhomogeneous first-order linear ordinary differential equation with a paraméte€):

(1.1 a(x,e)Dyu(x, &)+ b(x,u(x,e) = f(x,¢),

wherex € C, D, = d/dx. The coefficients:, b and f are holomorphic atx, ¢) = (0, 0)
eC?

First of all we give two fundamental assumptions. The first meang tisat perturbation
parameter; that is, we assume the following:

(1.2) a(x,0=0.
The second is
(1.3) a:(0,0) #0,

whereag(x, g) = (9/9¢)a(x, ¢). These two assumptions imply that0, ) # O for suffi-
ciently smalle # 0, which means that (1.1) has a regularity at 0.

Throughout this paper we always assume (1.2) and (1.3).

It follows from (1.2) and (1.3) that solutions of (1.1) can be expressed by convergent
power series around = 0. Here, however, let us consider solutions expressed by power
series in the perturbation parameteihen, as will be stated later, under a suitable condition
(1.1) has a unique power series solutiaiy, &) = Y 7 qu,(x)e" (u,(x) are holomorphic in
a common neighborhood af = 0), but it diverges in general and the rate of divergence is
characterized in terms of the Gevrey index (cf. Definition 1.1 and Theorem 1.1).

So, we would like to study the following problem:

Is there any holomorphic solution U (x, €) which has the divergent solution u(x, ¢)

as an asymptotic expansion of the Gevrey type when ¢ — 07?
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We have two types of the Gevrey asymptotic expansions: ‘asymptotic expansions in harrow
regions’ and ‘asymptotic expansions in wide regions’. On the first, the above problem has
been already studied by Hibino [8] (cf. Theorem 1.3). Therefore, the subject matter of this
paper is the second expansion, and in particular we are interested in the Borel summability of
the divergent solution stated above (cf. Definition 1@l main purpose in this paper isto
obtain the conditions under which the divergent solution is Borel summable.

The content of this paper is as follows. In Section 1.1 we state the condition which (1.1)
should satisfy in order to assure the unique existence of the power series solutieh =
Yoo oun(x)e™. Moreover, we give the rate of divergence, that is, the Gevrey indekwof),
and explain that this Gevrey index is optimal by investigating a simple example. This result
(Theorem 1.1) has been proved by Hibino [7] and it plays the most fundamental role through-
out this paper. In Section 1.2 we briefly explain the Gevrey asymptotic theory in narrow
regions. As will be stated in Theorem 1.3, when the region is narrow, there always exists a
holomorphic solutior/ (x, ) on that region which has the above divergent solution ¢)
as an asymptotic expansion of the Gevrey type, without any additional condition for coeffi-
cients. This result has been proved in [8]. kc8on 1.3 we give the main result in this paper
(Theorem 1.5). When the region is wide, we cannot unconditionally expect the existence of
U(x, ¢) stated above. In Theorem 1.5 we give the conditions under which sdbttx &)
exists. Global analytic continuation properties for the coefficients will be required. In Sec-
tion 1.4 we introduce literature studying related topics. The proof of Theorem 1.5 is done
through Sections 2, 3 and 4. In Section 2, the proof of Theorem 1.5 is reduced to that of a
global solvability of the initial value problem of some convolution equation. Sections 3 and 4
constitute the main part of the proof. We transform the convolution equation obtained in Sec-
tion 2 into some integral equation, and prove the global solvability of that integral equation by
applying an iteration method. In Section 5, we investigate some special cases in detail. When
an equation has a restricted form, we can obtain a stricter result than Theorem 1.5. Through
these considerations, we will see the essentialness of our global assumptions.

1.1. Existence of a divergent solution. In this section we state the theorem obtained
in [7], which assures the unique existence of divergent power series solution. First, let us give
the definition of divergent power series of the Gevrey type.

DEerFINITION 1.1. (1) O[R] denotes the ring of holomorphic functions on the closed
ball B(R) = {x € C; |x|] < R}, whereR is a positive number.

(2) The ring of formal power series ia (¢ C) over the ringO[R] is denoted as
OLRI[[e]l:

(1.4) O[R]lle]] = {u(x, €)= Zun(x)sn ; up(x) € O[R]} .
n=0
(3) We saythati(x, ¢) = Z;’lio u, (x)e™ (€ O[R][[e]]) belongsto O[R][[]]2, if there
exist some positive constanfsand K such that
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(1.5) max |u, (x)| < CK"n!
[x|<R

foralln = 0,1,2,.... The suffix 2 of O[R][[¢]]2 expresses the Gevrey index of power
series. Elements @[ R][[¢]]2 are divergent power series in general.

Now we already know the following theorem, which will be fundamental in the argument
below.

THEOREM 1.1 ([7]). Letusassumeb(0, 0) # 0. Then (1.1)hasa unique power series
solutionu(x, &) = Y o2 qun(x)e" € O[R][[£]]2 for some R > 0.

In the following we always assunig0, 0) # 0. On the basis of Theorem 1.1, we can
study the coming problem; that is, the existence of asymptotic solutions of Gevrey type.

REMARK 1.1. The Gevrey index 2 of power series solutiais, ¢) (that is, the esti-
mates (1.5)) is optimal. For example, let us consider the following simple equation:

(1.6) —eDyu(x,e)+ulx,e) = f(x).

Equation (1.6) has a unique power series solution, &) = > 2, F®™(x)e". Hence, if
f(x) = 1/(1—x) for example, it holds that, (x) = f™ (x) = n!/(1—x)"*L. Therefore, in
this case, the Gevrey index ofx, ¢) is exactly 2.

1.2. Gevrey asymptotic expansions in narrow regions. In this section we explain the
result obtained in [8]. First we give the definition of the Gevrey asymptotic expansions in
sectors.

DEFINITION 1.2. (1) Ford € R, p > 0and O< p < 400, the secto5(9, p, p) in
the universal covering space ©f\ {0} is defined by

(1.7) SO, p, p) = {g; large) — 6] < g, 0< | < ,0}.

We refer to6, p and p as thebisecting direction, the opening angle and theradius of
S0, p, p), respectively.

(2) Letu(x,e) = > qun(x)e" € O[R][[¢]]2 and letU(x, &) be a holomorphic
function onX = B(R) x S(0, p, p). Then we say thal/ (x, ¢) hasu(x, &) asan asymptotic
expansion of the Gevrey order 2 in X if the following asymptotic estimates hold: there exist
some positive constant andK such that

N-1

_ n N | N

(1.8) mg)e( U(x,e) Eoun(x)e < CK"N!lg|",
n=

foralle € S, p, p) andN =1, 2,... . Then we write this as

U(x,e)Zou(x,e) in X.

The following result is well known as the theorem of Borel-Ritt.
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THEOREM 1.2 (cf. Balser [1, 2]). Let u(x,&) = > .- qun(x)e" be an arbitrary ele-
ment of O[R][[¢]]2 and let & be an arbitrary real number. Let usassume 0 < p < 7.
Then there always exist infinitely many holomorphic functions U (x, ¢€) on some X = B(r) x
S0, p, p) satisfying U(x, ) =2 u(x, ) in X.

Now letu(x, ¢) = Z;’;O u, (x)e" € O[R][[e]]2 be the divergent solution of (1.1). We
recall that the unique existence of such @, ¢) is ensured by Theorem 1.1. For a given
bisecting directiord and a given opening angle, we consider the following problems
there a holomorphic solution U (x, €) on X = B(r) x S(0, p, p) (for some r and p) which
satisfies U (x, &) =2 u(x, ¢) in X? As an application of Theorem 1.2, in [8] it was proved that
this problem was solved positively jf < 7.

THEOREM 1.3 ([8]). Letu(x,&) = Y 2 qun(x)e” € O[R][[¢]]2 be the divergent
solution of (1.1), and let 6 be an arbitrary real number. Let usassume O < p < 7. Then
there exist some positive constants r,,, p, and a holomorphic solution U (x, &) of (1.1) on
Xp = B(rp) xS, p, pp) suchthat U (x, &) = u(x, ) in X ,,. Moreover, there are infinitely
many such solutions.

The assumptiop < = is significant. Moreover, it should be remarked that we impose
no additional conditions for coefficients. If a region becomes wider, we cannot uncondition-
ally expect the existence of such an asymptotic soluti@gn, ¢) as stated in Theorem 1.3.
However, if it exists, then we see that it is unique from a general theory of the Gevrey as-
ymptotic expansions (cf. Balser [1, 2], Lutz et al. [11] and Malgrange [12])wBen does it
exist? The main purpose of this paper is to answer this question in the case where the region
is an open disk (on the precise definition, see Definition 1.3). Before giving the answer for
the general equation (1.1), here let us try considering the special equation (1.6).

We recall that the divergent solution of (1.6) is givenday, &) = > 0% 5 £ (x)e", and
remark that thdormal Borel transform B(u)(x, n) (cf. Definition 2.1) ofu(x, €) is given
by Bu)(x,n) = Y020 f™)n"/n! = f(x + n). Then it follows from Theorems 1.4
and 2.1 that (x, &) exists if and only if f(x) can be continued analytically along the half
line Rye’” = {re? ; r > 0} and it has a exponential growth estimate | f (x)| < Ce’l!.
Moreover, U (x, ¢) can be represented explicitly by the formula

1
Ux,e) = E/R , e VEf(x +m)dn .
e

Consequently, we see, for example, the following facts.
@) If f(x) =1/(1—x),thenU(x, ¢) exists for alld except) = 0. Ford = 0, U (x, ¢)
never exists.
(ii) Ifthe existence region of (x) is a bounded one containing the origin, tH&(x, ¢)
by no means exists regardless of the choicg. of
The above unique asymptotic solutidiix, ¢) is called theBorel sum of u(x, ¢). In the
next section, we give the conditions which the coefficients of (1.1) should satisfy in order to
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make certain the existence of the Borel sum. As we see from the above example, there is a
close affinity between the existence of the Borel sum and global properties of coefficients.
1.3. Mainresult. First we give the precise definition of the Borel sum.

DerFINITION 1.3. (1) Fom € RandT > 0, we define the regiom (6, T') by
(1.9) 00, T)={e: |e—Te"% <T}.

(2) Letu(x,e) =) 2qun(x)e" € O[R][[£]]2. We say thati(x, ¢) isBorel summable
in a direction 6 if there exists a holomorphic functiaii(x, ¢) on X = B(r) x 00, T) for
some O< r < R andT > 0 which satisfied/(x, ) =2 u(x, ¢) in X; that is, there exist
some positive constantS and K satisfying the asymptotic estimates max. |U (x, ) —
YV u(x)e < CKVNe|N foralle € 0O, T)andN =1,2, ... .

We remark that in the case @ p < =, for any O(9, T) it holds thatS(9, p, p) C
0 (6, T) by taking a suitablep > 0. In this senseQ (0, T) is wider than a sector with an
opening angle less tham. Because of this wide property, a given divergent power series
u(x,e) € O[R][[e]]2 is not necessarily Borel summable general. (Compare with Theo-
rem 1.2. In Theorem 2.1, we give the necessary and sufficient condition under which a given
u(x, ) is Borel summable.) However, as was mentioned in Section 1.2, whe) is Borel
summable in a directiof, the above holomorphic functidi(x, ¢) is unique. So we call this
uniqueU (x, ¢) theBorel sumof u(x, ¢) inadirection 6.

The problem of the present paper is the existence of a holomorphic solitiore)
satisfyingU (x, &) =2 u(x, ¢) in X. Let us divide the problem into the following two parts.

() Whenisu(x, ¢) Borel summable?

(1) Is the Borel sumlU (x, ¢) a solution?
By the following theorem, problem (ll) is always solved affirmatively. This is an immediate
consequence of the uniqueness of the Borel sum.

THEOREM 1.4 (cf. Hibino [10]). Let u(x,e) = > oo qun(x)e" € O[R][[¢]]2 be the
divergent solution of (1.1),and let usassumethat u (x, ¢) isBorel summablein somedirection
6. Then its Borel sum U (x, ¢) is a holomorphic solution of (1.1).

In the remainder of this paper, we consider problem (). To begin with, let us rewrite
(1.1) to state the main result. By the conditib(®, 0) # 0, we see thab(x,0) # 0ina
neighborhood of = 0. Hence, by dividing both sides of (1.1) byx, 0), we may assume
thatb(x, 0) = 1. Then it follows from (1.2) and (1.3) that (1.1) is rewritten in the following
form:

(1.10) {a(x) + B(x, &)}eDyulx, &) + {1+ y(x, e)e}u(x, &) = f(x, ),
where each coefficient is holomorphic at the origin. Moreavand g satisfy

(1.11) a(0) #0,
(1.12) B(x,0)=0.
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Now let us give additional conditions which the coefficients should satisfy in order to assure
the Borel summability of the divergent solution in a given direction

ASSUMPTIONS First we state the assumption fe¢x). Let us consider the following

initial value problem:
d

(1.13) é — —a(x), x(0)=0.

(Al) We assume the following:

(i) (1.13) has a holomorphic solution= yx (§) on E1 (0, «) for somex > O;

(i) (dx/d§)(E) #0foré € EL(0, k).
HereE, (0, k) (x > 0) is the region defined by
(1.14) Eq(0.x) = {£; distg, Rye®) = inf{lg —¢|; ¢ € Rpe’} <«}.
It is obvious thaty (§) is unique, if it exists.

Next, in order to state the assumptions for the other coefficients, we introduce the nota-
tion. First, let us define the regiaRy , consisting of solution curves of (1.13) by

(1.15) Rox ={x&); E€ E+(6,1)}.
The assumption (A1) implies thatx) is analytic onf2g , and thatx(x) # Oforallx € §2g .
Secondly, let us define the functief(x) on £2y . by
*d

(1.16) Alx) = —/ e 2.

0 «(z)
Here the path of integration is the solution curve of (1.13). Théx) is well defined o2y
and it is analytic there.

REMARK 1.2. ltis easy to check
(117) Aoy = IE+(0,K) and XoA= I-QH,K .

Under the above preparations we give the conditions for the other coefficients. A global
analytic continuation property with respectitevariable is required:

(A2) B(x,e),y(x,e)andf(x, ) can be continued analytically 12y , x{¢ € C; |¢|] <
c} for somec > 0. Moreover, they satisfy the following estimates there:

B(x, )

a(x)

(1.18)

< 0

’

X€R k. le|<c

(1.19) sup  |y(x,e)| < oo,

X€R k,le|<c

(1.20) maxlf(x, e)] < CexdslA)], x € o,
egl<c
whereC ands are some positive constants independent af$2g , ande with |¢] < c.
Let us state the main result in this paper.

THEOREM 1.5. Under assumptions (A1) and (A2) the divergent solution u(x, &) of
(1.10)is Borel summable in the direction 6.
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It should be remarked that the existence of the Borel sum, whichdsah solution, is
ensured by thglobal conditions such as (Al) and (A2).
To end this section, we give some simple examples(@h andA(x).

ExampPLE 1.1. (1) Whemx(x) = a (# 0), we havey (§) = —a&. Hence, (Al) is
always satisfied for all.

(2) Whena(x) = a+ bx (a, b 0), we havey (§) = (a/b)(e % — 1). Hence, (Al) is
always satisfied for all.

(3) Whena(x) = 1+ x2, we havey (&) = tan(—£). Hence, ifd # 0, , then (Al) is
satisfied.

(4) Whena(x) = ¢*, we havey (§) = —log(é + 1). Hence, (A1) is satisfied for afl
exceptd = .

(5) Whena(x) = 1/(1+ x), we havey (§) = —1+ /1 — 2&, which implies (A1) for
all 6 excepty = 0.

(6) Whena(x) = (x + 1)(x — 1)/2, we havey (§) = (1 — e %)/(1+ ¢~%). Hence, if
0 £ m/2,3r/2, (Al) is satisfied.

(7) Whena(x) = (x — c)2 (c # 0), it holds thaty (¢) = c26/(ct — 1). Therefore, if
0 # arg(1l/c), (Al) is satisfied.

ExampLE 1.2 (cf. Example 1.1). (1) Wheam(x) = a, we haved(x) = —x/a.
(2) Whena(x) = a+ bx, we haveA(x) = —(1/b) log(1 + (b/a)x).

(3) Whena(x) = 1+ x2, we haveA(x) = — arctanx.

(4) Whena(x) = e*, we haved(x) = e — 1.

(5) Whena(x) = 1/(1+ x), we haved (x) = —x — x?/2.

(6) Whena(x) = (x + 1)(x —1)/2, we haved (x) = log(—(x + 1)/(x — 1)).
(7) Whena(x) = (x — ¢)?, we haved (x) = 1/(x — ¢) + 1/c.

1.4. Someremarks onrelatedtopics. Aswas mentioned in the beginning of this paper,
our equation has = 0 as a regular point. In the case where- 0 is a singular point, we can
see some intriguing results in [3] (regular singular) and [4] (irregular singular). We can see
quite different phenomena from ours there.

The present paper gives one of the generalizations of Hibino [6], where the case
a+ bx (a, b: constants; & 0), y (x, ¢) = 0 andB(x, ¢) is a polynomial with respect tg, is
dealt with in detail. Moreover, in [6] we investigated partial differential equations such as

(1.21) 8iu(x,8)—i—eziu(x,e)—i—u(x,e) = f(x,¢).
ax de

Equation (1.21) also has a unique power series solutiene) € O[R][[¢]]2. However, the
conditions under which thig(x, ) is Borel summable are different altogether from those
stated in Theorem 1.5.

On the existence of the Gevrey asymptotic solutions in narrow regions such as stated in
Theorem 1.3, we can find some interesting results in Canalis-Durand et al. [5] and Sibuya [14],
where more general systems of singularly perturbed nonlinear ordinary differential equations
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are studied. Also, in the theory of partial differential equations we can find similar studies
in some articles, for example Lutz et al. [11] a®dichi [13]. First-order partial differential
equations of the nilpotent type including (1.21) were also dealt with in [8], where the same
result as Theorem 1.3 was proved.

2. Formal Bore transform of equations. In this section, we reduce the proof of
Theorem 1.5 to that of a global solvability of the initial value problem of some convolution
equation. First we give some preliminaries.

DEFINITION 2.1. Foru(x,e) = > 2 qun(x)e" € O[R][[£]]2, we define the conver-
gent power serieB(u)(x, n) in a neighborhood ofx, n) = (0, 0) by
00 n
n
(2.1) B(u)(x,n) =Y un(x)— .
=0 n.
We call B(u)(x, n) theformal Borel transform of u(x, ¢).

When we would like to check the Borel summability of a given divergent power series
u(x,e) =y 2qun(x)e" € O[R][[€]]2, the following theorem plays a fundamental role in
general.

THEOREM 2.1 (Lutz et al. [11] and Malgrange [12]).For a power series u(x,¢e) =
Yool oun(x)e™ € O[RI[[e])2, let us put v(x,n) = B(u)(x,n). Then the following condi-
tions (i) and (ii) are equivalent.

(i) wu(x,¢)isBorel summableinadirection 6.

(i) wv(x,n) can be continued analytically to B(rp) x E4(6, ko) for some rg > O
and kg > 0, and has the following exponential growth estimate for some positive constants
C and $:

(2.2) |n|1axlv(x, ml<ce neELH, ko).
X|=ro

When condition (i) or (ii) (therefore both) is satisfied, the Borel sum U (x, ¢) of u(x, )

in the direction 6 is given by

1
(2.3) U(x,8)=—/ e "eu(x, n)dn.
£ R+ei6)

Thus, in order to prove Theorem 1.5, it is sufficient to prove that the formal Borel trans-
formv(x, n) = B(u)(x, n) of the divergent solution (x, ¢) satisfies the above condition (ii)
under assumptions (A1) and (A2). In order to do that, first let us write down the equation
which B(u)(x, n) should satisfy. By operating the formal Borel transform to (1.10), we see
thatB(u)(x, n) is a solution of the following equation:

n n
(2.4) a(x)/ va(x,t)dt—i—/ B(B)(x,n—t)Dyv(x, t)dt
0 0

"
+ v(x,n)-i-/o B(y)(x,n—t)v(x, H)dt = B(f)(x,n),
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whereB(8)(x, n), B(y)(x,n) andB(f)(x, n) are the formal Borel transforms @f(x, ¢) =
300 Ba(x)e, Y (x,8) = 300 g yu(x)e™ and f(x, 8) = Y o2 fu(x)e", respectively, that is,

B(B)(x,n) = Zﬁn(X)%, B(y)(x,n) = Z)fn(X)%, B(f)x,m) =) fn(X)%.
n=1 ’ n=0 ’ n=0 ’

Equation (2.4) is obtained by applying the following equality:

BO" ") = ;nmﬂﬂ =Bm+1n+ 1)@ (Beta integral
(m+n+1)! ’ m!n!
1 m-+n+1 n 1
= / 1—s5)"s"ds - 0 = / n—0"t"dt - —
0 m!n! 0 m!n!

n
:/o B(y™)(n =BG @0)dt .

Furthermore, by operatin®, to (2.4) from the left, we see th#i(u)(x, n) is a solution of
the following initial value problem:

n
Lv(x,n) = —/0 B(B)y(x,n — Dvx (x, )dt — B(y)(x, O)v(x, n)

Ui
(2.5) _/0 B(y)y(x,n — t)v(x, t)dt + g(x, 1),

v(x,0) = f(x,0),

whereL is the first-order linear partial differential operator defined by
(2.6) L =a(x)Dy + Dy,

andg(x,n) = B(f)y(x,n). Itis easy to prove thaB(u)(x, n) is the unique locally holo-
morphic solution of (2.5). Hence, Theorem 1.5 will be proved by showing that the solution
v(x, n) of (2.5) satisfies condition (ii) in Theorem 2.1.

3. Proof of Theorem 1.5. Let us start the proof of Theorem 1.5.

PrOOF OFTHEOREM1.5. First of all, we transform the convolution equation (2.5) into
the integral equation. We apply the following formula. The solutiof, n) of the initial
value problem of the following first-order linear partial differential equation

{a(x)Dy + Dy}V(x,n) =k(x,n),

(3-1) V(x,0) =I(x)

is given by

n

(3.2) Vix,n) =1(x(Ax) +n) +/0 k(x(A(x) +n—1),0)dt.
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By (3.2), we see that (2.5) is equivalent to the following equation:
v = (AR +1).0) +/0"9(X(A(x) - 0.0di
- /077/01 BB)n(x (A(x) +n — 1), 1 —s)vx (X (A(x) + 1 — 1), s)dsdt
- /On By)(x (A(x) +n — 1), 0v(x(A(x) + n — 1), 1)dt

n pt
—/0/0 B)y(x(Ax) +n—1),t —s)v(x(Ax) +n — 1), s)dsdt .

Furthermore, let us transform the third term of the right-hand side. By using Fubini’s theorem,
we write [ [y -+ -dsdt = [g [---dtds. Here we remark that

n
/ BB)y(x(Ax) +n—1),1 = s)ve (X (A(x) + 1 — 1), 5)dt

n 1 9
=/S a(X(A(x)+n_t))B(,B)n(X(A(X)‘i"I—f)J—S)EU(X(A(X)-FTI—f),S)dI.

Therefore by an integration by parts and Fubini’'s theorem again, we see that (2.5) is equivalent
to the following integral equation:

7

n
(33) v, m = f(x(Ax)+m),0) +/0 g(x(A(x) +n —1),0)dt + Zlfv(x, .,
i=1

where each integral operatfyris given by

1 n
I(x,n) = _?X)./o B(B)y(x,n—v(x, t)drt,

" 1
vt ) = [ e S BO GUAW) + 1 = 0, 00 GLA) 1= 1,0

n pt 1
I ) =
vt /0/0 a(X(A(X) + 17— 1)
X BB) (X (Ax) +n —1),t —s)v(x (A(x) +n —1),s)dsdt ,

Ipv(x )z_/"/’a’(x(A(X)Jrn—t))
avk 0 Jo a(x(A(x)+1—1)

x BB y(x(A(x) +n—1),t —s)v(x(A(x) +n —1),s)dsdt,

n prt

15v(x,77)=/0/0 BB)xn(x (A(x) +n—1),t —s)v(x(A(x) +1n — 1), s)dsdt,
n

Iev(x,n) = —/0 B)(x(Ax)+n—1),0v(}x(Ax) +n —1),t)dt,

n pt
I7v(x,n)=—/0/0 By)y(x(Ax) +n—1),t —s)v(x(Ax) +n — 1), s)dsdt .
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In order to prove that the solutian(x, n) of (3.3) satisfies condition (ii) in Theorem 2.1,
we employ the iteration method. Let us defieg(x, )};2 , inductively as follows:

n
(3.4) vo(x, n) = f(x(Ax) +1n),0) +/0 g (A(x) +n —1),0dr,
7

(3.5) V2 (X, ) = vo(x. ) + Y Liva(x,n) (n=0).
i=1

Next, we defingw, (x, n)};2 by wo(x, n) = vo(x, n) andw, (x, n) = va(x, n) — va—1(x, n)
(n > 1), and defing W, (x, n, 1)}° ; by

(3.6) Wi (x,n, 1) = wa(x (A(x) + 1 —1),1).

Here we break the proof, and provide the notation needed in stating the key lemma later.
SinceA(0) = 0, we can takeg > 0 andkg > 0 such that

(3.7 {AX)+¢; |x| <ro, € Ex(8,k0)} C E4(0,K),

wherex > 0 is the constant given in assumption (A1). So let us dfibe ¢, €), 7 (x, ¢, €)
andA(x, ¢) as follows:

(3.8) B(x,¢,e) = B(x(A(x)+ ), ),
(3.9 P, ¢8) =y (x(AX) +¢), 8),
(3.10) Ax, ¢) =

a(x(Ax) +¢)

Then it follows from the assumptions of Theorem 1.5 and (3.7)Altat ¢, £) andy (x, ¢, &)
are holomorphic otfix € C; |x| < ro} x E+(0,k0) x {e € C; |¢| < ¢}, and thatd(x, ¢) is
holomorphic on{x € C; |x| < ro} x E+(0, ko). Moreover, it holds that

(3.11) sup lAGx, ©)B(x, ¢, e)| < o0
|x|<ro,s €E4(0,k0),le|<c

and

(3.12) sup 17(x,¢,€)] <o0.

[x|<ro,s€E4+(0,x0) ,le|<c
Next we define3(B)(x, ¢, n) andB(7)(x, ¢, n) by

(313)  BA@. L. = BE(X(AX) + ). 1) ( =" Bulx(A) + ;))%)

n=1

and

@14 B &) = Bo) (A + ). n) ( =3 A + f;))%) ,
n=0 :
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respectively. Then it follows from (3.11), (&) and Cauchy's integral formula that
B(B)(x, ¢, n) andB()(x, ¢, n) are holomorphic ofx € C; |x| < ro} x E4(6, ko) x C
and that there exist some positive constadtanddy satisfying

sup A, OBB)y(x, &, ml < Me™, peC,

|x|<ro,s€E+(0,k0)

sup LA, BBy (x, ¢, M| < MM, pnecC,

|x|<ro,f € E+(6,k0)

d -
(3.15) sup o7 LAG OBB)y(x, £, m) | < Mol pecC,
x| <ro.c€Ex (0, | 98
sup IB7)(x, ¢, m)| < Me®l |y ecC,
[x|<ro,; €E4(8,Kx0)
sup IB(7)n(x, ¢, m)| < M pecC,

|x|<ro.; €E4(0,k0)
wherex, = ko/2.
Finally, we give the following definition.

DEFINITION 3.1.
(1) Foria = O andp > 0, U,[0, 1] denotes the-neighborhood of0, A] in C. Pre-
cisely,

U,[0, 1] = {r € C; dist(z, [0, A]) < p}.
(2) Forn € C, we define the functiow”(7) by
G' (1) =t/ ¥9 ¢ eC,
and defineG” andG}, as follows:
G"={G"(R) e C; 0< R < nl},
Gz ={G"(r) e C; T € U,[0, In|l}.
We remark thaG" is the segment from 0 tg and thatG/, is the p-neighborhood ot;".

Under these preparations let us take a monotonically decreasing positive sequence
{Pn };.,o:() satisfying

(e.¢]

(3.16) R=Kg—Y pn>0.
n=0

Then we obtain the following lemma.

LEMMA 3.1. W,(x,n,t) is continued analytically to {(x,n,1) ; x| < ro, n €
E{(0,15 — Y i—opj), t € Gp,}. Moreover, on {(x,n,1) ; |x| < ro, n € E4+(6, k5 —
> i—opj)s t € G"} we have the following estimate. For some positive constant C1,

2n k
R

(3.17) [Wa(x, 0, G"(R))| < Cre™M@M)" » (k " )F 0<R<lnl,
—n !

k=n
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where §1 = max{s, 8o} (8 isthe constant given in (1.20)).

We prove Lemma 3.1 in Section 4. For the present, we admit it and let us continue the
proof of Theorem 1.5.

It follows from Lemma 3.1 thaiv, (x, n) (= W, (x, n,n)) is continued analytically to
B(ro) x E(6,k} — Z?:o p;) with the estimate

[wn (e, M| = Wy (x, 0, G"(InD)I

sl n 2 n \Inlk
e £ (" )

k=n
1
Z2n+l

1
= CaeM @MY — f (14 2)"e ——=dz,
l

lzlI=p

wherep is an arbitrary positive number. Hence, by taking a suitably largere obtain on
B(ro) x E4+(0, k) that

D It ml = Cet @ 5§ ket s
n=0 1

n=0
_ gyt Mt = MM
My — M-
__GMy eeMon
VOM? +12M

where M4+ = (1/2)(3M £ ~/9M? + 12M). This shows thav,(x, n) (= Y j_owk(x,n))
converges to the solutiol (x, ) of (3.3) uniformly onB(rg) x E (0, k). Consequently,
V (x, n) is an analytic continuation af(x, ), and it holds that

CiM -
max |V (x,n)| < #6(514'/\44—)\77\’ neEL0,7).
IxI=ro 9M? + 12M

It follows from the above argument thatx, n) satisfies condition (ii) in Theorem 2.1. This
completes the proof of Theorem 1.5. O

4. Proof of Lemma3.1. Letus prove Lemma 3.1. Itis proved by the induction with
respect toz.

PrROOF OFLEMMA 3.1. First we consider the case= 0. By (3.4) and (3.6), we see
thatWo(x, n, t) has the following form:

t

Wolx, n, 1) = f(x(Ax) +n),0) +/0 g(x(A(x) +n—ys),s5)ds
= Jilx,n, 1) + Jo(x, n, 1) .
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Before proving the lemma faip, we remark the following. It follows from assumption (A2)
and Cauchy’s integral formula thatx, n) is analytic on2y , x C with the estimate

(4.2) lg(x. m| < C'exf8|A@)I1- 1, (x.n) € 2. x C,

for some positive constants’ ands’.

Now let us prove thatl1(x, n, t) and Ja(x, n, t) are well defined orf(x, n, 1) ; |x| <
ro, 1 € E4(0,k,— po), t € G} Let|x| < ro,n € Ex(6,k,— po), t € Gpy, and let us
writet € G}, ast = G"(t) (t € Uy IO, [n|]).

On the well-definedness of (x, n, G(7)): it is clear from the assumption (A2) and
(3.7).

On the well-definedness @ (x, n, G"(7)): inthe integral expression db(x, n, G7(t)),
by taking a path of integration as
(4.2) s(o) =0t (5 €0, 1]),
where[0, 7] is the segment from O to, it holds thaty — s(0) € E4 (6, k() (C E4 (8, k0)).
Hence, it follows from (3.7) and the above remark thgtx, n, G"(t)) is well defined.

Therefore Wo(x, n, t) is well defined or{(x, n,t) ; |x| <ro, t € E4+ (6, Ké —po), t €
GZO}. Moreover, on{(x, n,1) ; |x| < ro, t € E4(6,k,—po), t € G"} we have the following
representation:

Wo(x, n, G"(R)) = f(x (A(x) + 1), 0)

R
+ / g(X(A(X) + (In] — Ry)e' 29M), Rye! 2 pi 9N 4 Ry
0

= N(x,n, R) +J2(x,n, R).
Let us estimatg7i(x, n, R) and72(x, 1, R).
Oon J1(x, n, R): by (1.20), we have
|J1(x, n, R)| = | f(x (A(x) + 1), 0)]
< CexpslA(x (A(x) +n)|] = Cexpd|Ax) +nl]
< C//eSInI ,
whereC” = C - maXy| <y, eXp8|A(x)]].
Oon J2(x, n, R): it follows from (4.1) that
Ig(X (A(x) + (|n| _ Rl)ei argn)), Rlei arqn))l < C///es‘i’]‘estleS/Rl — C///es‘r]‘ef(sfs/)Rl ,
whereC” = C’"-maXy|<, eXp | A(x)|]. Here we may také > 0 so large that” =5 — ¢ >

0. Hence, we obtain
R Y c"”
T2, R)| < el /0 e Fary < S,
By the above argument, it holds that
[Wo(x, 1, G"(R))| < C1’" < €11,

whereC1 = C” 4+ C"/§”. Therefore, the lemma has been provediit
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Next, we assume that the claim of the lemma is proved upetod prove it fom + 1. By
(3.5) and (3.6) we have the following relation betwégnand W, 1:

6

(4.3) War1(x,m, 1) = Y TiWa(x,m,1),
i=1

where

TaWn(x,n, 1) = Itwa (x (A(x) + 1 — 1), 1)

t
= —A(x,r}—t)/ B(,g)n(x,r)—t,t—s)W,,(x,r)—t—i—s, s)ds ,
0
ToWn(x,n, 1) = wa(x (A(x) + 1 —1), 1)

t
= /0 A, —s)BB)y(x,n — s, 0 Wa(x,n, s)ds
LWy (x,n, 1) = I3wa (x (A(x) + 1 — 1), 1)

t s
=/0/0 Ax,n—=)BB)yy(x,n—s5,5 = y)Wu(x,n —s +y, y)dyds,
IaWy(x,n, 1) = Iawp (X (Ax) + 1 — 1), 1) + Isw, (x (A(x) + 1 — 1), 1)

t prs a "
=—/0/0 S AGL OB (5, €05 = D lemyms Warn =5 + 3, )dyds,
IsWu(x,n, 1) = Isw, (x (A(x) +n —1),1)

t
= _/ B();)(X, n-—s, O)Wn(xa n, S)dS P
0
ZeWn(x,n,1) = [rwa (x (A(x) + 1 — 1), 1)

t prs
:—/c;/c; By)yx,n—s,5s = y)W,(x,n—s4+y, y)dyds.

Let us prove that each W, (x, n, t) (i = 1-6) is well defined ori(x, n,t) ; |x| < ro, n €
E (0, Ky — Z;ﬁé pj), t € GZM} by taking suitable paths of integration. Uet < rg, n €
EL(0.k5=Y"T5p)).t € G}, andletus write € G}, ., ast = G'(7) (z € U,, ,[0. [n]]).

OnZ1W,(x,n, G"(t)): let us take a path of integration as (4.2). Then we have
G'(1) + s(0) € E4+(6.k5 — Y _op) ands(o) € G, O Hence, W, (x.n —
G"(t) + s(0), s(0)) is well defined. It is obvious thatl(x, n — G" (1)) andB(B)n(x, n—
G'(1), G"(1) — s(0)) are well defined. Therefor& W, (x, n, G"(t)) is well defined.

OnZyW,(x, n, G'(t)) andZs W, (x, n, G"(7)): let us take a path of integration as (4.2).
Then we have) € E; (6, ky — ) j_op;) ands(o) € G},. Hence,W,(x, n, s(0)) is well
defined. Itis clear thatl(x, n — s(o)), B(B)n(x, n —s(o),0) andB()(x,n — s(o), 0) are
well defined. Thereforelo W, (x, n, G"(t)) andZs W, (x, n, G" (1)) are well defined.
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OonZ;W,(x,n, G"(z)) (i = 3, 4, 6): we only state paths of integration. By taking paths
of integration as

s(o) =0 (5 €[0,1]),
y() =29 (L e [0,0]),

we see that all; W, (x, n, G"(1)) (i = 3, 4, 6) are well defined.

Therefore, W, 1(x, n, 1) is well defined on{(x,n,7) ; |x| < ro, n € E4(0,k) —
Y 5P, t € G}, ). Moreover, on{(x, n.1) 5 |x| <70, n € Eq(0.k,— Y250, t €
G} we have the following representations:

Ian(x, n, Gn(R)) = _.A()C, (|n| _ R)eiargn))

(4.4)

R
x / B(B)y(x, (In] — R)e" 3™ (R — Ry)e! 29
0
X Wy (x, 1, R, R1)e' ™ MdRy
R
oWy (x, n, G'(R)) = / A(x, (In] — R)e TN B(B), (x, (In] — R1)e' 2™, 0)
0

X Wl’l (-xs n, Rlv Rl)ei arqn)de N

R pFR
ZsWy(x, n, G’?(R))Z/ / 1A(x’(|n|_Rl)eiarq;7))
0 JoO

x BBy (x, (In] — Ry)e ¥ (Ry — Ro)e 9W)
X Wy (x, 0, R, R){e' ¥ V2d Ry d Ry

R rRy 9
TaW, (x. 1. G'(R)) = —/ / (A 0)
o Jo ¢

X B(B)n(x, ¢, (R1 — Rz)ei arqn))}|;=(\,7\,Rl)eiarg(n)
X Wh(x, 0, R1, Ro){e' ¥ 2d Rod R ,

R
ZsWy(x, 1, G"(R)) = — f B(7)(x, (In| — R1)e' 2™ 0)W, (x, n, R1, R1)e' ™M d Ry,
0

R pR1 X .
ZeWy(x, 1, G"(R)) = — / B()y(x, (In] — R1)e 39N (Ry — Rp)e! 390y
0 Jo

x Wy (x, 1, R1, Ro){e' 9 V2q Rod Ry,
where
(4.5) Wi 0, o v) = Wa(x, (1] — o + v)e 8  GUn=pte @90 )y

Let us estimate each W, (x, n, G"(R)).
OnZ1W,(x, n, G"(R)): it follows from the assumption of the induction that
2n R k
(4.6) [Wa(x, 1, R, Rp)| < C1e®Me 1R R 3prym 3 ( " )—1.
P k—n) k!
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Hence (3.15) andp < &1 imply that

2n n R R k
[ ZLW, (x, 0, GT(R))| < cle‘sl'"'(SM)"MZ(k ) / ARy
0
k=n

—n

2n+1 n Rk
— i 3M) R
= C1M @MY M ) <k_1_n>k!.
k=n+1

OnZoW,(x, n, G"(R)): let us consider; instead ofR in (4.6). Then we have

2n n le
S1in| -t
Wy (x,n, R1, Ry)| < C1e® (3M)"k§ (k _n) R
Hence, we see by (3.15) adg < 81 thatZo W, (x, n, G"(R)) has the same estimate as that
of Zy W, (x, n, G"(R)). Similarly, we can obtain the same estimate ZeW,, (x, n, G"(R)).
Therefore, it holds that

IZaW (x, n, GM(R)| + [Z2Wy (x, n, GT(R)| + | Zs Wy (x, 0, GT(R))]

< Cqe8M (3pytt -
scmE@n™ ) ()%
k=n+1

OnZzW,(x, n, G"(R)): it follows from the assumption of the induction that

Rzk

2n
[Wa(x, n, Ry, Ro)| < clesl'"'e51R1e51R2(3M)"Z< " )7.

k—n
k=n

Hence, (3.15) anép < 81 imply that

2n n R Ry Rk
| Z3 W, (x, 7, Gn(R))|ECleallnl(g’M)nMZ(k ) / / o dRad Ry
—n 0 Jo .
k=n

2(n+1) n RK
— Ca et (3 R*
= 1 @MY M Y <k_2_n>k!.
k=n+2

Similarly, we can prove thafs W, (x, n, G"(R)) andZeW, (x, n, G"(R)) have the same esti-
mate as that af3W,, (x, n, G"(R)). Therefore, it holds that

I Z3Wn (x, 0, GT(RD| + 1ZaWy (x, 0, G"(R)| + |Ze Wy (x, 1, G (R))]

2(n+1)

(4.8) 5 n RF
<C iyl M n+1 -
= Cre@myt ) k—2—n) %

k=n-+2

Finally let us combine (4.7) and (4.8). Then we obtain

|Wn+l(-xv n, Gn(R))I
6

< D ITiWa(x, 0, G"(R)
i=1
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< Cle51\77\ (3M)"+l

Rr+1 2n+1 n n R R2(n+1)
x {(n+1)! +k:Z {(k—l—n)Jr(k—z—n)}FJr {2(n+1)}!}

n+2

2(n+1) k
+1 \R
= Cretin (3pyntt " =
e @MY D k—(n+1) &
k=n+1

which implies the lemma fot + 1. The proof has been completed. o

5. Special cases.

5.1. Necessary and sufficient condition. ebnem 1.5 gives only the sufficient condi-
tion on the Borel summability. When an equation has a restricted form, we can obtain the
necessary and sufficient condition under which the divergent solution is Borel summable.
Here we consider the cagdx, ¢) = y(x,e) = 0. Moreover, we assume thdix, ¢) is a
polynomial with respect te-variable. Precisely, we consider the following equation:

k
(5.1) a(x)eDyu(x, &) +u(x, &) = »_ fi(x)e',
=0

where eacly;(x) (I = 0,1, 2, ..., k) is holomorphic at = 0.
In order to state the theorem, we introduce the notation. We define the first-order differ-
ential operato® by

d
(5.2) O = —a(x)E ,

and define the functiorf (x) by
k

(5.3) foy=) 6" fix).

1=0
Then we have the following theorem.

THEOREM 5.1. Letusassume (Al). Then the following two statements (1) and (2) are
equivalent.

(1) Thedivergent solution u(x, ¢) of (5.1)is Borel summable in the direction 6.

(2) f(x) can be continued analytically to 9., and it satisfies the following estimate
for some positive constants C and §:

(5.4) |f(x)] < Cexds|A()|], x € 2.

PROOF. Foru(x,e) =Y o2 qun(x)e", let us definei(x, ¢) by

k-1

(5.5) u(x.e) =Y up(0)e" +elii(x, ).
n=0



BOREL SUMMABILITY OF DIVERGENT SOLUTIONS 255

We remark that:(x, ¢) is Borel summable if and only ii(x, ¢) is Borel summable. More-
over, we have the following relation between the Borel dlitw, ¢) of u(x, ¢) and the Borel
sumU (x, ¢) of ii(x,e): Ulx, &) = eU(x,e) + Y F S u,(x)e". So let us write down the
equation whichi(x, ¢) should satisfy. By an easy calculation, it follows thi#t, ¢) satisfies
the following equation:

(5.6) a(x)eDyii(x,e) +u(x,e) = f(x).
Hence, by Theorem 1.5, if we assume the condition (2), we can obtain the Borel summability
of u(x, €) in the directiord. This shows (2= (1).

In order to prove (1} (2), let us adopt Theorem 2.1. First we remark that the formal
Borel transformv(x, ) = B(i)(x, ) of i(x, ) can be written explicitly as follows:

(5.7) 0, m) = f(X(A) +m).
Therefore, it follows from (1) and Theorem 2.1 tHaty) = ©(0, ) = f(x (1)) can be con-

tinued analytically taE (8, ko) for somexg > 0, and that there exist some positive constants
C ands satisfying

(5.8) Vil <ce® ne EL@, ko).

Here we may take > 0 so small thak < ko. Then f(x) = V(A(x)) can be continued
analytically to$2y, ., and it holds thatf (x)| = |V (A(x))| < C exp8|A(x)|] for x € 2.
Consequently, (13 (2) has been proved. O

REMARK 5.1. In(5.1), eaclr,(x) (n =0, 1, 2,...) can be written explicitly as

n

Z@n—lﬁ(x) n=012,....k-1),

=0
un(X) =9

Z@”_lﬁ(x) m=kk+1,...).
1=0
Therefore, it follows from the above proof that the Borel sUrtx, ¢) (in the directior?) of
u(x, ¢) has the following form:
k—1 n

_ k-1 —n/e F on—l n
vee =t [ e f(x(A(x)+n))dn+Z{Zo fz(X)}e-

Rye! n=0 ' =0

Theorem 5.1 does not require the analytic continuation propertgfore) itself, as will
be shown in the following example.

EXAMPLE 5.1. Letd =0.
(1) We consider the following equation:
—(A+x)eDyu(x, &) +ulx,e) = f(x,e) = folx) + falx)e

—L {\/1+|Og(1+x)— 1+x }8.

T 1—x (1—x)2

(5.9)
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Equation (5.9) has the divergent solution

1 1 1
u(x,e):m-i— 1+log(l+ x)e + = 2

2,/1+Iog(1+x)8

o (=D)"
+y o1 (21— 5)!l{1+log(l + x)}"m3Dn
n=3

a(x) = —(1+x) impliesx (§) = ef —1 andA(x) = log(1+x). Hence, condition (A1) is sat-
isfied. Sincef (x, €) cannot be continued analytically along the positive real axis with respect
to x, it does not satisfy condition (A2), byft(x) = (1+x) fj(x) + f1(x) = /1 +log(1 + x)
clearly satisfies condition (2) in Theorem 5.1. Therefore, the alb6wves) is Borel summable

in the direction 0 and its Borel subi(x, ¢) in the direction 0 is given by

o0
1
U(x,g)=/ e e /1+log(1+ x) + ndn + ——.
0 — X

(2) Letus consider the following equation:
—e " eDyu(x, 8) +u(x, &) = f(x,8) = folx) + fi(x)e + f2(x)e?
(5.10) 1 e 1 20721 +x)] ,
= + e+ - .
1—-x (1—x)2 eX +1 (1—x)3
Equation (5.10) has the divergent solution

9]

1 2% (=1)"(n -2
ulx,e) = l—x+(l—x)28 r; @ r D1 £
Sincea(x) = —e™*, we havey(§) = log(1 + &) andA(x) = ¢* — 1. Hence, condition

(A1) is satisfied. In this case alsg(x, ¢) itself does not satisfy condition (A2), byft(x) =
e (d/dx){e ™ fy(x)}+e* fi(x)+ f2(x) = 1/(e*+1) satisfies condition (2) in Theorem 5.1.
Therefore,u(x, ¢) is Borel summable in the direction 0 and its Borel sih, ¢) in the
direction 0 is given by

1 1 2%

o0
U(x,e) = /e d .
(x,8) 8/0 e Tretn 77+1_x+(1_x)28

Here we deal with the cage= 0; that is, we consider the following equation:
(5.11) a(x)eDyu(x, &) +u(x, &) = f(x).

Furthermore we assume thhé existence domain of f(x) isbounded. By using Theorem 5.1,
let us try investigating the Borel summability @€x, £) concretely.

EXAMPLE 5.2. (1) a(x) = —(1+ x): in this case we havg(¢) = ¢ — 1, and
assumption (Al) is satisfied for &l If0 < 6 < n/2 or 3r/2 < 6 < 2x, then the region
£29 . is unbounded for akk > 0. Henceyu(x, ¢) is never Borel summable in these directions
0. If m/2 < 6 < 31/2, we see that for any > 0 there exists some > 0 such that2, , C
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{x € C; |x| <2+ p}. Therefore, iff (x) is holomorphic of{x € C; |x| < 2+ p} for some
p > 0, thenu(x, ¢) is always Borel summable in the directi@rsatisfyingr /2 < 6 < 37 /2.

(2) w(x) = —e™*: in this case we havg (&) = log(1 + &). Hence, assumption (Al)
is satisfied for alb exceptd = =, and the region2g , is always unbounded for al > 0
andé® # w. Thereforeu(x, ¢) is by no means Borel summable in the directibgatisfying
0 # .

(3) «(x) = (x — 12 inthis case it holds that(¢) = £/(¢ — 1). Hence, if9 # 0, then
condition (Al) is satisfied. Moreover, éf # 0, we see that for any > 0 there exists some
k >0suchthat2y, Cc{x €eC; |x|<14+p+1/ min&—ER+ei9 |& — 1|}. Therefore if f(x) is
holomorphiconx e C; x| <1+ p+1/ minseR#,m |& — 1|} for somep > 0, thenu(x, ¢)
is always Borel summable in all directiofis£ O.

5.2. Another example. Bothin Theorem 1.5 and in Theorem 5.1 we imposed assump-
tion (A1) for the coefficiente(x). In the case where (Al) is not satisfied, it is in general dif-
ficult to give conditions for the other coedffents because we cannot define the redn..
However, it is within possibility that the divergent solution is Borel summable even if (A1) is
not fulfilled. Last of all, we give such an example.

Let us consider the following equation:

1
(512) —(1+x2)8DXM()C,8)+M(X,8)= m
Equation (5.12) has the divergent solution
o0 }’l'
— . n
u(x, e) = nX:c:] 1- arctanx)’”rls '
Sincea(x) = —(1+ x2), we havey (¢) = tané. Hence, condition (A1) is not satisfied for

6 = 0, 7. However, we can prove that the abaue, ¢) is Borel summable in the direction
7 by means of the formul&(u)(x, n) = 1/(1 — arctarx — n). Moreover, we see that(x, ¢)

is Borel summable in all directiortsexcepty = 0, and that it is never Borel summable in the
direction 0.

REFERENCES

[1] W. BALSER, Formal power series and linear systems of meromorphic ordinary differential equations, Univer-
sitext, Springer, New York, 2000.

[2] W. BALSER, From divergent power series to analytic functions, Theory and application of multisummable
power series, Lecture Notes in Math. 1582, Springer, Berlin, 1994.

[3] W. BALSER AND V. KosTov, Singular perturbation of linear systems with a regular singularity, J. Dynam.
Control Systems 8 (2002), 313-322.

[4] W.BALSERAND J. MOz0O-FERNANDEZ, Multisummability of formal solutions of singular perturbation prob-
lems, J. Differential Equations 183 (2002), 526-545.

[5] M. CANALIS-DURAND, J. P. RRMIS, R. SCHAFKE AND Y. SIBUYA, Gevrey solutions of singularly perturbed
differential equations, J. Reine Angew. Math. 518 (2000), 95-129.

[6] M. HiBINO, Borel summability of divergent solutions for singular first order linear partial differential equa-
tions with polynomial coefficients, J. Math. Sci. Univ. Tokyo 10 (2003), 279-309.



258 M. HIBINO

[7] M.HiBINO, Divergence property of formal solutions for singufirst order linear partial differential equations,
Publ. Res. Inst. Math. Sci. 35 (1999), 893-919.

[8] M. HiBINO, Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent
type I, Commun. Pure Appl. Anal. 2 (2003), 211-231.

[9] M. HiBINO, Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent
type Il, Publ. Res. Inst. Math. Sci. 37 (2001), 579-614.

[10] M. HiBINO, Gevrey theory for singular first order partial differential equations in complex domain, Doctoral
thesis, Graduate School of Mathatits, Nagoya University, 2002.

[11] D. A. LuTz, M. MIYAKE AND R. SCHAFKE, On the Borel summability of divergent solutions of the heat
equation, Nagoya Math. J. 154 (1999), 1-29.

[12] B. MALGRANGE, Sommation des séries divergentes, Exposition. MEgt{1995), 163—-222.

[13] S.OucHI, Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial differential
equations, J. Math. Sci. Univ. Tokyo 2 (1995), 375-417.

[14] Y. SiBuYA, The Gevrey asymptotics in the case of singulatyréations, J. Differential Equations 165 (2000),
255-314.

RESEARCHFELLOW OF THE JAPAN SOCIETY FOR THEPROMOTION OF SCIENCE
DEPARTMENT OFMATHEMATICS

MEIJOUNIVERSITY

SHIOGAMAGUCHI, TEMPAKU, NAGOYA

AICHI 468-8502

JAPAN

E-mail address: hibinom@ccmfs.meijo-u.ac.jp



