
Tohoku Math. J.
58 (2006), 231–236

THE SPACE OF HARMONIC TWO-SPHERES
IN THE UNIT FOUR-SPHERE

JOHN BOLTON AND LYNDON M. WOODWARD

(Received May 26, 2004, revised April 13, 2005)

Abstract. A harmonic map of the Riemann sphere into the unit 4-dimensional sphere
has area 4πd for some positive integerd, and it is well-known that the space of such maps may
be given the structure of a complex algebraic variety of dimension 2d + 4. Whend less than
or equal to 2, the subspace consisting of those maps which are linearly full is empty. We use
the twistor fibration from complex projective 3-space to the 4-sphere to show that, ifd is equal
to 3, 4 or 5, this subspace is a complex manifold.

1. Introduction. Every harmonic map from the Riemann sphereS2 into the unit 4-
sphereS4 has area 4πd for some integerd. It has been known for some time [5, 6, 10] that
the space Harmd(S4) of such maps may be studied in terms of the twistor lifts of the elements
to horizontal holomorphic curves of degreed in complex projective 3-spaceCP 3. It follows
from this that Harmd(S4) may be given the structure of a complex algebraic variety, and a
detailed study of this space has been carried out in [11, 15, 16, 17], where, in particular, it is
shown that the complex dimension is 2d + 4. This result is in line with a conjecture in [2]
that the moduli space of harmonic maps ofS2 into S2m of degreed is a complex algebraic
variety of dimension 2d +m2, a result which is known to be true ford = m(m+ 1)/2 [1] and
d = m(m + 1)/2 + 1 [2], and has also recently been proved [8] for generald ≥ m(m + 1)/2
in the casem = 3.

A natural topology to put on Harmd(S4) is the compact-open topology, and the relation-
ship between this topology and that coming from the complex algebraic variety structure was
broached in [9], where it is essentially shown that these topologies coincide.

We also use the twistorial approach to consider the existence or otherwise of singular
points of Harmd (S4), and prove the following theorem. The final sentence in the statement of
the theorem is well-known.

THEOREM 1.1. For 3 ≤ d ≤ 5, the space HarmLF
d (S4) of linearly full elements of

Harmd(S4), equipped with the compact-open topology, is a complex manifold of complex
dimension 2d + 4. For d ≤ 2, HarmLF

d (S4) is empty.

Similar questions for the space of harmonic maps fromS2 to CP 2 have been studied
in [7] and [12]. In fact, the components of this space consist of the±-holomorphic maps of
degreed, together with harmonic maps of degreed and energy 4πE, whereE = 3|d|+4+2r

for some non-negative integerr. It is shown in [12] (see also [13]) that these components are
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smooth manifolds of dimension 6|d| + 4 in the±-holomorphic case and 2E + 8 in the other
cases.

The research for this paper was carried out by the named authors, but the final exposition
is the responsibility of the first author, sinceLyndon Woodward sadly died before the paper
was completed.

2. The twistor fibration. We begin by recalling thetwistor fibration π : CP 3 → S4.
RegardingH2 as a left quaternionic vector space, thisis obtained by composing the Hopf map
ρ : CP 3 → HP 1 given by

ρ([z1, z2, z3, z4]) = [z1 + z2j, z3 + z4j ] ,

with the canonical identification ofHP 1 andS4 ⊂ H ⊕ R = R5 given in the usual way by
stereographic projection from(0, 0, 0, 0,−1) onto the equatorial 4-planeH in R5 which is
included inHP 1 by [q] �→ [q, 1]. We recall [4, 5] thatπ is a Riemannian submersion when
CP 3 is given the Fubini-Study metric of constant holomorphic sectional curvature 1.

Now consider the vector spaceC [z]d of polynomials of degree at mostd, and letV be
the subset of(C[z]d)4 consisting of those quadruples of coprime polynomials with maximum
degreed for which the mapz �→ [f1(z), f2(z), f3(z), f4(z)] is linearly full in CP 3. ThenV

is a projective subset of(C[z]d)4, and we identify its projectivisationP(V ) with the space of
linearly full holomorphic maps of degreed (and hence area 4πd) from S2 to CP 3 in the usual
way via

[f1, f2, f3, f4] ↔ z �→ [f1(z), f2(z), f3(z), f4(z)] .(1)

Here, and subsequently, we use the complex coordinate onS2 defined by stereographic pro-
jection from the south pole ofS2 onto the equatorial plane so that, in the usual sense, we may
identify S2 with C ∪ {∞}.

A holomorphic curve[f1, f2, f3, f4] in CP 3 is horizontal if it intersects each fibre or-
thogonally. It is well-known [5] that this holds if and only if

f ′
1f2 − f1f

′
2 + f ′

3f4 − f3f
′
4 = 0 .

Thus, if we defineΦd : V → C [z]2d−2 by

Φd(f1, f2, f3, f4) = f ′
1f2 − f1f

′
2 + f ′

3f4 − f3f
′
4 ,

thenΦ−1
d {0} is a projective subset ofV and, using (1),P(Φ−1

d {0}) is identified with the space
of linearly full horizontal holomorphic maps of degreed from S2 to CP 3.

The set HarmLF
d (S4) is the union of two disjoint subsets, Harm+

d (S4) and Harm−
d (S4),

with post-composition by the antipodal map ofS4 giving a bijection between them. Each
element of Harm+d (S4) has a unique lift to an element ofP(Φ−1

d {0}), so that post-composition
by π gives a bijective correspondence

π∗ : P(Φ−1
d {0}) → Harm+

d (S4) .

The final statement of our theorem is now clear, sinceV is empty ford ≤ 2.
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3. The topologies. We give (C [z]d)4 its natural topology as a vector space, and
P((C [z]d)4) the identification topology. ThenV is an open subset of(C [z]d)4, andP(V )

is an open subset ofP((C [z]d)4). Subsets of any of these spaces are then given the induced
(subspace) topology.

When HarmLF
d (S4) is given the compact-open topology, post-composition by the antipo-

dal map ofS4 is a homeomorphism which interchanges Harm+
d (S4) and Harm−

d (S4). In this
section we use the methods of [9] to show that Harm+

d (S4) is homeomorphic to the projective
algebraic varietyP(Φ−1

d {0}) described in the previous section. SinceS2 is compact, it follows
that the compact-open topology coincides with the topology of uniform convergence (see, for
example, p. 6 of [14]). In particular, since this is a metric topology, limit points of subsets are
precisely limits of sequences of points of the subset which converge in the ambient space.

LEMMA 3.1. Harm+
d (S4) is a closed subset of HarmLF

d (S4), and the map π∗ :
P(Φ−1

d {0}) → Harm+
d (S4) is a homeomorphism.

PROOF. We first show thatπ∗ is continuous. Since

P(V ) × S2 → S4

([f1, . . . , f4], z) �→ π[f1(z), . . . , f4(z)]
is continuous, so is its restriction toP(Φ−1

d {0}) × S2. It now follows (see, for example, p. 6
of [14]) thatπ∗ is continuous.

We now show that Harm+d (S4) is a closed subset of HarmLF
d (S4) and thatπ∗ is a closed

map. To do this it suffices to show that if{xi} is a sequence inP(Φ−1
d {0}) such that{yi},

yi = π∗(xi) for i ∈ N, is convergent toy0 ∈ HarmLF
d (S4), say, then{xi} has a subse-

quence which converges inP(Φ−1
d {0}). Suppose then that, for alli ∈ N, xi = [fi,1, . . . , fi,4]

where g.c.d.(fi,1, . . . , fi,4) = 1. Sincexi ∈ P((C [z]d)4) which is compact,{xi} has a sub-
sequence, which without loss of generality we may also write{xi}, which converges tox0 in
P((C [z]d)4). We will now prove thatx0 ∈ P(Φ−1

d {0}), which will complete the proof of the
lemma.

Let

x0 = [f1, . . . , f4] = [qg1, . . . , qg4] ,

whereq = g.c.d.(f1, . . . , f4). Then

y0(z) =
(

lim
i→∞ yi

)
(z) = lim

i→∞(yi(z))

= lim
i→∞((π∗(xi))(z)) = lim

i→∞ π(xi(z))

= lim
i→∞ π[fi,1(z), . . . , fi,4(z)] .

Now, for fixedz, the mapez : (C [z]d)4 → C4 defined by evaluation atz is continuous.
ThusEz : (C [z]d)4 \e−1

z {0} → C4 \ {0}, defined by restriction ofez, is also continuous. Now
let z be a complex number for whichq(z) 
= 0. We may then assume that{xi} is a sequence
in P((C [z]d)4 \ e−1

z {0}), for otherwisex0 ∈ P(e−1
z {0}), which implies thatq(z) = 0, a
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contradiction. Hence, by continuity of the projectivisation ofEz, we have

lim
i→∞[fi,1(z), . . . , fi,4(z)] = [f1(z), . . . , f4(z)] ,

so continuity ofπ shows that

y0(z) = π[f1(z), . . . , f4(z)] = π[g1(z), . . . , g4(z)] .

We now complete the proof of the lemma as follows. Sincey0 andz �→ π[g1(z), . . . ,

g4(z)] are smooth maps ofS2 into S4 which agree except possibly at a finite number of
points, they are equal. Thusz �→ [g1(z), . . . , g4(z)] is a holomorphic lift ofy0 and hence,
sincey0 has induced area 4πd, the degree of this lift is at leastd. Thusx0 = [f1, . . . , f4] =
[g1, . . . , g4] ∈ P(Φ−1

d {0}). It follows that{xi} converges inP(Φ−1
d {0}), as required. �

4. Proof of the theorem. The method of proof is to show that, for 3≤ d ≤ 5, the
zero polynomial is a regular value ofΦd . It will then follow that Φ−1

d {0} is a submanifold
of V of dimension 4(d + 1) − (2d − 1) = 2d + 5, from which the theorem will follow by
projectivising and using Lemma 3.1.

We begin by writing down the derivativedΦd |f of Φd at a pointf = (f1, . . . , f4) of V .
The unusual indexing on the left hand side is to facilitate the writing down of the derivative.

dΦd |f(h2, h1, h4, h3) =
4∑

p=1

(−1)p(fph′
p − f ′

php) .

In order to simplify the calculations we use the results of [3], where canonical forms are
obtained for elements ofP(Φ−1

d {0}) for 3 ≤ d ≤ 5. Firstly, the standard action of the
complexified symplectic groupSp(2, C) on C4 induces a natural action onV via (Af)(z) =
A(f(z)). It is clear from Section 2 of [3] thatΦd is constant on the orbits of this action, so the
rank ofdΦd |f is equal to the rank ofdΦd |Af. Secondly, for each positive integerk, a Möbius
transformationµ(z) = (αz + β)/(γ z + δ) induces a diffeomorphism̃µ : C [z]k → C[z]k
given by

(µ̃f)(z) = (γ z + δ)k(f(µ(z)) .

This in turn induces a diffeomorphism, also denoted byµ̃, from V to V . It is easily checked
that if f ∈ V , then

Φd(µ̃f) = (αδ − βγ )µ̃(Φd f) ,

so that the rank ofdΦd |f is equal to the rank ofdΦd |µ̃f.
Now let f ∈ Φ−1

d {0}. For 3 ≤ d ≤ 5, it follows from Theorem 4.1, Theorem 5.1 and
Proposition 6.1 of [3] that there existsA ∈ Sp(2, C) and a Möbius transformationµ such that
µ̃(Af) is a scalar multiple of one of the following two forms.

Case 1: µ̃(Af) = (1+αz, βzd, f3(z), f4(z)), whereβ 
= 0 andf3(z), f4(z) ∈ C [z]d .
Case 2: µ̃(Af) = (1 + αz, z4(1 + βz), z(1 + γ z), z3(µ + δz)), βµ 
= 0.

Then the rank ofdΦd |f is equal to the rank ofdΦd |µ̃(Af), so we may show that, for 3≤ d ≤ 5,
0 is a regular value ofΦd by displaying for eachf in Φ−1

d {0} taking one of the two forms
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above, a(2d −1)-dimensional subspaceW of (C [z]d)4 which is complementary to the kernel
of dΦd |f.

For both cases, the following lemma will be useful.

LEMMA 4.1. Let f, g ∈ C [z] be non-zero polynomials and let zr , zs be the highest
powers of z dividing f, g, respectively. Then, if r + s ≥ 1, we have

(a) zr+s−1|f g ′ − f ′g ;
(b) if r 
= s and if zt |f g ′ − f ′g then t ≤ r + s − 1.

The proof follows immediately forrs 
= 0 from the fact that iff = zr f̂ , g = zsĝ for
polynomialsf̂ , ĝ with non-zero constant term, then

f g ′ − f ′g = zr+s−1{(s − r)f̂ĝ + z(f̂ĝ ′ − f̂ ′ĝ)} .

The proof when just one ofr, s is non-zero is similar but easier.
We first dispose of Case 1. LetW be the(2d − 1) dimensional vector subspace of

(C[z]d)4 consisting of elements of the form(h2, h1, 0, 0, ), with h1 a linear combination of
z, . . . , zd andh2 a linear combination ofz, . . . , zd−1. If such an element is in kerdΦd |f , then

f1h
′
1 − f ′

1h1 − (f2h
′
2 − f ′

2h2) = 0 .(2)

Lemma 4.1(a) shows thatzd |f2h
′
2 −f ′

2h2, so, by (2),zd |f1h
′
1 −f ′

1h1. If h1 
= 0, then Lemma
4.1(b) would give the contradictiond ≤ d − 1. Thush1 = 0, so thath2 is a scalar multiple of
f2 and hence is also zero. The theorem is now proved in this case.

Case 2 is similar. This time we letW consist of elements of(C [z]5)4 of the form
(h2, h1, h4, h3), with h1 a linear combination ofz, . . . , z5, h2 a scalar multiple ofz5, h3

a scalar multiple ofz5, andh4 a linear combination ofz4, z5. In this case, it follows that
z8|f2h

′
2 − f ′

2h2, z6|f4h
′
4 − f ′

4h4, andz5|f3h
′
3 − f ′

3h3. Thus, if (h2, h1, h4, h3) ∈ W ∩
kerdΦd |f , thenz5|f1h

′
1 − f ′

1h1. If h1 
= 0, we would have, by Lemma 4.1(b), that 5≤ 4.
Thush1 = 0. It now follows thatz6|f3h

′
3 − f ′

3h3, and a similar argument shows thath3 = 0.
Thusz8|f4h

′
4 − f ′

4h4, which leads us to deduce thath4 = 0. But thenh2 is a scalar multiple
of f2, so thath2 = 0. This shows thatW ∩ kerdΦd |f = {0}, and the theorem is proved.

REFERENCES

[ 1 ] J. L. BARBOSA, On minimal immersions ofS2 into S2m, Trans. Amer. Math. Soc. 210 (1975), 75–106.
[ 2 ] J. BOLTON AND L. M. WOODWARD, The space of harmonic maps ofS2 into Sn, Geometry and Global

Analysis (Sendai, 1993), 165–173, Tohoku Univ., Sendai, 1993.
[ 3 ] J. BOLTON AND L. M. WOODWARD, Linearly full harmonic 2-spheres inS4 of area 20π , Internat. J. Math.

12 (2001), 535–554.
[ 4 ] J. Bolton and L. M. Woodward, Higher singularities and the twistor fibrationπ : CP 3 → S4, Geom. Dedicata

80 (2000), 231–245.
[ 5 ] R. L. BRYANT, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Differential

Geom. 17 (1982), 455–473.
[ 6 ] S. S. CHERN AND J. WOLFSON, Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), 59–83.
[ 7 ] T. A. CRAWFORD, The space of harmonic maps from the 2-sphere to the complex projective plane, Canad.

Math. Bull. 40 (1997), 285–295.



236 J. BOLTON AND L. WOODWARD

[ 8 ] L. FERNANDEZ, The dimension of the space of minimal 2-spheres inS6, Preprint.
[ 9 ] M. FURUTA, M. A. GUEST, M. KOTANI AND Y. OHNITA, On the fundamental group of the space of harmonic

2-spheres in then-sphere, Math. Z. 215 (1994), 503–518.
[10] H. B. LAWSON, JR., Surfaces minimales et la construction de Calabi-Penrose, Séminaire Bourbaki 1983/84,

Astérisque 121–122 (1985), 197–211.
[11] B. LOO, The space of harmonic maps ofS2 into S4, Trans. Amer. Math. Soc. 313 (1989), 81–102.
[12] L. L EMAIRE AND J. C. WOOD, On the space of harmonic 2-spheres inCP 2, Internat. J. Math. 7 (1996),

211–225.
[13] L. L EMAIRE AND J. C. WOOD, Jacobi fields along harmonic 2-spheres inCP 2 are integrable, J. London

Math. Soc.(2) 66 (2002), 468–486.
[14] E. H. SPANIER, Algebraic Topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.
[15] J.-L. VERDIER, Two dimensionalσ -models and harmonic maps fromS2 to S2n, Lecture Notes in Phys. 180

(1982), 136–141.
[16] J.-L. VERDIER, Applications harmoniques deS2 dansS4, Geometry Today (Rome, 1984), 267–282, Progr.

Math. 60, Birkhäuser Boston, Boston, Mass., 1985.
[17] J.-L. VERDIER, Applications harmoniques deS2 dansS4, II, Harmonic mappings, twistors, andσ -models

(Luminy, 1986), 124–147, Adv. Ser. Math. Phys. 4, World Sci. Publishing, Singapore, 1988.

UNIVERSITY OF DURHAM

DEPARTMENT OFMATHEMATICAL SCIENCES

SOUTH ROAD

DURHAM DH1 3LE
GREAT BRITAIN

E-mail address: john.bolton@durham.ac.uk


