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Abstract. A harmonic map of the Riemann sphere into the unit 4-dimensional sphere
has area #Ad for some positive integet, and it is well-known that the space of such maps may
be given the structure of a complex algebraic variety of dimensib# 2. Whend less than
or equal to 2, the subspace consisting of those maps which are linearly full is empty. We use
the twistor fibration from complex projective 3-space to the 4-sphere to show ttias, équal
to 3, 4 or 5, this subspace is a complex manifold.

1. Introduction. Every harmonic map from the Riemann sphéfeinto the unit 4-
spheres* has area #4d for some integet!. It has been known for some time [5, 6, 10] that
the space HarpiS#) of such maps may be studied in terms of the twistor lifts of the elements
to horizontal holomorphic curves of degréén complex projective 3-spad@P2. It follows
from this that Harm(s*) may be given the structure of a complex algebraic variety, and a
detailed study of this space has been carried out in [11, 15, 16, 17], where, in particular, it is
shown that the complex dimension ig 2 4. This result is in line with a conjecture in [2]
that the moduli space of harmonic mapsSfinto $2” of degreed is a complex algebraic
variety of dimension 2+ m?, a result which is known to be true far= m(m + 1)/2 [1] and
d =m@m +1)/2+ 1[2], and has also recently been proved [8] for gendralm(m + 1)/2
in the casen = 3.

A natural topology to put on Harpis?) is the compact-open topology, and the relation-
ship between this topology and that coming from the complex algebraic variety structure was
broached in [9], where it is essentially shown that these topologies coincide.

We also use the twistorial approach to consider the existence or otherwise of singular
points of Harmy (S#), and prove the following theorem. The final sentence in the statement of
the theorem is well-known.

THEOREM 1.1. For 3 < d < 5, the space Harn}" (5#) of linearly full elements of
Harmy (S%), equipped with the compact-open topology, is a complex manifold of complex
dimension 24 + 4. For d < 2, Harn§"™ (5%) is empty.

Similar questions for the space of harmonic maps fi€fio C P? have been studied
in [7] and [12]. In fact, the components of this space consist ofttHeolomorphic maps of
degreel, together with harmonic maps of degeéand energy 4E, whereE = 3|d|+4+2r
for some non-negative integer It is shown in [12] (see also [13]) that these components are
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smooth manifolds of dimensiord + 4 in the+-holomorphic case and”2+ 8 in the other
cases.

The research for this paper was carried out by the named authors, but the final exposition
is the responsibility of the first author, sintgndon Woodward sadly died before the paper
was completed.

2. Thetwistor fibration. We begin by recalling thewistor fibration 7 : CP3 — §4.
RegardingH? as a left quaternionic vector space, tisisbtained by composing the Hopf map
p : CP3 — HPIgiven by

o(lz1, 22, 23, 24l) = [21 + 22, 23 + 24j],

with the canonical identification ¢l P1 and$* ¢ H @ R = R® given in the usual way by
stereographic projection fror®, 0, 0, 0, —1) onto the equatorial 4-planié in R® which is
included inH P1 by l¢] — [g,1]. We recall [4, 5] thatr is a Riemannian submersion when
C P2 is given the Fubini-Study metric of constant holomorphic sectional curvature 1.

Now consider the vector spa€qz], of polynomials of degree at mogt and letV be
the subset ofC[z]4)* consisting of those quadruples of coprime polynomials with maximum
degreed for which the map;, — [ f1(z), f2(2), f3(z), fa(z)1is linearly full in C P3. ThenV
is a projective subset ¢[z],)*, and we identify its projectivisatioR (V) with the space of
linearly full holomorphic maps of degrek(and hence area) from 52 to C P2 in the usual
way via

1) Lf1, f2. f3. fal < z = [f1(2), f2(2), f3(2), fa(2)].

Here, and subsequently, we use the complex coordina®#? alefined by stereographic pro-
jection from the south pole &2 onto the equatorial plane so that, in the usual sense, we may
identify $2 with C U {o0}.

A holomorphic curvd f1, f2, f3, fa] in CP3 is horizontal if it intersects each fibre or-
thogonally. It is well-known [5] that this holds if and only if

fifo— fifo+ fafa— f3f4=0.
Thus, if we defineb, : V — Clz]ay—2 by
Dy(f1, f2, 3. fa) = fife — fifo+ fafa— f3fa,

then® {0} is a projective subset df and, using (1)P (¢, 1{0}) is identified with the space
of linearly full horizontal holomorphic maps of degrédrom $2 to C P2,

The set Harrh! (5%) is the union of two disjoint subsets, Hafts%) and Harny (5%),
with post-composition by the antipodal map $f giving a bijection between them. Each
element of Harrji(S“) has a unique lift to an eIementh(cD;l{O}), so that post-composition
by r gives a bijective correspondence

Tyt P(@10)) — Harmy (5%).

The final statement of our theorem is now clear, sivide empty ford < 2.
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3. The topologies. We give (C[z])? its natural topology as a vector space, and
P((C[z]s)* the identification topology. TheW is an open subset aC[z],)*, and P(V)
is an open subset d#((C[z]4)*). Subsets of any of these spaces are then given the induced
(subspace) topology.

When HarnjF (5% is given the compact-open topology, post-composition by the antipo-
dal map ofs* is a homeomorphism which interchanges Hats) and Harny (S%). In this
section we use the methods of [9] to show that Ha¢sf) is homeomorphic to the projective
algebraic variet)P(qbd‘l{O}) described in the previous section. Sirféds compact, it follows
that the compact-open topology coincides with the topology of uniform convergence (see, for
example, p. 6 of [14]). In particular, since this is a metric topology, limit points of subsets are
precisely limits of sequences of points of the subset which converge in the ambient space.

LEMMA 3.1. Harnj (5% is a closed subset of Harn}"(s%), and the map =, :
P(®;1{0}) — Harm; (5% isa homeomorphism.

PrRoOFE.  We first show thatr, is continuous. Since
P(V) x §2 — §*
([f1, .-, fal, D) = 7wl f1(2), ..., fa(2)]

is continuous, SO is its restriction @(@;1{0}) x S2. It now follows (see, for example, p. 6
of [14]) thatr, is continuous.

We now show that Harijx %) is a closed subset of Hafrfi(%) and thatr. is a closed
map. To do this it suffices to show that{if;} is a sequence inP(qﬁd‘l{O}) such that{y;},
yi = m«(x;) fori € N, is convergent tog € HarmﬁF(S“), say, then{x;} has a subse-
guence which converges m@d—l{o}), Suppose then that, for dlle N, x; = [fi.1, ..., fi.4l
where g.c.d.fi1, ..., fia) = 1. Sincex; € P((C[z]4)* which is compact{x;} has a sub-
sequence, which without loss of generality we may also Writg which converges tag in
P((Clz]a)*. We will now prove thatcg € P(@;l{O}), which will complete the proof of the
lemma.

Let

xo=1[/1,..., fal =1lqq. ..., qgal,
whereq = g.c.d(f1, ..., f4). Then

vo() = ( Jim y) (@) = fim (3(2)
1—> 00 1—> 00
= lim ((m«(x))(2)) = lim 7 (x;(2))
11— 00 11— 00
= lim 7[fi1(),..., fia(2].
11— 00
Now, for fixedz, the mape. : (C[z]4)* — C* defined by evaluation atis continuous.
ThusE; : (Clzla)*\ e; {0} — C*\ {0}, defined by restriction of, is also continuous. Now

let z be a complex number for whicjz) # 0. We may then assume thiat} is a sequence
in P((Clzl)* \ e1{0}), for otherwisexop € P(ez1{0}), which implies thag(z) = 0, a
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contradiction. Hence, by continuity of the projectivisation®f we have
l_i”;o[fi,l(l)a cos Jia@l =112, - fa(2)],
so continuity ofr shows that

yo(@) =7[f1(2), ..., fa@] =7[g1(2), ..., 9a(2)].

We now complete the proof of the lemma as follows. Sipg@andz — n[g1(2), ...,
g4(z)] are smooth maps of? into S* which agree except possibly at a finite number of
points, they are equal. Thus— [g1(z), ..., ga(z)] is a holomorphic lift ofyg and hence,
sinceyg has induced arear, the degree of this lift is at leagt Thusxg = [f1, ..., fa] =
[g1,...,94] € P(cbd‘l{O}). It follows that{x;} converges irP(q>d‘1{0}), as required. O

4. Proof of thetheorem. The method of proof is to show that, for8 d < 5, the
zero polynomial is a regular value df;. It will then follow that cbd’l{O} is a submanifold
of V of dimension 4d + 1) — (2d — 1) = 2d + 5, from which the theorem will follow by
projectivising and using Lemma 3.1.

We begin by writing down the derivative®, |; of @, at a pointf = (f1, ..., fa) of V.
The unusual indexing on the left hand side is to facilitate the writing down of the derivative.

4
dDgli(h2, h1, ha, h3) =Y (=P (fpl, — frhp) .
p=1

In order to simplify the calculations we use the results of [3], where canonical forms are
obtained for elements oP(qbd‘l{O}) for 3 < d < 5. Firstly, the standard action of the
complexified symplectic groufp(2, C) on C*induces a natural action on via (Af)(z) =
A(f(z)). Itis clear from Section 2 of [3] thap, is constant on the orbits of this action, so the
rank ofd®,|s is equal to the rank af &, 4;. Secondly, for each positive integera Mébius
transformationu(z) = (az + B)/(yz + 8) induces a diffeomorphism : C[z]lx — Clzlk
given by

(i) (@) = (yz + F ().
This in turn induces a diffeomorphism, also denotedihyrom V to V. It is easily checked
thatiff € vV, then

Qq(af) = (ad — By)u(Paf),
so that the rank of @, is equal to the rank al @ | ;.

Now letf e qbd‘l{O}. For 3< d < 5, it follows from Theorem 4.1, Theorem 5.1 and
Proposition 6.1 of [3] that there existse Sp(2, C) and a Mdbius transformatiga such that
iL(Af) is a scalar multiple of one of the following two forms.

Case 1. i(Af) = (I+az, Bz9, f3(2), fa(z)), wherep # 0 andf3(z), fa(z) € Clzla.

Case 2! ji(Af) = (1+az, 2%+ B2), 2(1+ y2), 23(1 + 82)), Bu # 0.

Then the rank ol @, is equal to the rank af @, ; af), SO we may show that, for8 d < 5,
0 is a regular value o, by displaying for eacH in cD;l{O} taking one of the two forms
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above, a2d — 1)-dimensional subspad# of (C[z];)* which is complementary to the kernel
of ddylz.
For both cases, the following lemma will be useful.

LEMMA 4.1. Let f, g € C[z] be non-zero polynomials and let 7", z* be the highest
powers of z dividing f, g, respectively. Then, if r + s > 1, we have

@ ™ Yrg —fg;

(b) ifr #sandifz’|fg — f'gthens <r+s—1

The proof follows immediately fors # O from the fact that iff = 2’ f, g = 2§ for
polynomialsf, g with non-zero constant term, then

f9 = flg=2""Me—nfi+2fi = ).
The proof when just one af, s is non-zero is similar but easier.
We first dispose of Case 1. L&Y be the(2d — 1) dimensional vector subspace of

(C[z]a)* consisting of elements of the forty, i1, 0,0, ), with /1 a linear combination of
z, ..., z% andhy alinear combination of, . .., z¢~1. If such an element is in kef®, |, then

(2) fihy — fih1— (fahl, — fyho) = 0.

Lemma 4.1(a) shows that| foh, — fsh2, S0, by (2) 29| fihy — fih1. If h1 # 0, then Lemma
4.1(b) would give the contradictiah < d — 1. Thushy = 0, so that:, is a scalar multiple of
f2 and hence is also zero. The theorem is now proved in this case.

Case 2 is similar. This time we |é¥ consist of elements ofC[z]s)* of the form
(h2, h1, ha, h3), With k1 a linear combination of, ..., z°, ho a scalar multiple o&>, h3
a scalar multiple ot®, andh4 a linear combination of#, z°. In this case, it follows that
Bl fohly — fhha, 281 fahly — fiha, andzd| fshy — fihs. Thus, if (ho, hi, ha,h3) € W N
kerd®yls, thenz®| fih} — f{h1. If h1 # 0, we would have, by Lemma 4.1(b), that5 4.
Thush1 = 0. It now follows thatzf’|f3h’3 — f3hs, and a similar argument shows that= 0.
Thu5z8|f4hg1 — f4ha, which leads us to deduce thiai = 0. But theni; is a scalar multiple
of f2, so thath, = 0. This shows thaW N kerd®,|; = {0}, and the theorem is proved.
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