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Abstract. The non totally geodesic paralleh2limensional Kéhler submanifolds of
then-dimensional quaternionic projective spagere classified by K. Tsukada. Here we give
the complete classification of non totally geodesic immersions of parafiedithensional
Ké&hler submanifolds in a quaternionic Kahler symmetric space of non zero scalar curvature,
i.e., in a Wolf space or in its non compact dual. They are exhausted by parallel Kahler sub-
manifolds of a totally geodesic submanifold which is either an Hermitian symmetric space or
a quaternionic projective space.

1. Introduction. Let(M*, §, Q) be a quaternionic Kahler manifold with mettjc
and parallel quaternionic structu@. A submanifoldM?" together with a section; e
I'(Q)|m such that]l2 = —land/iTM = T M is calledK&hlerif J; is parallel with respect
to the Levi-Civita connection of. We

will study parallel Kahler submanifolds of a quaternionic Kéhler symmetric spacé
non zero scalar curvaturehat is, Kahler submanifold& with parallel second fundamental
form 4 in a Wolf space or in its non compact dual. In the case wherMin= 2 dimM, we
prove thatany curvature invariant and intrinsically locally symmetric Kéhler submanifold is
parallel, and hence extrinsically symmetric

Any parallel submanifold/ of a Riemannian manifold? is curvature invariant. Fur-
thermore, a curvature invariant, in particular a parallel, maximal Kéhler submanifold of a
quaternionic Kéhler manifold is also normal curvature invariant. Using these properties, we
derive the following result from Naitoh’s theorem 2.6 in the next section.

THEOREM 1.1. Any curvature invarian{in particular, any paralle) Kéhler subman-
ifold M2" of the maximal dimensio®n of a quaternionic Kahler symmetric spasg® dif-
ferent from the n-dimensional quaternionic projective speide’, M** £ HP”", is totally
geodesic.

We recall that a submanifolt of a Riemannian manifold? is calledfull if M is not
contained in a proper totally geodesic submanifticof M and is called Tfull (according
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to Tsukada [Tsul)) if the first normal bundé'M = h(T M, T M) of M coincides with the
normal bundler' M of M in M.

We associate with a Kahler submanifald?” of M, of arbitrary dimension 2, a
symmetric 3-formC, called theshape tensgrand prove the following theorem.

THEOREM 1.2. Let(M?",J) be ageodesically complete parallel K&hler submanifold
of a quaternionic Kahler symmetric spas&* and M the minimal totally geodesic subman-
ifold of M containingM.

1) Ifthe shape tensof of M vanishes at one pointhenM is an Hermitian symmetric
space andV is a full parallel Kahler submanifold aof/.

2) If C # 0,thenM = HP™ and(M?", J) is a Hermitian symmetric manifold with
parallel cubic line bundlethat is a productQ,,,—1 x CPl of the complex quadriQ,,—1 C
CP™ and the projective lin€ P, or one of the following exceptional Hermitian symmetric
spacesCP! x CP1, CP! x CPL x CPL, Spa/Up x CPL, CPY, Sp3/Us, SUs/S(Uz x U3),
S012/Us, E7/TY - Eg, with the canonical Tsukada imbedding intbP™ as described in
[Tsu2].

Thus, the classification of parallel Kéhler submanifolds of type 1) in a quaternionic Kéh-
ler symmetric space reduces to a description of parallel Kahler submanifolds of Hermitian
symmetric spaces.

The classification of parallel K&hler submanifolds@®” was first obtained by Naka-
gawa and Takagi [NT].

THEOREM 1.3 ([NT]). The only full parallel K&hler submanifolds of a complex pro-
jective space areup to isometriesthe images of the Veronese imbedding of the projective
spacePV associated witlV = C"*1 into the projectivization? S?V of the symmetric square
52V defined by

¢: CP"=PV — PS?V
vI=Cv = [v®u],

of the Segre imbedding defined by

v: CP"xCP" =PV xPV - P(V®V)
(v, W'D = ],

or of the first canonical imbedding of compact irreducible Hermitian symmetric spaces of
rank2,i.e, Q,, Gra(C'*2), SO10/SUs and Eg/Sping - T.

The classification of all parallel Kéhler submanifolds of a Hermitian symmetric space
was established by Tsukada [Tsul]. He proved that any such submanifold is a product of
Veronese submanifolds, Segre submanifolds, canonical Kaehler imbeddings of compact Her-
mitian symmetric spaces of rank two and trivial factors (defined by the identity map). The
Theorem in [Tsul, p. 130] implies the following
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THEOREM 1.4. There is no full paralle(proper Kahler submanifold in a Hermit-
ian symmetric spac# having no factor isometric t&€P" . Any full parallel Kahler subman-
ifold of CP"1 x CP"2 has the formy1(M1) x ¥2(M>), wherey; (M;) C CP"i is one of the
immersions in Theoreh.3

Tsukada [Tsul] proved that any parallel Kahler submanifold of a Hermitian symmetric
space of non compact type is totally geodesic.

These results together give the full classification of non totally geodesic parallel Kéh-
ler submanifolds in a quaternionic K&hlemssnetric space. A classification of maximal to-
tally geodesic Kahler submanifolds of Wolf spaces in term of Satake diagrams was given by
Takeuchi [Tak]. See also Section 6.

The authors like to thank heartily the referee for useful remarks.

2. Preliminaries.

2.1. Gauss, Codazzi-Mainardi and Ricci equations. Mebe a submanifold of a
Riemannian manifoldZ. We denote by: : TM x TM — T M the second fundamental
form of M, and by A% the shape operator in the direction of a normal vegtor T+M
such that

VxY = VxY +h(X.,Y),

Vx€ = Vik — ASX,
whereX € TM,Y € I'TM and¢ € T+M. HereV, v, V. are the Levi-Civita connection
of M and the induced connectionsih and7 M, respectively.

For X,Y € T, M we decompose the curvature operaiqty as

Rxy = Ryy + Ryy + Ry + Ryy »
according to the decomposition
End(T, M) = End(T, M) + Hom(T: M, T M) + Hom(T;* M, T, M) + EndT.-M) .
Then we have the followin@auss-Codazzi equations
(Gauss) R;(r—ly— = Rxy — hxhty + hyhtx = Rxy — ZAEiX A ASiy ,

1

(Codazzi-Mainardi) Ry, Z= (Vih)(Y, Z) — (Vyh)(X, Z) ,
(Ricci) RY¥E = Ry — > (X, [A%, AS]Y)E

whereg; is an orthonormal basis Gf*M, X, Y € TM,& € T-M, R, R+ are the curvature
tensors of the connectiong, V-, andV’ is the connection if+M ® S2TM induced by
v+ andV, respectively. (We identify a bivector A Y with the skew-symmetric operator
Z— (Y, Z)X —(X,Z2)Y)
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2.2. Parallel submanifolds of symmetric spaces.

DEFINITION 2.1. A submanifoldV of a Riemannian manifold” is calledparallel if
it has parallel second fundamental fohmi.e.,V'h = 0.

DEFINITION 2.2. A subspac& c T, M of a tangent space of a Riemannian manifold
M is calledcurvature invariantf

R(V,V)V CV.

A submanifoldM of M is calledcurvature invariantf each tangent spack M is curvature
invariant and it is calleshormal curvature invariantf each normal spac&;* M is curvature
invariant.

It follows from Codazzi-Mainardi equation that any parallel submanifdlcbf a Rie-
mannian manifoldV is curvature invariant.

DEFINITION 2.3. A submanifoldV of a Riemannian manifold/ is called full if
the first normal bundle&v1M = h(T M, T M) coincides with the normal bundig+ M.

DEFINITION 2.4. LetM = G/K be a homogeneous Riemannian manifold. Fix an
orbit V of the isometry grougs in the Grassmann bundle @ M) of tangentk-planes of
M. If ak-planeV e V (resp. if the orthogonal plané', V € V) is curvature invariant, then
V is calledcurvature invarianfresp.normal curvature invariant

A k-dimensional submanifoldZ ¢ M is called ay-submanifoldf 7,M € V for any
x € M. Obviously, ifV is (normal) curvature invariant, then aiysubmanifold is (normal)
curvature invariant.

DEFINITION 2.5. A submanifold of a Riemannian manifold? is calledextrinsi-
cally symmetridf for any pointx € M there exists an involutive isometry (symmetsy)of
M preservingM such thatk, (x) = x and its differential ak satisfies

(1) (sx)*|TvM=_|d’ (sx)*|TvLM=|d
We recall the following theorem of Naitoh [Na2].

THEOREM 2.6 (H. Naitoh). Let M be a simply connected Riemannian symmetric
space. A submanifolgif of M is parallel and normal curvature invariant if and only if it is
extrinsically symmetric.

PROOF. Let M C M be an extrinsically symmetric submanifold. Remark that the
symmetrys, acts as-Id on any tensor spad(g@p ® Txl®q, wherep is odd. On the other hand,
it preserves the tens®'h TX®3 ® T;- and the curvature tens@ atx. This implies that an
extrinsically symmetric submanifold is parallel and normal curvature invariant. Conversely,
if M is parallel and normal curvature invariant, then the automorpltism € GI(T M)
defined by (1) preserves the curvature ten®prand hence can be extended to an involutive
isometrys of M. Now the inverse statement follovfiiom a remarkable theorem of Striibing
[Str].
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THEOREM 2.7 (W. Strubing). LetM be a parallel submanifold of a Riemannian man-
ifold M ands an isometry of¥ which preserves a point € M and satisfieg1). Thens
preserves any geodesic= y (1) of M with y (0) = x: s(y (r)) = y(—1).

The proof follows from the Frenet formulas for the cugv&) considered as a curve in
M:

0 ki O ... 0 0
E1 ki 0 ke - O 0O E1
% o I ,
) 0 0 0 0 kr—1 )
Er 0 0 0 - Er
whereEs, ..., E, isan orthonormal Frenet frame alop@btained from the fieldg, y, v, ...
by Gram-Schmidt processy, ..., k,—1 are constants (“curvatures”) and, moreovéf, =

v, E3, Es, ... € I'(TM)|, areV-parallel fields ancE, = h(y, y)/|h(y, )|, Es, Es, ... €
I (T+M),, arev-+-parallel fields along . Indeed, the Frenet frame alopg—1) ands. E; (1)
satisfy Frenet equations with the same initial conditioa$)’ E; (0). O

Now we state the following fundamental result by Naitoh, which shows that up to a
short list of exceptions, a parallel normal curvature invariant (or, equivalently, extrinsically
symmetric)V-submanifold of a symmetric space is in fact totally geodesic.

THEOREM 2.8 (H. Naitoh [Na3]). Let M = G/K be a compact simply connected
symmetric space with simple isometry graipandV is an orbit of G in Gr(T M) which
is curvature invariant and normal curvature invariant. Then amsubmanifold is totally
geodesic with the excepti@f the following cases

@ M=S8"=50n+1)/S0(n),1<k<n,

(b) M = CP",V is the set of complex-subspaces

(c) M = CP",Vis the set of totally reak-subspaces

(d) M =HP", Vis the set of totally compledz-subspaces

(e) M = G/K is anirreducible symmetric space aid= GT, whereT is the tangent
space to an irreducible symmetre-space(i.e., the geometries associated with irreducible
symmetricR-spaces.
The statement remains true also for non compact duél & [BENT].

The following result will be used in Section 5.

THEOREM 2.9 (H. Naitoh [Na4]). Let M be a parallel submanifold of a symmetric
spaceM. If the first osculating spaCQ}M = TyM + h(Ty, T,) at some poinkk € M is
curvature invariantthenM is contained in the totally geodesic submaniftld= exp(O1M)
of M generated byo1 M.

Obviously,M is full in M.
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3. Kaéhler submanifolds of quaternionic Kahler manifolds. Let (M*, 0, §) be a
quaternionic Kahler manifold, that is, a Riemannian manifai”’, j) with a V-parallel
quaternionic structur@, i.e., a rank 3 subbundle of E(M) locally generated by 3 skew-
symmetric almost complex structurés Jo, J3 = J1J2 = —J2J1. Forn = 1, in the definition
we assume thatv/4, g) is an anti-self-dual Einstein manifold.

Recall that the curvature tensBrof a quaternionic Kahler manifold has the form

R =vRypr + W,
where W is ansp,-valued 2-form satisfying the Bianchi identities (tqeaternionic Weyl

tensor), v = K /4n(n + 2) is thereduced scalar curvaturavhich is proportional to the scalar
curvaturek , and

1
Rupr(X,Y) = Z(X AY + D JuX AJgY =2 (X, Y)Ja) ,
o o

wherea =1,2,3and(, )=g(, ).
We recall also that the following identities hold:

[R(X,Y), Jo] = —v((],,X, Y)Jp — (JgX, Y)Jy) ,

where (a, 8, y) is a cyclic permutation of1, 2, 3). They are equivalent to the following
identities

@) ROLX.J,Y)Z = R(X.Y)Z + u(uﬂx, Y)JsZ + (J, X, V)], Z) ,
which we will need later on.

DEFINITION 3.1. A submanifold/2” of a quaternionic Kahler manifoldZ", Q, §)
together with a sectiori; € I"(Q)|) such thatll2 = —IdandJ1(TM) =TM is called

1) akKahler submanifoldf J; is @-parallel,

2) atotally complex submanifold Jo(TM) 1L TM, whereJ, € Q is a complex
structure anticommuting with; .

The Kahler submanifold/2” considered as a manifold with the induced Riemannian
metricg = g ), and the almost complex structure= J1 7 is a Kahler manifold.

Recall that if the scalar curvature oM, §) is not zero, then a Kahler submanifold
M?" m > 1, is totally complex ([AM2]). In particular;z < n. A Kéhler submanifold
of maximal possible dimensiom2s calledmaximal

Let (M2, J1) be a Kéhler submanifold of a quaternionic Kahler manifedd’. We fix
alocal section/o> € I'(Q) |y such that]22 = —1 andJyJo = —J2J1. One can check that

(3) Vvl =w(V)J3,

whereJ3 = J1J2 andw is a local 1-form onM. As in [AM1], we associate with the second
fundamental fornk, a (local)(0, 3)-tensor fieldC on M, called theshape tensqrdefined by

C(X,Y,Z) = (Joh(X,Y), Z).
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Itis symmetric with respect t&, Y, Z and satisfies the following identities:
CX,Y,JZ)=CUX,Y,2)=C(X,JY, 2),
which means that the associated endomorplignX € T M, defined by
(CxY,Z)=C(X,Y, Z2)

anticommutes withy.
If J, = cosfJz + sindJyJz is another section, then the associated shape tefisisr
related toC by

Cx =cost Cx +sinfJioCx .

This implies that the,,-valued 2-form[C, C](X, Y) := [Cx, Cy] is globally defined and
satisfies the Bianchi identities.
We define th€0, 4)-tensor fieldP as follows:

P(V;X,Y,2)=(VwO)X,Y,Z)+ w(V)C(X,Y,JZ),

which is symmetric with respect t%, Y, Z.

PROPOSITION 3.2. Let(M?", J1) be a curvature invariant K&hler submanifold of a
quaternionic Kéhler symmetric space. Then

1) the tangential partR”” of the curvature tensoR of M is parallel and the tensor
[C, C] satisfies the second Bianchi identity

VR =0, cycl(Vz[C,CD(X,Y) =0,

2) If M is parallel, thenP = 0.
PROOFE The proof is the same as for the case m, which was done in [AM1]. O

The following Lemma describes the relation between the covariant derivati¥eaod
the tensorP.

LEMMA 3.3. Let(M2", J;) be a totally complex submanifold of a quaternionic K&h-
ler manifold M. Then the covariant derivative of the shape tenSas given by

—(VyO)(X,Y,Z) = ((V@h)(X, Y), 2Z)+w(V)C(X,Y,JZ)+ (h(X,Y), Joh(V, Z))
or, equivalently
4) —P(V;X,Y,2) = (Vyh)(X,Y), J2Z) + (h(X, Y), J2h(V, Z))

for any tangent vector¥, Y, Z, V.
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PROOF. We extend vectorX, Y, Z € T, M to local tangent vector fields ol such
thatVy X = VyY = VyZ =0 atx € M. Then we have

—(VyC)X,Y,Z)=—-VC(X,Y,Z) = V(h(X,Y), J2Z)
= (Vih(X,Y), ]2Z) + (h(X,Y), Vi J2Z)

(Vyh)(X,Y), J2Z) + (h(X,Y), Vy J2Z)

(Vyh)(X,Y), J2Z) + (h(X,Y), (Vy J2) Z + J2Vy Z)

(Vi) (X, Y), J2Z) + (h(X,Y), o(V)J3Z + Joh(V, Z))

(Vyh)(X,Y), J2Z) + (h(X, Y), —o(V)J2J1Z + Joh(V, Z))

(Vyh)(X,Y), 2Z) + o(V)C(X, Y, JZ) + (h(X,Y), ]2h(V.Z)). O

+(
+(
+(
+(

(
(
( )
( )
( )
( )

COROLLARY 3.4. 1) Assume that at some point € M the subspacéVy ,.h)
(TyM, T M) is orthogonal toJoTyM. ThenP, = 0 and the first normal spacelxl =
h(T.M, T, M) is totally complexi.e., 1N} = NI and J,N} is orthogonal toNy, .

2) Assume thaM is curvature invariant and the first normal spai&g1L at some point
x € M is totally complex. The®, (V; X, Y, Z) = ((Vy,h)x(X,Y), J2Z) is symmetric in all
arguments.

PrROOF. 1) The first term on the right member of (4) vanishes. HeRad/; X,Y,Z)
= —(h(X,Y), Joh(V, Z)) is symmetric in all arguments. Sinc®, (X, X, X,X) =
(—h(X, X), J2h(X, X)) = 0, we get the conclusion.

2) By taking Codazzi-Mainardi equation into account, it is obvious. |

THEOREM 3.5. Let (M2", J1) be a totally complex submanifold of a quaternionic
Kahler manifold#'. Assume that(V, h)(X,Y), J2Z) = OforanyX,Y,Z,V € TM,
which is true ifM is parallel. Then the first normal bundl§M = k(T M, T M) is totally
complexi.e., (h(X,Y), Joh(V, Z)) = 0 and the tensor field® = 0.

Assume moreover that the reduced scalar curvatuséM*" is not zero. Then there are
two cases

1) C = 0atsome point and the@ = 0, which means thavim L J,TM, or

2) C # 0andthenM is a locally symmetric Hermitian manifold with parallel cubic
line bundle of type ([AM1]) . More preciselyM is locally isometric to one of the symmetric
spaces S = Q0,1 xCPL, CPLxCPl,CPLxCPLxCPL Spr/Urx CPL, CPL, Sp3/Us,
SUs/S(Uz x Us), SO12/Us, E7/ T - Eg or its non compact dual.

PROOF. By Corollary 3.4, the tensaP vanishes, that is,
P(V;X,Y,2)=(VyO)X,Y,Z2)+w(V)C(X,Y,JZ)=0.
It was shown in [AM1] that ifC # O at least at one point, then this condition means that the

tensor fieldC generates a parallel holomorphic line bundle in the space of cubic symmetric
forms of type(3, 0) such that the induced connection has curvaRfre= ivg o J (parallel
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cubic line bundle of type). All such Kéhler manifolds are locally symmetric and locally
isometric to one of the symmetric spaces described in [AM1, Thm. 3.14]. O

4. Characterization of maximal parallel Kahler submanifolds of a quaternionic
Kéahler symmetric space. In this section we give a characterization of maximal parallel
Kéahler submanifold3/2" of a quaternionic Kéhler symmetric spak&”, of non zero scalar
curvature.

THEOREM 4.1. Let M®' c M* be a complete maximal K&hler submanifold of a
quaternionic Kahler symmetric spadé** of non zero scalar curvature. Then the following
properties are equivalent

(i) M is curvature invariant and locally symmetric.
(i) M is parallel.
(iii) M is extrinsically symmetric.

PrRoOF  For proof we need the following lemma.

LEMMA 4.2 ([AM1, Prop. 2.8]). Any curvature invariant maximal Kéhler submani-
fold (M2, J) of a quaternionic Kahler manifoldZ** is normal curvature invariant.

PrROOF  The proof follows from the following identity which implies that the curvature
tensorR is invariant under the automorphisrm:

(R(J2X, 12Y) 2 Z, J2W) = (R(X, Y)Z, W)
forall X,Y.Z. W e TM.

PROOF OF THETHEOREM4.1. The equivalence (i (iii) follows from the Lemma
and Theorem 2.6. (ii}= (i) is well-known.

Thus, it remains to prove that (8 (ii). Assume thatM is curvature invariant and
locally symmetric. Then, by Proposition 2.13 in [AM1, page 887] the tensor fi€ld"]
is parallel, i.e.,V[C, C] = 0. We associate to the shape operatothe tensofA, A] €
T'(A’TEM @ A2TM) by [A, Al(E, n) = [AE, A" for&, n e THM.

We need the following lemma.

LEMMA 4.3. LetM?' be a maximal K&hler submanifold of a quaternionic symmetric
spaceM¥', v + 0,and A¢ its shape operator. Then the following halds

(VzIC, CD(J2E, JamW = (VZ[A, ADE, MW .
PROOF OFLEMMA. Foré,n € JoT,M andZ, W € Ty M, we have
(VzI[C, CD(J28, Jan)W = Vz(C o C)(J2§, JamW — Vz(C o C)(J2n, J25)W .
We have
Vz(C o C)(J2§, JamW = ((VzC) o C)(J2€, Jam)W + (C o (VZC))(J2§, JampW .
By definition it follows that
(VzO)yW =VzCyW —Cy,yW —CyVzW.
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Hence we obtain
Vz(C 0 C)(J2&, JamW = (V5 A)* 0 AW + (A% o (VAW
= (Cvzre © Com)W = (Cpg © Cvz )W -
Since(Vz J2) = w(Z)J3, we get
(Cvza)e © Cryp) W + (Cppe 0 Cvypyp) W = 0.
Then,
Vz(C 0 C)(J2k, Jan, W) = (V5 A)* 0 AW + (A" o (V,A))W
=V, (Ao A)E,n, W).
Now, the lemma follows from the above identity.

By using this lemma, we see th@j implies (V,[A, A]) (£, )W = 0. SinceJ; is paral-
lel, we obtain thatV’,[A, A])(&, Jin) W = 0. From these two identities we get

V(Ao A)E MW = (VA o AW + (A% o (V, AW = 0.
Also, we have
V), z(Ao A)E MW = (V) ,A)F 0 ANW + (A% o (V) ,A)W = 0.

Since M is curvature invariant, it follows the(tV’JlZA)SX = —J1(V,A)*X. By using this
fact together with the last two identities, we obtain

(V4 A 0o ANW = (A% o (V, AW =0.
Now, the theorem is a consequence of the following lemma.

LEMMA 4.4. LetM be a submanifold of a Riemannian manifold ahdts shape op-
erator. If

((VxA) 0 AW = (A% o (Vx AW =0,
thenM is parallel, i.e, V'A = 0.
PROOF. We decompos& M = N @ N+, where
N = ﬂ ker(A%), Nt = spar( U Image(A5)> }
EeTM+ teTMt

So, if Z € N, it follows that(V4 A) (¢, Z) = 0. LetZ € N be any section. Observe that
(V4 A)*Z € N. On the other hand, we hay®% A)* Z = —ASVx Z. Thus,(V4 A)* Z € Nt
and then'Vy A)* Z = 0, that is,A is parallel. O

5. Parallel Kéhler submanifolds of a symmetric quaternionic Ké&hler manifold.
5.1. Reduction to the case of 1-full parallel Kéhler submanifolds. Note that the inter-
section of totally geodesic submanifolds of a Riemannian manifbli a totally geodesic
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submanifold. Hence we may consider the minimal totally geodesic submamfalshtaining
a given submanifold/.

In this subsection we prove the following theorem which reduces the classification of
parallel Kahler submanifolds of a quaternionic Kéhler symmetric manifold to the classifica-
tion of 1-full parallel Kéhler submanifolds in Hermitian or quaternionic Kéhler symmetric
spaces.

THEOREM 5.1. Let(M?", J) be aparallel K&hler submanifold of a symmetric quater-
nionic Kéhler manifold¥Z** of non zero scalar curvature and the minimal totally geodesic
submanifold ofiZ** containingM2".

1) Ifthe shape tensof of (M?", J) vanishesthenM is a totally geodesic Hermitian
symmetric space an@/?”, J) is a full parallel K&hler submanifold a#/.

2) If C # 0,and hencgM?", J) is a Kéhler manifold with parallel cubic line bundle
then M is a quaternionic Kahler symmetric space of dimenslenand (M2", J) is a full
parallel Kahler submanifold o#/.

PROOF.  We need the following Lemma.

DEFINITION 5.2. A parallel K&hler submanifold of a symmetric quaternionic Kahler
manifold " is calledof typel) if the shape tensaf = 0 andof type2) otherwise.

LEMMA 5.3. Let M be a parallel Kéhler submanifold of a symmetric quaternionic
Kahler manifold with non zero scalar curvature.
1) Ifitis of typel),then

JTyM L NY forall x e M.
2) Ifitis of type2),then
JTyM =N} forall x e M.

PrROOF OFLEMMA 5.3. 1) is obvious, by definition af. Before considering the case
2), let state some facts which holdie for any parallel submanifold/. As before, we use
Latin lettersX, Y, Z, ... for vector fields inT M and Greek letters, n, ... for vector fields
in T+ M. By hypothesisv’h = 0 we have the identity

(5) Vi (h(Y, 2)) = h(VxY, Z) + h(Y,Vx Z),
and
(6) R(TM,TM)TM CTM.

Moreover, by (2) of Lemma 13 of [Na1l],
(7) R(TM, TM)N* c Nt.

(Naitoh proved (7) as follows: the Ricci equation of the parallel submanifold can be written
as

R(X,Y)E = RY(X,Y)E — h(X, A°Y) + h(A%X,Y),
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and for¢ = h(Z, T), by (5), it follows that
RY*(X,Y)h(Z,T)=h(R(X,Y)Z,T)+ h(Z, R(X,Y)T).

The conclusion follows immediately).
The proof of the Lemma follows directly from the next two Sublemmas.

SUBLEMMA 5.4. For any parallel Kéhler submanifald one has
(8) R(TM,NYTM c N*.
Moreover, if M is of type 2, then
9) JTM c Nt

PROOF OFSUBLEMMA 5.4. SinceM* is a symmetric space and the submaniftid
is curvature invariant, we haw®x R)(Z, U)Y = 0, which can be written as

Vx(R(Z,U)Y) + h(R(Z,U)Y, X)
= R(VxZ,U)Y 4+ R(Z,VxU)Y + R(Z,U)VxY
+ R(W(X,Z),U)Y + R(Z, h(X,U)Y + R(Z,U)h(X,Y).
The projection ontd™ M of this identity gives
(10)  R((X,Z),U)Y + R(Z,h(X,U))Y = h(R(Z,U)Y, X) — R(Z,U)h(X,Y) .

By comparing (10) with the identity obtained by changikig— J1X andU — J1U, and
taking account of (2), we deduce the following identity:

R(W(X,Z),U)Y = (1/2[—v((J2h(X, Z), U) oY + (J3h(X, Z), U)J3Y)
(11) +h(R(Z,U)Y, X) + h(R(Z, JU)Y, JX)
— R(Z,U)h(X,Y) — R(Z, JUYh(JX, Y)].

If M is of type 1), then (8) follows from (11), (6), (7). Let now assume tais of type 2).
We use (11) to compute the first two terms of the Bianchi identity ®Rh(X,Z),U)Y +
R(Y,h(X, Z)U + R(U, Y)h(X, Z). Taking account of (7), we get

—(S2h(X, Z), U)J2Y — (J3h(X, Z),U)J3Y
12
(12) + (J2h(X, Z),Y) U + (J3h(X, Z), Y)J3U € N*.

Let us assume that at a pointe M there exists a vector such that/,Y ¢ (NY)L. If
U = J1Y, then (12) gives

(13) (J3h(X, Z),Y)JoY — (Joh(X, Z),Y)J3Y € Nt

and, by changingk — J1 X, we get

(14) (Joh(X, Z),Y)JoY + (Jah(X, Z),Y)JaY € N*.

By assumption, there exist vectaXs Z € T, M such that

(Joh(X, Z),Y)? + (Jah(X, Z), Y)? £ 0.
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Then (13) and (14) imply that,Y, J3Y € N1. Now, foranyU € T M, (12) gives
(15) (J2h(X. Z),Y)J2U + (J3h(X, Z),Y)J3U € N*,

from which, by comparing with the identity whetgis replaced with/ U, it is easy to deduce
thatJ,U € N1 foranyU e TM. (8) follows from (11), (6), (9) and (7). O

SUBLEMMA 5.5. If M is of type 2) then
(16) LNt cTM.

PROOF OF SUBLEMMA 5.5. Let us assume that the vector figlde N. Since
R(Y,£)Z € N1 by (8), the identity Vx R)(Y, £)Z = 0 can be rewritten as

VLR(Y,6)Z — ARVOZX = R(VxY,8)Z + R(Y, VEE)Z + R(Y, £)Vx Z
+ R((X,Y),6)Z — R(Y, AS)Z + R(Y, §)h(X, Z) .
By using repeatedly (5), (7) and (8), we get
R(h(X,Y),€)Z + R(Y,£)h(X, Z) € Ot
and, by changing’ — JY and¢ — J§,
R(1h(X,Y), 1E)Z + R(J1Y, hE)h(X, Z) € O = T M + h(T M, T, M) .
The last two identities together with (2) imply that
v((J2h(X, Y),€)J2Z + (J3h(X, ¥), £) 32
+ (J2Y, &) J2h(X, Z) + (J3Y, &) J3h(X, Z)) € 0;.
SinceJ>Z, J3Z € N by Lemma 5.4, we conclude that
(17) (2Y, €)Joh(X, Z) + (J3Y, €)J3h(X, Z) € O},

Let us assume that there exists a vedtoe T, M such that(JoY, &)2 + (J3Y, £)2 # 0. We
deduce easily, by comparing (17) with the identity obtained by the chdngeJ1Y, that

Joh(X,Z), J3h(X,Z) e O' forany X,Z € T:M .
On the other hand, by Corollary 3.4sh (X, Z) is orthogonal tavl. Hence
Joh(X,Z), J3h(X,Z) e TM forany X,Z e T\M ,
and (5.5) follows. This finish the proof of Sublemma 5.5 and hence Lemma 5.3. O

Now we prove the following Proposition which, together with Lemma 5.3, implies The-
orem5.1.

PROPOSITION 5.6. Let(M?", J) be a parallel K&hler submanifold of a locally sym-
metric quaternionic Kahler manifold. Then the first osculating spage= 7. M + N} atany
pointx € M is curvature invarianti.e.,

R0, 0hHot c ol.



534 D. ALEKSEEVSKY, A. DI SCALA AND S. MARCHIAFAVA

REMARK. The proposition remains true M is a locally symmetric Kéhler manifold,
whose proof is the same as in the quaternionic Kéhler case.

PROOF. The identity(VR)(Y, Z)¢ = 0 can be rewritten as

VE(R(Y, 2)E) — ARY-DEX — R(VyY, 2)E + R(Y, Vx 2)E + R(Y, Z)V&
+ R(W(X,Y), Z)E + R(Y, h(X, Z))§ — R(Y, Z)A*X.
Foré e N1, by taking account of (6), (7) and (5), this gives
R(W(X,Y), Z)E + R(Y, h(X, Z))§ € OL.
By changingX — J1X andZ — J1Z, we have
R(1h(X,Y), J1Z)E — R(Y, h(X, Z))§ € O*.

By (2), we also have

R(1Wh(X,Y), 1Z)E = R(h(X,Y), Z)& + v(<th(X, Y), Z)J2E

+ (J3h(X, 1), z>13g) eTM,
which implies
(18) R(NY, TM)N* c 0.
Now the Bianchi identity gives
(19) R(NY, NHTM c 0*.
We rewrite the identity VR) (Y, n)é = 0 forn, £ € N1 as follows:
Vx(R(Y, m&) = R(VxY, n& + R(Y, Vyné + R(Y, n) V&
+ R(W(X,Y), nNE — R(Y, A"TX)E — R(Y,))A*X .

Since the bundl®! is invariant under parallel transport, it follows thth (X, Y), n)é € 0)},
and hence

(20) RN NHNL c o}
Formulas (6), (7), (8), (18), (19) and (20) then imply Proposition 5.6. |

We also obtain the following corollary, which was proved by Tsukada [TsuZ2] in the case
of quaternionic projective space.

COROLLARY 5.7. A non totally geodesic parallel totally complex submanifold
(M2, J1) of a symmetric quaternionic Kahler manifold*" is 1-full if and only if it has
maximal dimension.e., n = m.

PROOF. We have the following orthogonal decomposition:

TM =TM + Jo(TM) + N(M),
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whereN (M) is a quaternionic subbundle. If we assume tais 1-full, then it follows that
T+M = Jo,TM + NM = N'M. By 1) of Corollary 3.4 N1M is totally complex, and hence
NM = 0. Vice versa, itM has maximal dimension = m, thenJ,TM = T-M. SinceM is
not totally geodesicM has type 2) and by Lemma 5.3, we g&tM = /b,TM =T M. O

REMARK 5.8. As a consequence of Proposition 5.6 and Naitoh’s Theorem 2.9, it fol-
lows that the concept of being 1-full and that of being full are equivalent for a parallel Kéhler
submanifold of a locally symmetric quaternionic Kahler manifold.

Now we can prove Theorem 5.1. By Proposition 5.6 and Theorem 2.9, the Kahler sub-
manifold 2" is 1-full in the totally geodesic submanifold = exp(O1M). In the case 1),
M is a totally complex totally geodesic subnifaid, and hence a Hermitan symmetric space.
In the case 2)M is a quaternionic Kahler submanifold. O

6. Totally geodesic maximal Ké&hler submanifolds of Wolf spaces. All totally geo-
desic maximal K&hler submanifoldg?" of a Wolf spaceW = G/K = M*" were classified
by Takeuchi in terms ofatake diagramfTak]. Here we sketch another approach based on
a simple observation that there exists a natural one to one correspondence between such sub-
manifolds and involutive automorphisms of the complex Lie alggpra Lie(G)C, which
preserve the canonical ideql; of the stability Lie algebr& and act non trivially on it. Simi-
lar ideas can be found in [Wo].

6.1. Lie algebra description of Wolf spaces. Recall that any simple complex Lie alge-
brag determine the Wolf space as follows. Let

g=b+) CE,

aeR

be the Cartan decomposition of the Lie algepnaith respect to a Cartan subalgelyrand
I = {a1, ..., a} asystem of simple roots of the root syst@&n

We denote by the maximal root ofR and byH,, = 2/(u, ;L)B;l = [Eu, E_,] the
corresponding element ofsuch that{ 7., £+, } is the standard basis of the 3-dimensional
subalgebrai; = 5p’l‘(C). Then ag;, has the eigenvalues2, £1, 0 and the corresponding
eigenspace decomposition

(21) g=g-2+g-1+go+01+02
gives rise to a gradation of the Lie algelgravioreover, we have

g2 =CEsy, gs1= ) 0o, G0=b+ Y CE,=g0 ®CH,,

a€etRy a€Rg
where
2(a,
Rlz{aeR; a(Hy) = (@ 1) =1}, Ro={x e R; (a,n) =0}.
(1, )
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We putgo = expir(ady,), which is an involutive automorphism gfwith eigenspace de-
composition

g = gev+ godd= (g—2 +go+g2) + (g-1+g1) .

Sincego commutes with the standard antilinear involutioof g associated with the Cartan
decomposition, which determines the compact real fgfm= {X € g; t(X) = X}, ¢o
defines a symmetric decomposition

0" =05+ 00qq= (P, +90)" +(g-1+ gD  =t+m

of the compact Lie algebrgf . We denote byG the adjoint (compact) Lie group with the Lie
algebrag®™ and byK = Ng(a1) = Spf - K’ the normalizer of the 3-dimensional subalgebra
(which is the connected Lie group generated by the subaldekrg;,). ThenW = G/K is

a simply connected irreducible symmetric spdice= G/K associated with this symmetric
decomposition. Moreover, it has a natural sture of quaternionic K&hler symmetric space,
which is called theNolf space associated with the Lie algelgraThe quaternionic structure
Q in the tangent spack, W = gg4is given byQ = adsp’f'ﬂédd'

Remark that the pai(G, K) is determined by the grading elemehi= H, of the grada-
tion (21) and the antilinear involutionwith td = —d. Conversely, a paifd, t), whered is
the grading element of a gradation (21) with digp = 1 andz is an antilinear involution of
g with td = —d, defining a compact real forgf of g, defines a Wolf spac®# = G/K, and
any such pairs are conjugated by an inner automorphigm of

6.2. Totally geodesic extrinsically symine K&ahler submanifolds of a Wolf space.
Let W = G/K be a Wolf space associated with a complex simple Lie algglamad (d =
H,, 7) be the pair that determing&, K) as above. Since the isotropy grokp= Sp’l‘ - K’
acts transitively on the unit sphere of all complex structures Q = ad,, |m, any totally geo-
desic Kahler submanifold/ of W containingo = eK € W is K-equivalent to a submanifold
M’ > o, whose tangent spadg M is invariant under some fixed complex structuiec Q.
We choose ag; the complex structuré; = ad g, |9£dd' We will call a totally geodesic Kahler
submanifoldM of W admissibldf it containso and the tangent spad@gM is Ji-invariant.

THEOREM 6.1. LetW = G/K be a Wolf space associated with a complex simple Lie
algebrag, d = H, be the grading element of the gradati¢?l) and r be the antilinear
involution defining the compact real forie G = g of g.

1) There is a natural one-to-one correspondence between

i) involutive automorphisms of g which commute with and satisfy condition
0(Exy) =—E+,,and

i) (connectell admissible totally geodesic extrinsically symmetric Kéhler sub-
manifoldsM (o) of W = G/K given byM (o) = W*, whereW* > o is
the connected component of tfieed points set of the symmetry : W >
aK — o(a)K. MoreoverdimM (o) = (1/2) dimW.

2) Submanifold9/ (o) and M (c1) are G-equivalent if and only if the involutive auto-
morphismsr andoj are conjugated by an element &t
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3) Forany submanifoldM (o) there is another canonically defined totally geodesic ex-
trinsically symmetric Kahler submanifold (¢') associated with the involutive automorphism
o’ = @ o o such that one has the orthogonal decomposifipW = T,M (o) + T,M (c”).

4) The pair of involutive automorphismesands’ = ¢g o o is determined by the re-
striction ofo to g;, . Two automorphisms ando; defineG-equivalent pairgM (o), M(a”))
and (M (o1), M (o)) of submanifolds if and only if the automorphisrt% is conjugated to
aﬂ% or cril% in the group of automorphisms g§'.

PROOF OFTHEOREM. 1) LetM = L/Lo = Lo be an admissible totally geodesic
extrinsically symmetric Kahler submanifold of the Wolf spaée= G/K and

g=9g-2+9g-1+ 90+ g1+ 92 = gev + Jodd

the ady, -eigenspace decomposition of the complex Lie alggbi#e identify the complexi-
fied tangent spacECW with p = godd = g—1 + g1.

The symmetrys, of M at pointo induces a complex linear involutive transformation
Sos Of TOCW = p = g-1 + g1, which by assumption commutes with the complex structure
J1=adnu,ly. Thisimplies that the eigenspace decomposition,phas the form

p=@" +gD)+ @ +97),

where thet+1-eigenspacei® = g*, + g7 is the complexification of the tangent spase=
T,M andg_, +g; is its orthogonal complement. The graded subspécgenerates a graded
Lie subalgebraZ = [m® m®] + m® of g. Since[m®, m®] cannot contain the subalgebra
sp (C), it belongs tog_1 + go + g1. In particular,[g], g1 = [g¥;. g";] = 0. On the other
hand,fo = [m®, m€] c go containsH,,, sinceM = L/Lg is a Hermitian symmetric space.

We denote by the involutive automorphism of the group and its Lie algebray®
defined by conjugation with the symmetgy, and extend it to a complex linear automorphism
o of g, which commutes withr. Since the restrictiow |, = s,|, commutes with/; =
adu, |y, we haveo (H,) = Hy, that is,o preserves the gradation gfdefined byH,,. In
particular,o (E+,) = ¢E+,, wheree = £1. Assume that = +1, i.e.,0(E+,) = E+,.
Then(s,)«|7,w commutes with the quaternionic structupe= a(i.‘pl(C), which contradicts
the assumption thal is totally complex. Hence (E+,,) = —E+,. We have proven that the
automorphisno defined by the symmetry, satisfies all conditions of the theorem.

Now we remark that

l021. 0041 = 944, 9241 = O,
sincec|y,, = —Id. This means thag+; = 911 + g, is a decomposition of the complex
symplectic vector spagg:1, with the symplectic fornaw defined by{ X, Y] = o (X, Y)E+,,
into direct sum of two Lagrangian subspaces. In particular,

. . . ) 1 .
dimg] = dimg; = dimg*, =dimg™, = 2 dimw .

Conversely, let- be an involutive automorphism commuting withand acting as-Id
ong_»> + go. Then it preserve#, = [E,, E_,]. Hence its eigenspaces decomposition has
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the form
g=g2+gt +to +af+ag+o +9 7 +o2.

Moreover,[g1,, 92,1 = [95;, 93,1 = 0 and the four spaces;; have the same dimension.
One can easily check that the subalgebras

=g +or, =gl +o]
define two totally geodesic extrinsically symmetric Kahler submanifaids = M (o) and
M~ = M(¢o o o) of the same dimensiom2= (1/2) dim W.

To prove that the correspondence betweeand M (o) is a bijection, it is sufficient
to show that two involutive automorphisms ¢’ coincide if they have the same restriction
to g_1 + g1 or, equivalently, that the fixed point sgt = ¢, + g'g + CH,, + g can be
reconstructed frong” ; + g . Sincegy = [g-1, g1], we have

90 =l[g-1,011° =974, 0]1.

2) If M(oc) and M(o1) are G-equivalent, there exists an isomefye K such that
kM (o) = M(o1). Then the conjugation bytransforms> into o’. The converse statement is
also clear.

3) is obvious. To prove 4) , it is sufficient to check that an automorphismoe —* o ¢
acting trivially ongey = g—2 + go + g2 is either trivial or equal t@y. It follows from the
fact that the isometry o associated t@ with the fixed pointo commutes with the stability
subgroupk acting irreducibly oril, W. m]

It is not difficult to describe all automorphismasof g which correspond to totally ge-
odesic extrinsically symmetric Kéhler submanifoltso) in terms of Kac diagrams, see
[GOV]. Here we state only a corollary which we use in the proof of Theorem 1.1.

COROLLARY 6.2. LetW = G/K be a Wolf space or its non compact dual. Then
up to an isometrythere exist finitely many totally geodesic extrinsically symmetric Kahler
submanifolds of¥. Any one of them has dimensi@iy2) dimw.

PrROOF. The claim for Wolf spaces follows from Theorem 6.1. It remains true for non
compact dual’, since totally geodesic Kahler extrinsically symmetric submanifolds can be
characterized as totally geodesic Kahler subifoéds which are normal curvature invariant,
and the restriction of the natural one-to-one correspondence between totally geodesic sub-
manifolds of W and W’ gives a one-to-one correspondence between such submanifolds.

Remark that in a symmetric spad¢ there could be even a continuous number of non
equivalent totally geodesic submanifolds of given dimension, for example geodesics in a sym-
metric space of rank greater than 1.

7. Proof of Theorems1.1and 1.2.

PrROOF OFTHEOREM1.1. LetM be a curvature invariant maximal Kéhler submanifold
of a Wolf space or its dual. By Lemma 4.2/ is also normal curvature invariant. Hence
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for any pointx € M there exists an involutive isometsy such thats,|7.»» = —Id and
Solr.y = 1d, see the proof of Theorem 2.6. This shows that the totally geodesic submanifold
M (x) = exp(Ty M) is an extrinsically symmetric maximal Kéhler submanifold. Hence by 6.2,
the tangent spack M belongs to one of the finitely many orbits= G(V) C Gr, T (G/K).

By continuity reasonM is aV-submanifold, wher@’ is defined by one of the extrinsically
symmetric Kéhler submanifolds. Sindéis curvature and normal curvature invariant, by
applying Naitoh’s Theorem 2.8/ is totally geodesic i  H P" or the dual quaternionic
hyperbolic spacéi H" (The last statement fai# # HP" can also be obtained directly by
using Theorem 5.4 and Remark 5.5 of [Na2] for the Grassmargy&6”+2). An elementary
proof thatG »(C"*2) does not contain non totally geodesic maximal K&hler submanifolds was
given in [ADM]). Itis known ([TsuZ2]) that any parallel Kéhler submanifoldtdfi” is totally
geodesic. This proves Theorem 1.1.

PROOF OFTHEOREM1.2. The first claim was proved in Theorem 5.1. Assume that the
shape tensof # 0. Then by Theorem 5.14?" is a parallel maximal K&hler submanifold
of a quaternionic Kahler symmetric spat&”. Theorem 1.1 then implies thal = H P™.
Now result follows from Tsukada’s classification of parallel Kéhler submanifold$®f . O
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