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Abstract. We introduce the concepts of rounding and flattening of a smooth mapg of
anm-dimensional manifoldM to the euclidean spaceRn with m < n, as those points inM
such that the imageg(M) has contact of typeΣm,...,m with a hypersphere or a hyperplane of
Rn, respectively. This includes several known special points such as vertices or flattenings of
a curve inRn, umbilics of a surface inR3, or inflections of a surface inR4.

1. Introduction. In [24], Porteous studied the Thom-Boardman singularitiesΣi1,...,ik

of thedistance-squared unfolding associated with a smooth embeddingg : M → Rn from a
smoothm-dimensional manifoldM into Rn, which is defined by

D : Rn × M → Rn × R , (x, t) �→ (x, dx(t)) , where dx(t) = (1/2)‖x − g(t)‖2 .

He discovered that for small values ofm andn, these singularities give a new point of view
of some well-known facts of classical differential geometry. This work was continued by
Montaldi [19], who introduced the notion of contact between submanifolds and deduced that
the singularity types ofD characterize the contact types ofg(M) with the hyperspheres ofRn.
It is known (see [32]) that for a residual set inC∞(M, Rn) with the WhitneyC∞ topology,
the associated unfoldingD is generic in the Thom-Boardman sense (that is, itsk-jet extension
is transverse to the strataΣi1,...,ik ).

For instance, suppose thatg : I → R2 defines a regular smooth curve in the plane. Then,
a point of typeΣ1,1,1 of D is a pair(x, t) such thatt ∈ I is a vertex of the curve (that is, a
point whereκ ′ = 0) andx ∈ R2 is the center of curvature at that point. Ifg : M2 → R3 is
now a smooth immersion of a surface inR3, a point of typeΣ2,2 of D is a pair(x, t), where
t ∈ M is an umbilic (that is, the two principal curvatures coincide) andx ∈ R3 is the center
of principal curvature.

We can do a similar analysis if we look at theheight unfolding, given by

H : Sn−1 × M → Sn−1 × R , (v, t) �→ (v, hv(t)) , where hv(t) = 〈v, g(t)〉 .

In this case, the singularity types ofH determine the contact type ofg(M) with the hyper-
planes ofRn and it is also true that for a residual set inC∞(M, Rn) the unfoldingH is
generic in the Thom-Boardman sense. For instance, ifg : I → R3 is a regular curve with a
well-defined Frenet frame, then theΣ1,1,1 points ofH are the pairs(v, t), wheret ∈ I is a
flattening (that is, the torsion is zero att) andv ∈ S1 is the binormal vector. Ifg : M2 → R4

is a smooth immersion of a surface inR4, aΣ2,2 point of H is a pair(v, t), wheret ∈ M is
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an inflection (that is, the two second fundamental forms are proportional) andv ∈ S3 is the
binormal vector in the sense of [8].

In recent years, these concepts have been of great interest for people working on differ-
ential geometry and singularities. On one hand, we have the classical four vertex theorem,
which states that any closed simple regular plane curve has at least four vertices, and its gen-
eralization to higher dimensions (see, for instance, [1]). On the other hand, the Carathéodory
conjecture states that every smooth immersion of the sphereS2 into R3 has at least two umbil-
ics (see Remark 4.7). Moreover, it has recentlybeen shown (cf. [8]) that any convex generic
immersion of the sphereS2 into R4 has at least four inflections.

In Section 2, we introduce the concept ofk-rounding (resp.k-flattening) as a point
t0 ∈ M which corresponds to a point of typeΣm(k) of D (resp.H ). Herem(k) denotes
the Boardman symbol(m, . . . ,m), with m repeatedk times. Note that these definitions make
sense even when the mapg : M → Rn has singularities. Then, for eachm andk we can
choosen, the dimension of the ambient space, such that thek-roundings or thek-flattenings
of a generic smooth mapg : Mm → Rn appear as isolated points (see Table 1).

Associated with ak-rounding ork-flattening we consider a local algebra of contact,
which is obtained by eliminating the parameterx or v in the local algebra of contact ofD
or H , respectively, with the stratumΣm(k) . It follows that this local algebra of contact is a
local geometric invariant (that is, it is invariant under change of coordinates inM and isome-
tries inRn). Moreover, from this algebra, we can also obtain numerical invariants such as its
multiplicity or its index (in the orientable case). The index of ak-rounding ork-flattening is
simply the oriented intersection number of thek-jet extension of thedx or hv with the stratum
Σm(k) . At the end of Section 2, we show that roundings and flattenings are related through the
stereographic projection. We see that a pointt0 ∈ M is a rounding ofg : M → Rn if and only
if it is a flattening ofξ ◦ g : M → Rn+1, whereξ : Rn → Sn ↪→ Rn+1 denotes the inverse of
the stereographic projection. Moreover, the index is also preserved.

In Section 3, we study curves inRn and give an explicit formula to compute roundings
(that is, vertices) which seems to be new.

Sections 4 and 5 are dedicated to surfaces inR3. In the case of an isolated umbilic of a
surface inR3, we show that the index we have defined is essentially the index of the foliation
defined by curvature lines. We also provide formulas for these indices which work even for
isolated singular points of the surface. In Section 5, we introduce complex coordinates in
regular surfaces, in order to compute indicesof umbilic points by looking at the coefficients
in a Monge normal form.

Finally, in Section 6 we study surfaces inR4. Then, we see that for an isolated inflection
of a surface inR4, the index is essentially the index of the foliation defined by asymptotic
lines.
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2. Roundings and flattenings.
2.1. Definitions of roundings and flattenings. LetM be a smoothm-manifold and let

Sk denote the Thom-Boardman submanifoldΣm(k) in the jet spaceJ r(M, R), k ≤ r, which is
the subset of the jet space with all partial derivatives of degree≤ k equal to zero.

DEFINITION 2.1. Letg : M → Rn be a smooth map from a smoothm-dimensional
manifoldM into Rn, with m < n. Let k, r be the positive integers withk ≤ r.

We say thatp ∈ M is ak-flattening of g if there isv ∈ Sn−1 such thatj rhv(p) ∈ Sk.
We say thatp ∈ M is a non-flat k-rounding of g if it is not a k-flattening and there is

x ∈ Rn such thatj rdx(p) ∈ Sk.
We say thatp ∈ M is a k-rounding of g if it is either ak-flattening or a non-flatk-

rounding.
Whenk is clear from the context, we will just say thatp is a flattening or a rounding.

Consider Thom-Boardman classes of the unfoldingsD(x, t) = (x, dx(t)) andH(v, t) =
(v, hv(t)). Since they have corank one, we have that(v, t) ∈ Σm(k) (H) (resp.(x, t) ∈
Σm(k) (D)) if and only if j rhv(p) ∈ Sk (resp.j rdx(p) ∈ Sk).

Assume thatg : M → Rn is an immersion. It follows from the definition that ifp ∈ M is
ak-flattening ofg andv ∈ Sn−1 such that(v, p) ∈ Σm(k) (H), theng(M) has a contact of type
Σm(k) atg(p) with the hyperplane ofRn orthogonal tov through the pointg(p). Analogously,
if p is a non-flatk-rounding andx ∈ Rn such that(x, p) ∈ Σm(k) (D), theng(M) has a contact
of typeΣm(k) at g(p) with the hypersphere centered atx and radiusR = ‖x − g(p)‖. Note
that our definitions make sense even in the case thatg has singularities.

We now see that it is possible to eliminate the parameterv or x in the definition and
obtain a condition just in terms ofp. Let us denote it byν = ν(m(k)) the cardinality of the
set{α = (α1, . . . , αm) ; 1 ≤ |α| ≤ k}, so thatν gives exactly the number of local equations
which defineΣm(k) . This number can easily be computed by the combinatorial formula

ν =
(

m + k

m

)
− 1 .

Moreover, we will fix some order in this set (for instance, the degree lexicographical order
associated with the monomialstα).

DEFINITION 2.2. Letg : M → Rn be a smooth map. Given a local coordinate system
φ : U ⊂ M → Rm, we denoteg̃ = g ◦ φ−1 andφ(p) = t , for eachp ∈ U . We define the
matrices

Fk(g̃; p) =
(

∂ |α|g̃ i

∂tα
(t)

)
1≤i≤n

1≤|α|≤k

and Rk(g̃; p) =
(

∂ |α|g̃ i

∂tα
(t)

∣∣∣∣ ϕα(t)

)
1≤i≤n

1≤|α|≤k

,

where the functionsϕα are defined by induction on|α| in the following way. If|α| = 1, then
ϕα = 0. If |α| > 1, there areβ andi ∈ {1, . . . ,m} such thatα = β + (0, . . . , 1i), . . . , 0);
then,

ϕα =
〈
∂ g̃
∂ti

,
∂ |β|g̃
∂tβ

〉
+ ∂ϕβ

∂ti
.
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The matricesFk(g̃; p) andRk(g̃; p) have sizeν × n andν × (n + 1), respectively. Again,
whenk is clear from the context, we shall denote the matrices just byF(g̃; p) andR(g̃; p).

LEMMA 2.3. Let g : M → Rn be a smooth map and let p ∈ M . Then:
(1) p is a k-flattening of g if and only if rankFk(g̃; p) < n;
(2) p is a k-rounding of g if and only if rankRk(g̃; p) < n + 1.

PROOF. Sincehv ◦ φ−1(t) = 〈v , g̃(t)〉, we have

∂ |α|(hv ◦ φ−1)

∂tα
(t) =

〈
v,

∂ |α|g̃
∂tα

(t)

〉
,

so thatp is ak-flattening if and only if there isv ∈ Sn−1 such that〈
v,

∂ |α|g̃
∂tα

(t)

〉
= 0 , ∀α : 1 ≤ |α| ≤ k .

This is a homogeneous linear system in the variablesv1, . . . , vn, whose coefficient matrix is
F(g̃; p). It follows that there is a solutionv ∈ Sn−1 if and only if Fk(g̃; p) has rank< n.

For the distance-squared functions, we have thatdx ◦ φ−1(t) = (1/2)‖x − g̃(t)‖2 and,
hence,

∂ |α|(dx ◦ φ−1)

∂tα
(t) = −

〈
x − g̃(t),

∂ |α|g̃
∂tα

(t)

〉
+ ϕα(t) .

Now, p is a non-flatk-rounding if and only if it is not ak-flattening and there isx ∈ Rn such
that 〈

x − g̃(t),
∂ |α|g̃
∂tα

(t)

〉
= ϕα(t) , ∀α : 1 ≤ |α| ≤ k .

In this case, we have a non-homogeneous linear system in the variablesXi = xi − gi (t),
i = 1, . . . , n, with coefficient matrixFk(g̃; p) and with independent terms(ϕα(t)). It follows
that the system has a solution if and only if rankFk(g̃; p) = rankRk(g̃; p) = n.

Finally, note that

rankFk(g̃; p) ≤ rankRk(g̃; p) ≤ rankFk(g̃; p) + 1 ,

which completes the proof. �

It follows from the proof of the above lemma that ifp ∈ M is a non-flatk-rounding of
g : M → Rn, then there is a uniquex ∈ Rn such thatjkdx(p) ∈ Sk (i.e.,(x, p) ∈ Σm(k) (D)).

EXAMPLE 2.4. In the following sections, we will see that roundings and flattenings
coincide with classical concepts in differential geometry of curves and surfaces.

(1) Let α : I → R2 be a regular plane curve. Thent ∈ I is a 2-flattening if and only
if it is an inflection (that is, the curvatureκ is zero att). The vertices ofα (that is, the points
whereκ ′(t) = 0) correspond to the 3-roundings ofα.

(2) Suppose now thatα : I → R3 is a regular space curve with non-vanishing cur-
vature, so that it has a well-defined Frenet frame. Then, a 3-flattening is a point where the
torsionτ is zero.
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(3) Let g : M2 → R3 be a regular surface inR3. Then 2-roundings correspond to
umbilic points ofg (that is, points where the two principal curvatures are equal).

(4) Finally, if g : M2 → R4 is a regular surface inR4, the 2-flattenings ofg are known
as inflections and correspond to points where the two second fundamental forms are linearly
dependent.

DEFINITION 2.5. Letg : U ⊂ Rm → Rn be a smooth map. Givent0 ∈ U we denote
by C∞(Rm, t0) the local algebra of smooth function germs from(Rm, t0) to R. Then, we
defineR(g, t0) as the ideal inC∞(Rm, t0) generated by the germs att0 of the(n + 1)-minors
of R(g, t).

Analogously, we can defineF(g, t0) as the ideal inC∞(Rm, t0) generated by the germs
at t0 of then-minors ofF(g, t).

The following lemma shows that although the matricesR(g, t) andF(g, t) depend on
the choice of coordinates inRm, the corresponding idealsR(g, t0) andF(g, t0) are coordinate
independent.

LEMMA 2.6. Let g : U ⊂ Rm → Rn be a smooth map and t0 ∈ U . Suppose that
φ : (Rm, t ′0) → (Rm, t0) is a diffeomorphism germ and denote by φ∗ : C∞(Rm, t0) →
C∞(Rm, t ′0) the induced isomorphism of local algebras. Then, φ∗(R(g, t0)) = R(g ◦ φ, t ′0)
and φ∗(F(g, t0)) = F(g ◦ φ, t ′0).

PROOF. Let us denote byei the m-tuple (0, . . . , 1i), . . . , 0). We define the function
germsλαβ ∈ C∞(Rm, t ′0), with 1 ≤ |β| ≤ |α| by induction on|α| in the following way:

λei ,ej = ∂φj

∂ti

and if |α| > 1 and|α| ≥ |β|, then

λα+ei ,β = ∂λαβ

∂ti
+

m∑
j=1

λei ,ej λα,β−ej ,(2.1)

where we take the convention thatλαβ = 0 when it is not defined. Then, by direct application
of the chain rule we obtain that for anyα, with |α| = r,

∂r(g ◦ φ)

∂tα
=

∑
1≤|β|≤r

λαβ

(
∂ |β|g
∂tβ

◦ φ

)
.(2.2)

In fact, we have

∂r+1(g ◦ φ)

∂tα+ei
= ∂

∂ti

( ∑
β

λαβ

(
∂ |β|g
∂tβ

◦ φ

))

=
∑
β

∂λαβ

∂ti

∂ |β|g
∂tβ

◦ φ +
∑
β

(
λαβ

∑
j

(
∂ |β|+1g
∂tβ+ej

◦ φ

)
∂φj

∂tj

)
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=
∑
β

∂λαβ

∂ti

∂ |β|g
∂tβ

◦ φ +
∑
β

( ∑
j

λαβ−ej λei ,ej

(
∂ |β|g
∂tβ

◦ φ

))

=
∑
β

λα+ei ,β

(
∂ |β|g
∂tβ

◦ φ

)
.

This implies that anyn-minor d of Fk(g ◦ φ, t) can be written as a linear combinationd =∑
aiφ

∗(di), wheredi aren-minors ofFk(g, t) andai ∈ C∞(Rm, t ′0). This gives the inclusion
F(g◦φ, t ′0) ⊂ φ∗(F(g, t0)) and the opposite inclusion follows by applying the same argument
to g̃ = g ◦ φ andφ̃ = φ−1.

To conclude thatφ∗(R(g, t0)) = R(g ◦ φ, t ′0), we just need to prove that

ϕ′
α =

∑
1≤|β|≤r

λαβ(ϕβ ◦ φ) ,(2.3)

whereϕ′
α are the corresponding functions forg ◦ φ. Then, (2.3) follows from (2.2) and (2.1)

by induction onr = |α|:

ϕ′
α+ei

=
〈
∂(g ◦ φ)

∂ti
,
∂r (g ◦ φ)

∂tα

〉
+ ∂ϕ′

α

∂ti

=
∑
j,β

λei ,ej λαβ

〈
∂g
∂tj

◦ φ,
∂ |β|g
∂tβ

◦ φ

〉
+

∑
β

∂λαβ

∂ti
(ϕβ ◦ φ) +

∑
j,β

λei,ej λαβ

(
∂ϕβ

∂tj
◦ φ

)

=
∑
j,β

λei ,ej λαβ

(〈
∂g
∂tj

◦ φ,
∂ |β|g
∂tβ

◦ φ

〉
+ ∂ϕβ

∂tj
◦ φ

)
+

∑
β

∂λαβ

∂ti
(ϕβ ◦ φ)

=
∑
j,β

λei ,ej λαβ(ϕβ+ej ◦ φ) +
∑
β

∂λαβ

∂ti
(ϕβ ◦ φ)

=
∑
j,β

λei ,ej λα,β−ej (ϕβ ◦ φ) +
∑
β

∂λαβ

∂ti
(ϕβ ◦ φ)

=
∑
β

λα+ei ,β(ϕβ ◦ φ) . �

2.2. Multiplicities of flattenings and roundings. Letg : M → Rn be a smooth map
from a smoothm-dimensional manifoldM into Rn. Givenp ∈ M, we denote byC∞(M,p)

the local algebra of smooth function germs from(M,p) into R. If we choose a local chart
φ : (M,p) → (Rm, t0), we can consider the idealsR(g ◦ φ−1, t0) andF(g ◦ φ−1, t0) in
C∞(Rm, t0). We define the idealsR(g, p) andF(g, p) in C∞(M,p) by

R(g, p) = φ∗R(g ◦ φ−1, t0) , F(g, p) = φ∗F(g ◦ φ−1, t0) ,

whereφ∗ : C∞(Rm, t0) → C∞(M,p) is the induced isomorphism of local algebras. The
above lemma easily shows that this construction does not depend on the chosen chartφ.
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We now define themultiplicity of a rounding or a flattening, respectively, as

µR(g, p) = dimR C∞(M,p)/R(g, p) , µF (g, p) = dimR C∞(M,p)/F(g, p) .

If p ∈ M is in fact a rounding or a flattening, we have thatµR(g, p) ≥ 1 or µF (g, p) ≥ 1,
respectively. Moreover, it is also true that ifµR(g, p) < ∞ or µF (g, p) < ∞, thenp is an
isolated rounding or flattening, respectively.

Now we recall the concept of multiplicity of a map with respect to a submanifold. Let
f : M → N be a smooth map between manifolds andS ⊂ N a submanifold such that
dimM = codimS. Givenp ∈ M such thatf (p) ∈ S, the multiplicity of f andS at p is
equal to

mp(f, S) = dimR C∞(M,p)/f ∗IS ,

whereIS is the ideal inC∞(N, f (p)) given by the function germs vanishing onS andf ∗ :
C∞(N, f (p)) → C∞(M,p) is the induced homomorphism of local algebras.

Below we give some basic properties of the multiplicities.
(1) mp(f, S) ≥ 1 and the equality holds if and only iff is transverse toS atp.
(2) If mp(f, S) < ∞, thenp is an isolated point off −1(S).
(3) Assume thatS is locally given nearf (p) by S = g−1(0), whereg : (N, f (p)) →

(Rm, 0) is a smooth map germ with 0 as a regular value. Thenf ∗IS is generated by the
components of the map germg ◦ f : (M,p) → (Rm, 0), and, hence,mp(f, S) is equal to the
multiplicity of g ◦ f .

LEMMA 2.7. Let g : M → Rn be a smooth map from a smooth m-dimensional mani-
fold M into Rn. Suppose that ν = ν(m(k)) = n + m and that p ∈ M is a non-flat rounding of
g and let x0 ∈ Rn be such that (x0, p) ∈ Σm(k) (D). Then if ν = ν(m(k)) = n + m, then

µR(g, p) = m(x0,p)(j
kD,Σm(k) ) .

Analogously, suppose that ν = ν(m(k)) = n + m − 1 and that p ∈ M is a flattening of rank
n − 1 of g and let v0 ∈ Sn−1 such that (v0, p) ∈ Σm(k) (H). Then

µF (g, p) = m(v0,p)(j
kH,Σm(k) ) .

PROOF. By taking coordinates inM we can suppose thatM = U ⊂ Rm, an open subset.
Then,R(g, p) is the ideal inC∞(Rm, p) generated by the maximal minors ofR(g, p).

Since the roundingp is non-flat, the matrixR(g, p) has rankn and we can suppose,
without loss of generality, that the firstn rows of R(g, p) are linearly independent. In this
way, we can write

R(g, t0) =
(

P R

Q S

)
,

whereP is an invertible matrix of sizen×n, Q has size(ν −n)×n andR, S have sizen× 1
and(ν − n) × 1, respectively. LetΛ be theν × ν invertible matrix given by

Λ =
(

P−1 0
−QP−1 I

)
,
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whereI denotes the identity matrix of the corresponding size. Then,R(g, p) is also generated
by the maximal minors of the matrix

ΛR(g, t0) =
(

P−1 0
−QP−1 I

) (
P R

Q S

)
=

(
I 0
0 −QP−1R + S

)
.

In particular, this gives thatR(g, p) is the ideal generated by them components of the matrix
−QP−1R + S.

On the other hand, according to the third property of the multiplicity,J = (jkD)∗IΣ
m(k)

is the ideal inC∞(Rn × Rm, (x0, p)) generated by theν components of the matrix(
P

Q

)
X +

(
R

S

)
,

whereX is the column matrix with componentsXi = xi − gi (t), i = 1, . . . , n. Again, we can
take the product with the invertible matrixΛ. That is,J is also generated by theν components
of the matrix (

P−1 0
−QP−1 I

) ((
P

Q

)
X +

(
R

S

))
=

(
X + P−1R

−QP−1R + S

)
.

Therefore, we can easily conclude that the local algebraC∞(Rn × Rm, (x0, t0))/J is isomor-
phic toC∞(Rm, t0)/R(g, t0).

The proof of the second part of the lemma is analogous. �

DEFINITION 2.8. Letg : M → Rn be a smooth map from a smoothm-dimensional
manifold M into Rn. We say thatg is generic if the unfoldingsD,H are generic in the
Thom-Boardman sense (that is, theirk-jet extensions are transverse to the Thom-Boardman
strata). In particular, it follows thatΣm(k) (D) andΣm(k) (H) are submanifolds of codimension
ν = ν(m(k)) of Rn × M andSn−1 × M, respectively. Thus:

(1) if ν = n + m andg is generic, the roundings ofg are non-flat, appear as isolated
points and have multiplicity one;

(2) if ν = n + m − 1 andg is generic, the flattenings ofg have rankn − 1, appear as
isolated points and have multiplicity one.

See [32] for the proof of the generality of the generic map; that is, any map can be
approximated by a sequence of generic maps.

In Table 1, we show the value ofn = ν(m(k)) − m, so that roundings of a mapg :
Mm → Rn appear generically as isolated points. By adding one to all the entries of the table,
we getn = ν(m(k)) − m + 1, which corresponds to the dimensions where flattenings appear
generically as isolated points.

When the mapg : M → Rn is not generic, we can take a generic deformationgλ :
M → Rn, λ ∈ (−ε, ε), which means thatg0 = g, gλ is generic forλ �= 0 and the map
(λ, t) �→ gλ(t) is smooth. Ift0 ∈ M is a rounding or a flattening ofg, we can ask about the
number of roundings or flattenings that appear ingλ nearp, for λ �= 0 small enough. We will
denote these numbers bynR(gλ, p) or nF (gλ, p), respectively. In the following theorem, we
see that in the analytic case, such numbers are related to the corresponding multiplicities.
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TABLE 1.

k

m 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9

2 3 7 12 18 25 33 42 52 63

3 6 16 31 52 80 116 161 216 282

4 10 30 65 121 205 325 490 710 996

5 15 50 120 246 456 786 1281 1996 2997

THEOREM 2.9. Suppose that g : Mm → Rn is analytic and let gλ : M → Rn,
λ ∈ (−ε, ε), be an analytic generic deformation of g .

(1) If p ∈ M is a rounding of finite multiplicity and ν(m(k)) = n+m, then nR(gλ, p) ≤
µR(g, p) and nR(gλ, p) ≡ µR(g, p) modulo 2, for λ �= 0 small enough.

(2) If p ∈ M is a flattening of finite multiplicity and ν(m(k)) = n + m − 1, then
nF (gλ, p) ≤ µF (g, p) and nF (gλ, p) ≡ µF (g, p) modulo 2, for λ �= 0 small enough.

PROOF. As usual, by taking coordinates we can suppose thatM = U is an open subset
of Rm. Then,g : U → Rn induces a complex analytic map̂g : Û → Cn, whereÛ is an
open neighborhood ofp in Cm. We will denote byOC m,p the local ring of complex analytic
function germs from(Cm, p) to C, andR(ĝ, p) will denote the ideal inOC m,p generated by
the maximal minors of the matrixR(ĝ, t) defined in an obvious way. Moreover, it follows
that

OCm,p/R(ĝ, p) ∼= C∞(Rm, p)/R(g, p) ⊗ C ,

so that
µR(g, p) = dimR C∞(Rm, p)/R(g, p) = dimC OC m,p/R(ĝ, p) .

On the other hand, the deformationgλ : U → Rn also induces a complex analytic
deformationĝλ : Û → Cn, λ ∈ V̂ , where nowV̂ is an open neighborhood of 0 inC. We
will denote bynR(ĝλ, p) the number of complex roundings ofĝλ nearp. It follows that
nR(gλ, p) ≤ nR(ĝλ, p) andnR(gλ, p) ≡ nR(ĝλ, p) and, thus, it is enough to prove that for
λ �= 0 small enough,

nR(ĝλ, p) = dimC OCm,p/R(ĝ, p) .

To see this, we use classical arguments of complex analytic geometry. To simplify no-
tation, let us denote byA the ringOC×C m,(0,p) and byI the ideal inA generated by the
maximal minors of the matrixR(ĝλ, t). The complex analytic set germ of zeros ofI , V (I),
is given by the pairs(λ, t) in a neighborhood of(0, p) such thatt is a rounding ofgλ. Thus,
the numbernR(ĝλ, p) is equal to the cardinality ofπ−1(λ), whereπ is the finite map germ
π : V (I) → C, given byπ(λ, t) = λ. By the Samuel formula (see, for instance, [22]),
π−1(λ) for λ �= 0 small enough, is equal to the multiplicitye(〈λ̄〉; A/I), whereλ̄ is the class
of λ in A/I .
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Now, I is defined by the maximal minors of a matrix of sizeν × (n + 1) and a result by
Hochster and Eagon [12] ensures thatV (I) has dimension≥ m + 1− (ν − (n + 1) + 1) = 1
and if the equality holds, thenA/I is a Cohen-Macaulay ring. Note that the finiteness ofπ

implies that the dimension ofV (I) is ≤ 1. Thus,V (I) is, in fact, one-dimensional andA/I

is Cohen-Macaulay.
Finally, use Theorem 17.11 of [17] to conclude that sinceA/I is a one-dimensional

Cohen-Macaulay ring and̄λ is a parameter system inA/I , then

e(〈λ̄〉; A/I) = dimC (A/I)/〈λ̄〉 = dimC OC m,p/R(ĝ, p) .

The proof of the second part of the theorem is exactly the same. �

2.3. Oriented intersection numbers and indices. LetM be an oriented manifold and
let S be a co-oriented submanifold of a manifoldN with dimM = codimS. Assume that
f : (M,p) → (N, f (p)) is a smooth map germ withf −1(S) = p. We denote theoriented
intersection number of f andS atp by Ip(f, S).

Some basic properties of the oriented intersection number are the following.
(1) If f is transverse toS atp, thenIp(f, S) = ±1.
(2) Assume thatS is locally given nearf (p) by S = g−1(0), whereg : (N, f (p)) →

(Rm, 0) is a smooth map germ with 0 as a regular value so that the co-orientation ofS in N

coincides with the orientation ofRm via g. ThenIp(f, S) is equal to the mapping degree of
the map germg ◦ f : (M,p) → (Rm, 0).

We now introduce the concept of index of a non-flat isolated rounding or an isolated
flattening of rankn − 1, which can be seen as an oriented version of multiplicity. Note that
if M is an oriented manifold, we have an induced orientation inJ k(M, R). Assume thatM
is an oriented manifold. Note thatSk is a co-oriented submanifold ofJ k(M, R), whose co-
orientation is determined by choosing an order in the monomialstα .

DEFINITION 2.10. Letg : M → Rn be a smooth map from an orientedm-manifold
into Rn. Let p ∈ M be a non-flat isolated rounding ofg and suppose also thatν = ν(m(k)) =
n + m. There exists a uniquex0 ∈ Rn such that(x0, p) ∈ Σm(k) (D). Then, we define the
index of the roundingp, indR(g, p), as the oriented intersection number of the map

(Rn × M, (x0, p)) → (J k(M, R), j k
x0

(t)) , (x, t) �→ jkdx(t) ,

andSk at (x0, p). By taking local coordinates we can assume thatM = U ⊂ Rm, an open
subset. Then, indR(g, p) is equal to the mapping degree of the map germ

θR : (Rn × Rm, (x0, p)) → (Rν, 0) , (x, t) �→
(

∂ |α|dx

∂tα

)
1≤|α|≤k

.

To define the index of a flattening we have to be more careful. Even when it has rank
n − 1, there are two possible vectorsv0 ∈ Sn−1, such that(v0, t0) ∈ Σm(k) (H), namely±v0.

DEFINITION 2.11. Letg : M → Rn be a smooth map from an orientedm-manifold
into Rn. Assume that the sphereSn−1 is oriented. Letp ∈ M be an isolated flattening ofg
of rankn − 1 and suppose also thatν = ν(m(k)) = n + m − 1. There isv0 ∈ S−1 such that
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(v0, p) ∈ Σm(k) (H). Then, we define theindex of the flatteningp, indF (g, p), as the oriented
intersection number of the map

(Sn−1 × M, (v0, p)) → (J k(M, R), j khv0(p)) , (v, t) �→ jkhv(t) ,

andSk at (v0, p). Again, we can take local coordinates and assume thatM = U ⊂ Rm, an
open subset. Then, indF (g, p) is equal to the mapping degree of the map germ

θF : (Sn−1 × Rm, (v0, p)) → (Rν, 0) , (v, t) �→
(

∂ |α|hv

∂tα

)
1≤|α|≤k

.

Note that we have exactly two choices for the vector, namely±v0. Thus, whenν = n+m−1
is even, indF (g, p) is well defined and does not depend onv0. However, whenν = n+m−1
is odd, we can only consider|indF (g, p)|.

It follows that if g : M → Rn is generic andν = ν(m(k)) = n+m, then all its roundings
are non-flat, isolated and have index±1. Wheng is not generic, but the roundingp ∈ M

is non-flat and isolated, we can use the Thom’s transversality theorem and take a generic
deformationgλ : M → Rn, λ ∈ (−ε, ε), so that the index is equal to the sum of the indices
of the generic roundings that appear ingλ nearp. Moreover, we have an analogous statement
for flattenings. The following result is a consequence of Lemma 2.7.

COROLLARY 2.12. Let g : M → Rn be a smooth map from an oriented smooth m-
manifold in Rn.

(1) If p ∈ M is a rounding of finite multiplicity and ν(m(k)) = n+m, then |indR(g, p)|
≤ µR(g, p), and indR(g, p) ≡ µR(g, p) modulo 2.

(2) If p ∈ M is a (n−1)-rank flattening of finite multiplicity and ν(m(k)) = n+m−1,
then |indF (g, p)| ≤ µF (g, p) and indF (g, p) ≡ µF (g, p) modulo 2.

As another consequence, we obtain that when the rounding is non-flat or when the flat-
tening has rankn − 1, then Theorem 2.9 is also true even when the maps are smooth instead
of analytic.

2.4. The stereographic projection. We finish this section by showing that roundings
and flattenings are related through the stereographic projection. Letξ : Rn → Sn ↪→ Rn+1

denote the inverse of the stereographic projection, which is given by

ξ(x) = (2x, ‖x‖2 − 1)

(‖x‖2 + 1)
.

It follows from the works by Romero Fuster [26, 27] and Sedykh [29] thatp ∈ M is a
rounding of a smooth mapg : M → Rn if and only if it is a flattening ofξ ◦ g : M → Rn+1.
In fact, if p ∈ M is an isolated non-flat rounding ofg, thenp is an isolated flattening ofξ ◦ g
of rank n − 1. This means that there is a uniquex0 ∈ Rn such that(x0, p) ∈ Σm(k) (D).
However, there are two possible choices for the vectorv0 ∈ Sn, so that(v0, p) ∈ Σm(k) (H)

andH being the height unfolding ofξ ◦ g. We will see that there is a canonical choice of this
vectorv0 in such a way that indR(g, p) = indF (ξ ◦ g, p).
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Givena ∈ Rn andr > 0, we define

v(a, r) = −(2a, ‖a‖2 − r2 − 1) , u(a, r) = v(a, r)

‖v(a, r)‖ , ρ(a, r) = −‖a‖2 − r2 + 1

‖v(a, r)‖ .

Then, by direct computation we have the following.
(1) If r = ‖x0 − a‖, then〈ξ(x0), u(a, r)〉 = ρ(a, r). This means thatξ maps the

(n − 1)-sphere inRn with centera and radiusr into the(n − 1)-sphere inSn given by the
intersection with the hyperplane inRn+1 whose equation is〈y, u(a, r)〉 = ρ(a, r). Obviously,
this is also true if we take−u(a, r) and−ρ(a, r).

(2) For anyx ∈ Rn,

〈ξ(x), u(a, r)〉 − ρ(a, r) = 2

‖v(a, r)‖(‖x‖2 + 1)
(‖x − a‖2 − r2) .

Thus, the choice ofu(a, r) andρ(a, r) is so that we obtain the height function by multiplying
the distance-squared function by a positive function. The other choice ofu(a, r) andρ(a, r)

would give a product with a negative function.
Let p ∈ M be an isolated non-flat rounding ofg and letx0 ∈ Rn be such that(x0, p) ∈

Σm(k) (D). Then the map̄u(x) = u(x, ‖x − g(p)‖) is a local diffeomorphism from(Rn, x0)

into (Sn, v0), whereū(x0) = v0 and so that(v0, p) ∈ Σm(k) (H).

THEOREM 2.13. Let p ∈ M be an isolated non-flat rounding of g . Then indR(g, p) =
indF (ξ ◦ g, p), where the index of the flattening is considered with respect to the vector v0

and we choose the orientation in Sn determined by ū(x).

PROOF. The first part is an immediate consequence of the above properties. To see the
second part, Note that

hū(x)(t) − hū(x)(p) = λ(x, t)(dx(t) − dx(p)) ,

for some functionλ(x, t) > 0, wheredx(t) is the distance-squared function ofg andhv is the
height function ofξ ◦ g.

By taking local coordinates inM, we can assume thatM = U , an open subset ofRm.
Then,

∂ |α|hū(x)

∂tα
(t) = λ(x, t)

∂ |α|dx

∂tα
(t)+

∑
1≤|β|<|α|

λα,β(x, t)
∂ |β|dx

∂tβ
(t)+ ∂ |α|λ

∂tα
(x, t)(dx(t)−dx(p)) ,

for some functionsλα,β(x, t). Thus,

θF (ξ ◦ g, (ū(x), t)) = Λ(x, t)θR(g, (x, t)) + A(x, t)(dx(t) − dx(p)),

whereΛ(x, t) is a ν × ν matrix whose determinant isλ(x, t)ν > 0 andA(x, t) ∈ Rν . In
particular, this implies that the mapping degree ofθF at (v0, p) is equal to the mapping
degree ofθR at (x0, p). �

3. Curves in Rn. Let g : I → Rn be a smooth curve inRn, whereI ⊂ R is an
interval. We have thatm = 1 andν(m(k)) = k, so that we can considerk-roundings with



ISOLATED ROUNDINGS AND FLATTENINGS OF SUBMANIFOLDS 481

k = n + 1 andk-flattenings withk = n. In fact, if g is given byg(t) = (g1(t), . . . , gn(t)),
then

F(g, t) =




g ′
1(t) g ′

2(t) · · · g ′
n(t)

g ′′
1 (t) g ′′

2 (t) · · · g ′′
n (t)

g ′′′
1 (t) g ′′′

2 (t) · · · g ′′′
n (t)

...
...

. . .
...

g(n)
1 (t) g(n)

2 (t) · · · g(n)
n (t)


 ,

andt ∈ I is a flattening ofg if and only if the determinant of the matrixF(g, t) is zero at
t . This definition agrees with the ordinary definition of flattening wheng ′(t), . . . , g(n−1)(t)

are linearly independent at any pointt ∈ I , so thatg has a well-defined Frenet frame and
curvaturesκ1, . . . , κn−1. In this case it is obvious thatt ∈ I is a flattening if and only if
κn−1(t) = 0.

We next set

R(g, t) =




g ′
1(t) g ′

2(t) · · · g ′
n(t) 0

g ′′
1 (t) g ′′

2 (t) · · · g ′′
n (t) ϕ1(t)

g ′′′
1 (t) g ′′′

2 (t) · · · g ′′′
n (t) ϕ2(t)

...
...

. . .
...

...

g(n+1)
1 (t) g(n+1)

2 (t) · · · g(n+1)
n (t) ϕn(t)


 ,

whereϕk satisfy the following formula:

ϕ1(t) = g ′
1(t)

2 + · · · + g ′
n(t)

2 ,

ϕk(t) =
n∑

i=1

g(k)
i (t)g ′

i (t) + ϕ′
k−1(t) , k = 2, . . . , n .

Then t ∈ I is a rounding ofg if and only if the determinant of the matrixR(g, t) is zero
at t . Again, in the regular case, we can translate this condition in terms of the Frenet frame
e1, . . . , en and the curvaturesκ1, . . . , κn−1.

DEFINITION 3.1. Letg : I → Rn be a smooth curve such thatg ′(t), . . . , g(n−1)(t)

are linearly independent at any pointt ∈ I , and assume that it is parameterized by arc length.
At a point t ∈ I , whereκn−1(t) �= 0, thecenter of the osculating hypersphere is the only
pointµ(t) ∈ Rn defined by the condition(µ(t), t) ∈ Σ1(n) (D).

The proof of the following result can be found in [28].

PROPOSITION 3.2. Let g : I → Rn be as in Definition 3.1. Then,

µ = g + µ1e1 + · · · + µnen ,

where µ1 = 0, µ2 = 1/κ1, µ3 = µ′
2/κ2 and

µk+1 = (µ′
k + κk−1µk−1)/κk for k = 3, . . . , n − 1 .

Moreover, t is a rounding if and only if

µ′
n(t) + κn−1(t)µn−1(t) = 0 .
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FIGURE 1.

EXAMPLE 3.3. If n = 2, thent ∈ I is a rounding if and only ifµ′
2(t) = 0, where

µ2 = 1/κ . Obviously, this is equivalent toκ ′(t) = 0, which is the ordinary definition of a
vertex of a regular plane curve. In fact, in this case it is possible to show that

detR(g, t) = −κ ′(t)‖g ′(t)‖5 ,

which implies thatt is a rounding if and only if it is a vertex, even whenκ = 0.

The multiplicity of a flattening or a rounding is determined by the first non-zero term in
the Taylor expansion of detF(g, t) or detR(g, t), respectively. For instance, if we suppose
thatt0 = 0 is a flattening and detF(g, t) = akt

k + · · · , with ak �= 0, thenµF (g, 0) = k.

EXAMPLE 3.4. Letg : R → R2 be the plane curve defined byt �→ (t2, t3). It is easy
to see that this curve has a flattening and a rounding att = 0 with multiplicitiesµF (g, 0) = 2
andµR(g, 0) = 3.

We consider now the deformationgλ defined bygλ(t) = (t2, (λ + t2)t). The curvature
and its derivative are given by the following formulas:

κλ(t) = 2(3t2 − λ)

(4t2 + (λ + 3t2)2)3/2
and κ ′

λ(t) = 24t (−9t4 + (3λ − 1)t2 + λ + 2λ2)

(4t2 + (λ + 3t2)2)5/2
.

Thus,gλ has two flattenings and three vertices near 0 ifλ is a small positive number andgλ

has no flattening points and one vertex near 0 ifλ is a small negative number (see Figure 1).

EXAMPLE 3.5. Lete0, e1, e2 be non-negative integers. We consider the plane curve
g : R → R2 defined by

g(t) = (te0, te0+e1 + ate0+e1+e2) .

Then, by elementary computation, we have

detF(g, t) = e0e1(e0 + e1)t
2e0+e1−3 + · · · ,

detR(g, t) = e3
0e1(e0 + e1)(e0 − e1)t

4e0+e1−6 + e0e1(e0 + e1)
3(e0 + 2e1)t

4e0+3e1−6

+ ae3
0(e0 − e1 − e2)(e1 + e2)(e0 + e1 + e2)(e0 + 2e1)t

4e0+e1+e2−6 + · · · .

In this case, the multiplicities are given byµF (g, 0) = 2e0 + e1 − 3 and

µR(g, 0) =




4e0 + e1 − 6 if e0 �= e1 ,

7e0 − 6 if e0 = e1, 2e1 < e2 ,

7e0 − 6 if e0 = e1, 2e1 = e2, a �= 1 ,

5e0 + e2 − 6 if e0 = e1, 2e1 > e2, a �= 0 .
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The mapping degree of detF(g, t) or detR(g, t) is equal, up to the sign, to the index of
an isolated flattening or rounding, respectively, whenever they are defined. This follows from
the proof of Lemma 2.7. However, we have to be careful if we want to take into account the
sign of the index. We only show the following result for roundings, where the sign makes
sense in any dimension.

PROPOSITION 3.6. Let g : I → Rn be a smooth curve and let t0 ∈ I be an isolated
non-flat rounding. Then, the index indR(g, t0) is equal to the mapping degree of − detR(g, t)

at t0.

PROOF. The index indR(g, t0) is the mapping degree ofθR : (Rn+1, (x0, t0)) →
(Rn+1, 0) defined by

θR(x, t) = (〈g(i), x − g〉 − ϕi−1)
n+1
i=1 ,

wherex0 ∈ Rn is the only point such thatθR(x0, t0) = 0.
Since we suppose thatt0 is a non-flat rounding, we have thatg ′, . . . , g(n+1) have rank

n at t0. We assume, for instance, thatg ′, . . . , g(n) are linearly independent (the other cases
should be similar). Then, we can take the following change of coordinates:

x̄i = 〈g(i), x − g〉 − ϕi−1 , i = 1, . . . , n .

This coordinate change transformsθR into

θ̄R(x̄, t) = (x̄, 〈g(n+1), φ(x̄, t) − g〉 − ϕn) ,

whereφ(x̄, t) denotes the inverse of the coordinate change. In particular, this implies that

indR(g, t0) = sign(det(g ′, . . . , g(n))) deg(θ̄R, (0, t0)) .

However, we now have that the mapping degree ofθ̄R at (0, t0) is equal to the local degree
of 〈g(n+1), φ(0, t) − g〉 − ϕn at t0 (sinceθ̄R is an unfolding of this function). Thus, it only
remains to show that

detR(g, t) = − det(g ′, . . . , g(n))(〈g(n+1), φ(0, t) − g〉 − ϕn)) .

Let us denote byRi the(n + 1, i) minor ofR; that is,

Ri =

∣∣∣∣∣∣∣∣
g ′

1 · · · ĝ ′
i · · · g ′

n 0
...

...
...

...

g(n)
1 · · · ĝ(n)

i · · · g(n)
n ϕn−1

∣∣∣∣∣∣∣∣ .

It follows that

detR(g, t) = ϕn det(g ′, . . . , g(n)) +
n∑

i=1

(−1)n+i+1g(n+1)
i Ri .

On the other hand,φ(0, t) − g is determined by the linear system

〈g(i), φ(0, t) − g〉 = ϕi−1 , i = 1, . . . , n .
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Thus, by the Cramer rule, we have that

φi(0, t) − gi = (−1)n+i Ri

det(g ′, . . . , g(n))
.

In particular,

detR(g, t) = ϕn det(g ′, . . . , g(n)) −
n∑

i=1

g(n+1)
i (φi(0, t) − gi ) det(g ′, . . . , g(n)) ,

which gives the desired result. �

4. Surfaces in R3. In this section, we suppose thatg : U ⊂ R2 → R3 is a smooth
map given byg(u, v) = (g1(u, v), g2(u, v), g3(u, v)) which defines a surface inR3 (possibly
with singularities). Then the first and the second fundamental forms forg are given by

I = Edu2 + 2Fdudv + Gdv2 , II = Ldu2 + 2Mdudv + Ndv2

where

E = 〈gu, gu〉 , F = 〈gu, gv〉 , G = 〈gv, gv〉 ,

L = det(gu, gv, guu)√
EG − F 2

, M = det(gu, gv, guv)√
EG − F 2

, N = det(gu, gv, gvv)√
EG − F 2

,

and subscripts denote partial derivatives. Naturally,L,M,N are only defined if the denom-
inator does not vanish; that is, at the regular points ofg. Umbilics are regular points of the
surface so that the second fundamental form is proportional to the first. Thus, we say that
(u, v) is anumbilic of g if the rank of the matrix(

E F G

L M N

)

is less than 2. Moreover, it is well-known that umbilic points of a regular surface correspond
to points where the two principal curvatures (or eigenvalues of the second fundamental form)
are equal.

In order to include the case whereg may have singularities, we can define a new matrix

U(g, (u, v)) =
(

E F G

L′ M ′ N ′
)

whereL′ = det(gu, gv, guu), M ′ = det(gu, gv, guv), N ′ = det(gu, gv, gvv). This matrix
always makes sense. We observe that the rank of this matrix is not maximal either at an
umbilic or at a singular point ofg.

4.1. 2-roundings ofg. Now we look at 2-roundings (rounding, for short) ofg. It
makes sense to look atk-roundings ofg, with k = 2. A rounding is a point where the rank of
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the matrix

R(g, (u, v)) =




g1u g2u g3u 0
g1v g2v g3v 0
g1uu g2uu g3uu E

g1uv g2uv g3uv F

g1vv g2vv g3vv G




is less than four.
The following result is well-known (see Porteous [24]).

PROPOSITION 4.1. A regular point of a smooth map g : U ⊂ R2 → R3 is a rounding
if and only if it is an umbilic. Moreover, it is non-flat if and only if the principal curvature is
not zero.

Now, we see that in the singular case, a rounding corresponds to a singular point which
is not of Whitney umbrella type. Remember that a singular point is a Whitney umbrella if
the map is generic in the Thom-Boardman sense (that is, its jet extension is transverse to the
Boardman strata).

PROPOSITION 4.2. A singular point of a smooth map g : U ⊂ R2 → R3 is a rounding
if and only if it is not a Whitney umbrella.

PROOF. If the mapg has rank zero at(u0, v0), it follows that it is always a rounding,
but it is not a Whitney umbrella (since the 1-jet extension ofg is not transverse toΣ2).

Suppose now thatg has rank one at(u0, v0). Again we may assume that(u0, v0) = (0, 0)

andg is given by

g(u, v) = (u, g2(u, v), g3(u, v)) .

Then our matrixR(g, (u, v)) can be written in the following form:


1 g2u g3u 0
0 g2v g3v 0
0 g2uu g3uu E

0 g2uv g3uv F

0 g2vv g3vv G







E = 1 + g2
2
u + g3

2
u ,

F = g2ug2v + g3ug3v ,

G = g2
2
v + g3

2
v .

On the other hand, the mapg defines a Whitney umbrella if and only if its 2-jet section
is transverse to theΣ1 strata. This holds if and only if∣∣∣∣g2uv g3uv

g2vv g3vv

∣∣∣∣ �= 0 at 0.

This condition is equivalent to rankR(g, 0) = 4. �

In the last part of this section, we study the index of a non-flat isolated rounding. From
Definition 2.10 we have that ifp ∈ U is a non-flat isolated rounding ofg : U ⊂ R2 → R3,
then there exists a uniquex0 ∈ R3 such that(x0, p) ∈ Σ2,2(D). Then indR(g, p) is equal to
the mapping degree of the smooth map germθ : (R5, (x0, p)) → (R5, 0) whose components
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θi , i = 1, . . . , 5, are given by the following matrix equation:


θ1
θ2
θ3
θ4
θ5


 =




g1u g2u g3u

g1v g2v g3v

g1uu g2uu g3uu

g1uv g2uv g3uv

g1vv g2vv g3vv





x

y

z


 +




0
0
E

F

G


 .

Let us denote byPu, Pv, Puu, Puv, Pvv the five maximal minors of the matrixR(g, (u, v)).
That is,

Pu =

∣∣∣∣∣∣∣∣
gv 0
guu E

guv F

gvv G

∣∣∣∣∣∣∣∣ , Pv =

∣∣∣∣∣∣∣∣
gu 0
guu E

guv F

gvv G

∣∣∣∣∣∣∣∣ , Puu =

∣∣∣∣∣∣∣∣
gu 0
gv 0
guv F

gvv G

∣∣∣∣∣∣∣∣ , Puv =

∣∣∣∣∣∣∣∣
gu 0
gv 0
guu E

gvv G

∣∣∣∣∣∣∣∣ , Pvv =

∣∣∣∣∣∣∣∣
gu 0
gv 0
guu E

guv F

∣∣∣∣∣∣∣∣ .
If we look at the proof of Lemma 2.7, we see that when the rounding is non-flat, then

C∞(R5, (x0, p))/〈θ1, . . . , θ5〉 ∼= C∞(R2, p)/〈Pu, Pv, Puu, Puv, Pvv〉 .

This implies that we can choose a pair of elementsP,Q ∈ {Pu, Pv, Puu, Puv, Pvv} which
generate the idealR(g, p). Moreover, we have that the mapping degree ofθ is equal, up to
sign, to the mapping degree of(P,Q) : (R2, p) → (R2, 0).

The relations amongPu, Pv , Puu, Puv , Pvv are given in the following form:

giuPu − givPv + giuuPuu − giuvPuv + givvPvv = 0 , i = 1, 2, 3 ,(4.1)

EPuu − FPuv + GPvv = 0 .(4.2)

4.2. Principal directions. We have another index at an isolated rounding, which is
associated with the principal directions ofg. Suppose that(u, v) is a regular point which is not
umbilic. Then theprincipal directions of g at (u, v) are defined as the directions determined
by the eigenvectors of the second fundamental form at(u, v). Then we find that the principal
directions are given by the equation∣∣∣∣∣∣∣∣∣∣

g1u g2u g3u 0 0
g1v g2v g3v 0 0
g1uu g2uu g3uu E dv2

g1uv g2uv g3uv F −dudv

g1vv g2vv g3vv G du2

∣∣∣∣∣∣∣∣∣∣
= Puudv2 + Puvdudv + Pvvdu2 = 0 .

Thus, the principal directions define a pair of orthogonal line fields in the surface, which are
singular either at an umbilic or at a singular point ofg. If p ∈ U is an isolated umbilic or
an isolated singular point ofg, we denote by indP (g, p) the index atp associated with any
of these line fields. This is a half-integer and is equal to the number of turns of the line field
when we run through a small circle inU centered atp.

The classification of generic umbilics goes back to Darboux [5]. He found that there are
three types; namely, the lemon orD1, the monstar orD2 and the star orD3. Moreover, he
gave a description for the configuration of the curvature lines (integral curves of the principal
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FIGURE 2.

directions) in each case. In fact, it was shown by Gutierrez and Sotomayor [10] (see also
the work by Bruce and Fidal [3]) thatg is principally structurally stable at an umbilic if and
only if it is one of the Darbouxian umbilics. Bylooking at these configurations, it is easy to
compute the index indP (g, p): D1 andD2 have index 1/2, whileD3 has−1/2.

The configuration of principal lines at a generic singular point can be found in [7] (this
is a corrected version of some erroneous results appearing in [11]). It follows that a singular
point of g is principally structurally stable if and only if it is a Whitney umbrella. More-
over, from the description of principal lines at a Whitney umbrella we deduce that the index
indP (g, p) is 1/2.

In Figure 2, we present drawings for the configuration of principal lines at Darbouxian
umbilics D1,D2,D3 and at a Whitney umbrellaW , obtained with theSuperficies program
[21]. As a consequence, if the mapg is not generic, we can take a generic deformationgλ

and the index indP (g, p) is equal to(D1 + D2 − D3 + W)/2, whereD1,D2,D3,W denote
the number of umbilics of each type or Whitney umbrella that appear ingλ nearp, for λ �= 0
small enough.

Moreover, the differential equation for principal lines can be seen as a particular case of
a positive quadratic differential (PQD) form in the sense of [9]. In local coordinates(u, v), a
PQD form is given by

ω = A(u, v)dv2 + B(u, v)dudv + C(u, v)du2 ,

whereA,B,C are smooth functions such thatB2 − 4AC ≥ 0 andB2 − 4AC = 0 if and
only if A = B = C = 0. The points whereA = B = C = 0 are calledsingular points of
ω. Associated withω we have a pair of transversal line fields corresponding to the roots ofω,
which become singular precisely at the singular points ofω. Thus, ifp is an isolated singular
point ofω, we can consider the index ind(ω, p) associated with any of these line fields.

The following lemma, whose proof can be found in [13, Part 2, VIII, 2.3], shows that
the index of an isolated singular point of a PQD form is related to the mapping degree of the
coefficients.

LEMMA 4.3. Let p be an isolated singular point of the PQD form ω = A(u, v)dv2 +
B(u, v)dudv + C(u, v)du2. Then,

ind(ω, p) = −1

2
deg((A,B), p) = −1

2
deg((B,C), p) ,
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where deg((A,B), p) and deg((B,C), p) denote the mapping degrees of the maps (A,B)

and (B,C), respectively, at p.

As an immediate consequence, we get the following result, which allows us to com-
pute the index of the principal foliation in terms of the mapping degree of the coefficients
Puu, Puv, Pvv .

COROLLARY 4.4. Let g : U ⊂ R2 → R3 be a smooth map and let p ∈ U be either
an isolated umbilic or an isolated singular point of g . Then,

indP (g, p) = −1

2
deg{(Puu, Puv) ; (R2, p) → (R2, 0)}

= −1

2
deg{(Puv, Pvv) ; (R2, p) → (R2, 0)} .

4.3. Indices of roundings. We apply Corollary 4.4 to find relations between the index
defined by principal directions indP (g, p) and the index indR(g, p). However, we have to
distinguish cases depending on the rank ofg atp.
4.3.1. Rank two case. We start by considering the case wherep is a regular point.

THEOREM 4.5. Let g : U ⊂ R2 → R3 be a smooth map and let p ∈ U be a non-flat
isolated umbilic of g with principal curvature k �= 0. Then,

indP (g, p) = 1

2
sign(k) indR(g, p).

PROOF. We will assume for simplicity thatp = 0 is a non-flat umbilic and thatg is
given by the Monge normal formg(u, v) = (u, v,w(u, v)). The matrixR(g, (u, v)) is equal
to 


1 0 wu 0
0 1 wv 0
0 0 wuu 1 + w2

u

0 0 wuv wuwv

0 0 wvv 1 + w2
v


 ,

and

Puv = wuu(1 + w2
v) − wvv(1 + w2

u) , Pvv = wuuwuwv − wuv(1 + w2
u) .

On the other hand, the index indR(g, p) is equal to the mapping degree of the map germ
θ given by 


θ1
θ2
θ3
θ4
θ5


 =




1 0 wu

0 1 wv

0 0 wuu

0 0 wuv

0 0 wvv





x

y

z


 +




0
0

1 + w2
u

wuwv

1 + w2
v




at the pointP = (x0, y0, z0, 0, 0) such thatθ(x0, y0, z0, 0, 0) = 0.
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We can define new coordinatesx̃, ỹ, z̃ by
x̃

ỹ

z̃


 =


1 0 wu

0 1 wv

0 0 wuu





x

y

z


 +


 0

0
1 + w2

u


 .

Note thatk �= 0 implies thatwuu �= 0. Moreover, sign(k) = sign(wuu). Then, it follows that
degθ = sign(k) degθ̃ , whereθ̃ is the composite ofθ with such coordinate change. A simple
computation gives that

θ̃ (x̃, ỹ, z̃, u, v) =
(

x̃, ỹ, z̃,
wuvz̃ + Pvv

wuu

,
wvvz̃ + Puv

wuu

)
.

In particular, we get that

degθ̃ = deg

{(
Pvv

wuu

,
Puv

wuu

)
; (R2, 0) → (R2, 0)

}
= − deg{(Puv, Pvv) ; (R2, 0) → (R2, 0)} .

�

COROLLARY 4.6. Let g : U ⊂ R2 → R3 be a smooth map and let p ∈ U be a
non-flat isolated (either regular or singular) rounding of g and let gλ : U → R3 be a generic
deformation of g, with λ ∈ (−ε, ε). Then,

indR(g, p) = D+
1 − D−

1 + D+
2 − D−

2 − D+
3 + D−

3 ,

where D+
i , D−

i denote the number of umbilics of type Di with positive or negative principal
curvature, respectively, that appear in gλ near p.

REMARK 4.7. The classical Carathéodory conjecture states that every smooth convex
embedding of a 2-sphere inR3 must have at least two umbilics. This conjecture has a stronger
local version, known as the Loewner conjecture, which states that the index indP (g, p) at any
isolated umbilicg of a smooth regular surfaceg : U → R3 is always≤ 1. Since the sum
of the indices of the umbilics of a compact immersed surface is equal to its Euler-Poincaré
characteristic (according to thePoincaré-Hopf formula) it follows that the Loewner conjecture
implies the Carathéodory conjecture, not only for a convex embedding of a 2-sphere, but for
any immersion (non necessarily convex). The Loewner conjecture is known to be true in the
analytic case, although there is much controversy about the correct proof (see [14, 31]).

It would be interesting to see if indP (g, p) ≤ 1 is true or not in the rank one case and
provided thatg is analytic. If this is true, we should obtain an extension of the Carathéodory
conjecture for surfaces with rank one singularities inR3.

In the rank 0 case it is known that this conjecture is false. In fact, it is not difficult
to construct a surface with an isolated umbilic of index two. Here we present an example
which is inspired by the example given in [2]. Consider the mapg : R2 → R3 given by
g(u, v) = (1/3)(−u3 − 3uv2, 3u2v − v3, 3u4 − 3v4). In Figure 3 we compute the principal
lines of this surface and show that it has an isolated umbilic of index two at the origin.
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FIGURE 3.

FIGURE 4.

4.3.2. Rank one case. In the rank one case, the formulas of Corollary 4.4 are still true.
However, we have to be careful, because in this case, the index indP (g, p) not only counts
the number of umbilics that appear in a generic deformation, but this also includes the number
of Whitney umbrellas.

EXAMPLE 4.8. Let us consider the smooth family of surfacesgλ : R2 → R3 defined
by

gλ(u, v) = (u, v2, v(λ + v2 − u2)) .

Forλ = 0, g0 has an isolated singular point of rank one at 0. Forλ > 0, gλ is generic and has
two Whitney umbrellas and two umbilics of typeD3 near 0. Forλ < 0, gλ is regular and has
no umbilics. Thus, it follows that the index indP (g, p) is equal to zero. The configuration of
the curvature lines near 0 is shown in Figure 4 in the three cases.

In the rank one case, we can also obtain a formula to compute the index indR(g, p)

provided that the rounding is non-flat and isolated. However, it is not clear at all which is the
relation between this index and the index of the principal foliation indP (g, p).

Assume thatp = 0 and thatg is given in the formg(u, v) = (u, g2(u, v), g3(u, v)),
whereg2, g3 ∈ 〈u, v〉2. We have seen thatg has a rounding at 0 if and only if it is not a
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Whitney umbrella and it is non-flat if and only if the following matrix has rank two at 0:


g2v g3v

g2uu g3uu

g2uv g3uv

g2vv g3vv


 .

Let us denote the maximal minors of this matrix by

D12 =
∣∣∣∣ g2v g3v

g2uu g3uu

∣∣∣∣ , D13 =
∣∣∣∣ g2v g3v

g2uv g3uv

∣∣∣∣ , D14 =
∣∣∣∣ g2v g3v

g2vv g3vv

∣∣∣∣ ,
D23 =

∣∣∣∣g2uu g3uu

g2uv g3uv

∣∣∣∣ , D24 =
∣∣∣∣g2uu g3uu

g2vv g3vv

∣∣∣∣ , D34 =
∣∣∣∣g2uv g3uv

g2vv g3vv

∣∣∣∣ .
It is obvious thatD12,D13,D14 = 0 at 0. The fact that it is not a Whitney umbrella is also
equivalent toD34 = 0 at 0. Hence, it is non-flat if and only if eitherD23 �= 0 orD24 �= 0.

THEOREM 4.9. Let p = 0 ∈ U be an isolated non-flat rounding of rank one of the
smooth map g : U ⊂ R2 → R3 given by g(u, v) = (u, g2(u, v), g3(u, v)), with g2, g3 ∈
〈u, v〉2. Then,

indR(g, p) =
{− sign(D23) deg{(Pv, Pvv) ; (R2, p) → (R2, 0)} if D23 �= 0 ,

− sign(D24) deg{(Pv, Puv) ; (R2, p) → (R2, 0)} if D24 �= 0 .

PROOF. By definition, we have that indR(g, 0) = deg{θ ; (R5, 0) → (R5, 0)}, whereθ

is given by 


θ1
θ2
θ3
θ4
θ5


 =




1 g2u g3u

0 g2v g3v

0 g2uu g3uu

0 g2uv g3uv

0 g2vv g3vv





x

y

z


 +




0
0
E

F

G


 .

Assume thatD23 �= 0 at 0. We can define new coordinatesx̃, ỹ, z̃ by
x̃

ỹ

z̃


 =


1 g2u g3u

0 g2uu g3uu

0 g2uv g3uv





x

y

z


 +


0

E

F


 .

Then, it follows that degθ = sign(D23) degθ̃ , whereθ̃ is the composite ofθ with such a
coordinate change. A simple computation gives that

θ̃ (x̃, ỹ, z̃, u, v) =
(

x̃,
Pvv

D23
+ h1, ỹ, z̃,

Pv

D23
+ h2

)
,

whereh1, h2 ∈ 〈x̃, ỹ, z̃〉. In particular, we get that

degθ̃ = deg

{(
Pvv

D23
,

Pv

D23

)
; (R2, 0) → (R2, 0)

}
= − deg{(Pv, Pvv) ; (R2, 0) → (R2, 0)} .

The caseD24 �= 0 is analogous. �
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REMARK 4.10. WhenD23 �= 0, we can use (4.1) and (4.2) in order to obtainPuv in
terms ofPv andPvv. In fact, it follows thatPuv = (D12Pv + D24Pvv)/D23, which implies
that

indP (g, p) = −1

2
deg{(Puv, Pvv)} = −1

2
sign(D23) deg{(D12Pv, Pvv)} .

Analogously, ifD24 �= 0, we getPuu = (D14Pv + D34Puv)/D24, which gives

indP (g, p) = −1

2
deg{(Puu, Puv)} = −1

2
sign(D24) deg{(D14Pv, Puv)} .

Note thatD12 = D14 = 0 at 0, so that they have a relevant contribution to the mapping degree
of such maps.

4.3.3. Rank zero case. In the rank zero case, it is possible to obtain a similar result. Note
that a rank zero rounding of a mapg : U ⊂ R2 → R3 is non-flat if and only if

D =
∣∣∣∣∣∣
g1uu g1uv g1vv

g2uu g2uv g2vv

g3uu g3uv g3uv

∣∣∣∣∣∣
is not zero atp. The proof of the following theorem is omitted, since it can be obtained by
using the same argument as in the proof of Theorem 4.9.

THEOREM 4.11. Let g : U ⊂ R2 → R3 be a smooth map and let p ∈ U be an
isolated non-flat rounding of rank zero of g . Then

indR(g, p) = − sign(D) deg{(Pu, Pv) ; (R2, p) → (R2, 0)} .

EXAMPLE 4.12. Consider the mapg : R2 → R3 defined by(u, v) �→ (u2, uv, v2).
This map is generically two to one. If we take a deformation of this map, there is (at least) one
Whitney umbrella near 0. On the other hand, a simple computation shows that the mapping
degree of(Pu, Pv) is −1 and hence indR(g, 0) = 1. We can conclude that there exists at least
one umbilic point near 0 in any deformation ofg. On the other hand, it is not difficult to see
that the mapping degree of(Puv, Pvv) is −2 so that indP (g, 0) = 1.

In fact, we can consider the generic deformationgλ(u, v) = (u2 + λv, uv, v2 + λu).
Forλ �= 0 small enough,gλ has just one umbilic of typeD1 with positive principal curvature
and one Whitney umbrella near the origin (see Figure 5(a)). However, if we take a different

FIGURE 5.
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generic deformationgλ(u, v) = (u2 + λv, uv + λu − λv, v2 − λu), this deformation has
one umbilic of typeD3 with negative principal curvature and three Whitney umbrellas (see
Figure 5(b)).

5. Complex coordinates. In this section, we discuss the possible values for the index
of an isolated umbilic of a regular surface in terms of the coefficients of the Monge normal
form:

g = (g1, g2, g3) : R2 → R3 , (u, v) �→ (u, v,w(u, v)) .(5.1)

To simplify notation, we identifyR2 with C by introducing the complex coordinatez defined
by z = u + iv.

THEOREM 5.1. We assume that 0 is an umbilic. Then we have

indP (g, 0) = −1

2
deg

{
Φ ; (C, 0) → (C, 0), z �→ wzz

(
1

2
+ wzwz̄

)
− wzz̄w

2
z

}
.

To prove this formula, we recall some basic facts about complex coordinate. We set
z = u + iv, z̄ = u − iv and

dz = du + idv , dz̄ = du − idv ,
∂

∂u
= ∂

∂z
+ ∂

∂z̄
,

∂

∂v
= i

(
∂

∂z
− ∂

∂z̄

)
.

Then, for any functionf = f (u, v), we easily obtain the following relations:


fu

fv

fuu

fuv

fvv


 = B




fz

fz̄

fzz

fzz̄

fz̄z̄


 , whereB =




1 1 0 0 0
i −i 0 0 0
0 0 1 2 1
0 0 i 0 −i

0 0 −1 2 −1


 .

We can write the first fundamental form in terms ofz andz̄ in the following form:

I = (dg1)
2 + (dg2)

2 + (dg3)
2 = ECdz2 + 2FCdzdz̄ + GCdz̄2 ,

whereEC = g1
2
z + g2

2
z + g3

2
z , FC = g1zg1z̄ + g2zg2z̄ + g3zg3z̄, GC = g1

2
z̄ + g2

2
z̄ + g3

2
z̄ . Now

we consider the matrix


g1z g2z g3z 0
g1z̄ g2z̄ g3z̄ 0
g1zz g2zz g3zz EC
g1zz̄ g2zz̄ g3zz̄ FC
g1z̄z̄ g2z̄z̄ g3z̄z̄ GC


 = B−1




g1u g2u g3u 0
g1v g2v g3v 0
g1uu g2uu g3uu E

g1uv g2uv g3uv F

g1vv g2vv g3vv G


 ,

and observe the following relations:

Pz̄z̄ :=

∣∣∣∣∣∣∣∣
g1z g2z g3z 0
g1z̄ g2z̄ g3z̄ 0
g1zz g2zz g3zz EC
g1zz̄ g2zz̄ g3zz̄ FC

∣∣∣∣∣∣∣∣ = Puu − Pvv − iPuv

16
= FPuv − (E + G)Pvv + iEPuv

16E
.

For the last equality we use (4.2).
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PROOF (Proof of Theorem 5.1). In the above formula, we have

Pz̄z̄ = 1

16E
(Puv, Pvv)

(
F E

−(E + G) 0

)
and we conclude that degPz̄z̄ = deg(Puv, Pvv), which allows us to compute the index of an
isolated umbilic by Theorem 4.5. We thus complete the proof, since

Pz̄z̄ =

∣∣∣∣∣∣∣∣
1/2 −i/2 wz 0
1/2 i/2 wz̄ 0
0 0 wzz w2

z

0 0 wzz̄ 1/2 + wzwz̄

∣∣∣∣∣∣∣∣ = i

2

(
wzz

(
1

2
+ wzwz̄

)
− wzz̄w

2
z

)
. �

Now we assume that

w = k

2
zz̄ + 1

6
C + 1

24
Q + 1

120
U + higher order terms,(5.2)

wherek is the principal curvature at 0 and

C = αz3 + 3β̄z2z̄ + 3βzz̄2 + ᾱ z̄3 ,

Q = γ z4 + 4δ̄z3z̄ + 6cz2z̄2 + 4δzz̄3 + γ̄ z̄4 ,

andU is a homogeneous polynomial of degree five. Then we conclude that

Φ = 1

12
Czz + 1

8

(
1

6
Qzz − k3z̄2

)
+ 1

4

(
1

30
Uzz + 1

6
k2zz̄Czz − 1

3
k2z̄Cz − k2z̄2Czz̄

)
+ · · ·

and the Jacobian ofΦ is equal to

|Φz|2 − |Φz̄|2 = 1

4
(|α|2 − |β|2) + · · · .

Now we recover the following well-known fact by Theorem 5.1.

PROPOSITION 5.2. If |α| > |β| (resp. |α| < |β|), then indP (g, 0) = −(1/2) (resp.
1/2).

These cases correspond to the generic cases if

αz3 + β̄z2z̄ − βzz̄2 − ᾱ z̄3

has no multiple zeros (see [25, 12.4], [3, Section 2]).

PROPOSITION 5.3. Consider the Monge normal form (5.1). We assume that

w = k

2
zz̄ + H + higher order terms ,

where H is a non-zero homogeneous polynomial of degree n with n ≥ 3. Then:
• if n ≥ 5 and k �= 0, then indP (g, 0) = 1;
• if n ≥ 5 and if the map Hzz : (C, 0) → (C, 0) is finite, then indP (g, 0) ≤ 1;
• if w is analytic and n �= 4, then |indP (g, 0)| ≤ (n − 2)/2.
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PROOF. We easily obtain that

Φ(z) = (1/2)Hzz − (1/8)k3z̄2 + · · · ,

which shows the first assertion by Theorem 5.1. SinceHzz is not identically zero, we may
assume that the imaginary part ofHzz is not identically zero. We assume thatΦ is a finite
map andw is analytic. Then the image of oriented circle{z ∈ C ; |z| = ε} cut the real axis at
most 2(n − 2)-times, which implies|degΦ| ≤ n − 2. This shows the last assertion.

We show the second assertion. We assume thatHzz : (C, 0) → (C, 0) is finite. Since
degHzz = degΦ, it is enough to show that degHzz ≥ −2. We define a real-valued function
h(θ) by H(reiθ ) = rnh(θ). Let a+ (resp.a−) denote the number of positive local maximum
(resp. minimum) ofh. We easily seea+ ≥ a−. We define the mapG by

G : (C, 0) → (C, 0) , reiθ �→ rn−2((n(n − 2)h(θ) − h′′(θ)) + i2(n − 1)h′(θ)) .

SinceHzz = (1/4)e−2iθG, we have degHzz = degG − 2 and it is enough to show that
degG ≥ 0. Consider the setZ = S1 ∩ G−1{x ≥ 0, y = 0}. Each point ofZ is a critical
point ofh with n(n − 2)h − h′′ > 0. Letb+, b− denote the numbers of local maximums and
minimums ofh in the regionn(n − 2)h − h′′ > 0. Sincea+ ≤ b+, a− ≥ b−, we obtain
degG = b+ − b− ≥ a+ − a− ≥ 0. �

PROPOSITION 5.4. Consider the Monge normal form (5.1) with (5.2). Assume that C

is identically zero, and (γ, δ, c1) �= (0, 0, 0) where c1 = c − k3/2. Set

R =

∣∣∣∣∣∣∣∣
γ 2δ̄ c1 0
0 γ 2δ̄ c1
c1 2δ γ̄ 0
0 c1 2δ γ̄

∣∣∣∣∣∣∣∣ = c1
4 − 2(|γ |2 + 2|δ|2)c1

2 + 8�(γ δ2)c1 + |γ |2(|γ |2 − 4|δ|2) .

We choose θ1 so that γ1 = γ e4θ1i is a non-negative real number. Define real numbers p, q by
δ1 = δe−2θ1i = p + qi. If 0 is an isolated umbilic, then we have the following:

(1) |indP (g, 0)| ≤ 1;
(2) if R > 0, |c1| < γ1 (resp. |c1| > γ1), then indP (g, 0) = −1 (resp. 1);
(3) if R < 0, then indP (g, 0) = 0;
(4) if R = 0 and c2

1 − γ 2
1 �= 0, then |indP (g, 0)| ≤ 1/2;

(5) if R = c2
1 − γ 2

1 = 0, then indP (g, 0) = 0 except for the following two cases:
(a) c1 − γ1 = 0, q = 0, |p| < |c1|;
(b) c1 + γ1 = 0, p = 0, |q| > |c1|.

PROOF. (1) We easily obtain that

Φ(z) = (Qzz/6 − k3z̄2)/8 + · · · = (γ z2 + 2δ̄zz̄ + c1z̄
2)/4 + · · · ,

andΦ has rank zero at 0. If(γ, δ, c1) �= (0, 0, 0), then the initial form is of degree 2 and
|degΦ| ≤ 2. This implies (1).

(2) and (3) Observe thatR is the resultant of the initial form ofΦ andΦ̄. If R �= 0,
then the initial part is a homogeneous map of degree two with finite multiplicity. We may
assume thatγ �= 0. This implies thatΦ is semi-quasi-homogeneous and the mapping degree
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FIGURE 6.

of Φ is equal to the mapping degree of its initial part (see [4]). Moreover, the initial part has
multiplicity 4 and according to [6], the mapping degree ofΦ will be ±2 or 0.

Settingz = z1e
θ1i , we have

Q = γ1z
4
1 + 4δ̄1z

3
1z̄1 + 6cz2

1z̄1
2 + 4δ1z1z̄1

3 + γ̄1 z̄1
4 ,

R = (c2
1 − γ 2

1 )2/4 − (c1 − γ1)
2p2 − (c1 + γ1)

2q2 .

By looking atc1, γ1, p, q as coordinates inR4, it is not difficult to see that the equation
R = 0 separates the region{γ1 > 0} of R4 in four connected components, corresponding to
the following regions: (1)R > 0, |c1| < γ1; (2) R > 0, c1 > γ1; (3) R > 0, c1 < −γ1; and
(4) R < 0. Since the mapping degree will be constant on each of these regions, it is enough to
compute the value of the mapping degree for a particular point(c1, γ1, p, q) in each region.
In Figure 6, we show the zero locus ofR with γ1 = 1 in the(c1, p, q)-space.

In the region (1), we takec1 = p = q = 0 andγ1 > 0. It follows thatΦ = γ1z
2 + · · ·

so that the mapping degree ofΦ is 2.
In the regions (2) and (3), we takeγ1 = p = q = 0 andc1 �= 0, so thatΦ = c1z̄

2/4+· · ·
and the mapping degree is−2.

Finally, in the regionR < 0, we takec1 = γ1 > 0, p = 0 andq �= 0. ThenΦ =
(1/2)(γ1(u

2 − v2), q(u2 + v2)) + · · · , which has mapping degree 0.
(4) We first assume thatc2

1 − γ 2
1 �= 0. Then the conditionR = 0 is equivalent to

p2

((c1 + γ1)/2)2 + q2

((c1 − γ1)/2)2 = 1 ,

which defines a surface parameterized by

p = c1 + γ1

2
cosθ2 , q = c1 − γ1

2
sinθ2 , 0 ≤ θ2 ≤ 2π .

Then, settingz1 = u1 + v1i, we obtain that

Φ = 1

4
(γ1z

2
1 + 2δ1z1z̄1 + c1z̄1

2) + · · · = (c1 + γ1)g1 − (c1 − γ1)g2i

2
g0 + · · · ,

whereg0 = u1 cos(θ2/2)+v1 sin(θ2/2), g1 = u1 cos(θ2/2)−v1 sin(θ2/2), g2 = u1 sin(θ2/2)+
v1 cos(θ2/2). If we know the image of the line{g0 = 0} by Φ, we can decide the mapping
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degree. Case-by-case analysis shows that ifΦ is finite, then|degΦ| ≤ 1, and we complete
the proof of (4).

(5) Assume next thatR = 0 andc2
1 − γ 2

1 = 0. Thenc1 − γ1 = 0 or c1 + γ1 = 0. If
c1 − γ1 = 0 (resp.c1 + γ1 = 0), thenq = 0 (resp.p = 0) sinceR = 0. We then obtain

Φ = c1 + p

2
u2

1 − c1 − p

2
v2

1 + · · ·
(
resp.Φ = −

(q

2
u2

1 + c1u1v1 + q

2
v2

1

)
i + · · ·

)
.

The proof follows from the fact that the quadratic part ofΦ is definite and, hence, the mapping
degree ofΦ becomes zero. �

REMARK 5.5. Assume thatC is identically zero andγ = δ = c1 = 0. Thenw is
given by

w = k

2
zz̄ − k3

8
z2z̄2 + H + · · ·

whereH is a non-zero homogeneous polynomial of degreen ≥ 5. If Φ = (1/2)Hzz + · · · is
a finite map, then 0 is an isolated umbilic and(2 − n)/2 ≤ indP (g, 0) ≤ 1, by a discussion
similar to the proof of Proposition 5.3.

EXAMPLE 5.6. We finish this section by showing that it is possible to construct sur-
faces with umbilics of any index≤ 1. Letn be an integer withn ≥ 2. Consider the surface
defined byw = (zn + z̄n)/2. Then we have

Φ(z) = n(n − 1)

2
zn−2 + · · ·

and indP (g, 0) = −(n − 2)/2.
Similarly we consider the surface defined byw = (zz̄)m(zn + z̄n)/2. Then

Φ(z) = (m + n)(m + n − 1)(zz̄)m−2z̄2
(

zn + m(m − 1)

(m + n)(m + n − 1)
z̄n

)
+ · · ·

which is a map of mapping degreen − 2. Thus, we get indP (g, 0) = −(n − 2)/2.

6. Surfaces in R4. In this last section, we consider a smooth mapg : U ⊂ R2 → R4

given byg(u, v) = (g1(u, v), g2(u, v), g3(u, v), g4(u, v)), which defines a smooth surface in
R4 (possibly with singularities). We look at the 2-flattenings ofg, which correspond to points
where the matrix

F(g, t) =




g1u g2u g3u g4u

g1v g2v g3v g4v

g1uu g2uu g3uu g4uu

g1uv g2uv g3uv g4uv

g1vv g2vv g3vv g4vv




has rank< 4.
On the other hand, the geometry of regular surfaces inR4 has been studied by several

authors. The local second-order invariants of these surfaces were described by Little [16] in
the following way: we have a first fundamental form

I = Edu2 + 2Fdudv + Gdv2 , E = 〈gu, gu〉 , F = 〈gu, gv〉 , G = 〈gv, gv〉 ,
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and two second fundamental forms

II i = Lidu2 + 2Midudv + Nidv2 , Li = 〈guu, ei〉 ,

Mi = 〈guv, ei〉 , Ni = 〈gvv, ei〉 , i = 1, 2 ,

with {e1, e2} an orthonormal basis of the normal plane to the surface at the point (this only
makes sense at the regular points ofg). Associated with these quadratic forms we have the
following functions:

∆ = 1

4

∣∣∣∣∣∣∣∣
L1 2M1 N1 0
L2 2M2 N2 0
0 L1 2M1 N1
0 L2 2M2 N2

∣∣∣∣∣∣∣∣ , K = L1N1 − M2
1 + L2N2 − M2

2 ,

and the matrix

α =
(

L1 M1 N1
L2 M2 N2

)
.

That is,∆ is the resultant of the two second fundamental forms;K is called theGaussian
curvature of g and it is shown in [16] that∆, K and the rank ofα are coordinate independent.
Then, we can classify the points of the surface in terms of these functions as follows.

(1) If ∆ < 0, the point is said to behyperbolic.
(2) If ∆ > 0, the point is said to beelliptic.
(3) If ∆ = 0, the point is said to beparabolic.
(4) If α has rank< 2, the point is said to be aninflection. Moreover, we have the

following types of inflection:
(a) if K > 0, it is an inflection ofimaginary type;
(b) if K < 0, it is an inflection ofreal type;
(c) if K = 0, it is an inflection offlat type.

PROPOSITION 6.1. A regular point of a smooth surface in R4 is a flattening if and only
if it is an inflection.

PROOF. Sinceg is regular, we may assume that our point is the origin ofR2 and thatg
is given byg(u, v) = (u, v, g3(u, v), g4(u, v)), with

g3 = (a1u
2 + 2b1uv + c1v

2)/2 + · · · , g4 = (a2u
2 + 2b2uv + c2v

2)/2 + · · · .

Then, we have

F(g, 0) =




1 0 0 0
0 1 0 0
0 0 a1 a2
0 0 b1 b2
0 0 c1 c2


 and α(0) =

(
a1 b1 c1
a2 b2 c2

)
.

Here we takee1 = (0, 0, 1, 0) ande2 = (0, 0, 0, 1) as an orthonormal basis of the normal
plane tog at 0. The result is clear now. �
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REMARK 6.2. It follows from the above proof that ift is a regular point ofg and the
matrixF(g, t) has rank< 3, thent is an inflection of flat type.

The multiplicity of a flatteningµF (g, p) is related to the number of generic inflections
that appear in a generic deformation ofg nearp. Recall that it is defined by

µF (g, p) = dimR C∞(R2, p)/F(g, p) ,

whereF(g, p) is the ideal generated byPu, Pv, Puu, Puv, Pvv , the maximal minors ofF(g, t):

Pu = det(gv, guu, guv, gvv) , Pv = det(gu, guu, guv, gvv) ,

Puu = det(gu, gv, guv, gvv) , Puv = det(gu, gv, guu, gvv) , Pvv = det(gu, gv, guu, guv) .

Moreover, the relations between these five generators are given by:

giuPu − givPv + giuuPuu − giuvPuv + givvPvv = 0 (i = 1, 2, 3, 4) .

When rankF(g, p) = 3, we can consider the index indF (g, p), which is defined as the
mapping degree ofθ : (S3 × R2, (v0, p)) → (R5, 0) given byθ(v, t) = F(g, t)v andv0 ∈ S3

is chosen so that(v0, p) ∈ Σ2,2(H). Since we have two possible choices for the vector,
namely±v0, the index is well defined up to sign. We have the following possibilities.

(1) Rank 2 case. Sinceg has rank 2, we see thatgu, gv and one of{guu, guv, gvv}
are linearly independent atp. Suppose, for instance, thatgu, gv, guu are linearly independent.
Then,Puv, Pvv generate the idealF(g, p) and

|indF (g, p)| = |deg(Puv, Pvv)| .
(2) Rank 1 case. In this case one of{gu, gv} and two of{guu, guv, gvv} are linearly

independent atp. Suppose, for instance, thatgu, guu, guv are linearly independent. Then,
Pv, Pvv generate the idealF(g, p) and

|indF (g, p)| = |deg(Pv, Puv)| .
(3) Rank 0 case. Now the only possibility is thatguu, guv, gvv are linearly indepen-

dent atp. Then,Pu, Pv generate the idealF(g, p) and

|indF (g, p)| = |deg(Pu, Pv)| .
As in the case of a surface inR3, the index indF (g, p) is related to an index defined by a

geometrical line field in the surface, namely the field of asymptotic directions. According to
[8], theasymptotic directions at a regular point are given by the quadratic differential equation∣∣∣∣∣∣∣∣∣∣

g1u g2u g3u g4u 0
g1v g2v g3v g4v 0
g1uu g2uu g3uu g4uu dv2

g1uv g2uv g3uv g4uv −du dv

g1vv g2vv g3vv g4vv du2

∣∣∣∣∣∣∣∣∣∣
= Puudv2 + Puvdudv + Pvvdu2 = 0 .
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Moreover, the sign of the discriminant of this equation coincides with the sign of−∆. Thus,
at a hyperbolic point there exist exactly two asymptotic directions; at an elliptic point there
exist no asymptotic directions; at a parabolic point which is not an inflection, there exists
exactly one asymptotic direction; and at an inflection, all of the directions are asymptotic.

Suppose now thatp is an isolated inflection of imaginary type. This implies that∆ = 0
andK > 0 atp and that∆ < 0 for all t �= p in a neighborhood ofp. In particular, we have
a pair of asymptotic directions defined in such a neighborhood with an isolated singularity
at p. The index associated with these asymptotic directions will be denoted by indA(g, p).
The configuration of the asymptotic lines at a generic inflection of imaginary type has been
obtained recently in [8], where they show that the only possibilities are again the Darbouxian
configurations, with index±(1/2).

Note that ifp is an inflection of imaginary type, then the conditionK > 0 ensures that
both {gu, gv, guu} and {gu, gv, gvv} are linearly independent. Moreover, they determine the
same oriented 3-plane. That is, we have a canonical choice for the vectorv0 ∈ S3 such that
(v0, p) ∈ Σ3,3(H). This choice is given by

v0 = gu ∧ gv ∧ guu

‖gu ∧ gv ∧ guu‖ (p) = gu ∧ gv ∧ gvv

‖gu ∧ gv ∧ gvv‖ (p) .

Thus, in the case of an inflection of imaginary type, we have a well defined index indF (g, p).

THEOREM 6.3. Let g : U ⊂ R2 → R4 be a smooth map and let p ∈ U be an isolated
inflection of imaginary type of g . Then

indA(g, p) = −1

2
deg{(Puu, Puv)} = −1

2
deg{(Puv, Pvv)} = 1

2
indF (g, p) .

PROOF. Since in this case both{gu, gv, guu} and{gu, gv, gvv} are linearly independent,
both {Puv, Pvv} and {Puu, Puv} generate the idealF(g, p). Then, the two first equalities
follow from Lemma 4.3. To see the last equality, we will show that it is true for a generic
inflection. In the general case, we can show the result by taking a generic deformation ofg.

If p is a generic inflection, then the multiplicityµF (g, p) is one. Therefore, the map
germs(Puu, Puv) : (R2, p) → (R2, 0) and(Puv, Pvv) : (R2, p) → (R2, 0) are regular.

In general, ifp is an inflection, we may assume thatp = 0 and thatg is given by the
Monge normal formg(u, v) = (u, v, g3(u, v), g4(u, v)), with

g3(u, v) = (au2+2buv+cv2)/2+· · · , g4(u, v) = (pu3+3qu2v+3ruv2+sv3)/6+· · · .

Then,Pu = Pv = 0 and

Puu = (br − cq)u + (bs − cr)v + · · · ,

Puv = (ar − cp)u + (as − cq)v + · · · ,

Pvv = (aq − bp)u + (ar − bq)v + · · · .

Note that if the inflection is of imaginary type, it follows thatK = ac − b2 > 0. In particular,
ac > 0.
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We now compute the Jacobian determinants of(Puu, Puv) and(Puv, Pvv) which give,
respectively,c∆ anda∆, with

∆ = a(r2 − qs) + b(ps − rq) + c(q2 − rp) .

Thus, the fact that the inflection is generic implies that∆ �= 0.
To see the value of indF (g, 0) we have to compute the Jacobian determinant of

θ : (S3 × R2, (v0, 0)) → R5 given byθ(v, t) = F(g, t)v, where

v0 = gu ∧ gv ∧ guu

‖gu ∧ gv ∧ guu‖ (0) .

It is not difficult to see that ifa > 0, thenv0 = (0, 0, 0, 1) and the Jacobian determinant ofθ

is −∆; if a < 0, thenv0 = (0, 0, 0,−1) and the Jacobian determinant ofθ is ∆. �

REMARK 6.4. Note that an umbilic of a surfaceg in R3 is carried by the inverse of the
stereographic projectionξ : R3 → S3 ↪→ R4 into an inflection of the corresponding surface
ξ ◦ g in R4 (see the end of Section 2). Moreover, it follows from Theorem 3 of [18] that the
curvature lines ofg are carried into the asymptotic lines ofξ ◦ g. Therefore, ifp is an isolated
umbilic of g, thenp is an inflection of imaginary type ofξ ◦ g and

indP (g, p) = indA(ξ ◦ g, p) .
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