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Abstract. We introduce the concepts of rounding and flattening of a smoothgntdip
anm-dimensional manifoldV to the euclidean spad®’ with m < n, as those points i
such that the imageg(M) has contact of typec™---" with a hypersphere or a hyperplane of
R, respectively. This includes several known special points such as vertices or flattenings of
a curve inR", umbilics of a surface iiR3, or inflections of a surface iR*.

1. Introduction. In[24], Porteous studied ¢iThom-Boardman singularitigg’s: -
of the distance-squared unfolding associated with a smooth embeddjngM — R”" from a
smoothm-dimensional manifoldV into R”?, which is defined by

D:R'xM—R' xR, (x,1)— (x,d:(t)), wheredy(t) = (1/2)|lx — g(®)||?.

He discovered that for small valuesafandn, these singularities give a new point of view
of some well-known facts of classical differential geometry. This work was continued by
Montaldi [19], who introduced the notion of contact between submanifolds and deduced that
the singularity types ob characterize the contact typesgaiV/) with the hyperspheres &f".
It is known (see [32]) that for a residual setd° (M, R") with the WhitneyC* topology,
the associated unfolding is generic in the Thom-Boardman sense (that is-jst extension
is transverse to the straggi1-).

For instance, suppose that I — R? defines a regular smooth curve in the plane. Then,
a point of typex 1.1 of D is a pair(x, r) such that € I is a vertex of the curve (that is, a
point wherex’ = 0) andx e R? is the center of curvature at that point.gif: M2 — R®is
now a smooth immersion of a surfaceRA, a point of typex??2 of D is a pair(x, r), where
¢ € M is an umbilic (that is, the two principal curvatures coincide) and R® is the center
of principal curvature.

We can do a similar analysis if we look at theight unfolding, given by

H:S"'x M- S"1xR, (1) (v,hy(r)), whereh,) = (v, g()).

In this case, the singularity types &f determine the contact type gf M) with the hyper-
planes ofR" and it is also true that for a residual setd (M, R") the unfoldingH is
generic in the Thom-Boardman sense. For instancg; if — R3 is a regular curve with a
well-defined Frenet frame, then ti#b11 points of H are the pairgv, r), wherer € I is a
flattening (that is, the torsion is zerotandv € St is the binormal vector. 1§ : M2 — R*
is a smooth immersion of a surfacef, a 22 point of H is a pair(v, t), wheret € M is

2000Mathematics Subject Classification. Primary 53A07; Secondary 58K05, 53A05.
Key words and phrases. Distance squared function, height function.



470 T. FUKUI AND J. J. NUNO-BALLESTEROS

an inflection (that is, the two second fundamental forms are proportional) and? is the
binormal vector in the sense of [8].

In recent years, these concepts have been of great interest for people working on differ-
ential geometry and singularities. On one hand, we have the classical four vertex theorem,
which states that any closed simple regular plane curve has at least four vertices, and its gen-
eralization to higher dimensions (see, for instance, [1]). On the other hand, the Carathéodory
conjecture states that every smooth immersion of the spifareo R3 has at least two umbil-
ics (see Remark 4.7). Moreover, it has recebtyn shown (cf. [8]) that any convex generic
immersion of the spher&” into R* has at least four inflections.

In Section 2, we introduce the concept lofounding (resp. k-flattening) as a point
to € M which corresponds to a point of typB”® of D (resp.H). Herem, denotes
the Boardman symbaln, . .., m), with m repeated times. Note that these definitions make
sense even when the mgp: M — R”" has singularities. Then, for eaeh andk we can
choosen, the dimension of the ambient space, such thaktheundings or theé-flattenings
of a generic smooth map: M™ — R" appear as isolated points (see Table 1).

Associated with a&-rounding ork-flattening we consider a local algebra of contact,
which is obtained by eliminating the parameteor v in the local algebra of contact dd
or H, respectively, with the stratur®™® . It follows that this local algebra of contact is a
local geometric invariant (that is, it is invariant under change of coordinaté&sand isome-
tries inR™). Moreover, from this algebra, we can also obtain numerical invariants such as its
multiplicity or its index (in the orientable case). The index df-eounding ork-flattening is
simply the oriented intersection number of #het extension of thé, or &, with the stratum
X™"a . Atthe end of Section 2, we show that roundings and flattenings are related through the
stereographic projection. We see that a pgirt M is a rounding ofy : M — R" if and only
if itis a flattening of¢ o g : M — R"*1, wheret : R* — §" — R"t! denotes the inverse of
the stereographic projection. Moreover, the index is also preserved.

In Section 3, we study curves R' and give an explicit formula to compute roundings
(that is, vertices) which seems to be new.

Sections 4 and 5 are dedicated to surface®dinIn the case of an isolated umbilic of a
surface inR3, we show that the index we have defined is essentially the index of the foliation
defined by curvature lines. We also provide formulas for these indices which work even for
isolated singular points of the surface. In 8@&c 5, we introduce complex coordinates in
regular surfaces, in order to compute indicgésimbilic points by looking at the coefficients
in a Monge normal form.

Finally, in Section 6 we study surfacesRi. Then, we see that for an isolated inflection
of a surface inR*, the index is essentially the index of the foliation defined by asymptotic
lines.
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2. Roundings and flattenings.

2.1. Definitions of roundings and flattenings. Llétbe a smooth:-manifold and let
Sk denote the Thom-Boardman submanifal#® in the jet spacd” (M, R), k < r, which is
the subset of the jet space with all partial derivatives of degréesqual to zero.

DEFINITION 2.1. Letg : M — R" be a smooth map from a smoothrdimensional
manifold M into R", with m < n. Letk, r be the positive integers with < r.

We say thaip € M is ak-flattening of g if there isv € §"~1 such thatj"h,(p) € S.

We say thatp € M is anon-flat k-rounding of g if it is not a k-flattening and there is
x € R" such thatj"d, (p) € Sk.

We say thatp € M is ak-rounding of g if it is either ak-flattening or a non-flak-
rounding.

Whenk is clear from the context, we will just say thatis a flattening or a rounding.

Consider Thom-Boardman classes of the unfoldiBgs, ) = (x, d,(¢)) andH (v, t) =
(v, hy(t)). Since they have corank one, we have thatt) € X™® (H) (resp.(x,t) €
XM (D)) if and only if j"hy(p) € Sk (resp.j"dy(p) € Sk).

Assumethay : M — R" is animmersion. It follows from the definition thatjife M is
ak-flattening ofg andv € §”~1 such thatv, p) € 2™® (H), theng(M) has a contact of type
XM at g(p) with the hyperplane dR”" orthogonal ta through the poing(p). Analogously,
if pis anon-flak-rounding and € R" such thatx, p) € X™® (D), theng(M) has a contact
of type X™® at g(p) with the hypersphere centeredxaaind radiusk = ||x — g(p)|. Note
that our definitions make sense even in the casegthas singularities.

We now see that it is possible to eliminate the parameter x in the definition and
obtain a condition just in terms gf. Let us denote it by = v(m,) the cardinality of the
set{e = (a1, ...,a,) ;1 < |a| < k}, so thatv gives exactly the number of local equations
which defineX™® . This number can easily be computed by the combinatorial formula

k
= <’" + ) —1.
m
Moreover, we will fix some order in this set (for instance, the degree lexicographical order
associated with the monomiaf¥).

DEFINITION 2.2. Letg: M — R" be a smooth map. Given a local coordinate system
¢:UCM— R" wedenotej = go¢pLandp(p) = 1, for eachp € U. We define the
matrices

kom o\ _ 8|a‘9~i
F (g,p)—( Y ()

k= 91l g;
iz, AN RY(g:ip)= < o () (ﬂa(t)) rcicn
1=<|a|=k 1=<|a|=k
where the functiong, are defined by induction oj| in the following way. Ifja| = 1, then
9o = 0. If || > 1, there arg8 andi € {1,...,m} such thawx = B+ (0,...,17,...,0);
then,

_[og aPlg\  dgp
b =\or" orP at;
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The matricesF*(§; p) and R*(§; p) have sizev x n andv x (n + 1), respectively. Again,
whenk is clear from the context, we shall denote the matrices jugt @iy p) andR(g; p).

LEMMA 2.3. Letg: M — R" beasmoothmapandlet p € M. Then:
(1) pisak-flattening of ¢ if and only if rankF*(§: p) < n;
(2) pisak-rounding of ¢ if and only if rankR* (§; p) < n + 1.

PROOF. Sinceh, o ¢~1(t) = (v, §(¢)), we have

3l (hy o | g
T(I)_<v’ 5@ (f)>,

so thatp is ak-flattening if and only if there is € $”~ such that
glelg

<v, —g(t)> =0, Va:1<la|<k.
ar%

This is a homogeneous linear system in the variabjes. ., v,, whose coefficient matrix is
F(§; p). It follows that there is a solution € $"~1 if and only if F¥(§; p) has rank< n.

For the distance-squared functions, we havedhatp~1(r) = (1/2)|lx — §(t)||? and,
hence,

ot -1 ol 5

%(z) = —<x — 5, a;tag (z>> + 0all).
Now, p is a non-flatk-rounding if and only if it is not &-flattening and there is € R" such
that

<x —g(@) alDlg(t)> =@at), Va:l<|a| <k

o o o

In this case, we have a non-homogeneous linear system in the varigblesx; — g¢; (¢),
i =1,...,n,with coefficient matrixF* (§; p) and with independent ternig, (¢)). It follows

that the system has a solution if and only if raffi(§; p) = rankR*(§; p) = n.
Finally, note that

rankF*(§; p) < rankR*(g; p) < rankF*(g; p) + 1,
which completes the proof. a

It follows from the proof of the above lemma thatjife M is a non-flatk-rounding of
g: M — R" then there is a unique € R” such thatj*d, (p) € S (i.e., (x, p) € Z™® (D)).

ExAmMPLE 2.4. In the following sections, we will see that roundings and flattenings
coincide with classical concepts in difential geometry of curves and surfaces.

(1) Leta : I — R?be aregular plane curve. There I is a 2-flattening if and only
if it is an inflection (that is, the curvatureis zero atr). The vertices ofr (that is, the points
wherex’(r) = 0) correspond to the 3-roundingsf

(2) Suppose now that : I — R2is a regular space curve with non-vanishing cur-
vature, so that it has a well-defined Frenet frame. Then, a 3-flattening is a point where the
torsiont is zero.
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(3) Letg : M2 — RS be a regular surface iR3. Then 2-roundings correspond to
umbilic points ofg (that is, points where the two principal curvatures are equal).

(4) Finally, if g : M2 — R*is aregular surface iR?*, the 2-flattenings of are known
as inflections and correspond to points where the two second fundamental forms are linearly
dependent.

DEFINITION 2.5. Letg: U Cc R"™ — R" be a smooth map. Givap € U we denote
by C*°(R™, tp) the local algebra of smooth function germs frgRi", ro) to R. Then, we
defineR (g, tp) as the ideal iC*(R™, to) generated by the germssgtof the (n 4+ 1)-minors
of R(g, ).

Analogously, we can defing (g, 7o) as the ideal irC*°(R™, 1) generated by the germs
atrg of then-minors of F (g, 1).

The following lemma shows that although the matrié&g, ) and F (g, t) depend on
the choice of coordinates R™, the corresponding ideal’(g, r0) and.F (g, ro) are coordinate
independent.

LEMMA 2.6. Letg : U c R" — R" beasmooth map and 7o € U. Suppose that
¢ : (R",ty) — (R", 1) is a diffeomorphism germ and denote by ¢* : C*(R™, 1) —
C*(R™, 1) the induced isomorphism of local algebras. Then, ¢*(R(g. t0)) = R(g o ¢, 1)
and ¢*(F (g, t0)) = F(g o ¢, tp).

PROOF. Let us denote by; the m-tuple (0,...,19,...,0). We define the function
germsiyg € C(R™, 1), with 1 < |B] < |a| by mductlon on|a| in the following way:
09
ej,ej — a—[l

and if || > 1 and|«| > |B], then

OAap "
(2.1) Aatej,p = ot + Z)‘eis"_/)‘“ﬁ*e./ ’

where we take the convention thials = 0 when it is not defined. Then, by direct application
of the chain rule we obtain that for amy with |«| = r,

(god) 3Py
(22) T = Z )\’D‘,B (W o ¢> .

1<|Bl=<r

In fact, we have
3 gog) 3Py
drocte, :a_zi(;%( 01 °¢>>
Iagp alblg alAI+1y A
_Z o 0P ° +2ﬁ: ’\“’32/: airre °%) o,
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drap 0'Plg 3Bl g
- Z dti K °d+ Z Z)‘aﬂ—ej)\e,-,ej ETzE o¢
B 5 I
alblg
= ; )Lo(+6i,f3 <W o ¢) .

This implies that any:-minor d of F¥(g o ¢, t) can be written as a linear combinatign=
> ai¢p*(d;), whered; aren-minors of F¥(g, 1) anda; € C®°(R™, 1) This gives the inclusion
F(gog, 1) C ¢*(F(yg, 10)) and the opposite inclusion follows by applying the same argument
toj=go¢andp =¢ 1.

To conclude thap* (R (g, t0)) = R(g o ¢, t;), we just need to prove that

(2.3) Cu= D raplepod).

1<|Bl=r

whereg), are the corresponding functions fge ¢. Then, (2.3) follows from (2.2) and (2.1)
by induction orv = |«|:

: _<a(go¢> ? (go¢>>+a&

Yot =\ "9y T e dt;

dg  8lFlg a 90
= T epan| g 0. Gt o0)+ L G 09+ L hon (G 09
J:B J B { J

J:B
dg 9llg Ay BN
=S heeran (3200 S 00)+ 22 00) + 30 2L 00
X J J i
J.B B
oA
= D e hap e, 0 9) + ) =L (pp 0 D)
JB g

oA
=D heveshape; (00 9) + ) =L lpp 0 9)
B B '
= Z)‘a—i-ei,ﬁ((pﬁ 09). O
B

2.2. Multiplicities of flattenings and roundings. Let: M — R" be a smooth map
from a smoothn-dimensional manifold/ into R*. Givenp € M, we denote byC*° (M, p)
the local algebra of smooth function germs fré¢m, p) into R. If we choose a local chart
¢ : (M, p) — (R", 1), we can consider the ideal®(g o 1, 10) and F(g o ¢ 1, 10) in
C®(R™, 19). We define the idealR (g, p) andF (g, p) in C*°(M, p) by

R(g, p) = ¢*R(god L 10), Flg,p)=¢*Flgoop L 10),

where¢* : C*°(R™, 19) — C*(M, p) is the induced isomorphism of local algebras. The
above lemma easily shows that this construction does not depend on the choseén chart
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We now define thenultiplicity of a rounding or a flattening, respectively, as

ur(g, p) =dimr C*(M, p)/R(g, p), nr(g,p) =dimrC>*(M, p)/F(g, p).

If p € M isin fact a rounding or a flattening, we have that (g, p) > 1 orur(g, p) > 1,
respectively. Moreover, it is also true thatifz (g, p) < co or ur(g, p) < oo, thenp is an
isolated rounding or flattening, respectively.

Now we recall the concept of multiplicity of a map with respect to a submanifold. Let
f : M — N be a smooth map between manifolds ghdc N a submanifold such that
dimM = codimS. Givenp € M such thatf(p) € S, the multiplicity of f and S at p is
equal to

mp(fa S) = dImR COO(M7 p)/f*IS )

wherely is the ideal inC*®°(N, f(p)) given by the function germs vanishing srand /* :
C*®(N, f(p)) — C*®(M, p) is the induced homomorphism of local algebras.

Below we give some basic properties of the multiplicities.

(1) mpu(f,S) = 1and the equality holds if and only ff is transverse t§ at p.

(2) Itmy(f,S) < oo, thenp is an isolated point of ~1(S).

(3) Assume thas is locally given nearf (p) by S = ¢~1(0), whereg : (N, f(p)) —
(R™,0) is a smooth map germ with 0 as a regular value. THé&#s is generated by the
components of the map gergre f : (M, p) — (R™, 0), and, hencen ,(f, S) is equal to the
multiplicity of g o f.

LEMMA 2.7. Letg: M — R" beasmooth map from a smooth m:-dimensional mani-
fold M into R". Supposethat v = v(my)) = n +m and that p € M isa non-flat rounding of
g andlet xg € R" besuch that (xo, p) € X"® (D). Thenif v = v(my)) = n + m, then

WR(G, P) = Mo, ) (j*D, Z"0).
Analogously, suppose that v = v(m)) = n+m — 1landthat p € M isaflattening of rank
n—1of gandlet vg € §"~1 suchthat (vg, p) € X™® (H). Then

1F(g. p) =My p)(jH, Z"0) .

PrROOF By taking coordinates i we can suppose thd = U C R™, an open subset.
Then,R(g, p) is the ideal inC*>*(R™, p) generated by the maximal minors Bfg, p).

Since the rounding is non-flat, the matrixk(g, p) has rank: and we can suppose,
without loss of generality, that the firstrows of R(g, p) are linearly independent. In this

way, we can write
P R
R(g, 10) = <Q ) ,

whereP is an invertible matrix of size x n, Q has sizgv —n) x n andR, S have size: x 1
and(v — n) x 1, respectively. Let be thev x v invertible matrix given by

Pt 0
2= (grs 1)-
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wherel denotes the identity matrix of the corresponding size. TRd®, p) is also generated
by the maximal minors of the matrix

Pl O\/P R I 0
AR(g,to) = (_QP—l I) <Q S) = (O _QP—lR +S) .

In particular, this gives thak (g, p) is the ideal generated by thecomponents of the matrix
—QP 1R +5.

On the other hand, according to the third property of the multipliditys (jkD)*I):m<k)
is the ideal inC*(R" x R™, (xg, p)) generated by the components of the matrix

(0)7+(5).

whereX is the column matrix with componen¥§ = x; — g;(¢),i = 1, ..., n. Again, we can
take the product with the invertible matrix. Thatis,J/ is also generated by thecomponents

of the matrix
Pl 0\ /(P R X+ PR
(cors D) ((6)x+(8) = (Loriets):

Therefore, we can easily conclude that the local algélsfaR" x R™, (xo, tp))/J is isomor-
phic toC*°(R™, 19) /R (g, to)-
The proof of the second part of the lemma is analogous. m]

DEFINITION 2.8. Letg : M — R" be a smooth map from a smoothdimensional
manifold M into R". We say thaty is generic if the unfoldingsD, H are generic in the
Thom-Boardman sense (that is, theijet extensions are transverse to the Thom-Boardman
strata). In particular, it follows that”® (D) and X"® (H) are submanifolds of codimension
v=v(my)) of R* x M ands”~1 x M, respectively. Thus:

(1) ifv =n+m andg is generic, the roundings af are non-flat, appear as isolated
points and have multiplicity one;

(2) ifv =n+m — 1 andg is generic, the flattenings gfhave rank: — 1, appear as
isolated points and have multiplicity one.

See [32] for the proof of the generality of the generic map; that is, any map can be
approximated by a sequence of generic maps.

In Table 1, we show the value a@f = v(my)) — m, so that roundings of a map :
M™ — R" appear generically as isolated points. By adding one to all the entries of the table,
we getn = v(m)) —m + 1, which corresponds to the dimensions where flattenings appear
generically as isolated points.

When the mapy : M — R" is not generic, we can take a generic deformagpn
M — R", L € (—e¢,¢), which means thajo = g, g» is generic forr # 0 and the map
(A, 1) — ¢,.(r) is smooth. Ifqg € M is a rounding or a flattening af, we can ask about the
number of roundings or flattenings that appeag,imearp, for » # 0 small enough. We will
denote these numbers by; (g;., p) ornr (g, p), respectively. In the following theorem, we
see that in the analytic case, such numbers are related to the corresponding multiplicities.
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TABLE 1.

3 4 5 6 7 8 9 10
3 4 5 6 7 8 9
12 18 25 33 42 52 63
16 31 52 80 116 161 216 282
10 30 65 121 205 325 490 710 996
15 50 120 246 456 786 1281 1996 2997

oM W N RS
o w R[N

THEOREM 2.9. Supposethat g : M" — R"isanayticandlet g, : M — R,
A € (—¢, ¢), bean analytic generic deformation of g.

(1) If p € Misarounding of finitemultiplicity and v(m )) = n+m,thenng (g, p) <
ur(g, p) and ng (g, p) = ur(g, p) modulo 2, for A # 0 small enough.

(2) If p € M is a flattening of finite multiplicity and v(mx)) = n + m — 1, then
nr(gn, p) < ur(g, p) andng (g, p) = ur(g, p) modulo 2, for A # 0 small enough.

PROOF. As usual, by taking coordinates we can supposeihat U is an open subset
of R™. Then,g : U — R" induces a complex analytic map: U — C”", whereU is an
open neighborhood gf in C™. We will denote byOcn_, the local ring of complex analytic
function germs from(C™, p) to C, andR(g, p) will denote the ideal irOc» , generated by
the maximal minors of the matrikR(g, r) defined in an obvious way. Moreover, it follows
that

Ocn,p/R(§, p) = C*(R", p)/R(g, p) ®C,
so that
ur(g, p) = dimg C*(R™, p)/R(g, p) = dimc Ocn_,/R(g, p) .

On the other hand, the deformatign : U — R”" also induces a complex analytic
deformationg; : U — C", » € V, where nowV is an open neighborhood of 0 . We
will denote byng (g5, p) the number of complex roundings ¢§, nearp. It follows that
nr (g, p) < nr(gxr, p) andng (g, p) = nr(g,, p) and, thus, itis enough to prove that for
A # 0 small enough,

nRr(gx, p) = dimc Ocm ,/R(G, p) -

To see this, we use classical arguments of complex analytic geometry. To simplify no-
tation, let us denote by the ring Ocxcm (o,py and by the ideal inA generated by the
maximal minors of the matri(g,, r). The complex analytic set germ of zerosiofV (1),
is given by the pairsx, ¢) in a neighborhood of0, p) such that is a rounding ofy,. Thus,
the numbemny (§,, p) is equal to the cardinality of ~1(1), wherer is the finite map germ
7 : V() — C, given byzx(ir,t) = A. By the Samuel formula (see, for instance, [22]),

7~1(0) for » # 0 small enough, is equal to the multiplicigy(i); A/I), wherex is the class
of Ain A/I.
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Now, I is defined by the maximal minors of a matrix of sizex (n + 1) and a result by
Hochster and Eagon [12] ensures thdt') has dimensiop=m +1— (v —(n+1) +1) =1
and if the equality holds, theA/I is a Cohen-Macaulay ring. Note that the finitenesg of
implies that the dimension df (1) is < 1. Thus,V (1) is, in fact, one-dimensional andl//
is Cohen-Macaulay.

Finally, use Theorem 17.11 of [17] to conclude that sidcd is a one-dimensional
Cohen-Macaulay ring anklis a parameter system i/, then

e((A); A/D) = dimc (A/D)/ (1) = dimc Ocn ,/R(§, p) -
The proof of the second part of the theorem is exactly the same. |

2.3. Oriented intersection numbers and indices. Mdbe an oriented manifold and
let S be a co-oriented submanifold of a manifaldwith dimM = codimS. Assume that
f (M, p) = (N, f(p)) is a smooth map germ witfi—1(S) = p. We denote theriented
intersection number of f andS atp by I,(f, S).

Some basic properties of the oriented intersection number are the following.

(1) If fistransversetd atp, thenl,(f, S) = £1.

(2) Assume thas is locally given nearf (p) by S = ¢~1(0), whereg : (N, f(p)) —

(R™, 0) is a smooth map germ with 0 as a regular value so that the co-orientatHma¥
coincides with the orientation & via g. Thenl,(f, S) is equal to the mapping degree of
the map gerny o f : (M, p) — (R", 0).

We now introduce the concept of index of a non-flat isolated rounding or an isolated
flattening of rank: — 1, which can be seen as an oriented version of multiplicity. Note that
if M is an oriented manifold, we have an induced orientatiod’itM, R). Assume that/
is an oriented manifold. Note th&}, is a co-oriented submanifold of (M, R), whose co-
orientation is determined by choosing an order in the monorrfials

DEFINITION 2.10. Letg : M — R" be a smooth map from an orientedmanifold
into R". Let p € M be a non-flat isolated rounding gfand suppose also that= v(my)) =
n + m. There exists a uniquey € R" such that(xg, p) € X"® (D). Then, we define the
index of the roundingp, indr (g, p), as the oriented intersection number of the map

(R' x M, (x0, p)) = (J*(M.R), ji, (D). (x.0) > j*d. (1),

and Sy at (xg, p). By taking local coordinates we can assume tfat= U C R", an open
subset. Then, ind(g, p) is equal to the mapping degree of the map germ

alelg
Or : (R" x R™, (x0, p)) = (R*,0), (x,1) > ( ) .
M J1 i<k

To define the index of a flattening we have to be more careful. Even when it has rank
n — 1, there are two possible vectagse §”~1, such thatv, r0) € X"® (H), namely+uvg.

DEFINITION 2.11. Letg : M — R" be a smooth map from an orientedmanifold
into R”. Assume that the sphes® ! is oriented. Letp € M be an isolated flattening af
of rankn — 1 and suppose also that= v(mx)) = n +m — 1. There isyg € S~ such that
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(vo, p) € X™® (H). Then, we define thiemdex of the flatteningy, ind£ (g, p), as the oriented
intersection number of the map
(S" 1 x M, (vo. p)) = (JKM.R), j*hg(p)) . (v.1) > j*hy (1),

and Sy at (vo, p). Again, we can take local coordinates and assumephat U C R™, an
open subset. Then, ipdg, p) is equal to the mapping degree of the map germ

aleln
Or: (S" L x R™, (vo, p)) = (R”,0), (v,1) > ( a”) )
M J1<jai=k
Note that we have exactly two choices for the vector, nartety. Thus, when =n+m—1
is even, ing-(g, p) is well defined and does not dependign However, whenw =n+m — 1
is odd, we can only considénd£(g, p)|.

It follows thatif g : M — R" is generic and = v(my)) = n+m, then all its roundings
are non-flat, isolated and have ind¢&X. Wheng is not generic, but the rounding € M
is non-flat and isolated, we can use the Thom’s transversality theorem and take a generic
deformationg, : M — R", A € (—¢, ¢), SO that the index is equal to the sum of the indices
of the generic roundings that appeagjnnearp. Moreover, we have an analogous statement
for flattenings. The following result is a consequence of Lemma 2.7.

COROLLARY 2.12. Letg: M — R" be a smooth map from an oriented smooth -
manifold in R".

(1) If p € Misarounding of finitemultiplicity and v(m ) = n+m, then|indg (g, p)|
< ur(g, p),andindg (g, p) = pur(g, p) modulo 2.

(2) If p e Misa(n—1)-rankflattening of finite multiplicity and v(m)) =n+m —1,
then lindz (g, p)I < nr(g. p) andindz(g, p) = nx(g, p) modulo 2.

As another consequence, we obtain that when the rounding is non-flat or when the flat-
tening has rank — 1, then Theorem 2.9 is also true even when the maps are smooth instead
of analytic.

2.4. The stereographic projection. We finish this section by showing that roundings
and flattenings are related through the stereographic projectiort. LBf* — §" — R+l
denote the inverse of the stereographic projection, which is given by

(@ k1P -1)
=T RETD

It follows from the works by Romero Fuster [26, 27] and Sedykh [29] that M is a
rounding of a smooth map: M — R" if and only if it is a flattening ok o g : M — R**1,

In fact, if p € M is an isolated non-flat rounding ¢f thenp is an isolated flattening d@fo ¢

of rankn — 1. This means that there is a uniqug € R" such that(xg, p) € X™® (D).
However, there are two possible choices for the veggoe S, so that(vg, p) € X™® (H)
andH being the height unfolding &f o g. We will see that there is a canonical choice of this
vectorvg in such a way that ind(g, p) = indz(& o g, p).
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Givena € R" andr > 0, we define

v(a,r) @n lal? —r2+1

el 7T T @t
Then, by direct computation we have the following.

(1) Ifr = |xo — all, then{(&(xo), u(a,r)) = p(a,r). This means thaf maps the
(n — 1)-sphere inR" with centera and radius- into the (n — 1)-sphere inS" given by the
intersection with the hyperplane R+ whose equation isy, u(a, r)) = p(a, r). Obviously,
this is also true if we take-u(a, r) and—p(a, r).

(2) Foranyx € R,

v(a,r) =—Qa, lal?-r*=1), ula,r)=

2

lv(a, HII(lx]12 4+ 1)
Thus, the choice af(a, r) andp(a, r) is so that we obtain the height function by multiplying
the distance-squared function by a positive function. The other choie@of) andp(a, r)
would give a product with a negative function.

Let p € M be an isolated non-flat rounding gfand letxg € R" be such thatxg, p) €
XY™ (D). Then the map(x) = u(x, |x — g(p)|) is a local diffeomorphism froniR", xp)
into (8", vg), whereii(xg) = vg and so thatvo, p) € X™® (H).

(x —al®>—r?).

() ula,r)) —pla,r) =

THEOREM 2.13. Let p € M beanisolated non-flat rounding of g. Thenindz (g, p) =
indz(¢ o g, p), where the index of the flattening is considered with respect to the vector vg
and we choose the orientation in S determined by i (x).

PROOF. The first part is an immediate consequence of the above properties. To see the
second part, Note that

hay (@) — hae)(p) = A(x, )(dc(t) — dx(p)),

for some functiork(x, r) > 0, whered, (¢) is the distance-squared functiongpénds, is the
height function of o g.

By taking local coordinates iM, we can assume thaf = U, an open subset d&?™”.
Then,
aleln

_ o]
u(x) 0 dx
—(t) = Alx,t
a7 (1) = A(x,1) v

9l1Bld, alaly
ap D+ 55 (&, 0(d(t) —dx(p)),

O+ Y rapx,n

1=<|Bl<le|

for some functions., g(x, ). Thus,

OFE oy, (u(x), 1) = Alx, )0R(g, (x,1)) + A(x, 1)(dx (1) — dx (),

where A(x, 1) is av x v matrix whose determinant is(x, r)" > 0 andA(x,7) € R”. In
particular, this implies that the mapping degreedef at (vo, p) is equal to the mapping
degree ofi at (xg, p). O

3. Curvesin R". Letg : I — R" be asmooth curve iR", wherel C Ris an
interval. We have that: = 1 andv(m)) = k, so that we can considérroundings with
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k = n + 1 andk-flattenings witht = n. In fact, if g is given byg(#) = (g1(¢), ..., g.(2)),
then

a® g - g,
gt gt) - g/@)
F(g,1) = 9'(®) g ®) - g/ ®
a’® g - e
and: € I is a flattening ofg if and only if the determinant of the matrik(g, ¢) is zero at
¢. This definition agrees with the ordinary definition of flattening whém), . .., ¢ (1)
are linearly independent at any pomg I, so thatg has a well-defined Frenet frame and
curvaturesey, ..., ky—1. In this case it is obvious that € [ is a flattening if and only if
kn—1(t) = 0.
We next set
91(1) o) o g, 0
91 (1) g gl ()
Rig.n=| %4® '@ g gat)
wPo g WO e

wheregy satisfy the following formula:
o1(0) = gL (O% + - + g, (D7,
n
o)=Y g5 )+ g0, k=2.....n.
i=1
Thent € I is a rounding ofg if and only if the determinant of the matriR(g, ) is zero

atr. Again, in the regular case, we can translate this condition in terms of the Frenet frame
€, ..., 6, and the curvatures, ..., k,_1.

DEFINITION 3.1. Letg : I — R* be a smooth curve such thdtr), ..., ¢~V @)
are linearly independent at any point 1, and assume that it is parameterized by arc length.
At a pointt € I, wherek,_1(t) # 0, thecenter of the osculating hypersphere is the only
point u(r) € R" defined by the conditioty. (1), r) € X1m (D).

The proof of the following result can be found in [28].
PROPOSITION 3.2. Letg: I — R" beasin Definition 3.1. Then,
n=g+pier+---+ uUn€s,
where uy = 0, u2 = 1/k1, u3 = py/k2 and
ti+1 = (g +ke—1pi-1) /i for k=3,...,n —1.
Moreover, ¢ isa rounding if and only if

/,L;(t) +kp—1(O)pp—-1(t) = 0.
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§ — 4
= X N h““n.___& — N
A=0 a=0 A=<0
FIGURE 1.

ExXAMPLE 3.3. Ifn = 2, thenr € I is a rounding if and only ifu5(r) = 0, where
u2 = 1/k. Obviously, this is equivalent to’(¢r) = 0, which is the ordinary definition of a
vertex of a regular plane curve. In fact, in this case it is possible to show that

detR(g, 1) = =<' g O],
which implies that is a rounding if and only if it is a vertex, even whenr= 0.

The multiplicity of a flattening or a rounding is determined by the first non-zero term in
the Taylor expansion of dét(g, r) or detR(g, t), respectively. For instance, if we suppose
thatzo = 0 is a flattening and dét(g, 1) = axt* + - - -, with ax # 0, then+(g, 0) = k.

EXAMPLE 3.4. Letg: R — R?be the plane curve defined by (r2, r3). Itis easy
to see that this curve has a flattening and a rounding-a® with multiplicities . (g, 0) = 2
andur(g,0) = 3.

We consider now the deformatign defined byg, (1) = (¢2, (A + r%)t). The curvature
and its derivative are given by the following formulas:

2(32 — 1) ) 24t (—* + (Bh — D% + 1+ 202)
and «; (1) =
(4% + (A + 312)2)3/2 (4% + (A + 312)2)5/2
Thus, g, has two flattenings and three vertices near Di§ a small positive number angl
has no flattening points and one vertex near)0if a small negative number (see Figure 1).

K (t) =

ExamMPLE 3.5. Leteg, e1, e2 be non-negative integers. We consider the plane curve
g : R > R2defined by
g(t) = (1, t0rer  greotertezy
Then, by elementary computation, we have
detF(g,t) = ege1(eg + 61)t260+61_3 + .-,
detR(g, t) = efe1(eo + e1)(eq — en)t*0T178 4 ener (e + e1)3(eq + 2eq)r 03170
+aed(eg — e1 — e2)(e1 + €2)(eo + e1 + e2) (e + 2eq)rtoterte=t
In this case, the multiplicities are given lyr(g, 0) = 2¢9 + e1 — 3 and
deg+e1—6 if eg # e1,
Teg — 6 if eg=e1,2e1 <e2,
ur(g,0) = .
Teg — 6 if eo=e1,2¢1 =e2,a#1,
Beg+e2—6 if eg=e1,2¢1 > e2,a #0.
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The mapping degree of det(g, r) or detR(g, t) is equal, up to the sign, to the index of
an isolated flattening or rounding, respectively, whenever they are defined. This follows from
the proof of Lemma 2.7. However, we have to be careful if we want to take into account the
sign of the index. We only show the following result for roundings, where the sign makes
sense in any dimension.

ProPOSITION 3.6. Let g : I — R" beasmooth curve and let 1o € I be an isolated
non-flat rounding. Then, theindexindg (g, to) isequal to the mapping degree of — detR(g, 1)
at ro.

PROOF. The index ine (g, 10) is the mapping degree @fz : (R, (xo,10) —
(R**1,0) defined by
Or(x.t) = (9", x = g) — i),
wherexgp € R" is the only point such thakg (xo, 10) = 0.
Since we suppose that is a non-flat rounding, we have that ..., ¢""*Y have rank
n atrp. We assume, for instance, thgt ..., ¢ are linearly independent (the other cases
should be similar). Then, we can take the following change of coordinates:

)Eiz(g(i),x—g)—wi,l, i=1...,n.

This coordinate change transforis into
IR 1) = (% (9", 0. 1) = 9) — pn),
whereg (x, t) denotes the inverse of the coordinate change. In particular, this implies that
indz (9, 10) = sign(detty’, ..., g™)) degbr, (0, 10)) .
However, we now have that the mapping degreéspfat (0, 7o) is equal to the local degree
of (47D, ¢(0,1) — g) — ¢, atrg (sincedr is an unfolding of this function). Thus, it only
remains to show that
detR(g, 1) = —dety’, ..., 9" )((g"™,$(0,1) — g) — ) .

Let us denote by; the (n + 1, i) minor of R; that is,

-~

gi .« .. gl/ .« .. gr/l 0
Ri=| : -
a? g™ g g

It follows that

n
/ 1 1
detR(g. 1) = gadetly’, ..., g") + Y (-1 R,
i=1

On the other hand) (0, t) — ¢ is determined by the linear system

9", ¢0,0—g)=¢i-1, i=1...n.
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Thus, by the Cramer rule, we have that
. R;
((0,1) — g = ()" ———
¢( ) g ( ) de(g”""g(n))

In particular,

n
detR(g.1) = gndetly’,.... ™) =Y 6" (9i(0.1) — g) dety', ... g™,
i=1

which gives the desired result. i

4. Surfacesin R3. In this section, we suppose that U ¢ RZ2 — R3is a smooth
map given byg(u, v) = (g1(u, v), g2(u, v), g3(u, v)) which defines a surface R® (possibly
with singularities). Then the first and the second fundamental formg doe given by

| = Edu® + 2Fdudv + Gdv®, || = Ldu?+ 2Mdudv + Ndv?

where

E={9u,9u), F=Aqu0), G={9 ),
_ det(gua Gvs Guu) M= det(gua Gvs Guv) N = de'(gu’ Gus Gov)

VEG —F2 VEG —F2 ' VEG — F2

and subscripts denote partial derivatives. NaturdllyM, N are only defined if the denom-
inator does not vanish; that is, at the regular pointg.offmbilics are regular points of the
surface so that the second fundamental fosnprioportional to the first. Thus, we say that
(u, v) is anumbilic of ¢ if the rank of the matrix

E F G

L M N
is less than 2. Moreover, it is well-known that umbilic points of a regular surface correspond
to points where the two principal curvatures (or eigenvalues of the second fundamental form)

are equal.
In order to include the case whegenay have singularities, we can define a new matrix

L

U(g,(u,v))=(f/ o ﬁ)

where L’ = del(gu’gva Guu), M = de'(gua Gvs Guv), N = de'(gu’gva Guv)- This matrix
always makes sense. We observe that the rank of this matrix is not maximal either at an
umbilic or at a singular point of.

4.1. 2-roundings ofy. Now we look at 2-roundings (rounding, for short) of It
makes sense to look atroundings ofg, with k = 2. A rounding is a point where the rank of
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the matrix

91y 924 934
91y 92y 93y
R(g, (u,v)) = | 91 92uu  9Buu
9luv  92uv  YBuv
Jlvv  J2vv  93vw

QMmoo

is less than four.
The following result is well-known (see Porteous [24]).

PROPOSITION 4.1. Aregular point of asmoothmap ¢ : U ¢ R?> — R®isarounding
if and only if it is an umbilic. Moreover, it is non-flat if and only if the principal curvature is
not zero.

Now, we see that in the singular case, a rounding corresponds to a singular point which
is not of Whitney umbrella type. Remember that a singular point is a Whitney umbrella if
the map is generic in the Thom-Boardman sense (that is, its jet extension is transverse to the
Boardman strata).

PROPOSITION 4.2. Asingular pointof asmoothmap ¢ : U ¢ R? — R®isarounding
if and only if it is not a Whitney umbrella.

PrRoOOF If the mapg has rank zero atug, vo), it follows that it is always a rounding,
but it is not a Whitney umbrella (since the 1-jet extension &f not transverse ta?2).

Suppose now thathas rank one at, vg). Again we may assume thatg, vg) = (0, 0)
andg is given by

g(u,v) = (u, g2(u, v), g3(u, v)).

Then our matrixR(g, (u, v)) can be written in the following form:

1 92y 93u 0

0 924 93y 0 E =1+ 925 + 93,3 ,
0 92w 9Buu E F=92,92y + 93,930 »
0 2w %Buw F G = 923 + 935 .

0 @ 9w G

On the other hand, the mapdefines a Whitney umbrella if and only if its 2-jet section
is transverse to th&? strata. This holds if and only if

J2uv  Y3uv 40 ato.
92vy  93vw
This condition is equivalent to rank(g, 0) = 4. O

In the last part of this section, we study the index of a non-flat isolated rounding. From
Definition 2.10 we have that jp € U is a non-flat isolated rounding @f: U ¢ R?> — RS,
then there exists a uniqug € R3 such thatxo, p) € £22(D). Thenindz (g, p) is equal to
the mapping degree of the smooth map gérmR®, (xo, p)) — (R®, 0) whose components
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0;,i =1,...,5, are given by the following matrix equation:
1 91y 92y 93u 0
62 91y 92y 93y X 0
03| = | 91uu  92un  93uu Y|+ | E
21 Jluv  J2uv  JBuv < F
05 9lvy  92vv  93vv G

Letus denote by,, P,, P, P.y, Pyy the five maximal minors of the matriR(g, (u, v)).
That is,

o 0 g« 0O g« O g« O g O
Guu E Guu  E v 0 v 0 Qv 0
Py = . Py= . P = , Py = , Py = .
! G F v G F e G F " Guu E v Guu E
gw G gw G g G gw G g F

If we look at the proof of Lemma 2.7, we see that when the rounding is non-flat, then
C™(R®, (x0, p))/(61, - - .. 05) = C(R?, p)/(Pu, Py, Puus Puv, Pov) -

This implies that we can choose a pair of elemebPt® < {P,, Py, Py, Puv, Pyy} Which
generate the ided& (g, p). Moreover, we have that the mapping degreé & equal, up to
sign, to the mapping degree @®, Q) : (R2, p) — (R2,0).

The relations among,, P,, P,., P.v, Pyy are given in the following form:

(4-1) giuPu_givPv+giL¢uPMu_giuvPMv"'givavv:O’ i=123,
4.2 EP,,— FP,, + GP,, =0.

4.2. Principal directions. We have another index at an isolated rounding, which is
associated with the principal directionsgfSuppose that, v) is a regular point which is not
umbilic. Then theprincipal directions of g at (u, v) are defined as the directions determined
by the eigenvectors of the second fundamental fort at). Then we find that the principal
directions are given by the equation

91y 92y 93 O 0

91y 92y 93v 0 0

9w Puw Buw E dv? | = Puudv? + Puydudv + Pyydu® = 0.

Jluy  Puv  PBuw F —dudv

Jow  P2e Buw G du?
Thus, the principal directions define a pair of orthogonal line fields in the surface, which are
singular either at an umbilic or at a singular pointflf p € U is an isolated umbilic or
an isolated singular point aof, we denote by ind(g, p) the index atp associated with any
of these line fields. This is a half-integer and is equal to the number of turns of the line field
when we run through a small circle A centered ap.

The classification of generic umbilics goback to Darboux [5]. He found that there are

three types; namely, the lemon By, the monstar oD, and the star oD3. Moreover, he
gave a description for the configuration of the curvature lines (integral curves of the principal
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directions) in each case. In fact, it was shown by Gutierrez and Sotomayor [10] (see also
the work by Bruce and Fidal [3]) thatis principally structurally stable at an umbilic if and
only if it is one of the Darbouxian umbilics. Bpoking at these configurations, it is easy to
compute the index ind(g, p): D1 andD; have index 12, while D3 has—1/2.

The configuration of principal lines at a generic singular point can be found in [7] (this
is a corrected version of some erroneous results appearing in [11]). It follows that a singular
point of ¢ is principally structurally stable if and only if it is a Whitney umbrella. More-
over, from the description of principal lines at a Whitney umbrella we deduce that the index
indp (g, p) is 1/2.

In Figure 2, we present drawings for the configuration of principal lines at Darbouxian
umbilics D1, D2, D3 and at a Whitney umbrell&/, obtained with theSuperficies program
[21]. As a consequence, if the mapis not generic, we can take a generic deformatpn
and the index ing (g, p) is equal to(D1 + D2 — D3 + W)/2, whereD1, D2, D3, W denote
the number of umbilics of each type or Whitney umbrella that appegr ivearp, for » = 0
small enough.

Moreover, the differential equation for principal lines can be seen as a particular case of
a positive quadratic differential (PQD) form in the sense of [9]. In local coordinatas, a
PQDformis given by

w=A(u, v)dv2 + B(u, v)dudv + C(u, v)duz,

whereA, B, C are smooth functions such tha? — 4AC > 0 andB? — 4AC = 0 if and
onlyif A = B = C = 0. The points wherel = B = C = 0 are calledsingular points of
. Associated witho we have a pair of transversal line fields corresponding to the roats of
which become singular precisely at the singular poinis.of hus, if p is an isolated singular
point of w, we can consider the index i, p) associated with any of these line fields.

The following lemma, whose proof can be found in [13, Part 2, VIII, 2.3], shows that
the index of an isolated singular point of a PQD form is related to the mapping degree of the
coefficients.

LEMMA 4.3. Let p beanisolated singular point of the PQD formw = A(u, v)dv? +
B(u, v)dudv + C(u, v)du®. Then,

: 1 1
ind(w, p) = ~5 ded(A, B), p) = 3 ded(B,C), p),
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where deq(A, B), p) and deg(B, C), p) denote the mapping degrees of the maps (A, B)
and (B, C), respectively, at p.

As an immediate consequence, we get the following result, which allows us to com-
pute the index of the principal foliation in terms of the mapping degree of the coefficients
Puu’ Puv’ va-

COROLLARY 4.4. Letg:U c R?> - R®bea smooth map and let p € U be either
an isolated umbilic or anisolated singular point of g. Then,

. 1
indp (g, p) = =5 ded (Puu, Puv) ; (R%, p) — (R?,0)}
= _% dequ')uvs Pyy); (sz P) — (st O)} .

4.3. Indices of roundings. We apply Corollary 4.4 to find relations between the index
defined by principal directions inelg, p) and the index ing (g, p). However, we have to
distinguish cases depending on the rank at p.

4.3.1. Ranktwo case. We start by considering the case wheris a regular point.

THEOREM 4.5. Let g : U Cc R?2 — R3 beasmooth map and let p € U be a non-flat
isolated umbilic of g with principal curvature k £ 0. Then,

. 1. .
|nd’p(g, p) = E Slgr(k) Ind'R(gv p).

PrROOF. We will assume for simplicity thap = 0 is a non-flat umbilic and thaj is
given by the Monge normal form(u, v) = (u, v, w(u, v)). The matrixR (g, (1, v)) is equal
to
wy 0
Wy 0
Wy, 14+ wf ,

Wyv Wy Wy
Wyy 14 wf

[eNeNolNol
eoNeNol JNe]

and
Puy = wyy (1 + wg) — wyy(1+ w,f) » o Poy = wywwy — wyp (T4 wﬁ) .

On the other hand, the index indg, p) is equal to the mapping degree of the map germ
6 given by

01 1 0 wy 0
6o 0 1 wy X 0
63l =10 0 wu ||y]|+]|1+w?
04 0 0O wyy z Wy Wy
Os 0 0 wyy 1+w12)

at the pointP = (xo, yo, zo, 0, 0) such that (xo, yo, z0, 0,0) = 0.
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We can define new coordinatésy, Z by

X 1 0 w, X 0
yl=10 1 w, y |+ 0
z 0 0 ww/) \z 14 w?

Note thatk # 0 implies thatw,,, # 0. Moreover, sigtk) = sign(w,,). Then, it follows that
degd = sign(k) degd, whered is the composite of with such coordinate change. A simple
computation gives that

X o~ o~ Y n - W2t Py wyZ+ Py
0(x,y,z,u,v) =1|x,y,2, , .
Wyu Wyy

In particular, we get that

degd = deg{ ( Pov , @> 1 (R%,0) — (R, 0)} = —deq(Puy, Pov); (R%,0) > (R?, 0)}.

Wyy Wyy

a

COROLLARY 4.6. Letg: U c R> - R®beasmoothmapandlet p € U bea
non-flat isolated (either regular or singular) rounding of g and let g, : U — R3 beageneric
deformation of g, with A € (—¢, ¢). Then,

indg (g, p) = Dy — D] +Df — D, — D + D3,

where Di*, D;” denote the number of umbilics of type D; with positive or negative principal
curvature, respectively, that appear in g, near p.

REMARK 4.7. The classical Carathéodory conjecture states that every smooth convex
embedding of a 2-sphere R? must have at least two umbilics. This conjecture has a stronger
local version, known as the Loewner conjecture, which states that the indegging) at any
isolated umbilicg of a smooth regular surfage: U — R®is always< 1. Since the sum
of the indices of the umbilics of a compact immersed surface is equal to its Euler-Poincaré
characteristic (according to tfRoincaré-Hopf formula) it follevs that the Loewner conjecture
implies the Carathéodory conjecture, not only for a convex embedding of a 2-sphere, but for
any immersion (non necessarily convex). The Loewner conjecture is known to be true in the
analytic case, although there is much controversy about the correct proof (see [14, 31]).

It would be interesting to see if indg, p) < 1is true or not in the rank one case and
provided thafy is analytic. If this is true, we should obtain an extension of the Carathéodory
conjecture for surfaces with rank one singularitie®

In the rank O case it is known that this corjge is false. In fact, it is not difficult
to construct a surface with an isolated umbilic of index two. Here we present an example
which is inspired by the example given in [2]. Consider the mpapR? — R2 given by
g(u,v) = (1/3)(—u® — 3uv?, 3u?v — v3, 3u® — 3v*). In Figure 3 we compute the principal
lines of this surface and show that it has an isolated umbilic of index two at the origin.
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FIGURE 4.

4.3.2. Rank one case. In the rank one case, the formulas of Corollary 4.4 are still true.
However, we have to be careful, because in this case, the indgxdng) not only counts

the number of umbilics that appear in a generic deformation, but this also includes the number
of Whitney umbrellas.

EXAMPLE 4.8. Let us consider the smooth family of surfages RZ — R2 defined
by

o (u,v) = (u, v2, v(A + v? — u2)) .

Forx = 0, go has an isolated singular point of rank one at 0. For 0, g, is generic and has
two Whitney umbrellas and two umbilics of tyges near 0. Fon. < 0, g, is regular and has
no umbilics. Thus, it follows that the index ipdg, p) is equal to zero. The configuration of
the curvature lines near 0 is shown in Figure 4 in the three cases.

In the rank one case, we can also obtain a formula to compute the indgxgingd)
provided that the rounding is non-flat and isolated. However, it is not clear at all which is the
relation between this index and the index of the principal foliatiori@yd p).

Assume thatp = 0 and thaty is given in the formg(u, v) = (u, g2(u, v), g3(u, v)),
wherego, g3 € (u,v)2. We have seen that has a rounding at O if and only if it is not a
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Whitney umbrella and it is non-flat if and only if the following matrix has rank two at O:

92y 93y
92uu Y3uu
92uy  GBuv
J2vv G3vv

Let us denote the maximal minors of this matrix by

g2y 93y 92y g3y 92y g3y
D12 = , Diz= , Dis= ,
P2uu  J3uu 924y 93uv 92vv  93py
gzuu g3uu gzuu g3uu gzuv g3uv
Do3 = , Dos= , Dzs= .
gzuv g3uv gzvv g3l)l) gzvv g3'l)'l)

It is obvious thatD12, D13, D14 = 0 at 0. The fact that it is not a Whitney umbrella is also
equivalent toD34 = 0 at 0. Hence, it is non-flat if and only if eithér,z # 0 or D4 # O.

THEOREM 4.9. Let p = 0 € U be an isolated non-flat rounding of rank one of the
smoothmap ¢ : U C R? — R3given by g(u,v) = (u, g2(u, v), ga(u, v)), With g2, g3 €
(u, v)2. Then,

— sign(D23) ded (P, Py) : (R?, p) —> (R, 0)} if D2z #0,
— sign(D24) ded (Py, Puy); (R?, p) — (R?,0)} if Das #0.

PROOF. By definition, we have that ing(g, 0) = dedé ; (R°, 0) — (R®, 0)}, whered
is given by

indr (. p) = {

61 1 g 93 0
b2 0 g2, g3 | (x 0
03| =10 92uu Y3uu Y|+ 1|E
04 0 92uv  Y3uv < F
05 0 92u 9w G

Assume thaiD,3 # 0 at 0. We can define new coordinaies, z by

x 1 g, 93u x 0
X =10 92uu Y3uu Y|+ E
< 0 92uv  Y3uv < F

Then, it follows that de§ = sign(D23) degd, whered is the composite o with such a
coordinate change. A singcomputation gives that

0(X.5.%.u v)—()? Pov 4 by, 5.2 i+hz)
' Dos VT ,
wherehi, hp € (x, y, Z). In particular, we get that

- Py P
deg = de (. 5+

The caseDo4 # 0 is analogous. O

) ; (R?,0) — (R?, 0)} = —ded(Py, P); (R?,0) — (R?,0)}.
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REMARK 4.10. WhenDy3 # 0, we can use (4.1) and (4.2) in order to obt&ip in
terms of P, and P,,. In fact, it follows thatP,, = (D12P, + D24P,,)/ D23, Which implies
that

. 1 1 .
Ind'p(g, p) = _E deQ(Puvv Py} = _5 sign(D23) deg(DlZPv: Pyy)}.
Analogously, ifD24 # 0, we getP,, = (D14P, + D34P,,)/ D24, Which gives

. 1 1 .
Indp(g, P) = _E dGQ(P,m, P} = _E SIgI"(D24) deQ(Dl4Pv7 Puy)}.

Note thatD12 = D14 = 0 at 0, so that they have a relevant contribution to the mapping degree
of such maps.

4.3.3. Rank zero case. In the rank zero case, it is possible to obtain a similar result. Note
that a rank zero rounding of amgp U ¢ R? — R®is non-flat if and only if

9Ly 9luv  Glvw
D=\92u %2uw 92w
g3uu g3uv g3uv
is not zero atp. The proof of the following theorem is omitted, since it can be obtained by
using the same argument as in the proof of Theorem 4.9.

THEOREM 4.11. Let g : U c R2 — RS be a smooth map and let p € U be an
isolated non-flat rounding of rank zero of ¢g. Then

indr (g, p) = —sign(D) ded (P, P,) ; (R%, p) — (R?,0)}.

EXAMPLE 4.12. Consider the map : R — RS defined by(u, v) — w2, uv, v2).
This map is generically two to one. If we take a deformation of this map, there is (at least) one
Whitney umbrella near 0. On the other hand, a simple computation shows that the mapping
degree of P,, P,) is—1 and hence ind(g, 0) = 1. We can conclude that there exists at least
one umbilic point near 0 in any deformation @f On the other hand, it is not difficult to see
that the mapping degree OP,,, Py,) is —2 so that ingb(g, 0) = 1.

In fact, we can consider the generic deformatigiu, v) = (42 + Av, uv, v2 + Au).
For A # 0 small enoughg; has just one umbilic of typ®; with positive principal curvature
and one Whitney umbrella near the origin (see Figure 5(a)). However, if we take a different

(a) (b)

FIGURE 5.
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generic deformatiom (u, v) = (U2 + Av, uv + Au — Av, v2 — Au), this deformation has
one umbilic of typeD3 with negative principal curvature and three Whitney umbrellas (see
Figure 5(b)).

5. Complex coordinates. In this section, we discuss the possible values for the index
of an isolated umbilic of a regular surface in terms of the coefficients of the Monge normal
form:

(5.1) g=0(91,02 93 :RP >R, (u,v) = (u,v, wu,v)).

To simplify notation, we identifyR? with C by introducing the complex coordinatedefined
byz=u+iv.

THEOREM 5.1. Weassume that 0 is an umbilic. Then we have
. 1 1
indp(g,0) = —5 deg{QD ;(C,0)0— (C,0, z+> w“(i + wzw5> - wzngz} .

To prove this formula, we recall some basic facts about complex coordinate. We set
z=u+iw,z=u—and

e dutide. d=— du—id o _0 ., 0 9 _ (b 3
=du+1dv, =du—idv, —=_—+—-, —=il——-=].
¢ . du 9z 9z ov 9z 9z

Then, for any functiory’ = f(u, v), we easily obtain the following relations:

fu 1. 11 0 0 0
fv fz i —i 0 0 O
fuul =B fz|, whereB=]0 0 1 2 1
Suv Sz 0O O i 0 —i
Sov Sz 0 0 -1 2 -1

We can write the first fundamental form in termszadindz in the following form:
| = (dg1)® + (dg2)* + (dg3)* = Ecdz® + 2Fcdzdz + GedZ?,

whereEc = 12 + 922 + g32, Fc = g1.91: + 92,92z + 93.93:, Gc = g12 + 922 + ga2. Now
we consider the matrix

91, 92; 93 0 9y 92u  93u O
g1z g2z g3z O 910 920 93y O
91zz 92z 93z Ec| = Bt 9w Pun PBuu E |
91z 92;z 93z fc Jluv  Puww Buw F
91z 92zz 93z Ge Ty v Bow G

and observe the following relations:
9, 92; 93, O
Poe — g1z g2z 93z 0 _ Pyy — Pyy — iPyy _ FPyy — (E + G)Pyy +IEPyy
= 91 92z 93z Ec 16 16E ’
91z 92z 93z Fc
For the last equality we use (4.2).
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PrROOF (Proof of Theorem 5.1). In the above formula, we have

1 F E
PZZ_]-G—E(PMIMPU‘U) (—(E+G) O)

and we conclude that de®y: = ded P,y Pyy), Which allows us to compute the index of an
isolated umbilic by Theorem 4.5. We thus complete the proof, since

1/2 —i/2 w, 0
P = 1(/)2 l/02 ;)Uzzz u?zz — % (wzz <% + wsz) — wZsz2> . O
0 0 wsz 1/24+ w,w:
Now we assume that
(5.2) w = EZZ + }C + iQ + iU + higher order terms
2 6 24 120

wherek is the principal curvature at 0 and
C=az®+3p%2+3pz2 +a 3,
0 = yz* +45°% + 6¢2%22 + 45225 + 7 24,

andU is a homogeneous polynomial of degree five. Then we conclude that

g\6 30 6

and the Jacobian @b is equal to

1 1/1 3.2 1/1 1, 1, )
¢:1_2sz+_ Q:: — k72 +Z _Uzz+_kZZsz_§k 1€ —kZ°Cz ) + -

1
@212 = 1@z = Z (o = 1B + -+
Now we recover the following well-known fact by Theorem 5.1.

PROPOSITION 5.2. If |a] > |B] (resp. |a| < |B]), thenindp(g,0) = —(1/2) (resp.
1/2).

These cases correspond to the generic cases if

azd+ B2z — pP—az®

has no multiple zeros (see [25, 12.4], [3, Section 2]).

PrROPOSITION 5.3. Consider the Monge normal form (5.1). We assume that

k .
w = EZZ + H + higher order terms,

where H isa nhon-zero homogeneous polynomial of degree n with n > 3. Then:
e ifn >5andk # 0,thenindp(g, 0) = 1;
e ifn >5andifthemap H : (C,0) — (C, 0) isfinite, thenindp (g, 0) < 1;
e if wisanalyticandn # 4,then |indp(g,0)| < (n —2)/2.
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PrROOF. We easily obtain that
(z) = (1/2)H,, — (1/8)k°Z% + - - -,

which shows the first assertion by Theorem 5.1. SiAceis not identically zero, we may
assume that the imaginary part Hf, is not identically zero. We assume thatis a finite
map andw is analytic. Then the image of oriented cirélec C; |z| = ¢} cut the real axis at
most 2n — 2)-times, which impliegdeg®| < n — 2. This shows the last assertion.

We show the second assertion. We assumefhat (C,0) — (C, 0) is finite. Since
degH,, = deg?®, it is enough to show that ddg,, > —2. We define a real-valued function
h(0) by H(re') = r"h(0). Leta, (resp.a_) denote the number of positive local maximum
(resp. minimum) of.. We easily see; > a_. We define the mag by

G:(C,00— (C,0, reé—r"2(mmn—2h®) —h"©)+i2n— LK ®)).

SinceH.. = (1/4)e¢~%?G, we have dedl.. = degG — 2 and it is enough to show that
degG > 0. Consider the sef = ST N G~1{x > 0,y = 0}. Each point ofZ is a critical
point of & with n(n — 2)h — h” > 0. Letb,, b_ denote the numbers of local maximums and
minimums of# in the regionn(n — 2)h — h” > 0. Sinceay < by, a_ > b_, we obtain
degG =by —b_>ar —a_ > 0. O

PROPOSITION 5.4. Consider the Monge normal form (5.1) with (5.2). Assumethat C
isidentically zero, and (y, 8, c1) # (0, 0, 0) where c1 = ¢ — k3/2. Set

y 25 ¢1 O
0 25 1
=0 Y2 A 23y 2 4 28D + 8 (v8Der + Iy Rl 12 — 41812
ct 25 y O
0O c1 26 vy

We choose 61 so that 1 = ye*1 isa non-negative real number. Define real numbers p, g by
81 =8e~%1 = p 4 4i. If Oisanisolated umbilic, then we have the following:
(1) lindp(g,0) = 1;
(2) ifR>0,lc1| < y1 (resp. [c1| > y1), thenindp (g, 0) = —1 (resp. 1);
(3) if R <0,thenindp(g,0) =0;
(4) ifR=0andc? - yZ # 0, then |indp(g, 0)| < 1/2;
(5) if R =c?— y?=0,thenindp(g, 0) = 0 except for the following two cases:
(@ c1—y1=0,9=0,1p| <lecl;
(0) c1+y1=0,p=0,lg] > [c1l-
ProOF. (1) We easily obtain that
D(2) = (Q:,/6— k%29 /8+ - = (yz2 + 2522 + c129) /4 + - -,
and @ has rank zero at 0. Ify, 8, c1) # (0,0, 0), then the initial form is of degree 2 and
|deg®| < 2. This implies (1).
(2) and (3) Observe that is the resultant of the initial form o and@®. If R # 0,

then the initial part is a homogeneous map of degree two with finite multiplicity. We may
assume thay # 0. This implies that is semi-quasi-homogeneous and the mapping degree
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FIGURE 6.

of @ is equal to the mapping degree of its initial part (see [4]). Moreover, the initial part has
multiplicity 4 and according to [6], the mapping degreefotvill be +£2 or 0.
Settingz = z1¢%, we have
0= Vlz‘f + 45_11?51 + 6CZ%Z_12 + 4512123 + 1 21t
R = (2 —y}?/4— (c1— y)?p® — (c1+ v1)%?.
By looking atci, y1, p, ¢ as coordinates iR4, it is not difficult to see that the equation
R = 0 separates the regidp; > 0} of R* in four connected components, corresponding to
the following regions: (1R > 0, |c1] < y1; Q) R > 0,c1 > y1; )R > 0,c1 < —y1; and
(4) R < 0. Since the mapping degree will be constant on each of these regions, it is enough to
compute the value of the mapping degree for a particular geint1, p, ¢) in each region.
In Figure 6, we show the zero locus Rfwith y; = 1 in the(c1, p, g)-space.
In the region (1), we take; = p = ¢ = 0 andy; > 0. It follows that® = y1z% + - - -
so that the mapping degree &fis 2.
In the regions (2) and (3), we talg = p = ¢ = 0 ande1 # 0, so tha® = ¢172/4+- - -
and the mapping degree+2.
Finally, in the regionR < 0, we takec1 = y1 > 0, p = 0 andg # 0. Then® =
(1/2)(y1(u? — v3), g(w? + v?)) + - - -, which has mapping degree 0.
(4) We firstassume thaﬁ — ylz # 0. Then the conditio®® = 0 is equivalent to

p2 6]2

+ =1,

((c1+yD)/2?  ((c1—y1)/2)?

which defines a surface parameterized by
_a + 71 c1— V1

sinfy, 0<6r<2rm.

costy, g =

Then, setting1 = u1 + v1i, we obtain that

_ (aa+yvg — (1 —y)gai
N 2

wherego = u3 C08602/2)+v1SiN(02/2), g1 = u1 C0Y02/2)—v1SiN(B2/2), g2 = u1 Sin(B2/2)+
v1€0962/2). If we know the image of the ling¢go = 0} by @, we can decide the mapping

1 _ _
P = Z(VlZ% + 2812171 4 1219 + -+ - go+---,
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degree. Case-by-case analysis shows thatis finite, then|deg®| < 1, and we complete
the proof of (4).

(5) Assume nextthak = 0 andc? — y2 = 0. Thency — y1 = 0 orcy + y1 = 0. If
c1—y1 =0 (resp.c1 + y1 = 0), theng = 0 (resp.p = 0) sinceR = 0. We then obtain

= Cl;pu%— Cl;pvf—i—o~ (resp.@ = —(%u%—i—clulvl—i-%vf)i—i-"').
The proof follows from the fact that the quadratic pardois definite and, hence, the mapping
degree ofb becomes zero. O

REMARK 5.5. Assume that is identically zero angy = § = ¢1 = 0. Thenw is
given by
k k3

= 2-2
w==77— —z?Z2+H+
2ZZ 3 7z

whereH is a hon-zero homogeneous polynomial of degree5. If & = (1/2)H,, + --- is
a finite map, then 0 is an isolated umbilic af®tl— n)/2 < indp(g,0) < 1, by a discussion
similar to the proof of Proposition 5.3.

ExamMpPLE 5.6. We finish this section by showing that it is possible to construct sur-
faces with umbilics of any index 1. Letn be an integer witlh > 2. Consider the surface
defined byw = (z" + z"*)/2. Then we have
nin—1

( )ZM—Z

P(z) = 5

and ind>(g,0) = —(n — 2)/2.
Similarly we consider the surface definedby= (z7)" (z"* + z")/2. Then
m(m — 1) n
(m—i—n)(m—i—n—l)Z >+
which is a map of mapping degree- 2. Thus, we getingd(g,0) = —(n — 2)/2.

D()=m+n)(m+n— 1)(Zz)n17222 (Zn I

6. Surfacesin R*. In this last section, we consider a smooth mapl/ ¢ R — R*
given byg(u, v) = (g1(u, v), g2(u, v), g3(u, v), ga(u, v)), which defines a smooth surface in
R* (possibly with singularities). We look at the 2-flatteningsjpivhich correspond to points
where the matrix

91y 92y 93y 94y
91y 92y 93y 94y
F(g,t) = | 91uu  92uu  93uu  94uu
9y 92uv  Y3uv  Ghuv
Ilov  P2vv  Y3vu  Ghwu
has rank< 4.

On the other hand, the geometry of regular surfaceR?as been studied by several
authors. The local second-order invariants of these surfaces were described by Little [16] in
the following way: we have a first fundamental form

| = Edu? + 2Fdudv + Gdv?, E = {(gu,g9:)» F= {9 ) G= g ),
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and two second fundamental forms

Il; = Lidu® + 2M;dudv + N;dv?, Li = (guu, ei)
Mi:<guvsei>7 Ni:(gvvsei>7 i:1721

with {e1, e2} an orthonormal basis of the normal plane to the surface at the point (this only
makes sense at the regular pointsgdf Associated with these quadratic forms we have the
following functions:

L1 2M, N 0
1L, 2M, N> 0
410 Ly 2My; Ni|’

0 L, 2M; N>

o= (Ll My Nl)
Ly My N»)°
That is, A is the resultant of the two second fundamental for&isis called theGaussian
curvature of g and it is shown in [16] that\, K and the rank o& are coordinate independent.
Then, we can classify the points of the surface in terms of these functions as follows.
(1) If A <0, the pointis said to blyperbolic.
(2) If A > 0, the pointis said to beliptic.
(3) If A =0,the pointis said to bparabolic.
(4) If « has rank< 2, the point is said to be aimflection. Moreover, we have the
following types of inflection:
(a) if K > 0,itis an inflection oimaginary type;
(b) if K <0,itis an inflection ofeal type;
(c) if K =0,itis an inflection oflat type.

K = L1N1 — M? + LoN» — M3,

and the matrix

PROPOSITION 6.1. Aregular point of a smooth surfacein R* isa flattening if and only
if itisan inflection.

PROOF. Sincey is regular, we may assume that our point is the origiR®&nd thaty
is given byg(u, v) = (u, v, g3(u, v), g4(u, v)), with

g3 = (a1u2 + 2b1uv + clvz)/2+ e, ga= (a2u2 + 2bouv + czvz)/2+ cee

Then, we have

1 0 0 O

01 0 O b ¢
F(g,00=]10 0 a1 a2 and «(0) = <a1 L Ll) .

0 0 b1 by az bz c2

0 0 ¢1 2

Here we taker; = (0,0, 1,0) andex = (0,0, 0, 1) as an orthonormal basis of the normal
plane tog at 0. The result is clear now. m]
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REMARK 6.2. It follows from the above proof that ifis a regular point ofy and the
matrix F'(g, t) has rank< 3, thenr is an inflection of flat type.

The multiplicity of a flatteningu = (g, p) is related to the number of generic inflections
that appear in a generic deformationgofiearp. Recall that it is defined by
1r(g, p) =dimgr C®(R2, p)/F(g, p),
whereF (g, p) istheideal generated 1, Py, P, Py, Pyy, the maximal minors of (g, 1):

P, = de(gv, Guu> Guvs> Gov) s Py = det(gu: Guus Guvs Gov) »
Py = del(gu’ Gus Guvs Gov) s Pup = del(gu’ Gus Guus Gov) »  Pov = det(gua Gvs Guu> Guv) -
Moreover, the relations between these five generators are given by:

giuPLl - givPv + giuuPMLl - giuUPMv + giUUva = 0 (l = 11 27 31 4) .

When rankF (g, p) = 3, we can consider the index ipdg, p), which is defined as the
mapping degree af : (53 x R?, (vo, p)) — (R®, 0) given byd (v, 1) = F(g, t)v andvg € 3
is chosen so thatvg, p) € X%2(H). Since we have two possible choices for the vector,
namely+tuvo, the index is well defined up to sign. We have the following possibilities.

(1) Rank 2 case. Sinceg has rank 2, we see tha}, g, and one of{ g,u, guv, Guv}
are linearly independent at Suppose, for instance, that, g,, g, are linearly independent.

Then,P,,, P,, generate the ided (g, p) and
[indz(g, p)| = |ded Pyuy, Pyo)l -

(2) Rank 1 case. In this case one ofg,, g,} and two of{g,., guv, gvv} are linearly
independent ap. Suppose, for instance, thaf, g.., g.» are linearly independent. Then,
P,, Py, generate the ided (g, p) and

lindx(g, p)| = |[deg Py, Pyy)l .

(3) Rank 0 case. Now the only possibility is that,,, g.v, gvv are linearly indepen-
dent atp. Then,P,, P, generate the ide& (g, p) and

lindz(g, p)| = |deg Py, Py)l.

As in the case of a surface R?, the index ing=(g, p) is related to an index defined by a
geometrical line field in the surface, namelgtfield of asymptotic directions. According to
[8], theasymptotic directions at a regular point are given by the quadratic differential equation

91y 92y 93y 94y 0
9y G2y 93y 94y 0 , ,
Jluw  92uu YBuu  Yuu dv? = Py dv® + Pypdudv + Pyydu®=0.

9y 2uv  YBuv  Ghuv —dudv
Jlvv  92vv  93vv  Ghwo du?
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Moreover, the sign of the discriminant of this equation coincides with the sign/ofThus,
at a hyperbolic point there exist exactly two asymptotic directions; at an elliptic point there
exist no asymptotic directions; at a parabolic point which is not an inflection, there exists
exactly one asymptotic direction; and at an inflection, all of the directions are asymptotic.
Suppose nhow that is an isolated inflection of imaginary type. This implies titat= 0
andK > O atp and thatA < O for all# # p in a neighborhood op. In particular, we have
a pair of asymptotic directions defined in such a neighborhood with an isolated singularity
at p. The index associated with these asymptotic directions will be denoted by dng).
The configuration of the asymptotic lines at a generic inflection of imaginary type has been
obtained recently in [8], where they show that the only possibilities are again the Darbouxian
configurations, with index-(1/2).
Note that if p is an inflection of imaginary type, then the conditi&n> 0 ensures that
both {g,, 9v, guu} @and{g., 9v, gvv} are linearly independent. Meover, they determine the
same oriented 3-plane. That is, we have a canonical choice for the vgatos such that
(vo, p) € £33(H). This choice is given by

— Gu NGy A Guu (p) = Gu N Gv N Guo
9u A go A Gudl 9 A gu A guoll
Thus, in the case of an inflection of imaginary type, we have a well defined indexgng).

(p).

THEOREM 6.3. Letg: U c R? - R*beasmooth map and let p € U be anisolated
inflection of imaginary type of g. Then

. 1 1 1.
Ind_A(g, P) = _E dGQ(PLm, Puv)} = _E deg(Puvv va)} = E Indy:(g, P) .

PROOF Since in this case botfy,, ¢,, guu} @and{g., 9», gvv} are linearly independent,
both {P,,, P,,} and {P,,, P,,} generate the ideaF(g, p). Then, the two first equalities
follow from Lemma 4.3. To see the last equality, we will show that it is true for a generic
inflection. In the general case, we can show tsult by taking a generic deformationgof

If p is a generic inflection, then the multiplicity (g, p) is one. Therefore, the map
germs(Pyy, Puwv) : (R2, p) — (R2,0) and(Pyy, Puo) : (RZ, p) — (R2,0) are regular.

In general, ifp is an inflection, we may assume that= 0 and thatg is given by the
Monge normal formy(u, v) = (u, v, g3(u, v), ga(u, v)), with

g3(u, v) = (au’+2buv+cv?®) /24,  galu, v) = (pu+3quv+3ruv’+sv%)/6+-- - .
Thenrpu =P, = 0 and
Py = (br_CQ)bt+(bS—Cr)v+... ,

Py, = (ar —cp)u + (as —cq)v+-- -,
Py, = (aq — bp)u + (ar —bg)v+--- .

Note that if the inflection is of imaginary type, it follows thit= ac — b2 > 0. In particular,
ac > 0.



ISOLATED ROUNDINGS AND FLATTENINGS OF SUBMANIFOLDS 501

We now compute the Jacobian determinant$®f,, P,,) and (P,,, Pyy) Which give,
respectivelyc A anda A, with

A=a(r?®—gqs)+b(ps —rq) +c(g®>—rp).

Thus, the fact that the inflection is generic implies thag O.
To see the value of ind(g,0) we have to compute the Jacobian determinant of
0 : (53 x R2, (v, 0)) — RO given byb (v, 1) = F(g, t)v, where
_ NGy N Guu
g A Go A Gl
It is not difficult to see that if: > 0, thenvg = (0, 0, 0, 1) and the Jacobian determinanttof
is—A;if a <0, thenvg = (0, 0, 0, —1) and the Jacobian determinanttois A. O

).

REMARK 6.4. Note that an umbilic of a surfagen R is carried by the inverse of the
stereographic projectioh : R® — $% < R%*into an inflection of the corresponding surface
£ o ¢ in R* (see the end of Section 2). Moreover, it follows from Theorem 3 of [18] that the
curvature lines ofy are carried into the asymptotic lines&é g. Therefore, ifp is an isolated
umbilic of ¢, thenp is an inflection of imaginary type &f o ¢ and

ind’p(g, p) = IndA(S °g,p).
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