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Abstract. We give a result on strong unique continuation property for a certain elliptic
system of first order in the two dimensional space. Two coefficient matrices are normal and
commutative with each other. We assume, further, that their components are Hélder contin-
uous and have continuous first order derivatives except at one point. Without any regularity
assumptions on the eigenvalues, we can show the strong unique continuation property for a
class of such systems under certain quantitatomeditions on the first order derivatives. This
result gives an improvement of a work by G. N. Hile and M. H. Protter in a special case.

1. Introduction. In[4], Hile and Protter obtained an interesting result on unique con-
tinuation property for a class of elliptic systems in two independent variabless2Llet a
nonempty open connected subseR3f Without loss of generality, we may assume that it
contains the origin. They considered a system of the form

(11) |”x +N(x’)’)”y| §M|u|7 (xa)’)E-Q,

whereN is anm x m matrix with complex entries of clagg!(£2) andM is a constant.
They proved there, roughly speaking, thadvifis a normal elliptic matrix, any solution
of (1.1), satisfying

(1.2) Iimo(exp(xz + 3P ux,y)=0 forall B >0

vanishes in2 (Theorem 2 in [4]).

Unfortunately, their assumption (1.2) that the solution must vanish of exponentially order
at the origin is too restrictive, at least, in at@én case. Indeed, we can show that if there exists
a non-real complex numbersuch that all the eigenvalues M0, 0) are equal to either or
¢, the functionu € C1 that satisfies such systems and vanishes of infinite order at the origin
is identically zero. In addition, we can treat non bounded potentials.

We emphasis that there is no regularity assumptions on the eigenvaliiéa ofur work
as well as in [4]. This prevents us to use a usual smooth diagonalization approach, employed
by Carleman [1] and Douglis [2]. To overcome these difficulties, we shall use a technique
developed in our early works for the Dirac or Maxwell equations ([3] and [5]).
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2. Statementofresult. Lets2 be anonempty open connected subs&ofontaining
the origin. We defing2 = £2\{0}. We denote by the distance betwedn, y) and the origin.
BL¥(£2) denotes the class of functiorfsdefined ons2 satisfying thatf is Holder continuous
of orderk

[f(X)— f(X)|<C|X —X'|* forall X,X e,
and it is continuously differentiable i such that

lim  sup {r| fe(x, V)| +r|fy(x, y)|} = 0.

P=>Y0<r<p
We consider the system of differential operators
A(x, y)dx + B(x, y)dy,

where A and B arem x m normal matrices defined is2. Further, we assume that they
commute with each other, and eitheéor B is invertible at any point of2. Thus, locally, it is
equivalent to the following system.

Lu = 0xu + N(x, y)oyu,

whereN (x, y) is also ann x m normal matrix and: is a function on2 with range inC™.
Throughout this paper, we shall assume the following properties (2.1), (2.2) and (2.3):

(2.1) N(x,y) € BY<(£2).

(2.2) N*N =NN* on £,
whereN* is the conjugate transposed matrix®f Leti;, j =1, 2,...m, be the eigenvalues
of N. Then there exists a positive numidesuch that
(2.3) Ima; (e, ) >68, j=1,2,...m
forall (x, y) € £2. We write them as
Aj=puj+ivy, uj, uj €R.

If all the eigenvalues ol (0, 0) are simple, we can smoothly diagonaliX¥€x, y) near
the origin. In this case, the equatidm: = O is equivalent to a family of first order single
equations. On the other hand,Nf(0, 0) has multiple eigenvalues, there is no smooth diag-

onalization of N(x, y) in general. In particular, we shall treat the case when there exists a
nonreal complex number such that for eachh = 1, ... m,

(2.9 2j(0,00=¢ or ¢.

Define the positive numbé as

(25) M§ = max (x*+ (Img) *(Retx + y)?),
(x.y)est

whereS! denotes the unit spheiféx, y) € R? x2+ y2 = 1}. We say thatt € L2(2)
vanishes of infinite order at the origin if

lim R’N/ lu|?dxdy =0 forall N > 0.
R—0 r<R
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THEOREM 2.1. Suppose (2.1)—(2.4). Letu € HL.(£2; C™) satisfy
(2.6) |Lu| < Kolu|/r on £2.

If Ko < (2Mo)~1 and u vanishes of infinite order at the origin, then  is identically zero in
2.

REMARK 2.1. Wherm = 1, Pan showed that the conclusion holds for any latge
(Lemma 7 in [6]).

To prove Theorem 2.1, we shall use two types of Carleman inequalities. Let

R(x,y) = (x* + (Im)(—Regx + y)*}Y2.
First of all, we shall derive a Carleman inequality with some remainder terms.

THEOREM 2.2. For an arbitrary small positive number ¢, there exists a positive con-
stant C such that

1
Z/R_ZV_2|M|2dxdy 5(1+s)fR—2V|Lu|2dxdy
(2.7)

+C(1+e—1)/R—2V+2K|ayu|dxdy

for anyu(x, y) € C3(2; C™yandanyy € N +1/2.
As a direct consequence of Theorem 2.2 and the ellipticity,afie have

THEOREM 2.3. Supposethat Ko < (2Mo)~ 1. If u satisfying (2.6) vanishes of infinite
order at the origin, then there exist positive constants B and C such that

/ {lul® + 185u|? + [3yu|*}dxdy < C exp(—Bp ™)
0<R(x.y)<p
for any small positive p.
For the sake of Theorem 2.3, we have
/R—3| log R| exply (Iog R)?}{|u|? + |ux|? + |uy|?}dxdy < oo.

Thus, we can use another Carleman inequality with a stronger weight function.

THEOREM 2.4. For asufficiently small £2, we have
y/R_2|IogR|exp{y(logR)z}lulzR_ldxdy < C/exp{y(logR)2}|Lu|2R_1dxdy
foranyu(x, y) € Cé(Q; C™) and any large positive y .
Theorem 2.1 follows from Theorems 2.4 and 2.3 by the standard procedure.

3. Systemsof operatorswith constant matrices. The proof of Theorem 2.2 is based
on a perturbation argument for systems of operators with constant coefficients. Dgfine
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N(0, 0). We consider
Lou = uy + Nouy .
Then the first result we will show is the Carleman estimategar

THEOREM 3.1.

1
Z/R_Z”_Zlulzdxdy < /R—2V|L0u|2dxdy

for anyu € Co(£2; C™)andanyy € N +1/2.

PROOFE By the assumptions (2.2), (2.3) and (2.4), it follows that one can find a unitary
matrix U such that

(3.1) U INU =¢I®2I,

where¢ = 11(0,0) = u +iv, u, v € Rsatisfying|v| = § > 0. Then, U 1LoU is also a
diagonal operator with components

Ay =0+ (u+iv)dy or A_ =0+ (u—iv)dy.
We make a change of variables:
(3.2) E=x, n=v i{—ux+y.
The operatorst and A are transformed respectively into the following operators:
Py =0:+i0, and P_=0—i0,
In what foIIows,fZ denotes the image &2 under the map (3.2).

LEMMA 3.2. Let x beeither + or —. Then,

1

(3.3 —/r*ZV*2|u|2dsdn < /r’ZVIP*u|2d$dn

4
for anyu e C3(2) andanyy € N+ 1/2.

PROOF  Introduce the polar coordinatés, n) = rw, w = (cost, sind) € St. Thus,
1
P+ = ((1)1 + l(,()2) <ar + 1;39) .
Making the change of variables= logr, we see that
r(wr —iw)Py =0, +1idp.
We use the Fourier series expansiomn@f, -) € L2(Sh:

2w
(3.4) u(z,0) =Y ur(x)e™? / lu(z, 0)1%d6 =27 Y | (2)1%.
0

keZ keZ
Then,

(0 +i0p)u(z, ) =y (3 — bu(2)e™.
keZ
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Since

/rfz}//lp+u|2d%-dn:/IeZP+M|2672y/ZdZd9
(3.5) |
=/|(3z+i30)u(z,9)|2e*27’ *dzdo ,

an integration by parts gives

r% | Pyu|?dEdn

(3.6)
= Z/ 18, (e uy)|2dzd6 + Zf (y — ke ™ ui|?dzd6 .
keZ keZ
We choosey € N + 1/2. Then, from (3.4) and (3.6), we arrive at the inequality (3.3) with
y € N+ 1/2. In the same way, we obtain the assertion®at O

As a result, we obtain the following

PROPOSITION 3.3. Let x beeither + or —. Then,
1
Z/R*ZV*2|M|2dxdy 5/R*2V|A*u|2dxdy

for anyu(x, y) € C3(£2) andany y e N+ 1/2.

Theorem 3.1 is a direct consequence of Proposition 3.3. i

Now, we proceed to the proof of Theorem 2.2. We can write

L=Lo+Li, Li=Ndjy,
whereN = N(x, y) — N(0, 0) has its entries satisfying
|Nij (x, )| < Cr,
because of their Holder continuity. We use the inequality
(@a+b)%< @A+ e)d?+ 1+ e Hp2

This observation together with Theorem 3.1 leads to the Carleman inequality with a remainder
term in Theorem 2.2.

4. Proof of Theorem 2.3. Now, we turn to the proof of Theorem 2.3. We require the
following elliptic estimate.

LEMMA 4.1. Thereexists a positive constant C1 such that for any f € Cé(.Q; c™,
(4.1) f(|axf|2 + 18y fIP)dxdy < clf(|Lf|2 +1f1%dxdy .

PROOFE This can be easily verified if we use a partition of unity to reduce the problem
for a finite number of constant matricg¥ (x;, y,)}?’zl in the standard manner. O
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Let xo be a nonnegative smooth function whose support is compact and contained in
U C £2 such thatxo(x, y) = 1 near the origin. Let € H%C(Q; C™) satisfy (1.1). We
note that the inequality (4.1) holds whene H(}(.Q; C™). If we apply (4.1) tof (x,y) =
R(x, y)7V xo(x, y)u(x, y), we see that there exists a positive consfarsuch that

(4.2) y_Z/ R™%|Vu|?dxdy < Ky_Z/ R—2V|Lu|2dxdy+1</ R™2~2|u|?dxdy
B(rg) U U

and

y_Z/ R_2y+2"|8yu|2dxdy

(4.3) Bro

< Ky_Z/ R_2V+2"|Lu|2dxdy+K/ R™27=22 1y 2dxdy
U U

with some small positive humbefy. Let x(r) be a nonnegative function belonging to
C3((—00, 2)) such thaty(r) = 1 when 0< r < 1.
In what follows, forr > 0, let B(r) = {R(x,y) < r}. We shall considefi(x, y) =
x(MyY*Ryu(x, y). Here,M is a large positive parameter, which will be determined later.
We observe that

X%+ v_z(—ux + y)2 < Mg()c2 + y2) forall (x,y) e R?,
and
[Lu(x, y)| < KoMolu(x, y)|/R(x,y).

Thus, combining Theorem 2.2 with (4.2) and (4.3), we see that

B / R™22)i)%dxdy + y 2Nt / R |Vii|?dxdy
(4.4) <K f R™Z*24(Val|? + R?|i|?)dxdy
+ CMZ)/Z/K/ R~ |u|%dxdy,
M—ly—l//chSZM—ly—l/K
whereg is the positive number satisfying

K

2= 2 - a+erkomp? +y2n | - K
4 N N

which is positive by our assumption and by takisigands ~* to be large enough.
ChooseM such thatk M~2% < 1/(2N). Then it holds that

KR%* < —N12 and M?%y%“R?><4
%
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if0 < R <2M~1y~Y« It follows that
B

2 JBayemyi)

R 21y)2dxdy + (2y2N)_1/ R™%|Vu|?dxdy
B(1/@@MyYr))

(4.5)
< C/ ) R™272(1u)? + |Vu|3dxdy
U\B(L/(MyY¥))

if U is an arbitrary sufficiently small neighborhood of the origin. Here, we have used the
inequality

R* < B/2 if (x,y)eU.
From the inequality (4.5), we conclude that

(@M VY2 +2 / (ul? + 272N) Y VuP)dxdy
B(1/(2MyY/x))

(4.6)

< C(My V)22 / (ul? + [Vul?)dxdy.
U\B(L/(MyY/r))

As a result, we have

/ {ul? + 2y2N) Y Vu?dxdy < c2*2V*2/ {|ul? + |Vu|?}dxdy
B(L/(2MyYx)) U

for any large positiver € N + 1/2. This leads to the desired conclusion of Theorem 2.3.

5. Proof of Theorem 2.4. Asin the proof of Lemma 3.1, we can find a unitary trans-
formation and a change of variables (3.2) such that

L=3 +Ndy,, N@OO =il® (i)l
and
[Lu| < KoMolu|/r .
We see thaL is written in the polar coordinates as
(014 Nw2)dy +r (—w2 + No1)dg .

We multiply the above operator by the cofactey of J = (w1 + Nwy) from its left. It holds
that

JL =detJd, + }G(r, w)dg ,
where '
G =J (—wr+ w1N) .
LEMMA 5.1. G isalsoanormal matrix with eigenvalues «; satisfying
Imi;| =8, j=1...,m.
PROOF Letr > 0 andw € S* satisfyrw € 2. Then, there exists an orthogonal matrix

T such that
N=T71DT, D=diagh,..., A n).
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Furtheremore,
©7 = (detJ)T Y (w1l + w2D)T
and
—wp + 01N = T Y (—wol + 01D)T ,
so thatT GT 1 is a diagonal matrix with componets given by

K = detd (w1 + war ) " H(—wp + w1k ).

Letg = y(logv/x2+ y2)2/2,e%u = v, L = (detJ)"1°J L and
e?Lu = Lyv.
Then, we see that
/ 1 -1
Lov={3 —¢'}v+ ;(det]) Gogv .
LetS = (det/)~1(G + G*)/2 andQ = (detJ)~1(G — G*)/(2i). We have to consider
/ |L¢,v|2r_1dxdy
1 1 2
= [ |8, v+ =Sdv+ — (8 S)v| rtdxdy
r 2r

(5.1 ; 1 5
+/‘—¢’v+ L 0pv — = (3 S)v
r 2r

r*ldxdy

1 1 ; 1
n 2Re/ 90+ =S80 + —(36S)v, —0'v + =0y — — (3 S)v | rLdxdy.
r 2r r 2r

By an integration by parts, it follows that

1 1

(5.2) 2Re/ <—Sagv + 2—(89S)v, (p’(r)u) r~Ydxdy =0
r r

and

(5.3) 2Re/ (v, —¢'v) rtdxdy = /<p”|v|2r—1dxdy.

We shall use the relation
2 2, 1 2
V= = [9,v]" + —|9pv]”.
r
For a positve scalar functiofi(x, y) defined in£2, we shall use the notatiom(x, y) =
o(f(x,y)) if a scalar functionu(x, y) defined ins2 satisfies

u(x,y)
fey)

lim sup
p_’00<r§p

SinceQS = SQ at each point of2 and
IVO|+ VS| =o0(1/r),




STRONG UNIQUE CONTINUATION PROPERTY 317
the relations (5.2) and (5.3) imply that

1 1 ] 1
2Re/ 9,0+ =Shv + — (pSHv, —¢p'v + iQagv — —(0gS)v rildxdy
(5.4) r 2r r 2r

> /(p'/|v|2r_1dxdy— /o(r_l)(r_l|v||8rv| +r_1|v||r_1v9|)r_ldxdy.

Therefore, we conclude that for any> 0, there exists a neighborhoadof the origin such
that

/<p”|v|2r*1dxdy §C/ |Lyv|2rYdxdy
(5.5)
+e/(r*1|u||a,u| + r 7Y llrtvg)r tdxdy

for everyv € C3(U). Note that

" 2

@ = —yri2 logr + yr~
and there exists a positive constahsuch that

/{”_1|U||Ur| + r 2| v |}r " tdxdy
(5.6) 5f|flu|

+C {/ |r_1v||r_189v|r_1dxdy+/r_2|v|2r_ldxdy}

1 1
@ +r Ho+ ZSopv + 5 (00S)v r~Ydxdy
r r

and

/|r*lv||r7189v|r71dxdy

<C {y/r_2| |Ogr||v|2r_ldxdy+y_1/||Ogr|_1|Vv|2r_1dxdy} )
On the other hand, putting= ¢“u into (4.1), we obtain that

y_1/|logr|_1|Vv|2r_1dxdy
(5.7)
< C/62¢|I:u|2r_ldxdy+Cy/r_2||Ogr|62‘p|u|2r_1dxdy

because
Lov=e’Lu+ O u, ¢ =yrtlogr.
We shall use
/r_2|v|2r_1dxdy = /0(1)r_2| |Ogr||v|2r_ldxdy.

From (5.5), (5.6) and (5.7), we obtain the desired estimate in TheoremQ.&isufficiently
small.
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6. Proof of Theorem 2.1. Let V(r) = {(x,y); R(x,y) < r} for eachr > O.
Suppose that > 0 is sufficiently small so that Theorem 2.4 holds fer= V(o). Let
u € HL.(V(o); C™) satisfy (2.6), and lef € C(£2), 0 < x < 1 be a cut-off function
such thaty (x, y) = 1if R(x,y) < o/3andy = 0if R(x,y) > o/2. By taking a limiting
procedure, in view of Theorem 2.3, we can apply Theorem 2i4 0 x (x, y)u(x, y). Let
@(x,y) = y|logR(x, y)|%/2. It holds that there exists a positive consté@rguch that

y/R_3||OgR|e2‘p|zZ|2dxdy < C/ez“’|L12|2R_1dxdy,

/ e®|[L, x1ul?R™Ydxdy < C/ e |u|?R™Ydxdy .

2 2\V(e/3)

Thus,

yf ¢® |R|73|log | R|| |ul’dxdy < C’/ e®|ul?R Ydxdy .
V(a/4 2\V(o/3)
Since(logr)? is a strictly decreasing function, we have
y (/93 logo /4| u|2dxdy < C"ev1009(@/3)?~(logo/4)?)
V(o/4)

Thus, lettingy — oo, we conclude that: = 0 in V(o /4).This completes the proof of
Theorem 2.1.
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