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Abstract. Using a standard technique of Li and Yau, we study heat kernel estimates for
a special type of compact conformally Kéhler manifold, called a multiplier Hermitian manifold
of type o, which we derive from a Hamiltonian holomorphic vector field on the manifold. In
particular, we obtain a lower bound estimate for the Green function averaged by the associated
group action. For a fixed, such an estimate is known to play a crucial role in the proof of
the uniqueness, modulo a group action, of Einstein multiplier Hermitian structures on a given
Fano manifold.

1. Introduction. For ann-dimensional compact connected Kahler manifold, w)
and a real-valued smooth functighe C*°(M)g on M, we consider the Hermitian form

hy == e Ving,

which naturally defines a conformally Kahler metric sh Put vol, (2) := [, h’j, for each
measurable subsgtof M. The Ricci form Ri¢hy, ) associated tay, is defined by

(1.2) Ric(hy) = Ric(w) + v=130y, ¢ € C®(M)g.

For a system(z1, z2, ..., z"") of holomorphic local coordinates a¥f, the Kahler formw is
locally written as

w= «/—12901?(110‘ AdZP .
o, B

Letl,, denote the Laplaciap_, 4 gP?32/97%92P of the Kahler metrizo. We now define an
operatorDy, acting onC* (M) by (cf. [L2], [K1], [Mat])

= Y 9
(1.2) Dy = Dw—Zgﬁaa—a—E, v e C®¥(M)R.
wp % 0z

For brevity, we putP := (Dy + 51,,)/2, which is the real part aDy,. Let H = H(x, y, )
denote the fundamental solution #h x M x [0, co) of the equation

(1.3) (P —09/dt)v(x,y) =0.

2000Mathematics Subject Classification. Primary 32W30; secondary 53C55, 14J45, 14J50.
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The Green functioii (x, y) € C®°(M x M \ AM), for the operator is defined outside the
diagonal subset\ M of M x M, and is characterized by the properties

/M G(x. ), (y) = 0
f(x)=V0|¢(M)’1/M FDhy () — /G(x WPHGRY(y)

wherex € M and f € C*°(M) are arbitrary. From now on, we fix once for all a holomor-
phic vector fieldX # 0 on the Kahler manifold M, w). Furthermore X is assumed to be
Hamiltonian® with respect to w, i.e., X is expressible as

dU, 0
§ : pa O
gracﬁuw = ﬂ 0Z B 32‘1

on M for someu,, € C*(M)g, whereu,, is normallzed bny u,w" = 0. Then the image
Ix of the functionu,, on M is a closed intervallp, /1], wherelp := min,, u, andl; :=
max,, u,. ldentify HO(M, O(T M)) with the Lie algebra of AutM), where AutM) is the
group of all holomorphic automorphisms &f. Let Q be the compact torus obtained as the
closure in AutM) of the real one-parameter subgrofgxp(r XRr); ¢t € R} of Aut(M), where
XRr := X + X denotes the real vector field dd associated to the holomorphic vector field
X. Taking the averages & andG by the O-action, we defind? € C®°(M x M x (0, 00))g
andG € C®(M x M \ AM)g by

Hix,y.1) :=/QH<q-x,y,ndu(q)=/QH(x,q-y,r>du<q>,

Gx.y) :=/QG<q-x,y)du(q)=/QG<x,q-y)du(q>,

wheredu = du(q) denotes the Haar measure for the compact tgras total volume 1. For
hy above, let O< k € R, and leto = o (s), s € Ix, be a nonconstant function &> (Ix)g
satisfying either of the following conditions:

(1.4) 6(s) >0 only,
(1.5) o(s) >0 only and %aﬂ”(_w) <k,

wheres := (3/3s)o andé = (32/ds%)o. Then(M, hy) is called amultiplier Hermitian
manifold of type o, if for someo as abovey is written as

(1.6) Y =o0(uw)

onM. Let DiamM, w) be the diameter of the Kahler manifald/, w). For everyx, y € M,
we consider the distane€x, y) of x andy on the Kahler manifoldM, w). For anyx € M

TIf X is Hamiltonian with respect te, thenLx,@ = 0. By abuse of terminology, ik is Hamiltonian with
respect to some Kéahler form ad, we simply say thak is Hamiltonian. Recall that ifX is Hamiltonian, therX is
Hamiltonian with respect to any Kahler foraon M satisfyingL xpo = 0.
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and a real numbeR > 0, let B,(R) denote the closed balt € M; r(x,z) < R} in M. We
further put
B.(R) := [ q(B:(R)),
qeQ
which is maximal among the subsets Bf(R) preserved by the-action onM. For any
nonnegative real number> 0, we put
{ t:= min{z, Diam(M, w)?},
{r(x,y) — i} == maxr(x, y) — v1,0}.
The main purpose of this paper is, given a multiplier Hermitian mania{d #,,) of type
o, to establish an upper bouhdf the average heat kern&l and also a lower bound of the
average Green functiod as follows:

THEOREM A. Let (M, hy) be a multiplier Hermitian manifold of type o. Suppose
that the Ricci form Ric(hy,/2) is positive semidefinite everywhereon M. Then for every e € R
with 0 < ¢ < 1, we have:

() If (1.5) isthe case, then for some positivereal constants C1 = C1(o, n) depending
only on the pair (o, n), we have the following estimatefor all 0 < r e Randall x, y € M :

voly (B, (v1)Y2voly (By (V) Y2H (x, y, 1)
rc, ) -viii 7 ¢ 4k8t}

= (o Crep| - O L B

(b) If (1.4) isthe case, then for some positivereal constant Co = Co(o, n) depending
only on the pair (o, n), we have the following estimatefor all 0 <+ € Randall x, y € M:

voly (B (V1)) 2voly (B, (V) Y2H (x, y, 1)

’ - 2 7

1.7

(1.8)

THEOREM B. Let (M, hy ) beamultiplier Hermitian manifold of typeos, andletv > 0
be a positive real number. Suppose that Ric(hy/2) > vw, i.€., Ric(hy/2) — vw is positive
semidefinite on M. Then

(&) If (1.5) isthe case, then for some positive real constants k1 = ki(o,n), k2 =
k2(o, n) and k3 = k3(o, n) depending only on (o, n), we have

G(x,y) = —{vvoly (M)} L (ky + k2e**/¥)  forall x, y € M with x # y.

(b) If (1.4) isthe case, then for some positive real constant kg = ko(o, n) depending
only on the pair (o, n), we have

G(x,y) = —{vvoly, (M)} ko forall x,y € M with x # y.

T See [S1] for some similar result in Riemannian cases. His result is not applicable to ours, because in our
Kéhler cases, the lower boundedness of his symmetric tatgas definitely stronger than the lower boundedness
of our Ricci form Richy,/2), whereyr = —2logw.
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In actual applications of the theorefsthe following Theorem C is sometimes useful
(see [M1]). LetX £ 0 be a holomorphic vector field avf which is Hamiltonian in the sense
of a footnote in this introduction. For a fixed assuming (1.6), we consider the multiplier
Hermitian manifolds

(M7 hU’(uw))s weKXv

of typeo, wherelCx denotes the set of all Kahler forms a4 in the class 2c¢1(M)r such
thatL x, = 0. Fix an elemenig in Lx. Let F, be the set of allb € Kx such that

(1.9) Ric(h (u,)) = to + (1 — Nag

for somer € [0, 1]. We here observe that (1.9) is an analogue of Aubin’s equation (cf. [A1]).
This family 7, is shown to have a very nice property as follows:

THEOREM C. Assumethatd < 0 < ¢ on Ix. Then for some real constant k, > O,
the inequality max,, 0 ,{—o (1)} < ks holds uniformly for all w € .

Parts of this work were done during my stay at the International Centre for Mathematical
Sciences (ICMS), Edinburgh in 1997. | thank especially Professor Michael Singer who invited
me to give lectures in ICMS on various subgotlated to Kahler-Einstein metrics.

2. Thefirst eigenvalue of the operator Dy,. Letw be as in the introduction. For
eachy e C*°(M)g, we consider the operatdp,. For complex-valued functions, vz €
C>®(M)c onM, we put (cf. [L2], [K1], [Mat], [F1])

{{v1, v2)) :=/ vlﬁzh:;, :/ vivge Yo .
M M

In the arguments in [F1; p. 41], we replace the functioby . ThenDy, is easily shown to
be self-adjoint with respect to the above Hermitian inner product as follows:

({v1, Dyv2)) = f vi{0yv2 — @Y, dv2)wle V'
M
= / (—@(1e™), v2)p — v1(BY, BV2) e V" = — / (Jv1, Jv2)we V0",
M M
({Dyv1, v2)) = /M{Dwvl — (@v1, Yo} v2e Y "
=/ {(—(@v1, (e Y 1v2)) — V1, V) T2e V)" = —/ (31, dv2)we V",
M M

Moreover, by((v, Dy v)) = — [},(0v, dv)pe Yo" < 0, all eigenvalues of D, are nonneg-
ative real numbers. Therefore, the real paf Dy, satisfies

(2.1 — P is areal selfadjoint elliptic operatanly with nonnegative eigenvalues.

TRelated to the theorems, the study of multiplier Hermitian analogues of spectral convergence (cf. [KK]) would
also be an interesting topic.
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Let i1 = A1(w, ¥) > O be the first positive eigenvalue of the operatdd,,, and assume for
some positive real number

(2.2) Ric(hv,) >vw on M.

Thenci(M) > 0, and by the Kodaira vanishing theorem, we have 8%1(M) = h1-0(M).
Letg := HO%(M, O(T M)) be the space of all holomorphic vector fieldsin Then we
have aC-linear isomorphism of complex vector spaces

g“ =g, u <—>graqfu,
whereg® denotes the space of alle C*° (M) satisfying graﬁv egandf,, vh'jp =0. Then

the following more or less standard fact is a slight generalization of [L1] and [F1; Theorem
2.4.3] (see also [B1; p. 140], [DS], [S2], [TZ])):

PrRoOPOSITION 2.3. Assuming (2.2), we have

D r(w,¥) =v.

(2 Ifir(w, ¥) = v, then{v € C®(M)c; Dyv = —11(w, ¥)v} isa subspace of g.

PROOF  The proof is similar to [F1; p. 41-42] and proceeds as follows: 1Lbe an
eigenfunction for- Dy, with eigenvalue.; = A1(w, ¥). Thenv is not a constant function. Put
Y, = graqfv #+ 0. We write Ri¢w) = \/—_120(,/3 Ragdz“ AdzP andR;’,‘ = Zﬁ Ryggﬁ"‘
by using holomorphic local coordinates. It then follows that

Jdv dv
A Y,Y 71/’”:)» 0 8 v/n—)\‘/ /30‘__*‘//"
l/;ll(v v)we w 1/(11 V)pe o 1 E aﬁaze w
3(~Dyv) gy

/Z " F e—wwnz_/ DI AR AN Ea
Z M

—/ Z{(vyv“wu)vav — R,*V7 vV, ¥ — V¥ (V 0V, ) V,ule V"

:/ Z{(v“vyu)(vyvaﬁ)+Ry°‘vyuvav+(vyu)(v“vyw)(vaﬁ)}e*%",
M

where the last equality is obtained by using integration by parts. We observe that by (2.2),
Ric(hy) > vw. Hence, together with (1.1), we obtain

)\1/ (Y,,Y,) e Vo' = / (@Y, Yo + RIC(Y) (Y, AT, //—D)}e V"

(2.4) M M

z/ ((@Yy, 0Y) 0 +v(Y,, Y,), Je Vo' > v/ (Y,.Y,),e V.
M M

Therefore, the inequality; > v in (1) above holds. To see (2), we assume that v. Then
by (2.4), we see thatY, = 0, i.e.,Y, € g. This together with the equalitieg ((v, 1)) =
({Dyv, 1)) = ({(v, Dy 1)) = 0 impliesv € g*, as required.

Let/ > O be an arbitrary nonnegative real number. we here study the first positive
eigenvaluer1(w, [¥) > 0 of the operator—Dh/, on C*°(M)., where we assume that (2.2)
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holds for some positive real number Put

(2.5) c:= mA?x|1/f|.

Let S denote the space of all nonconstant function§ tA(M)c. We then define a functional
@, :S— Rby

@f. 9 )we Vo"
Q,(f) = M , feS.
min/ | f +bPe Vo
beC M
Note thath1(w, lY) = minfes @,(f). In view of (1) of Proposition 2.3, for alf € S, we
have the following :

/ (01,9 e exp(—|l — 1c)e V"
M

v

D,(f)
min/ |f + bl?exp(|l — 1|c)e Vo
beCJm

@f, 3 )we V"
= exp(—2|l — 1jc) M4
min/ |f + b2 V"
beCJy
> exp(—2|l — 1|c)r1(w, ¥) = vexp(—2|l — 1c) .

Let f run throughS. Taking the minimum, we obtain

PROPOSITION 2.6. Assuming (2.2), we have A1(w, [¥) > vexp(—2|l — 1|c) for every
real number [, wherec isasin (2.5).

3. Constants Cp, C1 and positive solutions of the heat equation (1.3). In this sec-
tion, after defining explicitly the constanfy andC1 of Theorem A, we study basic properties
of positive smooth solutions of (1.3). As in Theorem A, we assume that

Y =0(e,) and Ridhyp2) >0

on M for o as in the introduction, so thatis a nonconstant function i@ (Ix)y satisfying
either (1.4) or (1.5). In particulas; > 0 on/x. Put

c:=maX|o(s)|], c:=mino(s), ¢:=maxo(s),
sely sely sely

and the first identity is compatible with (2.5) in Section 2. Sice Hamiltonian with respect
to w, we haveL y,o = 0 for Xg := X + X as in the introduction. By (1.2), we have

Bw — Dy =—v-16(u)XRr.

For the spac& (M x (0, 00))g of all real-valuedC> functions f = f(x,7) on M x
(0,00) ={(x,t) € M x R; t > 0}, we define a subspace by

X :={f eC®Mx (0,00)g; Xpf =0}.
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ThenDy f = Dy fforall f € £.1f & > 0only, i.e., if (1.4) is the case, then we can define
positive real constants andCo = Co(o, n) depending only on the page, n) by

{c = {max, &(s)" o ()AL
Co:=n"YC+11lC.

In general, even if the functiot = & (s) has zeroes ofy, we define a monotone-decreasing
real-valued functios : [¢, c] — R by

$ 1
= ex ——dy, <s=<c,
§(s) P/g boe*y—ly c<s=c

whereb, := e“(L+n). Theng = &(s) takes its absolute minimum 1 at= ¢, and satisfies
the differential equation

.. . . 2
a1 ko _qftw)

HOERIO N HO)
for all s. Define a positive real consta@if = C1(o, n) depending only oito, n) by

Cy:= Srew?cir%]g(srl{l — (- &) )3,

In the arguments below, standard technigueft Y] (see also [D1]) are employed. For each
function in X, the operatod := 3+ 9 is taken only on the first facta¥ of M x [0, co). Note
that the following inequalities holds for alle [c, c]:

32) 0<Cr =) Hl-(A-E®) ©m?,
' 0<&(s) () <1/n.

PrRoPOSITION 3.3. Assumethat afunction f = f(x, t) in X satisfies (P —9/0¢t) f =
—(0f,9f)e everywhereon M x (0,00). Put f; := af/ot, F := t{df,9f)e — f;} and
F := () F. Then F satisfies the following inequality on M x (0, 00):

: 2
331 (P—-0/0t)F = —(dF,df)s + M{(dx//, dF), + u¥)F} — E + C1F— .
E(Y) t nt

In the case where theinequality 6 > 0 holdson Iy, the function 7 satisfies
R R F F?
(3.3.2) (P —3/3)F > —(dF,df)e — —+ CoT )

PROOF. In a neighbourhood of each poinbf M, choose a systeial, z2, ..., z") of
holomorphic local coordinates as in the introduction, where we may assum@agiao =

S and(dg,z)(x) = 0 for alla andp. We write F = t{3", (V¥ f) (Ve f) — fi}. Then

Dy F — t{ D Dy VNV + D (V*)(Dy Vaf) — D¢ﬁ}
(3.3.3) - ¢

=1 Y ((V'VLYVVa )+ (V, VOV Vo )} = n7 (O f)2.
oy
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Before (3.3.5), all inequalities below are considered only at the painFor (3.3.5) and
thereafter, inequalities in this proof are valid also on the wi6)decause can be chosen as
an arbitrary point of/. Now for simplicity, putY; := grad f. Since Rich,, ,) is positive
semidefinite, we have the inequality Rig, ,)(Y AY s/+/=1) = 0. Hence, as in the proof
of Proposition 2.3,

@Dy £), 0 )0 =Y _(V*(V, V" f =V [V )}V f

o,y
=Y AV VIVEf — REVY f — (V7 VOV 9) — (V' VIV, Y IVa f
ay
=Y (OuV*IVaf — (Ricthy)(Y; AY ;/V/=1) = Y (V'Y [)(Vy¥)(Va f)
o a,y

= Z(Dwvaf)vaf — {Ric(hy2) + 27'V=190y}(Ys AY /D)

<Y DYV Ve f — 272@) (Vs AT ),

where we used the equality Rig,) = Ric(hy/2) + 2-1/=199y. Sincef € ¥, we have
Bwf = Dy f. Then the same calculation as above yields

@Dy £), 0f ) = @, 3Dy [ = D (V¥ ) Val(V'Vy f =V, fV )}

a,y
=Y (VIOUV'Vy Ve f = R Vy [ = (Vy [)(VaV"¥) = (Vy Ve IV Y1}
o,y
=Y (VN OVaf) — Ricthy) Yy AY p/N=1) = Y (Y Vo IV YNV [)
o o,y

<Y (VENDyVaf) — 2@ (Y AY ).

We now sum up these two inequalities obtained just above. Sﬁ@c& Dy —~/—=16 (o) XR,
by settingB := ), (V* f)(XgrVa f), We obtain

(d(Dy f),df)w < Y (DyV* IV f + Y (VNI (DyVaf) = @) (Y; AT f)
(3.3.4) * *
=Y Dy V*FIVaf + Y (V¥ )(DyVaf) = V=16 @)B — 339)(Y; AY ).
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Note thatB = (0.f, Ly 0 f)w + v—=1000u,)(Y; A Y f) = v=1(80u,)(Ys AY 5). Further,
by ¥ = o (us), We haveddyr = 6 (i) d0ue + & () due A duy,. Hence by (3.3.4),

d(Dy ). df)o < Y (DyV*fI)Vaf

+ ) (VEIDyVaf) — & (uw) Qe Adtt, 0f ADf),

and together with (3.3.3), we hav@y F' > 1(d(Dy f),df)w — tDy fi + n~ 2 (0u f)? +
16 () (Que A Uy, f A3 f)w . Then, by taking its real part, we obtain

(335) PF >t(d(Pf),df)ew —tPfi + n 1t(0u f)? + 16 ) Que A te, 3f A e -

By Pf—f,=—(f,3f)e, WwehaveF = t{(3f,d f)o—fi} = —tPf and(d/dt)F —t~1F =
—tPf,. We further obtairid, f = Pf + 27 Ydy,df)e = —t *F + 27Y(dy, df),. By
o (u) > 0, these together with (3.3.5) yield

> —(dF,df)e —t7YF + n= (O, f)?

(P —03/00)F > (P —3/3t)F — t6 (u)(Que A ey, Of A D e
(3.3.6) >
=—dF,df)e —t7 F +n 2t YF — 27Ydy, df)w)?.

By F = £(y)F, we see thaP F = £ (¥)(dy, dF)e + P{EW)IF + E() PF, where

P{E(WY)) ={EW) —EWNOY, W) + EW) Ty,

r(w)(dw, dF)y = EW) W)Y, dF) e — 26() " 2EW)2F @Y, Y »
EW)AF,df)y = dF,df)y — EQ) W) F Y, df ) -

Hence, multiplying (3.3.6) by (y) and rewriting it as an inequality iff, we obtain

. . . 2
Ey) Ew) L [EW) ) o
P—0/0t)F - 2 _ 2y F @y, 0v), — (dF,df)y
(P —8/81) 2(&(1&) ) {swf)} 00 9o = (@F, d])

+ W) WY, dF)y + (Op¥)F} —t71F
+n i P2y THL - A - ) (P
+ n e 27N dy, df)e — W) TIFA - ) T (n))2.

Since¢é = &(s) is a positive function, the identity (3.1) together with (3.2) above yields the
required inequality (3.3.1). & > 0 on[Iy, then by

& (U)(Qtey A ey, If Ao = COY A Y, Af Ao,
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we see from (3.3.6) that the required inequality (3.3.2) holds as follows:
(P—=03/d0)F > — (dF,df)e —t YF +n t{t7YF — 27Y(dy, df))?

+ 15 () g A dtt, df A D f)w

>—dF,df)e —t YF +n 2t F — 27Ydy, df)o)?
+tCOY AV, Af ADf)w

>—(dF.,df)y —t7YF +n" 7 F — 27y, df)o)?
+Cn 27N Ay, df)o )

=—@F,df)o —tYF +n Y C+ 1) terR?
+nhrc+{Cc+ 1 E - 27Yay, df), )

>—dF,df)y —t YF + Cot 1 F?.

PROPOSITION 3.4. Letv = v(x,t) € X be a positive solution of the heat equation

(P —9/3t)v = 0on M x (0, c0). Put v, := dv/dr. Moreover, by setting f := logv, we
define F := t{(3 £, f)w — fi} = t{v~2(3v, dv)s, — v, - v 1}. Assume that

(3.4.1) lim sup F<n.
1=0(0,11xM

Then we have the following:

(@) If (1.5) isthecase, then (Jv, dv),, — v, - v < Cy (=t + k)v2 on M x (0, ).

(b) 1f (1.4) isthe case, then (Jv, dv)e — v, - v < Cylr~2v2 0N M x (0, 00).

PrROOF (@) By the definition above/ satisfies the equatiogP — 9/d7)f =
—(@f,3f)» onM x (0, c0). By (a) of Proposition 3.3F := £(y) F satisfies (3.3.1) above.
Now for each positive real numbé&r > 0, we claim the inequality

(3.4.2) F<C[*n+kT) on M x (0,T].

Assume the contrary. Since, by (3.2)171 > £(s) for all s, the above (3.4.1) impIieGl‘l(n +
kT) > lim,_ oSURg 1, F- Hence, for som@ > 0, the functionF takes a maximum at
(x0, 20) ON M x (O, T satisfying

F(xo0,10) > C{*(n +kT) > 0.
Then by the maximalityP F (xo, to) < 0, d F|(xs.,1p) = 0, @and(d F/dt)(xo, t0) > 0. By (1.5)
and (3.2), the inequality (3.3.1) yields

kF (xo, 1 F (x0, F (x0, )2
_ (00)—(00)+C1(00)
n fo nto

0>

’

which would imply thatF (xo, 10) < C;*(n + ktg) < C{*(n + kT) in contradiction. Thus,
we obtain (3.4.2) for all’ > 0. Hence,

F<C'n+kt) on M x(0,00).
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Sincek (s) > 1foralls, it follows thatF < C;*(n + kr) on M x [0, 00), and by multiplying
both sides by ~1v2, we obtain the required inequality.

(b) If (1.4) is the case, then by (3.4.1) and the inequeﬂi[gry'L > n, the maximal prin-
ciple as above and (3.3.2) imply

F<cCyt onMx (0TI

for all positive real numberg > 0. By multiplying both sides of the above inequality by
r~1v2, we obtain the required inequality.

Foranyx, y € M, we choose a distance-minimizing geodesic[0, 1] > R, s > y(s),
connectingy = y(0) andx = y(1). Write (y, ¥), Simply as||7}||§), wherey = y,(3/0t).
Then the distance(x, y) of the pointsy, y on the Kéhler manifold M, w) is given by

1
Fx, )2 =/0 1712ds
PrROPOSITION 3.5. Letv = v(x,t) € X bea positive solution on M x (0, co) of the
equation (P — d/dt)v = 0. Assume that

(3.5.1) lim sup {v ™2V, 9v)y —v, - v Y} <n,
=00 11xM

where v; := dv/d¢. Then the following inequality holds for all (x, t1), (v, t2) € M x (0, 00)
with0 < 11 < 12:
(&) If (1.5) isthecase, then

(352 w(x, 1) < v(y, 22)(r2/1)" Lexpl(r2 — 1) "Lr (x, y)2/2+ CT k(12 — 1))
(b) If (1.4) isthe case, then

(35.3) v(x, 1) < vy, 12)(r2/ 1) Y O expl(t2 — 1) (x, 1)%/2) .
PrROOF (a) Fory as above, lef : [0,1] — M x (0, T] be the path defined by
7(s) := (y(s), (L — s)t2 + st1). In view of 7(0) := (v, r2) andy (1) := (x, t1), we obtain

v(x, 1)
°9 { (v, 12)

Yrd
} =log{v oy (1)} — log{v o 7(0)} = / (d_ logv o f)ds
0 s
1
= / 7w v, y) — (12 — vt )ds
0

1
< f P, p) + (12 — ) CT ™ k) — (12 — 1) v ™2 (v, Jv)y)ds
0

where in the last inequality,= (1 — s)t2 + st1, and (a) of Proposition 3.4 is applied. On the
other hand, by the Cauchy-Schwarz inequality, we have

(™ ldv, ) < V2o H{@v, 30),} 2171 < (2 — 1) 7MY 12/2) + (12 — 1) v "2 (D, D), -
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All these together imply the required estimate:

v(x, 11) 1 1 - (tz—tl)( n )}
logy ——— TP, k) id
og{v(y,tz)} S/o {Z(tz—tl) 1717+ C1 A —s)t2+ 51 * s
= {(t2 — 1) " (x, »)?/2} + (n/ C) log(tz/11) + C k(12 — 11) .

(b) If (1.4) is the case, then we can apply (b) of Proposition 3.4. We here observe
that the inequlity in (b) of Proposition 3.4 mbtained formally from the inequality (a) of
Proposition 3.4 by replacing the p&&; *n, C; k) by (C5*, 0). Then we obtain the required
(3.5.3) from the inequality (3.5.2) by such a replacement.

4. Proof of Theorem A. In this section, we assumg = o (u,,) and Rid/y/2) > 0
as in the last section. In view of (2.1), let® uo < 1 < --- < u; < ... be the increasing

sequence of the eigenvalues of the operat@, and let€ := {fo, f1,..., fi,...} be the
corresponding set of eigenfunctions@fi® (M), which are orthonormal, i.e.,
((fi, fi)) =éij

for all i andj. Then fo is nothing but the constant function yald)~%2 on M. In view of
(2.1), the fundamental solutioli = H (x, y, ¢) in the introduction is expressible as

oo

H(x,y,0) =Y e "' fi(x) fi(y).
i=0
For H(x, y, t) as in the introduction, by translating the result in [LY; Lemma 3.2] word for
word to our situation, we immediately obtain:

FACT 4.1. Let Z1, Z> be measurable subsets of M which are preserved by the Q-
actionon M. LetT > 0,8 > 0, 7 > O bereal numberssuchthat t < (14 28)T. For each
x € M, define F r(y,nto betheintegrals

(4.1.2) H(y,z.t) H(x,z, T)h}(z) = / H(y,z,0)H(x,z, T)h}(2)
Z1 Z1

forally e Mand 0 <t < 7. Put r(x, Z;) :=infrez r(x,z) and7r(x, Z;) := SURz r(x, 2)
for eachi € {1, 2}. Then

—r(x, Z1)*>  T(x, Z2)?
A+25T (A4+20)T -1

(4.1.2) /{FX)T(z,t)}Zh’&/(z)f exp{ }FX’T(x,T).
Z3

In view of (2.1), since the principal parts of the operatBrand(],, coincide, we can
describe the asymptotic behavoiurldfx, y, r) by the following identity:

H(x,y, 1) = (Art) " expl—t 1r(x, y)?/2+ ¢ (x, y,~/1)} on M x M x (0, c0),

wheregp € C*(M x M x[0, co))r. For the exterior differentiatiod, = ay+5y onthe second
factor M of M x M x [0, 00), the functionp := —r~1r(x, y)?/2 satisfiesd,p.d,p),, =
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27Y(d,p.d,p), = dp/ot (cf. [LY]). Hence, for each fixed € M,

lim sup t{H(x,y,1) 2@yH(x,y,1),dyH(x,y,1)o—H(x, y, t)*liH(x, y.,0)} <n,
to—0 (0,10]x M ot

where the supremum is taken over@lly) in (0, tp] x M. Similar inequality holds also for
the averageH (x, y, t) of H(x, y, ) by the Q-action, becaus® acts isometrically on the
Kahler manifold(M, w). By this together with Propositions 3.5 and Fact 4.1, we can now
prove Theorem A.

(4.2) PROOF OFTHEOREMA. (a) Assumethat(1.5)holds. Let= (1+68)T in Fact
4.1, and consider the functiaf, ,.(y, 1), whereZ; := By (/1) andZ3 := By (+/1). Then for
all x, y € M, applying Proposition 3.5 to the functiaf| ,(y, ) with (1, 2) = (T, 7), we
obtain

For(x, T) < For(y, 1)L+ 8" L exp T2 Y (x, y)2/2 + CTUKTS) .
Integrating the square of this over alin Z, = B, (+/7), we obtain

voly (By (VD) F, 1 (x, T)?

2 2 —1¢-1 -1
4.2.1) < {/ZZ For(y,7) h';,(y)}(1+a) " Crexp(T 16~ + 2C7 T )

—r(x, Z1)? 2t _
<1487 exp{% + 5 207 1kT5} Fo7(x,T),

where in the last inequality, we use (4.1.2) and the inequality 7(x, Z»)? together with

T = (14+8)T. SinceF, ,(x, T) = [, H(x,z, T)2h},(z) > 0, dividing (4.2.1) byFy r (x, T),
we obtain

voly (Bo(vV1) | H(x, 2z, T)? iy (2)
(4.2.2) Z .zt 2
2n/Cq —rx, 21 <L -1
<(1+9) exp{ T+ T s T2 kra}.

Apply (3.5.2) of Proposition 3.5 to the functiali (x, z, T) in z with (11, 12) = (¢, T),
where we sef’ = (1+ 8)t. Thenforallx, y,z € M,

r(y,2)?
t

H(x,y,0% <14 8)?/“1H(x, z, T)Zexp{ + 2Cl_lkt8} .

Integrate this over alf in Z; = B, (+/7) and then multiply it by va} (B, (v/7)). Then, by
(4.2.2), we see that Vgl B, (v/7))voly (B, (v/1))H (x, y, t)? is bounded from above by

—r(x, Z1)% 2t
L, 21) +——+2c1—1kT5}.

rG, 207 L, Z)°
t A+25T T§

2
(L4 8%/ 1 exp{ T 2Cl‘1kt8} exp{
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Note that(y, Z1)2 < t, r(x, Z1) > {r(x, y) — +/t}+ andT = (1 + 8)¢. Hence,
voly (B (V1) *voly (B, (V)2 H (x. . 1)

o) —VIE 348 1

4.2.3
@23 :+t8(2+5)C1_1k}.

2n/Cy
=(d+9) eXp{ 21(1+35+202) ' 25(140) 1
Pute := (35/2) + 82 with 0 < § < 1/2. Thens is regarded as a function in© ¢ < 1. For
suche > 0, we see thad < /e, {26(1+ 8)} 13+ 8) < (7/3)e7L, ands(2 + 8) < 4¢/3.
Then the required estimate (1.7) follows immediately from (4.2.3).

(b) Next, assume that (1.4) holds. Then by Proposition 3.5, we have the statement
(3.5.3) which is formally obtained from the statement (3.5.2) by replacing the(padry,
C{lk) by (1/Co, 0). Hence, the arguments in showing (1.7) allow us to obtain the required
inequality (1.8) by such replacements.

REMARK 4.3. (1) In (a) of Theorem A, applying (1.7) to the case- 1 and: =
Diam(M, )2, we obtain the following estimate @ for all x € M:

(431  H(x,x, Diam(M, »)?) < 4"/ 1vol, (M)~? exp{z + fc_lkDiam(M a))z}
LAl k] k] ) — 3 3 ]_ k] .

(2) In (b) of Theorem A, applying (1.8) to the case= 1 andr = diam(M, )2, we
obtain the following estimate of for all x € M:

(4.3.2) H (x, x, Diam(M, »)?) < 4Y/C0¢3vol, (M)~L.

5. Proof of Theorem B. Consider the spage&™® (M) := {f € C®°(M)r; Xgf =
0} of all Q-invariant smooth functions oM. Let0 = g < a1 < - < [i; < ...
be the increasing sequence of the eigenvalues of the operdtoon CW(M)EV, and let
& := {fo, fr,..., fi, ...} be the corresponding orthonormal eigenfunction€ M (M) .
Since every eigenspace of the operatad? on C°°(M)R is preserved by th@-action, we
may assume that above is a subset ¢f in the last section. Then alf x M x (0, co), we
write

(e.¢]
(5.1) Hx,y,1) = Y e M fi(x) fiy).

i=0
Note thatiy > A1(@, ¥) by Dy fi = Dy f1 = P f1 = 1 f1. PutHo(x, y, 1) := H(x, y, 1)~
voly (M)~tandHo(x, y, 1) := H(x, y, t)—vol, (M)1. SinceG(x, y) = [;° Ho(x, y, t)dt,
we have

00 (.¢]
(5.2) Gulx.y) = /0 Ho(x,y,n)dt =Y it fi(x) fi(v).
i=1
Assume (1.6) as in the last two sections. Let O be a positive real number, and df, we
assume Rig:/?) > vo. Then by [M1; (1.7)], we have

(5.3) Diam(M, w) < C2/+/v,
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where we se€5 := 27 (2n — 1+ 4c¢)Y/2 for the positive real constantin Section 3. We now
give a proof of Theorem B.

(5.4) PROOF OFTHEOREMB. As in Section 2, lek; = A1(w, ¥) be the first posi-
tive eigenvalue of the operaterD,,. Since Riuﬁth/z) > vw andi1 = A(w, 2(¥/2)), an
application of Proposition 2.6 to= 2 now yields

(5.4.1) fi1 > A > ve .

Putsg := Diam(M, w)? for simplicity. SinceHo(x, x,  + to) < e ™' H (x, x, to) for all
t > 0, the inequalities (4.3.1) and (4.3.2) imply the following forzalt 0 andx € M:

Ho(x,x,to+1) < e #!By if (1.5)is the case;
Ho(x,x, 10+ 1) < e M B, if (1.4) is the case,

whereBy := 4"/C1voly, (M)~ exp((7/3) + (4/3)C Mk 10} and By := 4% Coe™/3voly, (M) L.

Then by (5.1), we haveo(x, v, to+ )| < Ho(x, x, to+ 1)Y2Ho(y, y, to + 1)¥/2, and hence
|Ho(x, y, o+ 1)| < e ™' By,

wherex = 1 or 2 according as (1.5) or (1.4) holds. Therefore, by (5.2), it follows that

. Io oo -
Golx,y) > —/ voly (M)~ td: —/ e M= g dr > —tgvoly (M)t — a7 B
0 fo

> —v~Hvoly (M)71Co? 4 e* By},

where in the last inequality, we used (5.3) and (5.4.1). Thus, if (1.5) is the case, then the
following inequality holds for alk, y € M with x # y:

Go(x,y) > —vt { voly, (M)~1Co? + eZCBl}

. 7 4 .
= —{vvoly, (M)}~? {sz + e%q/Cr exp(é + §Cl_1kD|am(M, a))z)}
‘ 4 C2?
> —{v vol,p(M)}l{sz + XT3 g/ 1 exp<§c;1k—2) }
v
Then for (a) of Theorem B, we obtain the required inequality by setting= C»?, ko :=
2T/ €1 andig := (4/3)C71C2% Next, if (1.4) is the case, then we have
Golx,y) = —v tvoly (M) 71Co? + % By}
— _{VV0|1// (M)}—l(CZZ + eZC+(7/3)41/C0) ,

and for (b) of Theorem B also, the required inequality follows immediately kjth= C22 +
62C+(7/3)41/C0.

REMARK 5.5. The quantity vgJ(M) = fM e Vo satisfiesVe ™ < voly (M) <
Ve~tfor V := [, ", where the real constantsc are as in Section 3. Hence, under the
assumption of (1.6), we easily see that for a fixednd a fixed Kahler class, the quantity
voly, (M) does not depend on the choicexoin the Kahler class (see [M1]).
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REMARK 5.6. By (5.2), we have
| ey m=o.
M
f&x) = V0|¢(M)’1/M FWhy ) — /M G(x, (PO ),
forallx € M and allf € C® (M),

6. Proof of Theorem C. Letw € F,. Then for some < [0, .1], w satisfies the
equation (1.9). On the other hand, there exists a funation C*°(M)g" such thatw =
wo + ~/—189¢. Putf, := —o(u,) — (1 — ). Then by (1.1), (1.6) and (1.9),

Ric(w) = —v/—1330 (1) + Ric(hg(,)) = —v—1000 (ue) + to + (1 — t)wo

= —/—1000 (uy) + to + (1 — 1) (w — V=133¢) = w + v/ =133 f,,
on M. On the other hand, there exists a functigne C°°(M)gr such thatX = gracng and
thatv,, satisfies the equation (see [F1; p. 41])

(6.1) Opve +v—=1Xf, = —v, .

Now by X = graqfvw , we havev,, = u,, + C3 for some real constanf3. This constant is
characterized as Futaki’s invariafit X) of the vector fieldX (see [F1; p. 54]) by integrating
both sides of (6.1) ovel! as follows:

62  FX) = /(Xf)wn—/ wn—lf "4 C3=C
. ._«/—_].M wV—MUwV—VM”w(U 3=10L3,
whereV := [,, »". By combining (6.1) and (6.2), we obtain

U4, = —Uey —C3— V—=1Xf,
= —up — F(X) + V=1X{0 (us)} + V=11 — 1) X¢
= —F(X) + 6 (o) Qtey, Dher) s — tttey — (1 — 1) (ttey — /—1X )
< —=F(X) —tuy — (1= Hutgy,

where in the last inequality, we used the inequadity< 0 on Iy and the identityu,, =
Uy, —~/—1X¢ (cf. [FM]) on M. Note that mify u,, = miny u., = lo (see Section 1). Then
the above (6.3) implieSl ,u, < C4 := max0, —F(X) — lg}. Sinces > 0 onIx, we finally
obtain

(6.3)

ol—0e)} = —6 (1) (514507 5“(1))&) - é’(uw)Dwa
< =6 (ue)d,u,, < C4Cs,

whereCs := maxs, {—06(s)}. Since the right-hand sidésCs is a constant independent of
the choice otw in 75, the proof of Theorem C is now complete.
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