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Abstract. For asymptotically almost periodic functional differential equations with in-
finite delay in a Banach space, some stability properties of a bounded solution are deduced
from stabilities in a certain limiting equation which is obtained by employing the Bohr topol-
ogy.

1. Introduction. In this paper we are concerned with an asymptotically almost peri-
odic functional differential equation with infinite delay

E du _ o F
(3] T u(t) + F(t,ur)

on a phase spade= B((—o0, 0]; X) which possesses a fading memory property, wheire
a Banach space amglis an element belonging #((—oo, 0]; X) defined by, (s) = u(z + )
for s € (—o0,0]. For ordinary differential equations, D’Anna [4] has shown that the total
stability of a bounded solutionan be deduced from the total stability in a certain limiting
equation which is obtained by employing the Bohr topology. As an example in [3] shows, this
result is false when the limiting equations are obtained by using the compact open topology.
For functional differential equations on a uniform fading memory spacgith X = R”,
Hino and Yoshizawa [9] obtained a generalization of D’Anna’s resultfdptal stability,
together with the result foB-uniform asymptotic stability. Thé-stability means that the
solution remains small if the initial function is small with respect to the semi-njorig.
On the one hand, as pointed out in [2], some integrodifferential equations can be set up as
functional differential equations on a fading memory space (not uniform) and BC-stability is
more practical, where BC-stability means that the solution remains small if the initial function
is small with respect to the BC-norm, that is, sup 4o [¢(6)].

The main purpose of this paper is to derive BC-stability propertieszasthbility prop-
erties of a bounded solution ¢E) on a fading memory spadg((—oo, 0]; X) with a general
Banach spac& and to extend some results due to D’Anna [4], together with those due to
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Hino and Yoshizawa [9] for functional differential equations with infinite delay on a uniform
fading memory spacB in case ofX = R".

The authors wish to thank the referee for his suggestions which are useful for the im-
provement of the paper.

2. Fading memory spacesand preparatory results. Let X be a Banach space with
norm| - |x. For any intervall C R := (—o0, 00), we denote by BC/; X) the space of all
bounded and continuous functions mappihgnto X. Clearly, BQJ; X) is a Banach space
with the norm| - |gc(s.x) defined by|¢|sc.x) = Suple®)|x : t € J}. We often write
| - IBc(s:x) @s| - |s. Also, if J = R~ := (—o0, 0], then we simply write BC/; X) and
| - IBc(s: x) @as BC and - |gc, respectively. For any functiom: (—oo, a) — X andr < a, we
define a function; : R~ +— X byu,(s) = u(t +s)fors € R~. LetB=B(R™; X) be areal
linear space of functions mappiy~ into X with a complete seminorin |3z. The spaces is
assumed to have the following properties:

(A1) There exist a positive constait and locally bounded functionk (-) and M (-)
on R* := [0, co) with the property that ift : (—oo, a) — X is continuous orio, a) with
u, € Bforsomeos < a, thenforallr € [0, a),

(i) u; €B,

(i) u, is continuous i (w.r.t. | - |g), and

(i) Nlu(@®)|x < luslg < K(t —0) SUR, <5< [u($)|x + Mt — 0)|us|p.

(A2) If {¢*} is a sequence 8 N BC converging to a functiog uniformly on any
compact intertval ik~ and sup |¢¥|sc < oo, theng € B and|¢pF — ¢|g — 0 ask — oo.

Itis known [7, Proposition 7.1.1] that the spageontains BC and that there is a constant
[ > 0 such that

D ¢l < ll$lec, ¢ €BC.
SetBp = {¢ € B: ¢(0) = 0}, and define an operatsp(¢) : Bo — Bp by

¢@t+s) fr+s5<0,

[So(D)91(s) = :o if t+5>0

for eachr > 0. By virtue of (A1), one can see that the famil§o(¢)};>0 is a strongly continu-
ous semigroup of bounded linear operatord3gnMoreover, the spacB is assumed to have
the following properties:

(A3)  lim [So(t)gls =0. ¢ € Bo.
(A3") Jim [1So(t)l = 0.

Here and hereafter, we denote Py || the operator norm of linear bounded operators. The
spaceB is calleda fading memory space (resp.a uniform fading memory space), if it satisfies

(A3) (resp. (A3)) in addition to (Al) and (A2). It is obvious thdt is a fading memory
space whenever it is a uniform fading memory space. It is known [7, Proposition 7.1.5] that
in the case wher# is a fading memory space, the functioki§-) and M (-) in (Al) can be
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chosena¥X (-) = K andM(-) = M, constants; while in the case whe8és a uniform fading
memory space, the functios(-) andM (-) can be chosen so as to sati#fy-) = a constant
andM(t) — 0 ast — oco.

We provide a typical example of fading memory spaces.gL.etR™ — [1, co) be any
continuous nonincreasing function such théd) = 1 andg (s) — co ass — —oo. We set

Cg = CS(X) ={¢: R™ — X is continuous with lim |¢(s)|x/g(s) = O}.
§—>—00
Then the space‘g equipped with the norm

91, = supl?@lx

, ¢ecy,
s<0 g(s)

is a Banach space and it satisfigd1)—(A3). Also, the spacéTS is separable whenevef
is separable. Moreover, one can see thatA8lds if and only if supg(s +1)/g(s) : s <
—t} — 0ast — oo. Therefore, ifg (s) = e™*, then the space‘g is a uniform fading memory
space. On the other hand,gfs) = 1 + |s|* for somek > 0, then the spacé‘g is a fading
memory space, but not a uniform fading memaory space.

For any setF in C(R™; X), whereC(R™; X) is the set of all continuous functions de-
fined onR™ with values inX, we set

R(F)={x(t):xeF,t € R"}.
Moreover, for any sef in B, we set
WS, F)={x():x € C(R,X),x0 €S, x|g+ € F)

and
VS, F)={x;:t € RT,x € W(S, F)}.

LEMMA 1([8,Lemmal]). Let5 beafadingmemory space. If S isacompact subsetin
Bandif F isauniformly equicontinuous setin C(R*, X) such that the set R(F) isrelatively
compact in X, thentheset V (S, F) isrelatively compact in 5.

Now we consider the following functional differential equation
du
(2 — = Au(t) + F(t,uy),
dt
whereA is the infinitesimal generator of a compact semigrétigr)};>o0 of bounded linear
operators ofX andF (¢, ¢) € C(R* x B; X). Throughout this paper, we assume the following
condition onF:
(H1) Foranyc > 0, thereis ar.(c) > 0 suchthatF (¢, ¢)|x < L(c) forallt € RT
and¢ € B suchthat¢|z < c.
By virture of (H1), it follows that for any(o, ) € RT x B, there exists a function
u € C((—o0, 11); X) such thatt, = ¢ and the following relation holds:

t
u@) =Tk —o)p(0) +/ T(t—s)F(s,us)ds, o <t<ty,

o
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(cf. [5, Theorem 1]). The function is called the (mild) solution of (2) througtr, ¢) de-
fined on[o, t1) and denoted by:(-, o, ¢, F). In the aboves; can be taken ag = oo if
sup_,, lu(r)|x < oo (cf. [5, Corollary 2]).

LEMMA 2. Assume that B is a fading memory space, {7 (¢)};>0 iS a compact semi-
group and F¥(r,¢) € C(Rt x B; X), k € N (N is the set of all positive integers), satisfy
Condition (H1) with L(-) which is independent of k € N. Suppose that {x*(¢)} is a family of
mild solutions of the equation

du
T Au(t) + F*(t, uy)
having the following properties:

i) Foreachk e N, x*(r) satisfies the integral equation

t

ut) = T(t—U)u(O)+/ T(t — s)F*(s, us)ds

(o2

for o := oy <t < 1 < oo (here and hereafter, if 1, = oo, theno; <t < 1 isunderstood
asoy <t < 00.)

i) Theset{x! :k e N}isrelatively compactin 5.

iii) Thereexists a constant ¢ such that

IXf()x <c, keN, opg<t<t.

Thentheset {x* : k € N, oy <t < 7} isrelatively compact in B.

PROOF. We shall prove that the sét := {x*(1) : ox <t < w, k € N} is relatively
compact inX. For this purpose, we assert that any sequémgein W contains a convergent
subsequence. We consider the casedhat x*(ux) with ox < ux < t for k € N. Assume
that liminfi_ oo (ux — ox) = 0. Since the sefx*(oy) : k € N} is relatively compact inX
by ii) and (A1)-(iii), it follows that supy |T (t)x* (o) — x¥(ox)|x — 0 ast — +0. Hence
the sequencer® (ux) — x*(ox)} contains a subsequence which converges to 0 because of the
inequality

Mk
I (k) — x* (@) 1x = 1T (ux — 01)x*(ox) + / T (i — ) F¥(s, x5ds — x*(op)1x

Ok

< |T(x — or)x* (o) — x*(on)|x + (uux — ox) C1L(H),

whereC1 = sug||T(7)|| : 0< 7 < ux —ox, k e NyandH =sup|xk|g 1ok <t <, k €

N}. This observation leads to the assertion under the assumption limisiuy — ox) = O.
Next we shall establish the assertion under the assumption limdip€ur — ox) > 0.

Taking a subsequence if necessary, one can assume {Hatinf ox) > n for some constant
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n > 0.Let0 < v < min(n, 1). By virtue of Property i), we get

i
K ) =T (ue — 00)x* (00) + / T (ke — ) F* (s, x¥)ds

Mik—1
=TT (ux — ox — n)x*(ox) +/ T (e —n — ) F (s, xF)ds]

ok

Mk
+/ T (i — $)FX (s, x)ds
"

k=N
X Mk —V X k
=T(mMx"(ux —n) +T(v) T(uk —s —v)F (s, x{)ds
Hk—n
Mk
+/ T (i — $)FX (s, x¥)ds
g—v

fork € N. The setZ := { ;ch:nv T (ux — s)F*(s, x¥)ds : k € N} is bounded inX, and hence
T (v)Z is relatively compact inX because of the compactness of the semigfdup)};>o.
Similarly, one can derive the relative compactness of th& éet{x*(ux — n) : k € N}. Thus

we have

a({xk(,u,k) ckeN) =« ({/Mk T (ux —s)Fk(s,xf)ds ke N})
1%

k—V

<vC2L(H),

whereCz = sup_, <1 |7 (7)|| anda(-) is Kuratowski's measure of noncompactness of sets
in X. For the details of the properties@f-), see [10, Section 1.4]. It follows that{x* (i¢) :

k € N}) = 0 because is arbitrary. Thus the s¢k*(u;) : k € N} is relatively compact irX,

and hence the sequenjoé (1)} contains a convergent subsequence.

In order to complete the proof of the assertion, it remains only to establish the assertion
in the case ofy, = x*0(uy) with Oky < Mk < T for k € N and for someg € N. Repeating
almost the same argument as in the preceding paragraph, we can see that{ th&3et
ok, <t < T} is relatively compact irX, and hence the sequenieg} contains a convergent
subsequence, as required.

Letoy <s <t <min(t,s +1). Then

13
k() = Tt — 5)x*(s) +/ T(t — 1) F*(z, xM)dr

s

and hence

I (6) — x5 ) x < 1T = )xF(s) — x*(s)Ix +

t
/ T(t — s)F*(z, xN)dr
<SUR|T(t —s)z—z|lx :z€ W}+ L(H)C|t —s].

X

SinceW is relatively compact inX, T'(t)z is uniformly continuous it e [0, 1] uniformly
for z € W. This observation leads to sy, |xk(#) — xK(s)|x — O as|t —s| — O.

For eachk € N, we define a function®(r) by y*(r) = xK(ox + 1) if t < 7w — oy, and
yE@t) = xK(zp) if t > tx — op. Then{y*(t) : t € R*, k € N} = W is relatively compact in
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X and the family of functiongy*(-) : k € N} is uniformly equicontinuous oR*. Therefore
Lemma 1 yields that the s¢t¥ : k € N, t € R*} is relatively compact irB. Hence the set
{xk:k eN, ox <t < 1} is relatively compact ifB. This completes the proof of Lemma 2.

3. Limiting equations and asymptotically aimost periodic solutions. In the re-
mainder of this paper, we always assume hi& a separable fading memory space.

A function F(t,¢) € C(RT x B, X) is said to be asymptotically almost periodictin
uniformly for ¢ € B, if it is a sum of continuous functionB (¢, ¢) and Q(z, ¢) such that
P(t, ¢) is almost periodic irr uniformly for ¢ € B and thatQ(z, ¢) — 0 uniformly for
¢ € S for any compact sef in B ast — oo.

A sequencg Fi} in C(RT x B; X) is said to be convergent 16 Bohr-uniformly on
R* x Bif F; converges t& uniformly onR™ x S for any compact sef in B ask — oco. A
function F (¢, ¢) € C(R™ x B, X) is said to be positively precompact if for any sequefige
in R™ such that; — oo ask — oo, the sequencgF (t + #, ¢)} contains a Bohr-uniformly
convergent subsequence.

In the case wheré& (¢, ) = F(t) andX = R", it is known (e.g. [11, pp. 20-30]) that
F(t, ¢) is asymptotically almost periodic inuniformly for ¢ € B if and only if F(z, ¢) is
positively precompact. In fact, by virtue of the separabilityfowve can see that the argument
employed in [11, pp. 20-30] to establish the above equivalence works foFany) <
C(RT x B; X) whenX is any (separable) Banach space.

In what follows, we always assume the following conditions on Equation (2) in addition
to (H1):

(H2) Equation (2) has a bounded soluti@ft) defined onR™* such thatig € BC and
SUR g+ lit g < 00.

(H3) F(, ¢) is asymptotically almost periodic inuniformly for ¢ € B.

For anyr € R™, we define the-translationF® of F (¢, ¢) by

F'(t,)=F@t+71,¢), (@t ¢) e R xB.

Clearly, F* is in C(RT x B; X), too. As was explained in the preceding paragraph, (H3)
implies thatF (¢, ¢) is positively precompact. Therefore any sequeigé C R™ contains a
subsequencgr,} such thaf F™} converges Bohr-uniformly oR™ x B. We set

H(F)={F*:teR*}in C(R" xB; X),

where{F* : T € Rt} denotes the closure ¢F* : t € R} in C(R™ x B; X) equipped with
the Bohr topology. The sdif (F) is called the hull ofF. Clearly, the hullH (F) is invariant
with respect to the -translation; that isG* € H(F) whenevelG € H(F) andt € R™. For
anyG € H(F), one can choose a sequerieg} C R™ so thatF™ — G Bohr-uniformly on
R™ x Basn — oo. In particular, we denote bg (F) the set of all element§ in H(F) for
which one can choose a sequefigg C R so that{r,} — co asn — co andF™ — G
Bohr-uniformly onR™* x B. In fact, by (H3) we can assume that aiye 2 (F) is defined on
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R x B and almost periodic in uniformly for ¢ € B. If G € H(F), then the equation
d
@3) = A0 +Gu) 1eRT,

is called an equation in the hull of (2). In particular@fe 22 (F), then it is called a limiting
equation of (2).

Under the above assumptions (H1)—(H3), it is known [8] at+ = {i(r) : t € R}
is compact inX, i(t) is uniformly continuous o™, X g+ :={u; : t € RT}is compact in
B andi, € Bis uniformly continuous in € R™. Therefore, for any sequen¢e/} C Rt one
can choose a subsequerieg C {7,}, v € C(R; X) andG € H(F) suchthatlim_, . F™ =
G in C(RT x B; X) and lim,_ |it;+1, — v:|g = 0 uniformly on any compact interval in
R7T. In this case, we write as

(@™, F)y — (v, G) compactly,

for simplicity. Denote byH (u, F) the set of all(v, G) € C(R; X) x H(F) such that
(@™, F) — (v, G) compactly for some sequenée,} C R*. In particular, we denote
by 2 (i, F) the set of all element&, G) in H (i, F) for which one can choose a sequence
{t,} € RT sothatlim,_, o 7, = oo and(@™, F™) — (v, G) compactly. It is known [8] that
v is a solution of (3) whenevei, G) € H(u, F).

Now we shall give some definitions of BC-stabilities.

DEFINITION 1. The bounded solutiof(z) of (2) is said to be BC-totally stable (BC-
TS) if for any e > 0 there exists a&(¢) > 0 with the property that € R*,¢ € BC
with |y, — ¢lec < 8(e) andh € BC([o, 00); X) With SUR¢[y o0y [R()|x < 8(e) imply
lu(t) —u(t,o, ¢, F +h)|x <efort >o.

DEFINITION 2. The bounded solutiofa(r) of (2) is said to be BC-uniformly stable
(BC-US) if for anys > 0 there exists @(¢) > 0 such thatr € RT and¢ e BC with
lie — ¢dlec < 8(e) imply |u(t) — u(t, 0, ¢, F)|x < e fort > o. Furthermoreu () is said
to be BC-uniformly asymptotically stable (BC-UAS), if it is BC-US and there exisis:a 0
with the property that for any > 0 there exists a&(¢) > 0 such thab € R and¢ € BC
with |iiy — ¢lec < Soimply |i(t) —u(t, o, ¢, F)|x < efort > o 4+ 1o(e).

In the above, we can definB-total stability (B-TS) if we replace ¢ € B with
lie, — @l < 8(e)" in place of 9 € BC with |u, — ¢|sc < 8(¢)". Moreover, we can
defineB-uniform asymptotic stability (3-UAS) in a similar way.

The following proposition can be obtained by following the argument in [8, Theorem 1].

PrRopPOSITION 1. If thesolution () of (2) isBC-TS then it isasymptotically almost
periodicinz.

The following theorem is an extension of Hino and Yoshizawa [9, Theorem 1] to the case
whereX is a Banach space aitlis a fading memory space.

THEOREM 1. If Equation (2) admits a limiting equation (3) whose solution v(¢) such
that (v, G) € 2(i, F) isBC-TS then it (z) isasymptotically almost periodicin z.
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PROOF.  Since(v, G) € 2(u, F), there is a sequende}, tx — oo ask — oo, such
that(u™, F*) — (v, G) compactly. We shall show thatz + ;) is convergent uniformly on
R™. Suppose the contrary. Then, for some 0 there are sequencgs}, {k;} and{m ;} such
that

kj—>o0 and mj - oo asj— oo,

4 |u(te; + 1) —u(tm; +1j)lx =€ and lu(ti; +1) —u(tm; +0)lx <& on[0,¢).

Putv/ (1) = (i, 4 1) andw’ (1) = it(tm; + ). Then we may assume that

i1
) p (v, Vo) < i
and
i 1
p(wy, Vo) < A

wherep(é, ) := 33721271 — yIi/{1+|¢ — v} and| - || = | - |0 For eachj € N
andr € R*, we define a function/” : R — X by
: vi(1), —r <t,
v =9
vi(=r)+v(t) —v(=r), t<-—-r.

First, we shall show that
(6) sudlv)” —vjls:jeN} -0 asr— co.

If this is not the case, then there existagn> 0 and sequencdg,} C N and{rg}, ry —
oo ask — oo, such thatvék”k - vék Ig > eofork=1,2,.... Puty* = vék”k - vék. Clearly,
{y*} is a sequence in BC which converges to the zero function uniformly on any compact
set inR~ and sup [¥*|sc < oo. Then Axiom (A2) yields thaty*|s — 0 ask — oo, a
contradiction.

Observe thav/" (r) — ©(t) asj — oo, uniformly for (¢, 7) in any compact set in
R x R*. Hence the se(tvé, vé” : j €N, r € R} is relatively compact i3, because the
setX; g+ is compact in andvé € X; g+. Moreover, the setv/ (), v/"(t) : j e N, r €
RT, t € RT} is contained in the compact sé; z+. From these observations and Lemma 1
it follows that the seW := {v,j, v,j” :jeN, reRT, t e R"}isrelatively compact irB.
Consequently,

(7 SUPIF(t + 14, ¢) — G(t,d)|lx :t € RT, peW}— 0 ask— co.
Define a continuous functiop/-” on R* by

J B .

S0 = F(t+ 7w, v) — G, (v'")), 0=<1=ty,
Since

/") — )il < MIvY" —vflg (€ R, jeN)
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by Axiom (A1), it follows from (6) that

(8) Sup|G(t,v)) — G(t, W"))Ix :t€eRT, jeN} >0 asr— oo.

Hence, by (7) and (8) we can chooge= jo(¢) € N andr = r(¢) € N in such a way that
sUllg”" lx = j = jo, 1 € R} < 8(2/2)/2,

wheres(-) is the one for the BC-TS of the solutiartr) of (3). Moreover, for this, select an
integerj > jo such thatj > 2" (14 8(¢/2))/8(¢/2). Then 27" |vg — v}, /[1+ |0 — v§l,] <
o (vg, v(’)) < 27"8(e/2)/[1+ 8(g/2)] by (5), which implies that

o — v, < 8(e/2) or v} —Tolsc < 8(¢/2).
Since the function/-" is the solution of
dv .
E = Av(t) -+ G([, Ut) +q]’ (t)

for ¢ € [0, ¢;1, and sincei(7) is a BC-TS solution of (3), from the fact that sgp|q1”(t)| <
8(g/2) it follows that|(v/")(r) — (#)|x < /2 on[0, ¢;]. In particular, we have(v/")(t;) —
v(tj)|x < /2 Orlvj(tj)—ﬁ(tj)|x <¢g/2. ' ' '

By the same way, we haye/ (r;) —v(tj)|x < /2. Thus|v/ (t;) —w’ (t;)|x < [v/(t;)—
v(tj)|x + [v(t)) — wj(tj)|x < ¢/2 + ¢/2 = ¢, which contradicts (4). Therefoig(r + )
must converge uniformly oR*.

Finally, we shall verify thaf(¢) is asymptotically almost periodic in For any sequence
{s;} such thats; — oo ask — oo, one can choose a subsequefigg of {s;} so that
Sk — Tk =: g — 00 ask — oo. By virtue of Proposition 1j(¢) is asymptotically almost
periodic inz, and hence one can assume th@at+ ;) converges uniformly oR*. Then
i(t +sx) = u(t + 7 + i) also converges uniformly oR*. Thereforei(r) is asymptotically
almost periodic irt. This completes the proof of the theorem.

4. Inherited properties in asymptotically almost periodic functional differential
equations. A property for the solutioni(¢) of (2) is called an inherited property, if each
solutionv(¢) such that(v, G) € £2(u, F) also possesses the property. The following result
shows that the BC-TS property is an inherited property.

THEOREM 2. |If the solution i(¢) of (2) is BC-TS then for any (v, G) € 2(i, F),
v(t) also isBC-TSwith a common pair (e, 31(¢)).

PROOFE Let p(-) be the one introduced in the proof of Theorem 1, andUet=
{x € X : |x|]x < c} be a closed, bounded subsetXfwhose interior contain®; p :=
{u(®) : t € R}. In what follows, we writep(-) € U wheneverp € BC and¢(0) € U for all
6 <0.

We first note that the solutioi(z) of (2) is BC-TS if and only if the following assertion
holds (for the proof, see [6]):
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ASSERTION 1. (*) For anye > O there exists @*(¢) > 0 with the property that
o € RY,¢(-) € Uwith p(¢,ii,) < 8§*() andh € BC([o, 00); X) With |h|s.00) < 8*(&)
imply u(t,0,¢, F +h) —u(t)|x <eforr>o.

Next, we shall certify the following assertion:
ASSERTION 2. Property (*) is an inherited property.

Let v be the solution of

v _ , G h
E = U([)"‘ (t, U[)+ ([)

through(s, vs), wheres > 0, (v, G) € (i, F) andh(z) is a continuous function ofy, co).
Assume that

p(V5, v5) < 8%(e/2)/2 and |h(t)|x < &%(e/2)/2 on[s,00),

whereg is any positive number satisfying| < c—e for all x € Oz g, ands*(-) is the number
given in Assertion 1. Suppose that for some 0,

9 [os+17)—v(s+1D)|x=¢ and |v(@)—v()|x <& fors<r<s+r.

Since (v, G) € 2(u, F), there exists a sequen¢g},t, — oo ask — oo, such that
(u', F'*) — (v, G) compactly. Therefore there iska = ko(e) > 0 such that

p(its+o, Vs) < 8%(e/2)/2
and
|F(t+0,¢) —G(t,9)|x <8"(¢/2)/2 on[s,s + 1] x {X, g+ UXp5p+},
whereo = 1;,. Thus there are continuous functiopg) andq (¢) defined orfs, co) such that
1Plis,00) < 8%(8/2), Iql1s,00) < 8%(¢/2),
p(t)=G({t,v) — F(t+o0,v) on[s,s+7]
and
q(t) =G, v)— F({t+o,vu)+h(t) onl[s,s+1].
Thenu(¢) is a solution of

du
— = Au(t) + F(t + 0, u;) + p(?)

dt
onl[s,s + t], andv(z) is a solution of
d
5= AW + P+ o,un) + ()

on[s,s + t]. On the other hand, it is clear thatr 4+ o) is a solution of
du
2 =Au(t)+ F(t +o,u;).

Notice thatvs(-) € U andvs(-) € U because oz(0) € O; g for all & < 0. Since
pistq, Us) < 8%(e/2) and|plis.00) < 8*(¢/2), it follows from Assertion 1 that

(10 lu(t +o0) —v(@)|x <¢e/2 fors<t<s+r.



LIMITING EQUATIONS AND SOME STABILITY PROPERTIES 249

Moreover,|glis,00) < 6%(e/2) and p(ils14, v5) < p(istq, V) + p(Vs, v5) < 6*(e/2), and
hence we have

(11 lu(t+o0)—v(t)|x <e/2 fors<t<s+rt.

Thus it follows from (10) and (11) thab(s + 7) — v(s + 7)|x < &, which contradicts (9).
Sincep(¢, ¥) < |¢ — ¥lpc for ¢, ¥ € BC, the theorem follows from Assertion 2.
Indeed, we may puti(-) = §*(-/2)/2.

COROLLARY 1. Under the assumptions of Theorem 1, any w(¢) such that (w, P) €
2 (u, F) isBC-TSwith a common pair (e, §1(¢)).

PrROOFE By Proposition 1 and Theorem i(r) andv(¢) are asymptotically almost pe-
riodicint, and hence&2 (i, F) = 2(v, G), because (¢, ¢) is asymptotically almost periodic
in ¢ uniformly for ¢ € B. Thus, for any(w, P) € £2(v, G), w(¢) is BC-TS with a common
pair (g, 81(¢)), which follows by applying Theorem 2 1@, G), sinceuv(z) is BC-TS.

5. Stability propertiesvialimiting equations. In this section, we shall study stabil-
ity properties for the solutioi(¢) of (2) via limiting equations. Before stating our results,
we prove a result which gives the continuous dependence property of solutions for the initial
value problem in some sense.

We say that the solutiofa(z) of (2) is unigue for the initial value problem if, = v
impliesu(t) = u(t, o, ¥, F) forallz > o.

PROPOSITION 2. Assume that the solution i(z) of (2) is unique for the initial value
problem. Then, for anye > 0,0 > 0Oand s > O, thereexistsa § = 8(¢, o, s) > 0 such that if
i — ¢l < 8 and sup¢ 11h@)|x < é,thenforanys € [0, 0 + 5]

0,0+s
le(®) —u(t,o, ¢, F +h)|x <&,
whereu(t, o, ¢, F + h) isa solution of

12 fl—l: = Au(t) + F(t,ur) + h(1)

through (o, ¢).

PROOF. Assume that the conclusion does not hold. Then there exist constants
0,00 > 0 andsg > 0 and sequence®’} € B, {}, {t} C [0, s0l, &x < w, and{h* (1)} €
C([00. 00 + 50l: X), SURc(op.00ts0] IB* (D]x < 1/k, such that

_ 1
litoy — ¢¥ 15 < =

(13) li(tx + 00) — x* (s + 00) [ x =&,
|t (ti + 00) — x* (& + 00)|x = 2¢,
lil(t + 00) —x*(t +00)lx <& (0=t <t)
and

li(t + 00) — x¥(r +o0)lx <26 (0<1<1)
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fork =1,2,..., wherex*(t) = u(t, oo, ¢*, F + h*) is a solution of
d
(14) d—’: — Aut) + F(t, ) + b5 (1)

through(oo, ¢¥). By choosing a subsequence if necessary, we may assumg thatrg €
[0, so]. Applying Lemma 2 withF (¢, ¢) + h*(r) in place of FX(¢, ¢), we see that the set
{xk:k eN, o9 <t < oo+ ) is relatively compact i, and hence the sét := {xX(¢) :
k €N, op <t < og+ 1t} is relatively compact irX.

Now we shall show that

infloy — . | k=1,2,...} =:2a > 0.

If a = 0, then we may assume that— 1, — 0, by taking a subsequence. Sindgr) is a
mild solution of (14) througftt + oo, xf, ;). We get

IxK (zic + 00)—xX (1 + 00) | x

T (1 — t)x* (tx + 00)

Tk +00
+ / T (1 4 00 — $){F(s, x¥)ds + k¥ (s)}ds — x* (1 + 00)
tk+00

X
< (T (% — tx) — Dx*(tx + 00)|x

+

T%k+00
/ T (tx + oo — s){F (s, xf)ds + hk(s)}ds
tx+00

X

1
< sup|(T(tx — &) — Dzlx + (tk — 4)C1 {L(H*) + E} ,
zeV

and hence

e = |it(tx + 00) — x¥ (14 + 00)|x — lit(tx + 00) — x* (tx + 00)|x
< |it(t + 00) — it (tx + 00) — {x* (s + 00) — x* (&% + 00)}x
< |it(t + 00) — it (tx + 00)|x + [x* (% + 00) — x* (1 + 00)|x
< lit(t + 00) — it (tx + 00)|x

+ SU‘EJI(T(Tk —t) — Dzlx + (e — %) C1 {L(H*) + %} .
zZ€e
whereC1 = supy.,,, IT(t)| and H* = sup|xf|z : o0 < 1 < 00+ .k € N}. The
right hand side of the above inequality tends to zerb as oo, because lim, o+ T(t)z = 2
uniformly for z € V, which is a contradiction. Thus we may assume tHat) exists on
[o0, 00 + fo + a] and SUBy<t <op+tot+a |xtk|3 < H*.

Since the sefxX(s) : k € N, s € [00, o0+ f0 + al} is relatively compact ik, by the
same reasoning as in the proof of Lemma 2 we see{#fat)} is a family of equicontinuous
functions or{oo, oo+ 10+ a]. Hence we may assume thét(r) converges to some continuous
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functiony(z) uniformly on[oo, oo + to + a] ask — oo. Putyg = ii4,. Since

t
(15) K@) = T(t—ao)¢k(0)+/ T(t — $){F(s, x) + h* (s)}ds

00
for t € [00,00 + to + a] and [p¥(0) — i(o0)|x — O (k — o0), and since{x* : ¢ €

[00, 00 + to + a], k € N} is relatively compact irB, it follows from (15) that
t

y(t) = T (t — o0)it(o0) +/ Tt —s)F(s, ys)ds (ao <tr<op+to+ %) .
0

Consequentlyy(z) is a solution of (2) throughoo, its,) 0N [00, 00 + t0 + a/2], and hence
y(t) = u(t) on[og, oo + to + a/2] by the uniqueness af(r) for the initial value problem. On
the other hand, letting — oo in (13), we have

|lu(to + 00) — y(to + 00)|x = ¢,
which is a contradiction. This completes the proof of the proposition.

REMARK 1. By virtue of (1) one can see that Proposition 2 holds good, whenever
lie, — ¢l < & can be replaced byi, — ¢|gc < §.

Now we are ready to prove theorems that aemeayalizations of a result obtained by
D’Anna [4] for ordinary differential equations and a result obtained by Hino and Yoshizawa
[9] for functional differential equations on a uniform fading memory spBca the case
X = R".

THEOREM 3. Assume that B is a fading memory space and u(¢) is unique for the
initial value problem. If Equation (2) admitsa limiting equation (3) whose solution v(¢) such
that (v, G) € 2(u, F) isBC-TS thenu(r) isBC-TS

PrRoOOFE First of all, we shall show thai(z) is eventually BC-TS, that is, for ary> 0
there existx(¢) > 0 ands(¢) > 0 such that ifs > «a(e), |y, — Y¥|sc < 8(¢) andh(?) is a
continuous function which satisfiés(r)|x < 8(¢) on[s, 00), then

li(t) —u(t,s, ¥, F+h)x <e fort>s,

whereu(-, s, ¥, F + h) is a solution througlts, ¢) of (12).

Suppose thaii(r) is not eventually BC-TS. Then there exist an- 0 and sequences
{te}, (i}, (R* @)}, (xF(1)) such thaty > k, e > 1, |xf — ity |Bc < 1/k, |R* ()| < 1/k on
[tx, 00), |xK(ri) —it(ri) | x = e and|x* (1) —i(r)|x < e on[z, ri), whereh* (r) is a continuous
function andx* (1) is a solution througlt., x;. ) of

dl/i k
Ir =Au@®)+ F@t,u;)) +h*@).

Then there is asy, #; < sk < rx, such that
xb — g lBc = 81(¢/2)/2 and |x*(1) —ii(r)x < 81(¢/2)/2 on [, %) .

where §1(-) is the number given in Corollary 1. Taking a subsequence if necessary,
we can assume thdi’, F**) — (w, P) compactly. We note thakp := X; g+ U
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{x*: 1 <t <r, k e N}is compact by Lemma 2 and thagr) is asymptotically almost pe-
riodic by Theorem 1. Sincg, — oo ask — oo, it follows that(w, P) € 2(u, F). There
exists ag(e) > 0 such that ik > kg(¢), then

(16) p (s, wo) < 81(6/2)/2
and
an |F(t+ sk, ¢) — P, ¢)lx + Ihk(t + si)lx < 81(¢/2) on RY x Xo.

Sincew(t) is BC-TS withs1(-), it follows from (16) and (17) thau (s + sx) — w(@)|x < &/2
forall + > 0 whenevek > ko(e). Notice thatc* (¢ + s¢) is a solution defined of0, rx — sk]
of

d—”:Au(t)+P(tu)+F(t+s k h* - k

dt s Ut k> -x[_l,-_yk) + (t + Sk) P(t’ xt-’rSk) )

and

p(xt . wo) < p(xf . its) + plils,. Wo)
< |x}, —iiglsc + pliy,. wo) < 81(e/2) if k > ko(e).

Therefore, ifk > ko(e), then
| (re) — W (e — s0)lx < £/2,
and hence
¥ () — () |x < 1K) — Wk — s0)|x + [0k — s0) — d(r)x < e/2+e/2=¢,

which contradicts tax¥(ry) — ii(rr)|x = e. Consequentlyi(r) must be eventually BC-TS.
Sinceii(z) is unique for the initial value problem, Proposition 2 implies BC-T& @5.

By using (A2) directly for the convergence wft + s,,), the following theorem is shown
by arguments parallel to those in the proof of Theorem 3; so we omit the proof.

THEOREM 4. Assume that B is a fading memory space and u(¢) is unique for the
initial value problem. If Equation (2) admitsa limiting equation (3) whose solution v(¢) such
that (v, G) € 2(u, F) isB-TS, thenu(r) isB-TS.

Next we will study the UAS property for Equation (2) via limiting equations. Before
developing our argument, we emphasize that some additional condition must be imposed on
(2) to get the result similar to Theorem 3 or Theorem 4 on the UAS property. Indeed, Kato’s
example (e.g. [11, pp. 143-145]) shows that there is an almost periodic differential equation
with the property that zero is a UAS solution of the equation, but it admits a limiting equation
whose zero solution is not UAS.

We say that Equation (2) is regular if each solution of equationg (&) is unique for
the initial value problem. Under the regularity condition on (2), we will deduce a result on the
uniform asymptotic stability.
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THEOREM 5. Assumethat 5 isafading memory space. |f Equation (2) isregular and
admits a limiting equation (3) whose solution v () such that (v, G) € 2 (i, F) isBC-UAS,
then i(r) is BC-UAS.

In order to prove the theorem, we need the following result.

PROPOSITION 3. Assume that Equation (2) is regular. Then iz(z) is BC-UAS if and
onlyif any v(¢) suchthat (v, G) € 22 (i, F) isBC-UASwith acommon triple (§(-), o, to(-)).
Furthermore, if ii(¢) isBC-UAS, thenitisBC-TS.

ProOE We will prove the “only if” part of the proposition. L&8(-), 8o, t0(-)) be the
triple for the BC-UAS ofii(¢), where we may assundg < 5(1). We first establish that

v,G) e 2, F) and |¢p — vs|gc < 8(n/2) imply

(18 _
lut,o,¢,G) —v()|x <n fortr>o.

Select a sequendey} with tp — oo ask — oo such thatu™, F%*) — (v, G) compactly,
and consider any solutiaf(-, o + %, ¢ — U5 + s+, F). FOranyk € N, we setek (1) =
u(t + w, 0 + 1w, ¢ — Vs + o4, F). Since the solutiom(z) of (2) is BC-US, from the fact
thatlx(’; - lzoJrrk lBc =l —vs + lzoJrrk - lzoJrrk lBc = ¢ — vslBC < 5(7]/2) it follows that

(19 Ixk(t) =it +w)|x <n/2 foralsr>oc and keN;

hence sufixf|g | t > o,k € N} < K(1/2+ litljo,00) + M|$ — U5 + i 458 < 00 by
(A1-iii). By Lemma 2 together with the same argument as in the proof of Proposition 2, we
may assume that*(r) — y(r) ask — oo uniformly on any compact set i, co) for some
functiony : [0, 00) > X. Sincex* (o) = ¢(0) — () + it(o + ), we obtainy (o) = ¢(0).
Hence, if we extend the functionby settingy, = ¢, theny € C(R; X) and|x," —ylp—> 0
ask — oo uniformly on any compact set i@, co). Lettingk — oo in the equation

13

k) =T — o) {¢p(0) — 9(0) + it(0 + )} +/ T(t —s)F(s +u,xNds, t>o0,

(e

we obtain ,

¥ (o) =T(r—a)¢(0>+/ T(t - $)G(s, y)ds, >0,

o

which means thap (1) = u(t, o, ¢, G) for t > o by the regularity assumption. Then (18)
follows from (19) by lettingk — oc.
Repeating the above arguments wijth- 2, one can establish that

(v,G) e 2, F) and |¢ — vs|gc < §o imply
lu(t,o,¢,G) —v(®)|x <e fort >0 +1(/2).

Next we will prove the “if” part of the proposition. We first claim that) is BC-US.
If this claim is not true, then there are sequengg$, t, > O, {r,},r» > 0, {¢"} C BC, and
solutions{u(z, 7, ¢", F)} and a constant, 0 < ¢ < 8o, such that

_ 1
(20 |¢" — i1, IBC < -
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and
2D |x"(ta+rn) —u(ta+r)lx =¢ and |[x"(t) —u()|x <e on (—oo, T, +r4),

wherex"(t) = u(t, t,, ¢", F). Consider the case wherg — oo asn — oo, and let
to = to(e/2). By the same reasoning as in the proof of Proposition 2, we may assume that
there are a functio@ (¢, ¢) € £2(F) and solutions (¢) andy(¢) of

du _ 4
T u(t) + O(t, uy)

defined on[0, #9] such that(z® "=~ pFw+m=toy — (y, Q) compactly andc"(z, + r, —
to + t) — y(¢) uniformly on any compact set i+oo, 9] asn — oo. Lettingn — oo in
(21), we obtain that

ly(t0) —v(t0)lx =¢ and [y(r) —ov(t)|x <e < forall r=<t.
Thus|yo — ©olsc < 80, and hence it follows from the BC-UAS a6f(z) that

ly(to) — v(0)x < €/2,

which is a contradiction. Therefore, we can assumerhat r < oo asn — 0.

By almost the same reasoning as in the pregggdaragraph, one can deduce by (20) that
the sequencgr, } is bounded. Hence we can assume—> t < oo asn — oco. Moreover, we
can assume that'(z, +t) — x(¢) uniformly on any compact set if+-oco, r) asn — oo, for
some continuous function with xo = iz;. Observe that(r — ) is a solution of (2) defined
on [z, T 4+ r); hence it follows from the uniquenessiofr) for the initial value problem that
x() =u(r +1t)fort € [0, r). By virtue of (20) and (21), one can choosee (0, ;) so that

Ix" (Ty + ) —u(Ty + ) lx = €/2

for n € N. By the same reasoning as in the proof of Proposition 2, we see thatinfr,) >
0. Therefore it follows thak (7,) = u(z + r,), and
e/2=|x"(tn +7n) — it(ty + Fn)lx
= |xn(7:n + i) —x@)lx + lu(t +7,) —u(ty +70)lx — 0

asn — oo, a contradiction. Consequently ) must be BC-TS.

To establish the BC-UAS af(?), it is sufficient to show that for any > 0 there exists
aro(e) > 0 such thatp — i |c < 81 := §(80/2) implies|u(z, 7, ¢, F) — u(t)|x < ¢ for
allt > t + 1p(e), whered () is the one ensured by the BC-USia#). If this is not true, then

there exists aa > 0 and sequences,} C R™, {t,},t, — oo asn — oo, {¢"} C BC, and
solutions{u(z, s,, ", F)} such that

(22 |¢" — i, |BC < 81
and

(23 [ (ty +sn,sn,¢”, F)—u(ty +sp)lx > €
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forall n € N. It follows from (22) and the BC-US af(r) that
(29 lu(t, sy, ", F) —u(t)|x <do/2 for allr>s,.

Setz"(t) = u(t + s, +t, — to, sy, ¢", F) fort € R, and letrg = 1p(e). It follows from (24)
that

(25 12" () — a(t + sy + 1, — t0)|x < 80/2 for all t € [rg— 1, 00).

Since suflz"(s)|x : s > to — ty, n € N} < oo by (25), and since

t
') =T - 1) +/ Tt —s)F(s+sy+ 1t —to,2y)ds
-1
t—v
=T "t -1 + T(v)/ T(t—v—s)F(s+sy+1t,—to,25)ds
t—1

t
—|—/ T(t —s)F(s+ sy + 1ty — 0, 23 )ds
t

-V

forallt > 1o+ 1 — 1, andv € (0, 1), by almost the same argument as in the proof of Lemma
2 and Proposition 2, we see that the &étr) : o+ 1 — 1, <t < oo, n € N} is relatively
compact inX and that{z" (r)} is a family of equicontinuous oftp + 1 — #,,, c0). Applying the
Ascoli-Arzéla theorem and the diagonalization procedure, one may assumé(that> z(r)
uniformly on any compact set iR for some bounded continuous functio@r) € C(R; X).
Then it follows from (A2) and (Al-iii) that! — z; uniformly on any compact set iR. We
may assume thaf*» =%  Fs+a=ioy — (3, P) compactly for soméw, P) € 2(u, F). We
note that;(¢) is a solution of

Y pu) + PGt up)
— = Au JUyp) .
dt !

It follows from (25) that|z(r) — v(¢)|x < 8o/2 onR. In particular,|zo — vg|gc < 80/2 < 80.
Then|z(tg) — v(t0)|x < € by the BC-UAS ofu(¢). On the other hand, letting — oo in (23),
we haves < |z(fg) — v(70)|x, Which is a contradiction. Therefoig&r) must be BC-UAS.

The second part of Proposition 3 is a direct consequence of [8, proof of Theorem 2].

PROOF OFTHEOREM 5. Since Equation (2) is regular an¢) is BC-UAS, anyw ()
such that(w, E) € £2(v, G) is BC-UAS with a common(do, §(-), fo(-)) by Proposition 3.
Therefore, by appling Proposition 3 again(ia G), we see that(r) is BC-TS, and hence
u(t) is asymptotically almost periodic inby Theorem 1. Since2 (i, F) = 2(v, G), we
have the conclusion by applying Proposition 3.

Recall that the3-stability property for the solution(z) of (2) means that the difference
lu(t, o, ¢, F) — u(t)|x remains small if¢p — i, |5 is small. If we estimate the difference of
u(t,o,¢, F) andu(r) aslu,(o, ¢, F) — u,|p, we obtain another concept of tiestability
property fori(z). The latter stability property is stronger than the former, in general. As
stated in [7, Proposition 6.2.5], however, the two concepfs-sfability property foni(¢) are
equivalent wheneves is a uniform fading memory space. Using this fact, one can establish
the following theorem by a slight modification of the proof of Theorem 5.
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THEOREM 6. Assume that 5 is a uniform fading memory space. If Equation (2) is
regular and admits a limiting equation (3) whose solution v(¢) such that (v, G) € 2(u, F) is
B-UAS, then u(t) is B-UAS.

We emphasize that the condition thatis a uniform fading memory space cannot be
removed in Theorem 6. In fact, whéhis a fading memory space which is not uniform, the
B-UAS property cannot necessarily be deduced from that of limiting equations even if the
regularity condition is satisfied. In what follows, we shall provide an example which reflects
the fact for the3-UAS property.

Consider the following scalar equation

du u(0)
(26) Z__u(t)+1+t'
Equation (26) can be set up as a functional differential equation on the fading memory space
CY(R) =: CQ, whereg (s) = 1+ |s|. Indeed, if we define a functioR by
¢(—1)

_ 0
F(t,¢)=—-¢0) + 111 peCy,

then the equation (26) is identical with (2) with = 0. For any¢ < C?, it follows that
¢(—1)/(L+1t) — 0astr — oo. Hence we can see théi(s, ¢) is asymptotically almost
periodic inz uniformly for ¢ € €2, and the limiting equation of (26) is

dv o
— = —u(1),
dt

whose zero solution is clearlyg-UAS. On the other hand, the zero solution of (26) is not

Co-UAS. Indeed, for any € N, take ap” € CJ such that O< ¢"(s) < 1+ |s| foralls <0
with ¢"(0) = 0 and¢”(—n) = 1+ n. Then

t+n ng_
u(t +n,n,¢", F) :/ e—(t-i—n—s)Mds
n 1+

t
:/ 6‘_(1_{)71-’_” dt B
0 l+n+rt

and hence sypy u(n +1t,n,¢", F) = [y e ""Ddr = 1— ™. Thus lim_, so[SUP, ey u(t +
n,n,$", F)] = 1, which shows that the zero solution of (26) is nlgt-UAS because of the
linearity of (26).
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