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Abstract. For asymptotically almost periodic functional differential equations with in-
finite delay in a Banach space, some stability properties of a bounded solution are deduced
from stabilities in a certain limiting equation which is obtained by employing the Bohr topol-
ogy.

1. Introduction. In this paper we are concerned with an asymptotically almost peri-
odic functional differential equation with infinite delay

(E)
du

dt
= Au(t)+ F(t, ut )

on a phase spaceB = B((−∞,0];X)which possesses a fading memory property, whereX is
a Banach space andut is an element belonging toB((−∞,0];X) defined byut (s) = u(t+ s)
for s ∈ (−∞,0]. For ordinary differential equations, D’Anna [4] has shown that the total
stability of a bounded solutioncan be deduced from the total stability in a certain limiting
equation which is obtained by employing the Bohr topology. As an example in [3] shows, this
result is false when the limiting equations are obtained by using the compact open topology.
For functional differential equations on a uniform fading memory spaceB with X = Rn,
Hino and Yoshizawa [9] obtained a generalization of D’Anna’s result forB-total stability,
together with the result forB-uniform asymptotic stability. TheB-stability means that the
solution remains small if the initial function is small with respect to the semi-norm| · |B.
On the one hand, as pointed out in [2], some integrodifferential equations can be set up as
functional differential equations on a fading memory space (not uniform) and BC-stability is
more practical, where BC-stability means that the solution remains small if the initial function
is small with respect to the BC-norm, that is, sup−∞<θ≤0 |φ(θ)|.

The main purpose of this paper is to derive BC-stability properties andB-stability prop-
erties of a bounded solution of(E) on a fading memory spaceB((−∞,0];X) with a general
Banach spaceX and to extend some results due to D’Anna [4], together with those due to
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Hino and Yoshizawa [9] for functional differential equations with infinite delay on a uniform
fading memory spaceB in case ofX = Rn.

The authors wish to thank the referee for his suggestions which are useful for the im-
provement of the paper.

2. Fading memory spaces and preparatory results. LetX be a Banach space with
norm | · |X. For any intervalJ ⊂ R := (−∞,∞), we denote by BC(J ;X) the space of all
bounded and continuous functions mappingJ into X. Clearly, BC(J ;X) is a Banach space
with the norm| · |BC(J ;X) defined by|φ|BC(J ;X) = sup{|φ(t)|X : t ∈ J }. We often write
| · |BC(J ;X) as | · |J . Also, if J = R− := (−∞,0], then we simply write BC(J ;X) and
| · |BC(J ;X) as BC and| · |BC, respectively. For any functionu : (−∞, a) �→ X andt < a, we
define a functionut : R− �→ X by ut (s) = u(t + s) for s ∈ R−. LetB = B(R−;X) be a real
linear space of functions mappingR− intoX with a complete seminorm| · |B. The spaceB is
assumed to have the following properties:

(A1) There exist a positive constantN and locally bounded functionsK(·) andM(·)
onR+ := [0,∞) with the property that ifu : (−∞, a) �→ X is continuous on[σ, a) with
uσ ∈ B for someσ < a, then for allt ∈ [σ, a),

(i) ut ∈ B,
(ii) ut is continuous int (w.r.t. | · |B), and
(iii) N |u(t)|X ≤ |ut |B ≤ K(t − σ) supσ≤s≤t |u(s)|X +M(t − σ)|uσ |B.
(A2) If {φk} is a sequence inB ∩ BC converging to a functionφ uniformly on any

compact intertval inR− and supk |φk|BC < ∞, thenφ ∈ B and|φk − φ|B → 0 ask → ∞.

It is known [7, Proposition 7.1.1] that the spaceB contains BC and that there is a constant
l > 0 such that

(1) |φ|B ≤ l|φ|BC , φ ∈ BC .

SetB0 = {φ ∈ B : φ(0) = 0}, and define an operatorS0(t) : B0 �→ B0 by

[S0(t)φ](s) =
{
φ(t + s) if t + s ≤ 0 ,

0 if t + s > 0

for eacht ≥ 0. By virtue of (A1), one can see that the family{S0(t)}t≥0 is a strongly continu-
ous semigroup of bounded linear operators onB0. Moreover, the spaceB is assumed to have
the following properties:

(A3) lim
t→∞|S0(t)φ|B = 0 , φ ∈ B0 .

(A3′) lim
t→∞‖S0(t)‖ = 0 .

Here and hereafter, we denote by‖ · ‖ the operator norm of linear bounded operators. The
spaceB is calleda fading memory space (resp.a uniform fading memory space), if it satisfies
(A3) (resp. (A3′)) in addition to (A1) and (A2). It is obvious thatB is a fading memory
space whenever it is a uniform fading memory space. It is known [7, Proposition 7.1.5] that
in the case whereB is a fading memory space, the functionsK(·) andM(·) in (A1) can be
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chosen asK(·) ≡ K andM(·) ≡ M, constants; while in the case whereB is a uniform fading
memory space, the functionsK(·) andM(·) can be chosen so as to satisfyK(·) ≡ a constant
andM(t) → 0 ast → ∞.

We provide a typical example of fading memory spaces. Letg : R− �→ [1,∞) be any
continuous nonincreasing function such thatg (0) = 1 andg (s) → ∞ ass → −∞. We set

C0
g := C0

g (X) = {φ : R− �→ X is continuous with lim
s→−∞ |φ(s)|X/g (s) = 0} .

Then the spaceC0
g equipped with the norm

|φ|g = sup
s≤0

|φ(s)|X
g (s)

, φ ∈ C0
g ,

is a Banach space and it satisfies (A1)–(A3). Also, the spaceC0
g is separable wheneverX

is separable. Moreover, one can see that (A3′) holds if and only if sup{g (s + t)/g (s) : s ≤
−t} → 0 ast → ∞. Therefore, ifg (s) ≡ e−s, then the spaceC0

g is a uniform fading memory

space. On the other hand, ifg (s) = 1 + |s|k for somek > 0, then the spaceC0
g is a fading

memory space, but not a uniform fading memory space.
For any setF in C(R+;X), whereC(R+;X) is the set of all continuous functions de-

fined onR+ with values inX, we set

R(F) = {x(t) : x ∈ F , t ∈ R+} .
Moreover, for any setS in B, we set

W(S,F) = {x(·) : x ∈ C(R,X), x0 ∈ S, x|R+ ∈ F}
and

V (S,F) = {xt : t ∈ R+, x ∈ W(S,F)} .
LEMMA 1 ([8, Lemma 1]). Let B be a fading memory space. If S is a compact subset in

B and if F is a uniformly equicontinuous set in C(R+,X) such that the set R(F) is relatively
compact in X, then the set V (S,F) is relatively compact in B.

Now we consider the following functional differential equation

(2)
du

dt
= Au(t)+ F(t, ut ) ,

whereA is the infinitesimal generator of a compact semigroup{T (t)}t≥0 of bounded linear
operators onX andF(t, φ) ∈ C(R+×B;X).Throughout this paper, we assume the following
condition onF :

(H1) For anyc > 0, there is anL(c) > 0 such that|F(t, φ)|X ≤ L(c) for all t ∈ R+
andφ ∈ B such that|φ|B ≤ c.

By virture of (H1), it follows that for any(σ, φ) ∈ R+ × B, there exists a function
u ∈ C((−∞, t1);X) such thatuσ = φ and the following relation holds:

u(t) = T (t − σ)φ(0)+
∫ t

σ

T (t − s)F (s, us )ds , σ ≤ t < t1 ,
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(cf. [5, Theorem 1]). The functionu is called the (mild) solution of (2) through(σ, φ) de-
fined on[σ, t1) and denoted byu(·, σ, φ, F ). In the above,t1 can be taken ast1 = ∞ if
supt<t1 |u(t)|X < ∞ (cf. [5, Corollary 2]).

LEMMA 2. Assume that B is a fading memory space, {T (t)}t≥0 is a compact semi-
group and Fk(t, φ) ∈ C(R+ × B;X), k ∈ N (N is the set of all positive integers), satisfy
Condition (H1) with L(·) which is independent of k ∈ N. Suppose that {xk(t)} is a family of
mild solutions of the equation

du

dt
= Au(t)+ Fk(t, ut )

having the following properties:
i) For each k ∈ N, xk(t) satisfies the integral equation

u(t) = T (t − σ)u(0)+
∫ t

σ

T (t − s)F k(s, us)ds

for σ := σk ≤ t ≤ τk ≤ ∞ (here and hereafter, if τk = ∞, then σk ≤ t ≤ τk is understood
as σk ≤ t < ∞.)

ii) The set {xkσk : k ∈ N} is relatively compact in B.
iii) There exists a constant c such that

|xk(t)|X ≤ c , k ∈ N, σk ≤ t ≤ τk .

Then the set {xkt : k ∈ N, σk ≤ t ≤ τk} is relatively compact in B.
PROOF. We shall prove that the setW := {xk(t) : σk ≤ t ≤ τk, k ∈ N} is relatively

compact inX. For this purpose, we assert that any sequence{ak} in W contains a convergent
subsequence. We consider the case thatak = xk(µk) with σk ≤ µk ≤ τk for k ∈ N. Assume
that lim infk→∞(µk − σk) = 0. Since the set{xk(σk) : k ∈ N} is relatively compact inX
by ii) and (A1)-(iii), it follows that supk∈N |T (τ)xk(σk)− xk(σk)|X → 0 asτ → +0. Hence
the sequence{xk(µk)− xk(σk)} contains a subsequence which converges to 0 because of the
inequality

|xk(µk)− xk(σk)|X = |T (µk − σk)x
k(σk)+

∫ µk

σk

T (µk − s)F k(s, xks )ds − xk(σk)|X
≤ |T (µk − σk)x

k(σk)− xk(σk)|X + (µk − σk)C1L(H) ,

whereC1 = sup{||T (τ)|| : 0 ≤ τ ≤ µk − σk, k ∈ N} andH = sup{|xkt |B : σk ≤ t ≤ τk, k ∈
N}. This observation leads to the assertion under the assumption lim infk→∞(µk − σk) = 0.

Next we shall establish the assertion under the assumption lim infk→∞(µk − σk) > 0.
Taking a subsequence if necessary, one can assume that infk(µk − σk) ≥ η for some constant
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η > 0. Let 0< ν < min(η,1). By virtue of Property i), we get

xk(µk) =T (µk − σk)x
k(σk)+

∫ µk

σk

T (µk − s)F k(s, xks )ds

=T (η)[T (µk − σk − η)xk(σk)+
∫ µk−η

σk

T (µk − η − s)F k(s, xks )ds]

+
∫ µk

µk−η
T (µk − s)F k(s, xks )ds

=T (η)xk(µk − η)+ T (ν)

∫ µk−ν

µk−η
T (µk − s − ν)F k(s, xks )ds

+
∫ µk

µk−ν
T (µk − s)F k(s, xks )ds

for k ∈ N. The setZ := {∫ µk−ν
µk−η T (µk − s)F k(s, xks )ds : k ∈ N} is bounded inX, and hence

T (ν)Z is relatively compact inX because of the compactness of the semigroup{T (t)}t≥0.

Similarly, one can derive the relative compactness of the setT (η){xk(µk − η) : k ∈ N}. Thus
we have

α({xk(µk) : k ∈ N}) = α

({∫ µk

µk−ν
T (µk − s)F k(s, xks )ds : k ∈ N

})
≤ νC2L(H) ,

whereC2 = sup0≤τ≤1 ||T (τ)|| andα(·) is Kuratowski’s measure of noncompactness of sets
inX. For the details of the properties ofα(·), see [10, Section 1.4]. It follows thatα({xk(µk) :
k ∈ N}) = 0 becauseν is arbitrary. Thus the set{xk(µk) : k ∈ N} is relatively compact inX,
and hence the sequence{xk(µk)} contains a convergent subsequence.

In order to complete the proof of the assertion, it remains only to establish the assertion
in the case ofak = xk0(µk) with σk0 ≤ µk ≤ τk0 for k ∈ N and for somek0 ∈ N. Repeating
almost the same argument as in the preceding paragraph, we can see that the set{xk0(t) :
σk0 ≤ t ≤ τk0} is relatively compact inX, and hence the sequence{ak} contains a convergent
subsequence, as required.

Let σk ≤ s ≤ t ≤ min(τk, s + 1). Then

xk(t) = T (t − s)xk(s)+
∫ t

s

T (t − τ )F k(τ, xkτ )dτ ,

and hence

|xk(t)− xk(s)|X ≤ |T (t − s)xk(s)− xk(s)|X +
∣∣∣∣
∫ t

s

T (t − s)F k(τ, xkτ )dτ

∣∣∣∣
X

≤ sup{|T (t − s)z − z|X : z ∈ W } + L(H)C2|t − s| .
SinceW is relatively compact inX, T (τ)z is uniformly continuous inτ ∈ [0,1] uniformly
for z ∈ W . This observation leads to supk∈N |xk(t)− xk(s)|X → 0 as|t − s| → 0.

For eachk ∈ N, we define a functionyk(t) by yk(t) = xk(σk + t) if t ≤ τk − σk, and
yk(t) = xk(τk) if t > τk − σk. Then{yk(t) : t ∈ R+, k ∈ N} = W is relatively compact in
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X and the family of functions{yk(·) : k ∈ N} is uniformly equicontinuous onR+. Therefore
Lemma 1 yields that the set{ykt : k ∈ N, t ∈ R+} is relatively compact inB. Hence the set
{xkt : k ∈ N, σk ≤ t ≤ τk} is relatively compact inB. This completes the proof of Lemma 2.

3. Limiting equations and asymptotically almost periodic solutions. In the re-
mainder of this paper, we always assume thatB is a separable fading memory space.

A function F(t, φ) ∈ C(R+ × B,X) is said to be asymptotically almost periodic int
uniformly for φ ∈ B, if it is a sum of continuous functionsP(t, φ) andQ(t, φ) such that
P(t, φ) is almost periodic int uniformly for φ ∈ B and thatQ(t, φ) → 0 uniformly for
φ ∈ S for any compact setS in B ast → ∞.

A sequence{Fk} in C(R+ × B;X) is said to be convergent toG Bohr-uniformly on
R+ ×B if Fk converges toG uniformly onR+ × S for any compact setS in B ask → ∞. A
functionF(t, φ) ∈ C(R+ ×B,X) is said to be positively precompact if for any sequence{tk}
in R+ such thattk → ∞ ask → ∞, the sequence{F(t + tk, φ)} contains a Bohr-uniformly
convergent subsequence.

In the case whereF(t, φ) ≡ F(t) andX = Rn, it is known (e.g. [11, pp. 20–30]) that
F(t, φ) is asymptotically almost periodic int uniformly for φ ∈ B if and only if F(t, φ) is
positively precompact. In fact, by virtue of the separability forB, we can see that the argument
employed in [11, pp. 20–30] to establish the above equivalence works for anyF(t, φ) ∈
C(R+ × B;X) whenX is any (separable) Banach space.

In what follows, we always assume the following conditions on Equation (2) in addition
to (H1):

(H2) Equation (2) has a bounded solutionū(t) defined onR+ such thatū0 ∈ BC and
supt∈R+ |ūt |B < ∞.

(H3) F(t, φ) is asymptotically almost periodic int uniformly for φ ∈ B.
For anyτ ∈ R+, we define theτ -translationFτ of F(t, φ) by

Fτ (t, φ) = F(t + τ, φ) , (t, φ) ∈ R+ × B .

Clearly,Fτ is in C(R+ × B;X), too. As was explained in the preceding paragraph, (H3)
implies thatF(t, φ) is positively precompact. Therefore any sequence{τ ′

n} ⊂ R+ contains a
subsequence{τn} such that{Fτn} converges Bohr-uniformly onR+ × B.We set

H(F) = {Fτ : τ ∈ R+} in C(R+ × B;X) ,

where{Fτ : τ ∈ R+} denotes the closure of{Fτ : τ ∈ R+} in C(R+ × B;X) equipped with
the Bohr topology. The setH(F) is called the hull ofF . Clearly, the hullH(F) is invariant
with respect to theτ -translation; that is,Gτ ∈ H(F) wheneverG ∈ H(F) andτ ∈ R+. For
anyG ∈ H(F), one can choose a sequence{τn} ⊂ R+ so thatFτn → G Bohr-uniformly on
R+ × B asn → ∞. In particular, we denote byΩ(F) the set of all elementsG in H(F) for
which one can choose a sequence{τn} ⊂ R+ so that{τn} → ∞ asn → ∞ andFτn → G

Bohr-uniformly onR+ ×B. In fact, by (H3) we can assume that anyG ∈ Ω(F) is defined on
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R × B and almost periodic int uniformly for φ ∈ B. If G ∈ H(F), then the equation

(3)
dv

dt
= Av(t)+G(t, vt ) t ∈ R+ ,

is called an equation in the hull of (2). In particular, ifG ∈ Ω(F), then it is called a limiting
equation of (2).

Under the above assumptions (H1)–(H3), it is known [8] thatOū,R+ := {ū(t) : t ∈ R+}
is compact inX, ū(t) is uniformly continuous onR+, Xū,R+ := {ūt : t ∈ R+} is compact in
B andūt ∈ B is uniformly continuous int ∈ R+. Therefore, for any sequence{τ ′

n} ⊂ R+ one
can choose a subsequence{τn} ⊂ {τ ′

n}, v̄ ∈ C(R;X) andG ∈ H(F) such that limn→∞ Fτn =
G in C(R+ × B;X) and limn→∞ |ūt+τn − v̄t |B = 0 uniformly on any compact interval in
R+. In this case, we write as

(ūτn, F τn ) → (v̄,G) compactly,

for simplicity. Denote byH(ū, F ) the set of all(v̄,G) ∈ C(R;X) × H(F) such that
(ūτn , F τn) → (v̄,G) compactly for some sequence{τn} ⊂ R+. In particular, we denote
byΩ(ū, F ) the set of all elements(v̄,G) in H(ū, F ) for which one can choose a sequence
{τn} ⊂ R+ so that limn→∞ τn = ∞ and(ūτn , F τn) → (v̄,G) compactly. It is known [8] that
v̄ is a solution of (3) whenever(v̄,G) ∈ H(ū, F ).

Now we shall give some definitions of BC-stabilities.

DEFINITION 1. The bounded solution̄u(t) of (2) is said to be BC-totally stable (BC-
TS) if for any ε > 0 there exists aδ(ε) > 0 with the property thatσ ∈ R+, φ ∈ BC
with |ūσ − φ|BC < δ(ε) andh ∈ BC([σ,∞);X) with supt∈[σ,∞) |h(t)|X < δ(ε) imply
|ū(t)− u(t, σ, φ, F + h)|X < ε for t ≥ σ.

DEFINITION 2. The bounded solution̄u(t) of (2) is said to be BC-uniformly stable
(BC-US) if for anyε > 0 there exists aδ(ε) > 0 such thatσ ∈ R+ andφ ∈ BC with
|ūσ − φ|BC < δ(ε) imply |ū(t) − u(t, σ, φ, F )|X < ε for t ≥ σ . Furthermore,̄u(t) is said
to be BC-uniformly asymptotically stable (BC-UAS), if it is BC-US and there exists aδ0 > 0
with the property that for anyε > 0 there exists at0(ε) > 0 such thatσ ∈ R+ andφ ∈ BC
with |ūσ − φ|BC < δ0 imply |ū(t)− u(t, σ, φ, F )|X < ε for t ≥ σ + t0(ε).

In the above, we can defineB-total stability (B-TS) if we replace “φ ∈ B with
|ūσ − φ|B < δ(ε)" in place of “φ ∈ BC with |ūσ − φ|BC < δ(ε)". Moreover, we can
defineB-uniform asymptotic stability (B-UAS) in a similar way.

The following proposition can be obtained by following the argument in [8, Theorem 1].

PROPOSITION 1. If the solution ū(t) of (2) is BC-TS, then it is asymptotically almost
periodic in t .

The following theorem is an extension of Hino and Yoshizawa [9, Theorem 1] to the case
whereX is a Banach space andB is a fading memory space.

THEOREM 1. If Equation (2) admits a limiting equation (3) whose solution v̄(t) such
that (v̄,G) ∈ Ω(ū, F ) is BC-TS, then ū(t) is asymptotically almost periodic in t .
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PROOF. Since(v̄,G) ∈ Ω(ū, F ), there is a sequence{τk}, τk → ∞ ask → ∞, such
that(ūτk , F τk ) → (v̄,G) compactly. We shall show thatū(t + τk) is convergent uniformly on
R+. Suppose the contrary. Then, for someε > 0 there are sequences{tj }, {kj } and{mj } such
that

kj → ∞ and mj → ∞ as j → ∞ ,

(4) |ū(τkj + tj )− ū(τmj + tj )|X = ε and |ū(τkj + t)− ū(τmj + t)|X < ε on [0, tj ) .
Putvj (t) = ū(τkj + t) andwj(t) = ū(τmj + t). Then we may assume that

(5) ρ(v
j

0, v̄0) <
1

j

and

ρ(w
j

0, v̄0) <
1

j
,

whereρ(φ,ψ) := ∑∞
l=1 2−l |φ − ψ|l/{1 + |φ − ψ|l} and| · |l = | · |[−l,0]. For eachj ∈ N

andr ∈ R+, we define a functionvj,r : R �→ X by

vj,r (t) =
{
vj (t) , − r ≤ t,

vj (−r)+ v̄(t)− v̄(−r) , t < −r .
First, we shall show that

(6) sup{|vj,r0 − v
j
0|B : j ∈ N} → 0 as r → ∞ .

If this is not the case, then there exist anε0 > 0 and sequences{jk} ⊂ N and{rk}, rk →
∞ ask → ∞, such that|vjk,rk0 −vjk0 |B ≥ ε0 for k = 1,2, . . . . Putψk = v

jk ,rk
0 −vjk0 . Clearly,

{ψk} is a sequence in BC which converges to the zero function uniformly on any compact
set inR− and supk |ψk|BC < ∞. Then Axiom (A2) yields that|ψk |B → 0 ask → ∞, a
contradiction.

Observe thatvj,r (t) → v̄(t) as j → ∞, uniformly for (t, r) in any compact set in
R × R+. Hence the set{vj0, vj,r0 : j ∈ N, r ∈ R+} is relatively compact inB, because the

setXū,R+ is compact inB andvj0 ∈ Xū,R+ . Moreover, the set{vj (t), vj,r (t) : j ∈ N, r ∈
R+, t ∈ R+} is contained in the compact setOū,R+ . From these observations and Lemma 1

it follows that the setW := {vjt , vj,rt : j ∈ N, r ∈ R+, t ∈ R+} is relatively compact inB.
Consequently,

(7) sup{|F(t + τk, φ)−G(t, φ)|X : t ∈ R+, φ ∈ W } → 0 as k → ∞ .

Define a continuous functionqj,r onR+ by

qj,r (t) =
{
F(t + τkj , v

j
t )−G(t, (vj,r )t ) , 0 ≤ t ≤ tj ,

qj,r (tj ) , tj < t .

Since
|(vj,r )t − (vj )t |B ≤ M|vj,r0 − v

j

0|B (t ∈ R+, j ∈ N)
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by Axiom (A1), it follows from (6) that

(8) sup{|G(t, vjt )−G(t, (vj,r )t )|X : t ∈ R+ , j ∈ N} → 0 as r → ∞ .

Hence, by (7) and (8) we can choosej0 := j0(ε) ∈ N andr = r(ε) ∈ N in such a way that

sup{|qj,r(t)|X : j ≥ j0, t ∈ R+} < δ(ε/2)/2 ,

whereδ(·) is the one for the BC-TS of the solutionv̄(t) of (3). Moreover, for thisr, select an
integerj ≥ j0 such thatj > 2r (1 + δ(ε/2))/δ(ε/2). Then 2−r |v̄0 − v

j

0|r/[1+ |v̄0 − v
j

0|r ] ≤
ρ(v̄0, v

j

0) < 2−r δ(ε/2)/[1 + δ(ε/2)] by (5), which implies that

|v̄0 − v
j

0|r < δ(ε/2) or |vj,r0 − v̄0|BC < δ(ε/2) .

Since the functionvj,r is the solution of

dv

dt
= Av(t)+G(t, vt )+ qj,r(t)

for t ∈ [0, tj ], and sincēv(t) is a BC-TS solution of (3), from the fact that supt≥0 |qj,r(t)| <
δ(ε/2) it follows that|(vj,r )(t)− v̄(t)|X < ε/2 on[0, tj ]. In particular, we have|(vj,r )(tj )−
v̄(tj )|X < ε/2 or |vj (tj )− v̄(tj )|X < ε/2.

By the same way, we have|wj(tj )− v̄(tj )|X < ε/2. Thus|vj (tj )−wj(tj )|X ≤ |vj (tj )−
v̄(tj )|X + |v̄(tj ) − wj (tj )|X < ε/2 + ε/2 = ε, which contradicts (4). Thereforēu(t + τk)

must converge uniformly onR+.
Finally, we shall verify that̄u(t) is asymptotically almost periodic int . For any sequence

{s′k} such thats′k → ∞ as k → ∞, one can choose a subsequence{sk} of {s′k} so that
sk − τk =: µk → ∞ ask → ∞. By virtue of Proposition 1,̄v(t) is asymptotically almost
periodic in t , and hence one can assume thatv̄(t + µk) converges uniformly onR+. Then
ū(t + sk) = ū(t + τk +µk) also converges uniformly onR+. Thereforeū(t) is asymptotically
almost periodic int . This completes the proof of the theorem.

4. Inherited properties in asymptotically almost periodic functional differential
equations. A property for the solution̄u(t) of (2) is called an inherited property, if each
solution v̄(t) such that(v̄,G) ∈ Ω(ū, F ) also possesses the property. The following result
shows that the BC-TS property is an inherited property.

THEOREM 2. If the solution ū(t) of (2) is BC-TS, then for any (v̄,G) ∈ Ω(ū, F ),

v̄(t) also is BC-TSwith a common pair (ε, δ1(ε)).

PROOF. Let ρ(·) be the one introduced in the proof of Theorem 1, and letU :=
{x ∈ X : |x|X ≤ c} be a closed, bounded subset ofX whose interior containsOū,R :=
{ū(t) : t ∈ R}. In what follows, we writeφ(·) ∈ U wheneverφ ∈ BC andφ(θ) ∈ U for all
θ ≤ 0.

We first note that the solution̄u(t) of (2) is BC-TS if and only if the following assertion
holds (for the proof, see [6]):
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ASSERTION 1. (*) For anyε > 0 there exists aδ∗(ε) > 0 with the property that
σ ∈ R+, φ(·) ∈ U with ρ(φ, ūσ ) < δ∗(ε) andh ∈ BC([σ,∞);X) with |h|[σ,∞) < δ∗(ε)
imply |u(t, σ, φ, F + h)− ū(t)|X < ε for t ≥ σ .

Next, we shall certify the following assertion:

ASSERTION 2. Property (*) is an inherited property.

Let v be the solution of
dv

dt
= Av(t)+G(t, vt )+ h(t)

through(s, vs ), wheres ≥ 0, (v̄,G) ∈ Ω(ū, F ) andh(t) is a continuous function on[s,∞).
Assume that

ρ(v̄s , vs) < δ∗(ε/2)/2 and |h(t)|X < δ∗(ε/2)/2 on [s,∞) ,

whereε is any positive number satisfying|x| < c−ε for all x ∈ Oū,R, andδ∗(·) is the number
given in Assertion 1. Suppose that for someτ > 0,

(9) |v̄(s + τ )− v(s + τ )|X = ε and |v̄(t)− v(t)|X < ε for s ≤ t < s + τ .

Since (v̄,G) ∈ Ω(ū, F ), there exists a sequence{tk}, tk → ∞ as k → ∞, such that
(ūtk , F tk ) → (v̄,G) compactly. Therefore there is ak0 = k0(ε) > 0 such that

ρ(ūs+σ , v̄s ) < δ∗(ε/2)/2
and

|F(t + σ, φ)−G(t, φ)|X < δ∗(ε/2)/2 on [s, s + τ ] × {Xv,R+ ∪Xv̄,R+} ,
whereσ = tk0. Thus there are continuous functionsp(t) andq(t) defined on[s,∞) such that
|p|[s,∞) < δ∗(ε/2), |q|[s,∞) < δ∗(ε/2),

p(t) = G(t, v̄t )− F(t + σ, v̄t ) on [s, s + τ ]
and

q(t) = G(t, vt )− F(t + σ, vt )+ h(t) on [s, s + τ ] .
Thenv̄(t) is a solution of

du

dt
= Au(t)+ F(t + σ, ut )+ p(t)

on [s, s + τ ], andv(t) is a solution of
du

dt
= Au(t)+ F(t + σ, ut )+ q(t)

on [s, s + τ ]. On the other hand, it is clear thatū(t + σ) is a solution of
du

dt
= Au(t)+ F(t + σ, ut ) .

Notice that v̄s (·) ∈ U and vs(·) ∈ U because of̄vs(θ) ∈ Oū,R for all θ ≤ 0. Since
ρ(ūs+σ , v̄s ) < δ∗(ε/2) and|p|[s,∞) < δ

∗(ε/2), it follows from Assertion 1 that

(10) |ū(t + σ)− v̄(t)|X < ε/2 for s ≤ t ≤ s + τ .
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Moreover,|q|[s,∞) < δ∗(ε/2) andρ(ūs+σ , vs) ≤ ρ(ūs+σ , v̄s ) + ρ(v̄s , vs) < δ∗(ε/2), and
hence we have

(11) |ū(t + σ)− v(t)|X < ε/2 for s ≤ t ≤ s + τ .

Thus it follows from (10) and (11) that|v̄(s + τ )− v(s + τ )|X < ε, which contradicts (9).
Sinceρ(φ,ψ) ≤ |φ − ψ|BC for φ,ψ ∈ BC, the theorem follows from Assertion 2.

Indeed, we may putδ1(·) = δ∗(·/2)/2.
COROLLARY 1. Under the assumptions of Theorem 1, any w̄(t) such that (w̄, P ) ∈

Ω(ū, F ) is BC-TSwith a common pair (ε, δ1(ε)).

PROOF. By Proposition 1 and Theorem 1,ū(t) andv̄(t) are asymptotically almost pe-
riodic in t , and henceΩ(ū, F ) = Ω(v̄,G), becauseF(t, φ) is asymptotically almost periodic
in t uniformly for φ ∈ B. Thus, for any(w̄, P ) ∈ Ω(v̄,G), w̄(t) is BC-TS with a common
pair (ε, δ1(ε)), which follows by applying Theorem 2 to(v̄,G), sincev̄(t) is BC-TS.

5. Stability properties via limiting equations. In this section, we shall study stabil-
ity properties for the solution̄u(t) of (2) via limiting equations. Before stating our results,
we prove a result which gives the continuous dependence property of solutions for the initial
value problem in some sense.

We say that the solution̄u(t) of (2) is unique for the initial value problem if̄uσ = ψ

impliesū(t) = u(t, σ,ψ, F ) for all t ≥ σ.

PROPOSITION 2. Assume that the solution ū(t) of (2) is unique for the initial value
problem. Then, for any ε > 0, σ ≥ 0 and s > 0, there exists a δ = δ(ε, σ, s) > 0 such that if
|ūσ − φ|B < δ and supt∈[σ,σ+s] |h(t)|X < δ, then for any t ∈ [σ, σ + s]

|ū(t)− u(t, σ, φ, F + h)|X < ε ,

where u(t, σ, φ, F + h) is a solution of

(12)
du

dt
= Au(t)+ F(t, ut )+ h(t)

through (σ, φ).

PROOF. Assume that the conclusion does not hold. Then there exist constantsε >

0, σ0 ≥ 0 ands0 > 0 and sequences{φk} ∈ B, {tk}, {τk} ⊂ [0, s0], tk < τk , and{hk(t)} ∈
C([σ0, σ0 + s0];X), supt∈[σ0,σ0+s0] |hk(t)|X < 1/k, such that

|ūσ0 − φk|B < 1

k
,

|ū(tk + σ0)− xk(tk + σ0)|X = ε ,

|ū(τk + σ0)− xk(τk + σ0)|X = 2ε ,

(13)

|ū(t + σ0)− xk(t + σ0)|X < ε (0 ≤ t < tk)

and
|ū(t + σ0)− xk(t + σ0)|X < 2ε (0 ≤ t < τk)
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for k = 1,2, . . . , wherexk(t) = u(t, σ0, φ
k, F + hk) is a solution of

(14)
du

dt
= Au(t)+ F(t, ut )+ hk(t)

through(σ0, φ
k). By choosing a subsequence if necessary, we may assume thattk → t0 ∈

[0, s0]. Applying Lemma 2 withF(t, φ) + hk(t) in place ofFk(t, φ), we see that the set
{xkt : k ∈ N, σ0 ≤ t ≤ σ0 + τk} is relatively compact inB, and hence the setV := {xk(t) :
k ∈ N, σ0 ≤ t ≤ σ0 + τk} is relatively compact inX.

Now we shall show that

inf{τk − tk | k = 1,2, . . . } =: 2a > 0 .

If a = 0, then we may assume thatτk − tk → 0, by taking a subsequence. Sincexk(t) is a
mild solution of (14) through(tk + σ0, x

k
tk+σ0

), we get

|xk(τk + σ0)−xk(tk + σ0)|X
=

∣∣∣∣T (τk − tk)x
k(tk + σ0)

+
∫ τk+σ0

tk+σ0

T (τk + σ0 − s){F(s, xks )ds + hk(s)}ds − xk(tk + σ0)

∣∣∣∣
X

≤ |(T (τk − tk)− I)xk(tk + σ0)|X
+

∣∣∣∣
∫ τk+σ0

tk+σ0

T (τk + σ0 − s){F(s, xks )ds + hk(s)}ds
∣∣∣∣
X

≤ sup
z∈V

|(T (τk − tk)− I)z|X + (τk − tk)C1

{
L(H ∗)+ 1

k

}
,

and hence

ε = |ū(τk + σ0)− xk(τk + σ0)|X − |ū(tk + σ0)− xk(tk + σ0)|X
≤ |ū(τk + σ0)− ū(tk + σ0)− {xk(τk + σ0)− xk(tk + σ0)}|X
≤ |ū(τk + σ0)− ū(tk + σ0)|X + |xk(τk + σ0)− xk(tk + σ0)|X
≤ |ū(τk + σ0)− ū(tk + σ0)|X

+ sup
z∈V

|(T (τk − tk)− I)z|X + (τk − tk)C1

{
L(H ∗)+ 1

k

}
,

whereC1 = sup0≤τ≤s0 ‖T (τ)‖ andH ∗ = sup{|xkt |B : σ0 ≤ t ≤ σ0 + τk, k ∈ N}. The
right hand side of the above inequality tends to zero ask → ∞, because limt→0+ T (t)z = z

uniformly for z ∈ V , which is a contradiction. Thus we may assume thatxk(t) exists on
[σ0, σ0 + t0 + a] and supσ0≤t≤σ0+t0+a |xkt |B ≤ H ∗.

Since the set{xk(s) : k ∈ N, s ∈ [σ0, σ0 + t0 + a]} is relatively compact inX, by the
same reasoning as in the proof of Lemma 2 we see that{xk(t)} is a family of equicontinuous
functions on[σ0, σ0+ t0+a].Hence we may assume thatxk(t) converges to some continuous
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functiony(t) uniformly on[σ0, σ0 + t0 + a] ask → ∞. Puty0 = ūσ0. Since

(15) xk(t) = T (t − σ0)φ
k(0)+

∫ t

σ0

T (t − s){F(s, xks )+ hk(s)}ds

for t ∈ [σ0, σ0 + t0 + a] and |φk(0) − ū(σ0)|X → 0 (k → ∞), and since{xkt : t ∈
[σ0, σ0 + t0 + a], k ∈ N} is relatively compact inB, it follows from (15) that

y(t) = T (t − σ0)ū(σ0)+
∫ t

σ0

T (t − s)F (s, ys)ds
(
σ0 ≤ t ≤ σ0 + t0 + a

2

)
.

Consequently,y(t) is a solution of (2) through(σ0, ūσ0) on [σ0, σ0 + t0 + a/2], and hence
y(t) = ū(t) on [σ0, σ0 + t0 + a/2] by the uniqueness of̄u(t) for the initial value problem. On
the other hand, lettingk → ∞ in (13), we have

|ū(t0 + σ0)− y(t0 + σ0)|X = ε,

which is a contradiction. This completes the proof of the proposition.

REMARK 1. By virtue of (1) one can see that Proposition 2 holds good, whenever
|ūσ − φ|B < δ can be replaced by|ūσ − φ|BC < δ.

Now we are ready to prove theorems that are generalizations of a result obtained by
D’Anna [4] for ordinary differential equations and a result obtained by Hino and Yoshizawa
[9] for functional differential equations on a uniform fading memory spaceB in the case
X = Rn.

THEOREM 3. Assume that B is a fading memory space and ū(t) is unique for the
initial value problem. If Equation (2) admits a limiting equation (3) whose solution v̄(t) such
that (v̄,G) ∈ Ω(ū, F ) is BC-TS, then ū(t) is BC-TS.

PROOF. First of all, we shall show that̄u(t) is eventually BC-TS, that is, for anyε > 0
there existα(ε) ≥ 0 andδ(ε) > 0 such that ifs ≥ α(ε), |ūs − ψ|BC < δ(ε) andh(t) is a
continuous function which satisfies|h(t)|X < δ(ε) on [s,∞), then

|ū(t)− u(t, s, ψ, F + h)|X < ε for t ≥ s ,

whereu(·, s, ψ, F + h) is a solution through(s, ψ) of (12).
Suppose that̄u(t) is not eventually BC-TS. Then there exist anε > 0 and sequences

{tk}, {rk}, {hk(t)}, {xk(t)} such thattk > k, rk > tk, |xktk − ūtk |BC < 1/k, |hk(t)| < 1/k on
[tk,∞), |xk(rk)− ū(rk)|X = ε and|xk(t)− ū(t)|X < ε on[tk, rk), wherehk(t) is a continuous
function andxk(t) is a solution through(tk, xktk ) of

du

dt
= Au(t)+ F(t, ut )+ hk(t) .

Then there is ansk , tk < sk < rk, such that

|xksk − ūsk |BC = δ1(ε/2)/2 and |xk(t)− ū(t)|X < δ1(ε/2)/2 on [tk, sk) ,
where δ1(·) is the number given in Corollary 1. Taking a subsequence if necessary,
we can assume that(ūsk , F sk ) → (w̄, P ) compactly. We note thatX0 := Xū,R+ ∪
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{xkt : tk ≤ t ≤ rk, k ∈ N} is compact by Lemma 2 and thatū(t) is asymptotically almost pe-
riodic by Theorem 1. Sincesk → ∞ ask → ∞, it follows that(w̄, P ) ∈ Ω(ū, F ). There
exists ak0(ε) > 0 such that ifk ≥ k0(ε), then

(16) ρ(ūsk , w̄0) < δ1(ε/2)/2

and

(17) |F(t + sk, φ)− P(t, φ)|X + |hk(t + sk)|X < δ1(ε/2) on R+ ×X0 .

Sincew̄(t) is BC-TS withδ1(·), it follows from (16) and (17) that|ū(t + sk)− w̄(t)|X < ε/2
for all t ≥ 0 wheneverk ≥ k0(ε). Notice thatxk(t + sk) is a solution defined on[0, rk − sk]
of

du

dt
= Au(t)+ P(t, ut )+ F(t + sk, x

k
t+sk )+ hk(t + sk)− P(t, xkt+sk ) ,

and

ρ(xksk , w̄0) ≤ ρ(xksk , ūsk )+ ρ(ūsk , w̄0)

≤ |xksk − ūsk |BC + ρ(ūsk , w̄0) < δ1(ε/2) if k ≥ k0(ε) .

Therefore, ifk ≥ k0(ε), then

|xk(rk)− w̄(rk − sk)|X < ε/2 ,

and hence

|xk(rk)− ū(rk)|X ≤ |xk(rk)− w̄(rk − sk)|X + |w̄(rk − sk)− ū(rk)|X < ε/2 + ε/2 = ε ,

which contradicts to|xk(rk) − ū(rk)|X = ε. Consequently,̄u(t) must be eventually BC-TS.
Sinceū(t) is unique for the initial value problem, Proposition 2 implies BC-TS ofū(t).

By using (A2) directly for the convergence ofū(t + sm), the following theorem is shown
by arguments parallel to those in the proof of Theorem 3; so we omit the proof.

THEOREM 4. Assume that B is a fading memory space and ū(t) is unique for the
initial value problem. If Equation (2) admits a limiting equation (3) whose solution v̄(t) such
that (v̄,G) ∈ Ω(ū, F ) is B-TS, then ū(t) is B-TS.

Next we will study the UAS property for Equation (2) via limiting equations. Before
developing our argument, we emphasize that some additional condition must be imposed on
(2) to get the result similar to Theorem 3 or Theorem 4 on the UAS property. Indeed, Kato’s
example (e.g. [11, pp. 143–145]) shows that there is an almost periodic differential equation
with the property that zero is a UAS solution of the equation, but it admits a limiting equation
whose zero solution is not UAS.

We say that Equation (2) is regular if each solution of equations inH(F) is unique for
the initial value problem. Under the regularity condition on (2), we will deduce a result on the
uniform asymptotic stability.
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THEOREM 5. Assume that B is a fading memory space. If Equation (2) is regular and
admits a limiting equation (3) whose solution v̄(t) such that (v̄,G) ∈ Ω(ū, F ) is BC-UAS,
then ū(t) is BC-UAS.

In order to prove the theorem, we need the following result.

PROPOSITION 3. Assume that Equation (2) is regular. Then ū(t) is BC-UAS if and
only if any v̄(t) such that (v̄,G) ∈ Ω(ū, F ) is BC-UASwith a common triple (δ(·), δ0, t0(·)).
Furthermore, if ū(t) is BC-UAS, then it is BC-TS.

PROOF. We will prove the “only if” part of the proposition. Let(δ(·), δ0, t0(·)) be the
triple for the BC-UAS ofū(t), where we may assumeδ0 < δ(1). We first establish that

(18)
(v̄,G) ∈ Ω(ū, F ) and |φ − v̄σ |BC < δ(η/2) imply

|u(t, σ, φ,G)− v̄(t)|X < η for t ≥ σ .

Select a sequence{τk} with τk → ∞ ask → ∞ such that(ūτk , F τk ) → (v̄,G) compactly,
and consider any solutionu(·, σ + τk, φ − v̄σ + ūσ+τk , F ). For anyk ∈ N, we setxk(t) =
u(t + τk, σ + τk, φ − v̄σ + ūσ+τk , F ). Since the solution̄u(t) of (2) is BC-US, from the fact
that|xkσ − ūσ+τk |BC = |φ − v̄σ + ūσ+τk − ūσ+τk |BC = |φ − v̄σ |BC < δ(η/2) it follows that

(19) |xk(t)− ū(t + τk)|X < η/2 for all t ≥ σ and k ∈ N ;
hence sup{|xkt |B | t ≥ σ, k ∈ N} ≤ K(η/2 + |ū|[0,∞)) + M|φ − v̄σ + ūσ+τk |B < ∞ by
(A1-iii). By Lemma 2 together with the same argument as in the proof of Proposition 2, we
may assume thatxk(t) → y(t) ask → ∞ uniformly on any compact set in[σ,∞) for some
functiony : [σ,∞) �→ X. Sincexk(σ ) = φ(0)− v̄(σ )+ ū(σ + τk), we obtainy(σ) = φ(0).
Hence, if we extend the functiony by settingyσ = φ, theny ∈ C(R;X) and|xkt − yt |B → 0
ask → ∞ uniformly on any compact set in[σ,∞). Lettingk → ∞ in the equation

xk(t) = T (t − σ){φ(0)− v̄(σ )+ ū(σ + τk)} +
∫ t

σ

T (t − s)F (s + τk, x
k
s )ds , t ≥ σ ,

we obtain

y(t) = T (t − σ)φ(0)+
∫ t

σ

T (t − s)G(s, ys)ds , t ≥ σ ,

which means thaty(t) ≡ u(t, σ, φ,G) for t ≥ σ by the regularity assumption. Then (18)
follows from (19) by lettingk → ∞.

Repeating the above arguments withη = 2, one can establish that

(v̄,G) ∈ Ω(ū, F ) and |φ − v̄σ |BC < δ0 imply

|u(t, σ, φ,G)− v̄(t)|X < ε for t ≥ σ + t0(ε/2) .

Next we will prove the “if” part of the proposition. We first claim thatū(t) is BC-US.
If this claim is not true, then there are sequences{τn}, τn ≥ 0, {rn}, rn > 0, {φn} ⊂ BC, and
solutions{u(t, τn, φn, F )} and a constantε,0< ε < δ0, such that

(20) |φn − ūτn |BC <
1

n
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and

(21) |xn(τn + rn)− ū(τn + rn)|X = ε and |xn(t)− ū(t)|X < ε on (−∞, τn + rn) ,

wherexn(t) = u(t, τn, φ
n, F ). Consider the case wherern → ∞ asn → ∞, and let

t0 = t0(ε/2). By the same reasoning as in the proof of Proposition 2, we may assume that
there are a functionQ(t, φ) ∈ Ω(F) and solutions̄v(t) andy(t) of

du

dt
= Au(t)+Q(t, ut )

defined on[0, t0] such that(ūτn+rn−t0, F τn+rn−t0) → (v̄,Q) compactly andxn(τn + rn −
t0 + t) → y(t) uniformly on any compact set in(−∞, t0] asn → ∞. Letting n → ∞ in
(21), we obtain that

|y(t0)− v̄(t0)|X = ε and |y(t)− v̄(t)|X ≤ ε < δ0 for all t ≤ t0 .

Thus|y0 − v̄0|BC < δ0, and hence it follows from the BC-UAS ofv̄(t) that

|y(t0)− v̄(t0)|X < ε/2 ,

which is a contradiction. Therefore, we can assume thatrn → r < ∞ asn → ∞.
By almost the same reasoning as in the preceding paragraph, one can deduce by (20) that

the sequence{τn} is bounded. Hence we can assumeτn → τ < ∞ asn → ∞.Moreover, we
can assume thatxn(τn + t) → x(t) uniformly on any compact set in(−∞, r) asn → ∞, for
some continuous functionx with x0 = ūτ . Observe thatx(t − τ ) is a solution of (2) defined
on [τ, τ + r); hence it follows from the uniqueness ofū(t) for the initial value problem that
x(t) ≡ ū(τ + t) for t ∈ [0, r). By virtue of (20) and (21), one can chooser̃n ∈ (0, rn) so that

|xn(τn + r̃n)− ū(τn + r̃n)|X = ε/2

for n ∈ N. By the same reasoning as in the proof of Proposition 2, we see that infn(rn− r̃n) >
0. Therefore it follows thatx(r̃n) = ū(τ + r̃n), and

ε/2 = |xn(τn + r̃n)− ū(τn + r̃n)|X
≤ |xn(τn + r̃n)− x(r̃n)|X + |ū(τ + r̃n)− ū(τn + r̃n)|X → 0

asn → ∞, a contradiction. Consequently,ū(t) must be BC-TS.
To establish the BC-UAS of̄u(t), it is sufficient to show that for anyε > 0 there exists

a t0(ε) > 0 such that|φ − ūτ |BC < δ1 := δ(δ0/2) implies |u(t, τ, φ, F ) − ū(t)|X < ε for
all t ≥ τ + t0(ε), whereδ(·) is the one ensured by the BC-US ofū(t). If this is not true, then
there exists anε > 0 and sequences{sn} ⊂ R+, {tn}, tn → ∞ asn → ∞, {φn} ⊂ BC, and
solutions{u(t, sn, φn, F )} such that

(22) |φn − ūsn |BC < δ1

and

(23) |u(tn + sn, sn, φ
n, F )− ū(tn + sn)|X ≥ ε
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for all n ∈ N. It follows from (22) and the BC-US of̄u(t) that

(24) |u(t, sn, φn, F )− ū(t)|X < δ0/2 for all t ≥ sn .

Setzn(t) = u(t + sn + tn − t0, sn, φ
n, F ) for t ∈ R, and lett0 = t0(ε). It follows from (24)

that

(25) |zn(t)− ū(t + sn + tn − t0)|X < δ0/2 for all t ∈ [t0 − tn,∞) .

Since sup{|zn(s)|X : s ≥ t0 − tn, n ∈ N} < ∞ by (25), and since

zn(t) = T (1)zn(t − 1)+
∫ t

t−1
T (t − s)F (s + sn + tn − t0, z

n
s )ds

= T (1)zn(t − 1)+ T (ν)

∫ t−ν

t−1
T (t − ν − s)F (s + sn + tn − t0, z

n
s )ds

+
∫ t

t−ν
T (t − s)F (s + sn + tn − t0, z

n
s )ds

for all t ≥ t0 + 1 − tn andν ∈ (0,1), by almost the same argument as in the proof of Lemma
2 and Proposition 2, we see that the set{zn(t) : t0 + 1 − tn ≤ t < ∞, n ∈ N} is relatively
compact inX and that{zn(t)} is a family of equicontinuous on[t0 + 1− tn,∞). Applying the
Ascoli-Arzéla theorem and the diagonalization procedure, one may assume thatzn(t) → z(t)

uniformly on any compact set inR for some bounded continuous functionz(t) ∈ C(R;X).
Then it follows from (A2) and (A1-iii) thatznt → zt uniformly on any compact set inR. We
may assume that(ūsn+tn−t0, F sn+tn−t0) → (v̄, P ) compactly for some(v̄, P ) ∈ Ω(ū, F ). We
note thatz(t) is a solution of

du

dt
= Au(t)+ P(t, ut ) .

It follows from (25) that|z(t)− v̄(t)|X ≤ δ0/2 onR. In particular,|z0 − v̄0|BC ≤ δ0/2< δ0.
Then|z(t0)− v̄(t0)|X < ε by the BC-UAS ofv̄(t). On the other hand, lettingn → ∞ in (23),
we haveε ≤ |z(t0)− v̄(t0)|X, which is a contradiction. Thereforēu(t) must be BC-UAS.

The second part of Proposition 3 is a direct consequence of [8, proof of Theorem 2].

PROOF OFTHEOREM 5. Since Equation (2) is regular andv̄(t) is BC-UAS, anyw̄(t)
such that(w̄, E) ∈ Ω(v̄,G) is BC-UAS with a common(δ0, δ(·), t0(·)) by Proposition 3.
Therefore, by appling Proposition 3 again to(v̄,G), we see that̄v(t) is BC-TS, and hence
ū(t) is asymptotically almost periodic int by Theorem 1. SinceΩ(ū, F ) = Ω(v̄,G), we
have the conclusion by applying Proposition 3.

Recall that theB-stability property for the solution̄u(t) of (2) means that the difference
|u(t, σ, φ, F ) − ū(t)|X remains small if|φ − ūσ |B is small. If we estimate the difference of
u(t, σ, φ, F ) and ū(t) as |ut (σ, φ, F ) − ūt |B, we obtain another concept of theB-stability
property forū(t). The latter stability property is stronger than the former, in general. As
stated in [7, Proposition 6.2.5], however, the two concepts ofB-stability property forū(t) are
equivalent wheneverB is a uniform fading memory space. Using this fact, one can establish
the following theorem by a slight modification of the proof of Theorem 5.
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THEOREM 6. Assume that B is a uniform fading memory space. If Equation (2) is
regular and admits a limiting equation (3) whose solution v̄(t) such that (v̄,G) ∈ Ω(ū, F ) is
B-UAS, then ū(t) is B-UAS.

We emphasize that the condition thatB is a uniform fading memory space cannot be
removed in Theorem 6. In fact, whenB is a fading memory space which is not uniform, the
B-UAS property cannot necessarily be deduced from that of limiting equations even if the
regularity condition is satisfied. In what follows, we shall provide an example which reflects
the fact for theB-UAS property.

Consider the following scalar equation

(26)
du

dt
= −u(t)+ u(0)

1 + t
.

Equation (26) can be set up as a functional differential equation on the fading memory space
C0

g (R) =: C0
g , whereg (s) ≡ 1 + |s|. Indeed, if we define a functionF by

F(t, φ) = −φ(0)+ φ(−t)
1 + t

, φ ∈ C0
g ,

then the equation (26) is identical with (2) withA = 0. For anyφ ∈ C0
g , it follows that

φ(−t)/(1 + t) → 0 ast → ∞. Hence we can see thatF(t, φ) is asymptotically almost
periodic int uniformly for φ ∈ C0

g , and the limiting equation of (26) is

dv

dt
= −v(t) ,

whose zero solution is clearlyC0
g -UAS. On the other hand, the zero solution of (26) is not

C0
g -UAS. Indeed, for anyn ∈ N, take aφn ∈ C0

g such that 0≤ φn(s) ≤ 1 + |s| for all s ≤ 0
with φn(0) = 0 andφn(−n) = 1 + n. Then

u(t + n, n, φn, F ) =
∫ t+n

n

e−(t+n−s) φ
n(−n)
1 + s

ds

=
∫ t

0
e−(t−τ ) 1 + n

1 + n+ τ
dτ ,

and hence supn∈N u(n+ t, n, φn, F ) = ∫ t
0 e

−(t−τ )dτ = 1− e−t . Thus limt→∞[supn∈N u(t +
n, n, φn, F )] = 1, which shows that the zero solution of (26) is notC0

g -UAS because of the
linearity of (26).
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