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Abstract. The pre-Tango structure is a certain invertible sheaf of locally exact differ-
entials on a curve in positive characteristic. On any curve of sufficiently high genus, there
necessarily exist pre-Tango structures. Meanwhile, by using the notion of pre-Tango structure,
we can construct a form of the affine line over the curve. The completions of the forms are
regarded as a generalization of Raynaud’s counter-example to the Kodaira vanishing theorem.
This suggests that we may have certain pathological phenomena on the completions of all such
forms. For the time being, we consider whether every curve of genus greater than one has a
pre-Tango structure which brings certain pathological phenomena. In the present article, we
give a sufficient condition for the completion of the form which is induced from a pre-Tango
structure to have non-closed global differential 1-forms. Moreover, we give a lower bound
for the dimension of the locus of the curves which have pre-Tango structures satisfying that
sufficient condition, in the moduli space of curves.

Introduction. Let k be an algebraically closed field of characteristicp > 0 andC
a smooth projective curve overk of genusg . The Tango structure onC is an invertible
sheafL with p · degL = 2g − 2 which is contained in the sheafB1 of the locally exact
differentials, in other words, the first sheaf of coboundaries of the de Rham complex ofC

(see Section 1 for the precise definition). By using Tango structures, Raynaud constructed
smooth projective surfaces which give counter-examples to the Kodaira vanishing theorem
in positive characteristic, and Russell constructed smooth projective surfaces of general type
which have non-trivial global vector fields (cf. Raynaud [6] and Russell [7]). Here we note
that their surfaces are completions offorms of the affine line over curves.

However, the condition on the degree for an invertible subsheaf ofB1 to be a Tango
structure imposes severe restriction on its existence. On the other hand, if there exists an
invertible subsheaf ofB1 with certain extra conditions, then we can construct smooth pro-
jective surfaces, which are completions of forms of the affine line over the curve and which
have non-closed global differential 1-forms (cf. Takeda [9]). This suggests that the existence
of a certain invertible subsheaf ofB1 triggers off certain pathological phenomena in positive
characteristic.

In Section 1 of the present article, we introduce the notion of pre-Tango structure, that is
a positive invertible subsheaf ofB1 (see Definition 1.1), in which the condition on the degree
is much more moderate. Indeed, we can show that on any curve of sufficiently high genus,
there necessarily exist pre-Tango structures (cf. Corollary 1.5). Moreover, in Section 2, from
pre-Tango structures, we obtain forms of the affine line over the curves. Here we are interested
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in the question whetherall of those forms are peculiar to positive characteristic or not. For
example, we may pose the question: Are none of the completions of those forms liftable to
characteristic zero? Regrettably, the authors do not know what the answer is. The prime cause
is that no practical criterion is known.

On the other hand, it is known that every surface which has non-closed global differential
1-forms cannot be lifted over the ringW2 of Witt-vectors of length two (cf. Deligne and
Illusie [1]). Recall the above-mentioned fact that a certain invertible subsheaf ofB1, which
is a pre-Tango structure, induces a form of the affine line whose completion has non-closed
global differential 1-forms. So, that is not liftable overW2. In the latter half of Section 2,
we give a sufficient condition for a pre-Tango structure to induce a complete surface having
non-closed global differential 1-forms (cf. Theorem 2.4). Unfortunately,not all pre-Tango
structures satisfy this sufficient condition and so the question mentioned above is difficult yet.
Meanwhile, there exist pre-Tango structures only on curves of genus greater than one (cf.
Theorem 1.4). Under the circumstances, we, for the present, pose the following question:

Does every curve of genus greater than one have a pre-Tango structure
which induces a complete surface having non-closed global differential
1-forms?

Still regrettably, the authors do not know the answer to this question. In Section 3, however,
we give a lower bound for the dimension of the locus of curves which have pre-Tango struc-
tures involving complete surfaces with non-closed global differential 1-forms, in the moduli
space (cf. Theorem 3.2).

1. Pre-Tango structures on a curve. LetC be a smooth projective curve of genusg
over an algebraically closed fieldk. Suppose that chark = p > 0. LetF : C̃ → C be the
relative Frobenius morphism overk. SetB = F∗OC̃/OC . We then have an exact sequence

0 → OC → F∗OC̃ → B → 0 ,(1)

whereB is a locally freeOC-module of rankp − 1 and of degree(p − 1)(g − 1).

DEFINITION 1.1. (1) We call an invertible subsheafL of B apre-Tango structure on
C if L has positive degree.

(2) If we have, in addition,p · degL = 2g − 2, then we call the invertible sheafL a
Tango structure onC.

REMARK 1.2. By virtue of the divisibility of the Picard variety ofC, if we have a
pre-Tango structure of degreen onC, then we may assume that the pre-Tango structure is of
the formLn with an inclusion intoB, whereL is an invertible sheaf of degree one.

The pre-Tango structure has the following notable property:

PROPOSITION 1.3. The existence of a pre-Tango structure on a curve C implies the
existence of a stable locally free OC-module E of rank two whose pull-back F ∗E is unstable.
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PROOF. Suppose that there exists a pre-Tango structureL on C. By considering an
exact sequence

H 0(C,B ⊗ L−1) → H 1(C,L−1) → H 1(C̃, F ∗L−1) ,(2)

we have an elementξ in H 1(C,L−1) coming from the section inH 0(C,B ⊗ L−1) corre-
sponding to the inclusionL ↪→ B. Moreover, we know thatξ is a non-split extension

0 → OC → E → L → 0 ,

whose Frobenius pull-backF ∗ξ :

0 → OC̃ → F ∗E → F ∗L → 0

splits. Here we know thatE is stable butF ∗E is unstable. Indeed, we then have a commutative
exact diagram

0 −→ OC −→ E −→ L −→ 0

‖ ↓ ↓
0 −→ OC −→ F∗OC̃

−→ B −→ 0 ,

where the last vertical morphism is the inclusion. Therefore, we have thatE is a subsheaf of
F∗OC̃ . Suppose thatE has a positive invertible subsheafM. We then haveM ⊂ F∗OC̃ .
Taking its adjoint mapping, we haveMp ⊂ OC . However, this is impossible. SoE is stable.
It is clear thatF ∗E is unstable.

Denote byF ∗(L−1) the mappingH 1(C,L−1) → H 1(C̃, F ∗L−1) for an invertible sheaf
L. Tango ([10]) introduced an invariantn(C) concerning the injectivity ofF ∗(L−1). Namely,
n(C) is the maximal degree of invertible subsheaves ofB. Since the kernel of the map
F ∗(L−1) is H 0(C,B ⊗ L−1) = Hom (L,B), the positivity ofn(C) implies the existence
of an extensionξ as above. Tango, furthermore, gave a lower bound forn(C):

g − h(C)

p − 1
− 1 ≤ n(C) ,

whereh(C) is the rank of the Hasse-Witt matrix ofC. Wheng = h(C), this bound is not
effective on the positivity ofn(C). However, he gave an example of a curveC with positive
n(C) andg = h(C) ([loc. cit.]). On the other hand, there exists the following inequality

i · degF − r · mi (F) ≤ i(r − i)g ,(3)

where we denote bymi (F) the maximal degree of subsheaves of ranki of a locally free sheaf
F of rankr onC. This inequality was proved by Nagata ([5]) forr = 2, and by Mukai and
Sakai ([4]) forr ≥ 3. Note that the invariantn(C) is justm1(B). By using the inequality (3),
we could have a lot of such curves as Tango constructed, as follows.

THEOREM 1.4. In the same notation as above, we have

g
p − 1

− 1 ≤ n(C) ≤
[

2g − 2

p

]
,

where [m] denotes the largest integer not greater than m.
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PROOF. By directly applying the inequality (3) to the sheafB, we have the first in-
equality. The second inequality is well-known. For reader’s convenience, we, however, give a
proof. Suppose thatL is an invertible subsheaf ofB. Since the sheafB is a subsheaf ofF∗ΩC̃ ,
we have an injection fromL to F∗ΩC . By taking its adjoint map, we have an injection from
Lp toΩC . This implies the second inequality.

Immediately, we have

COROLLARY 1.5. In the same notation as above, we have:
(1) If g = 0, then n(C) = −1;
(2) If g = p, then n(C) = 1;
(3) If g ≥ p, then n(C) > 0.

Hence we obtain that any curve with g ≥ p has a pre-Tango structure.

COROLLARY 1.6. For any curve C with g > n(p − 1), the sheaf B contains an
invertible subsheaf L of degree n.

2. Forms of the affine line induced from pre-Tango structures. LetX be a scheme
over a schemeS. We say thatX is a form of the affine line overS if there exist a surjective
morphismS̄ → S and an isomorphism over̄S from X ×S S̄ to a certainA1-bundle overS̄.
In this section, we shall show that pre-Tango structures overC induce forms of the affine line
overC and shall consider geometric properties of completions of such forms, whereC is the
same as in Section 1. From now on, we suppose the characteristicp is greater than 2. Let
F : C̃ → C be the relative Frobenius morphism overk. To begin with, we state

THEOREM 2.1. Let n be an integer greater than one and relatively prime to p. Sup-
pose that we have a pre-Tango structure Ln ↪→ B on C. Then we obtain a scheme X and
a smooth morphism ϕ : X → C whose base change by F coincides with the geometric line
bundle L̃ = Spec Symm(F ∗L−1) over C̃. In other words, ϕ : X → C is a form of the affine
line over C.

PROOF. Our proof of this theorem consists of the following three steps:

Step 1. We construct a schemeY and a morphismψ : Y → C such that every fibre ofψ is
a rational curve with one cusp.

Step 2. We construct the required formX by taking the normalization in the function field
k(Y ) of the geometric line bundleLp = Spec Symm(L−p) overC. Furthermore,
we show thatX is smooth overC.

Step 3. We verify thatX is a form of the affine line.

Step 1. Take an affine open covering{Ui}i∈I and local generators{q̄i}i∈I of Ln such
that eachq̄i generatesLn overUi . Consider the following extension coming from the inclu-
sionLn ↪→ B:

0 → OC → E → Ln → 0 ,(4)
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whereE is a locally freeOC -module of rank two contained inF∗OC̃ . Take an inverse image
qi in E of eachq̄i . Thenqi is a section ofF∗OC̃ overUi andE is generated by 1 andqi over
Ui . Moreover, we can take transition matrices{(

dnij bij

0 1

)}
i,j∈I

such thatqi = dnij qj +bij and that{dij }i,j∈I are transition functions ofL andq̄i = dnij q̄j over

Ui∩Uj . Herednij andbij are local sections ofOC(Ui∩Uj ). Setai = q
p
i for eachi ∈ I . Then

we know thatai is a section inOC(Ui) and we have a relationai = d
pn
ij aj +bpij overUi ∩Uj .

For each affine open subsetUi , consider an affine schemeYi = SpecOC(Ui)[ui, vi ] overUi
with relationvpi = uni + ai . Under the relationsvi = dnij vj + bij andui = d

p
ijuj , we can then

glue {Yi}i∈I together so that we have a schemeY overC. We then know thatY is locally a
hypersurface. Letψ be the structural morphism ofY overC, and letΣ be the subscheme of
Y defined locally byui = 0 with the reduced induced structure. From the defining equations
of Yi ’s, it follows that the restriction ofψ to Y − Σ is smooth and that each fibre ofϕ is a
rational curve with one cusp of typevp = un.

Step 2. Consider the geometric line bundleLp = Spec Symm(L−p) overC. We can
regardLp|Ui = SpecOC(Ui)[zi] with zi = d

−p
ij zj . By identifying zi andu−1

i , we have a
purely inseparable extensionk(Y )/k(Lp) of degreep. Take the normalizationX of Lp in
k(Y ). We then have a structural morphismϕ : X → C.

X Lp

C

�

�
�

�
���

�
�

�
���

normalization

in k(Y )

ϕ

Let us consider local equations definingX. Sincevpi = uni + ai , we havevpi = z−ni + ai

in the function fieldk(Y ). Take the positive integersr andm such thatn + r = mp and
r < p. We can writezmpi v

p
i = zri + aiz

mp
i . Setyi = zmi vi . We then obtainypi = zri + aiz

mp
i .

By the Jacobian criterion, we know that the hypersurface which is defined by this equation
is smooth overC except for the closed subscheme defined locally byzi = 0. Therefore, this
hypersurface coincides withX outside of that closed subscheme. Sincep andr are relatively
prime, there exist integersα andβ such thatαp + βr = 1. Setxi = y

β
i z
α
i for eachi ∈ I .

We then havexp = zi(1 + aiz
n
i )
β andxri = yi(1 + aiz

n
i )

−α. Nearzi = 0, the hypersurface
defined byxp = zi(1 + aiz

n
i )
β is smooth and coincides withX. Moreover, it follows that

ϕ : X → C is smooth and thatOX(ϕ
−1(Ui)) containsOC(Ui)[yi, zi].

Step 3. Consider the geometric line bundleL = Spec Symm(L−1) overC. We know
thatL is defined by the transition functions{dij }i,j∈I and thatL̃ is the pull-back ofL. Recall
the relationypi = zri + aiz

mp
i with ai ∈ k(C). Let α andβ be the same integers as in Step 2,
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and setsi = (yi−qizmi )βzαi . Then we havespi = zi andsri = yi−qizmi . Sincezi = d
−p
ij zj , we

know si = d−1
ij sj . So, we can regardL|Ui = SpecOC(Ui)[si] andL̃|Ũi = SpecOC̃(Ũi )[si],

whereŨi is the inverse image ofUi by F . In order to show that the base changeϕ̃ : X̃ → C̃

of ϕ : X → C coincides withL̃ over C̃, we consider the coordinate ringOX̃(ϕ̃
−1(Ũi )).

By virtue of Step 2, we have an inclusionOC̃ (Ũi)[spi , sri ] ⊂ OX̃(ϕ̃
−1(Ũi )). SinceX is

smooth, we know that the coordinate ringOX̃(ϕ̃
−1(Ũi)) is normal. Therefore, it follows that

OX̃(ϕ̃
−1(Ũi)) is the normalization ofOC̃(Ũi )[spi , sri ], which coinsides withOC̃(Ũi )[si].

X̃ X

CC̃

�

�

��
F

L̃ �
∼=

�
�
�
��

ϕϕ̃

Hence we obtain an isomorphism from̃X to L̃ over C̃. This completes the proof of the
theorem.

REMARK 2.2. From the argument above, it follows that we obtain a form of the affine
line overC if there exists an inclusionLn ↪→ B, wheren is an integer greater than one and
relatively prime top and whereL is an invetible sheaf not necessarily positive.

Next, we shall consider a completion of the form obtained in the previous theorem. We
retain the same notation and assumptions as in the previous theorem and proof. Consider the
ruled surfaceP(Lp ⊕ O) → C and take the normalizationZ in k(X), i.e., ink(Y ). We then
have two open immersionsX → Z andY → Z. LetΦ : Z → C be the structural morphism.
By considering the local equations ofX and ofY , we know thatΦ is a fibration such that
each fibre is a rational curve with one cusp of typevp = un. Recall the subschemeΣ defined
by the ideal sheaf generated locally byui (cf. Step 1 in the previous proof). From the local
equations ofY , it follows thatΣ is the moving cuspidal singularities of the fibrationΦ.

REMARK 2.3 (cf. [6], [7]). By applying the Jacobian criterion, we know that the com-
pletions of the forms mentioned above have no singular points when they are induced from
Tango structures. Some of them are well-known. Indeed, Raynaud constructed a nonsingular
surface by taking the double covering of the ruled surfaceP(E), whereE is the same extension
as (4) in Step 1 of the previous proof with a Tango structureL2 ↪→ B. That surface coincides
with one of the completions mentioned above. Moreover, he showed that, on that surface,
there exists an ample invertible sheaf which gives a counter-example to the Kodaira vanishing
theorem in positive characteristic. The ample invertible sheaf coincides withOZ(E)⊗Φ∗(L)
in our notation, whereE is a section ofΦ determined locally byxi = 0, i.e.,E = Z − Y .
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Meanwhile, by taking the quotients of ruled surfaces byp-closed rational vector fields,
Russell generally constructed a certain class of uni-ruled surfaces, which contains the com-
pletions mentioned above. Furthermore, he described specific examples, which are smooth
surfaces of general type with non-trivial global vector fields. Those examples coincide with
the completions of the forms which are induced from Tango structures of the formLn ↪→ B
with n ≡ −1 (modp) in our notation.

Since the above-mentioned famous examples are induced fromTango structures, we can
easily verify that their Euler numbers are negative and that they are not ruled surfaces. Hence
we know that those examples cannot be lifted to characteristic zero. On the other hand, the
completions of the forms induced frompre-Tango structures, discussed in the present article,
have some complicated singular points. So, in general, it is hard to compute the numerical
invariant of their desingularization. We, however, know the local equations definingZ. There-
fore, we can treat the differential forms intelligibly. Indeed, we have the following theorem:

THEOREM 2.4 (cf. [9]). Retain the same notation and assumptions as above. Suppose
that we have a pre-Tango structure Ln ↪→ B on C such that n > p2. Then Z has non-closed
global differential 1-forms if H 0(C,Lp)⊂

�=H 0(C,Lp ⊗OC
Φ∗OΣ).

PROOF. SinceY is defined locally byvpi = uni + ai , we have−nun−1
i dui = dai by

exterior differentiation. LetP be theOC -submodule ofΩC/k locally generated by dai , where
ΩC/k is the sheaf of differentials onC. We then obtain an injectionΦ∗P ⊗OZ

OZ((n −
1)Σ) → Ω1

Z/k, whereΩ1
Z/k is the sheaf of differentials onZ. We consider the global differ-

ential 1-forms inΦ∗P ⊗OZ
OZ((n− 1)Σ). OverUi , we have

dui = −1

n
zn−1
i dai ,

vidui = −1

n
yiz

m(p−1)−r−1
i dai ,

...

vlidui = −1

n
yli z

m(p−l)−r−1
i dai .

The left hand side of each equation says that the differential form is regular onY and the right
hand side says that the differential form is regular onX whenm(p − l) − r − 1 > 0. Since
n > p2, we havem > r + 1. Therefore, we obtain that dui , vidui , . . . , vp−1

i dui are sections
in Φ∗P ⊗ OZ((n − 1)Σ)(Φ−1(Ui)) and so inP ⊗ Φ∗OZ((n − 1)Σ)(Ui). Let Q be the
OC-submodule ofP ⊗OC

Φ∗OZ((n− 1)Σ) generated locally by dui . ThenQ is isomorphic
to Lp. Consider the direct image of the structure sheafOΣ of Σ by Φ. SinceΦ∗OΣ is
generated locally by 1,vi , . . . , vp−1

i as anOC-module, we have an inclusionQ⊗OC
Φ∗OΣ ⊂

P ⊗OC
Φ∗OZ((n− 1)Σ). We summarize the above-mentioned inclusions ofOC -modules as

follows:
Q ⊂ Q ⊗OC

Φ∗OΣ ⊂ P ⊗OC
Φ∗OZ((n− 1)Σ) ⊂ Φ∗Ω1

Z/k .
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SinceQ is locally generated by dui , any section ofQ is a closed differential 1-form onZ.
Meanwhile,Q⊗OC

Φ∗OΣ is locally generated by dui , vidui, . . . , vp−1
i dui . So we conclude

that the sections ofQ ⊗OC
Φ∗OΣ which are not inQ are non-closed differential 1-forms on

Z. Hence we arrive at the required assertion.

REMARK 2.5. Letσ : Z∗ → Z be a desingularization. Since there is a natural injec-
tion σ ∗ΩZ/k → ΩZ∗/k, we know that, ifZ has non-closed global differential 1-forms, then
so doesZ∗. In this case, the Hodge to de Rham spectral sequence ofZ∗ does not degenerate
in E1. Hence, by Corollaire 2.4 of [1], we know thatZ∗ can not be lifted over the ring of
Witt-vectors of length two.

REMARK 2.6. If Ln ↪→ B is a Tango structure, then we haveH 0(Z,Φ∗P ⊗OZ

OZ((n− 1)Σ)) = H 0(Z,Ω1
Z/k) (cf. Takeda [8]). However, the authors do not know whether

the same equation holds in general. That is obstructed by the existence of the singular points.
Meanwhile, the argument in the previous proof treats only the sections of the formvlidui in
Φ∗P ⊗OZ

OZ((n− 1)Σ). So, by our method, it is hard to investigate all differential 1-forms
onZ∗ and to state a necessary and sufficient conditon for the existence of non-closed global
differential 1-forms onZ∗. There seems to be a need of another method.

REMARK 2.7. LetĈ be the curve obtained by gluing{SpecOC(Ui)[qi]}i∈I together
andF̂ : Ĉ → C the canonical morphism, whereqi ’s are the same as in Step 1 of the proof of
Theorem 2.1. Clearly, the normalization ofĈ is none other thañC and they coincide provided
thatLn ↪→ B is a Tango structure. Moreover, by identifyingqi andvi onΣ, we know that
there exists a closed immersionĈ → Z whose image coincides withΣ.

ĈC̃ C

ZΣ ⊂

� �
��

�
�
��	

normalization
F̂

Φ∼=

Hence, in the same notation and under the same assumptions as in the previous theorem, if
H 0(C,Lp) � H 0(C,Lp ⊗OC

F̂∗OĈ
), then we have thatZ has non-closed global differential

1-forms.

3. Pre-Tango structures on hyperelliptic curves. We have already seen that any
curve of sufficiently high genus has pre-Tango structures (cf. Section 1). In this section, by
using the Cartier operator, we shall explicitly describe some pre-Tango structures on hyperel-
liptic curves and shall consider them more precisely. LetC be a hyperelliptic curve of genus
g overk of characteristicp > 2. From now on, we employ the absolute Frobenius morphism
F : C → C instead of the relative Frobeniusk-morphism. Then the sheafB is defined to be
F∗OC/OC . We use the Cartier operatorC : F∗ΩC → ΩC , which is defined as follows. Lett
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be a local parameter at a point onC. Then any rational functionf of C can be written as

f = f
p

0 + f
p

1 t + · · · + f
p

p−1t
p−1

with fi ∈ k(C). For a differential 1-formf dt onC, we set

C(fdt) = fp−1dt .

We can verify that the Cartier operatorC does not depend on the choice of a local parameter
t . Moreover,C induces a homomorphismC : F∗ΩC → ΩC of sheaves which induces a short
exact sequence

0 −→ B −→ F∗ΩC
C−→ ΩC −→ 0 .(5)

The following lemma states the existenceof a pre-Tango structure of high degree.

LEMMA 3.1. Let C be a hyperelliptic curve defined by an equation y2 = f (x) such
that degf = 2g + 1 and f (0) = 0. Suppose that there exists an integer i with 0 ≤ i ≤ g − 1
such that C(xidx/y) = 0. If n is a natural number relatively prime to p with 2g−2−2i−2p <
np ≤ 2g − 2 − 2i, then there exists a pre-Tango structure of degree n on C.

PROOF. By the assumption, we know that the hyperelliptic curveC has a double cov-
ering π : C → P1; (x, y) �→ x such that two Weierstrass pointsP0 andP∞ are lying
over x = 0 andx = ∞, respectively. Then the divisor(xidx/y) of the differential form
xidx/y is 2iP0 + (2g − 2 − 2i)P∞. Take a natural numbern relatively prime top such that
2g −2−2i−2p < np ≤ 2g −2−2i. Then the divisor(xidx/y)−npP∞ is effective. Hence we
have an inclusionOC(npP∞) ⊂ ΩC and so we have its adjointOC(nP∞) ⊂ F∗ΩC . Mean-
while, by the short exact sequenc (5), we have that the sectionxidx/y comes fromB since
C(xidx/y) = 0. Hence we get an inclusionOC(nP∞) ⊂ B. SoOC(nP∞) is a pre-Tango
structure.

Let us consider a pre-Tango structureLn ↪→ B satisfying:

(∗)
The degreen is relatively prime top and greater thanp2, and

H 0(C,Lp) � H 0(C,Lp ⊗OC
F̂∗OĈ

) .

HereĈ, F̂ are the same as in Remark 2.7, i.e.,Ĉ is obtained by gluing{SpecOC(Ui)[qi]}i∈I ,
whereqi ’s are local generators ofE , subjected to the relationqi = dnij qj+bij andF̂ : Ĉ → C

is the canonical morphism. Remarks 2.5 and 2.7 say that we can construct a smooth complete
surface which has non-closed global differential 1-forms by using a pre-Tango structureLn
satisfying (∗). Let us consider curves, especially hyperelliptic curves, having such pre-Tango
structures. More precisely, letMg be the moduli space of curves of genusg and consider the
following locus:

Tg = {C ∈ Mg | C has a pre-Tango structureLn satisfying (∗)} .
To close this article, we state the following theorem:
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THEOREM 3.2. If 2g − 4p ≥ p3 and p ≥ 11, then the locus Tg contains a variety
of dimension g − 1.

PROOF. Consider the subvarietyHg of Mg consisting of hyperelliptic curves of genus
g . It is well-known that the dimension ofHg is 2g − 1. Since each curve inHg is given by
an equation of typey2 = x(x − 1)(x − a1) · · · (x − a2g−1), we have a rational mapping
A2g−1 → Hg whose image coinsides withHg . Let C be a curve inHg defined by the
equationy2 = x(x − 1)(x − a1) · · · (x − a2g−1), and let


c11 . . . c1g
...

...

cg 1 . . . cg g




be the Hasse-Witt matrix ofC, i.e., the matrix representing the mapping onH 0(C,ΩC) in-
duced from the Cartier operatorC, with respect to the basis{dx/y, xdx/y, . . . , xg−1dx/y}.
Note that all entries of this matrix are polynomials ina1, . . . , a2g−1 (see Yui [12] for example,
where the Hasse-Witt matrix in our sense is called the Cartier-Manin matrix and the Cartier
operator is called the modified Cartier operator). For 1≤ i ≤ g , consider the subvarietySi of
A2g−1 defined byci1 = · · · = cig = 0. Namely,Si is the subvariety consisting of the points
corresponding to curves such that all entries in thei-th columns of their Hasse-Witt matrices
are zero. LetVi be the image inHg of Si . If Vi is not empty, then we have dimVi ≥ g − 1.

Suppose thatVi is not empty withi ≤ p. LetC be a hyperelliptic curve corresponding
to a point inVi . Then we haveC(xi−1dx/y) = 0. Sincei ≤ p and 2g − 4p ≥ p3, we have
2g −2−2(i−1)−2p ≥ p3. By virtue of the previous lemma, we have a pre-Tango structure
Ln with L = OC(P∞) andn > p2. Consider the exact sequence

0 → O
Ĉ

→ OC̃ → OC̃/OĈ
→ 0(6)

onC, whereC̃ is the normalization of̂C (cf. Remark 2.7). Sincenp > 2g −2−2(i−1)−2p,
we know thatOC̃/OĈ

is a torsion sheaf of degree less than 2(i − 1)+ 2p. By tensoringLp
overOC to (6), we have

0 → O
Ĉ

⊗ Lp → OC̃ ⊗ Lp → OC̃/OĈ
→ 0 .(7)

SinceL = OC(P∞), we obtain that dimH 0(C,Lp) = (p−1)/2+1. Moreover, we have that
OC̃ ⊗Lp is isomorphic toLp2

. Therefore, we have that dimH 0(OC̃ ⊗Lp) = (p2 −1)/2+1.
Since degOC̃/OĈ

< 2i−2+2p ≤ 4p−2, we know that dimH 0(O
Ĉ

⊗Lp) > (p2−1)/2+
1 − 4p+ 2. Hencep ≥ 11 implies thatH 0(C,Lp)⊂

�=H 0(C,Lp ⊗OC
F̂∗OĈ

). Therefore, we
conclude thatVi is contained inTg . Now we have only to show that one of{Vi | i ≤ p} is not
empty.

Setd = 2g +1 and letC be the hyperelliptic curve determined byy2 = xd−x. Consider
the differential form dx/y and its image by the Cartier operator. We have

yC
(

dx

y

)
= C(yp−1dx) = C((xd − x)(p−1)/2dx) .
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Only the terms

x(p−1)/2 , xd+(p−1)/2−1 , . . . , xd((p−1)/2−1)+1 , xd(p−1)/2

appear in(xd − x)(p−1)/2. If C(dx/y) = 0, then we have thatV1 is not empty. Assume that
C(dx/y) �= 0. Then there exists an integerl such that 0≤ l ≤ (p−1)/2 anddl+ (p−1)/2−
l ≡ p−1 i.e.,l(d −1)+ (p−1)/2 ≡ p−1 (modp). Note thatd−1 �≡ 0 (modp). Let j be
the integer such that 0≤ j ≤ p−1 andj ≡ (l+1)(d−1) (modp). Consider the differential
form xjdx/y. We then havej + (p− 1)2 ≡ (l+ 1)(d − 1)+ (p− 1)/2. Moreover, since the
mappingZ/pZ → Z/pZ; l �→ l(d − 1) + (p − 1)/2 is bijective, we know that the integers
j + (p− 1)/2, j + d + (p− 1)/2− 1, . . . , j + d((p− 1)/2− 1)+ 1, j + d(p− 1)/2 are
not equivalent top − 1 modulop. So, we haveC(xjdx/y) = 0. Hence we obtain thatVj+1

is not empty.
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