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Abstract. The pre-Tango structure is a certain invertible sheaf of locally exact differ-
entials on a curve in positive characteristic. On any curve of sufficiently high genus, there
necessarily exist pre-Tango structures. Meanwhile, by using the notion of pre-Tango structure,
we can construct a form of the affine line over the curve. The completions of the forms are
regarded as a generalization of Raynaud’s aeiekample to the Kodaira vanishing theorem.
This suggests that we may have certain pathological phenomena on the completions of all such
forms. For the time being, we consider whether every curve of genus greater than one has a
pre-Tango structure which brings certain patigical phenomena. In the present article, we
give a sufficient condition for the completion of the form which is induced from a pre-Tango
structure to have non-closed global differential 1-forms. Moreover, we give a lower bound
for the dimension of the locus of the curves which have pre-Tango structures satisfying that
sufficient condition, in the moduli space of curves.

Introduction. Let k be an algebraically closed field of characterigtic> 0 andC
a smooth projective curve ovér of genusg. The Tango structure o is an invertible
sheaf£ with p - degl = 2¢ — 2 which is contained in the she# of the locally exact
differentials, in other words, the first sheaf of coboundaries of the de Rham compé&x of
(see Section 1 for the precise definition). By using Tango structures, Raynaud constructed
smooth projective surfaces which give countezaples to the Kodaira vanishing theorem
in positive characteristic, and Russell constructed smooth projective surfaces of general type
which have non-trivial global vector fields (cf. Raynaud [6] and Russell [7]). Here we note
that their surfaces are completionsfofms of the affine line over curves.

However, the condition on the degree for an invertible subshe&ab be a Tango
structure imposes severe restriction on its existence. On the other hand, if there exists an
invertible subsheaf oB! with certain extra conditions, then we can construct smooth pro-
jective surfaces, which are completions of forms of the affine line over the curve and which
have non-closed global differential 1-forms (cf. Takeda [9]). This suggests that the existence
of a certain invertible subsheaf 6 triggers off certain pathological phenomena in positive
characteristic.

In Section 1 of the present article, we introduce the notion of pre-Tango structure, that is
a positive invertible subsheaf 8 (see Definition 1.1), in which the condition on the degree
is much more moderate. Indeed, we can show that on any curve of sufficiently high genus,
there necessarily exist pre-Tango structures (cf. Corollary 1.5). Moreover, in Section 2, from
pre-Tango structures, we obtain forms of the affine line over the curves. Here we are interested

2000Mathematics Subject Classification. Primary 14H60; Secondary 14F10, 14H10, 14H51.



228 Y. TAKEDA AND K. YOKOGAWA

in the question whethall of those forms are peculiar to positive characteristic or not. For
example, we may pose the question: Are none of the completions of those forms liftable to
characteristic zero? Regrettably, the authors do not know what the answer is. The prime cause
is that no practical criterion is known.

On the other hand, it is known that every surface which has non-closed global differential
1-forms cannot be lifted over the ring> of Witt-vectors of length two (cf. Deligne and
lllusie [1]). Recall the above-mentioneddt that a certain invertible subsheaf®¥, which
is a pre-Tango structure, induces a form of the affine line whose completion has non-closed
global differential 1-forms. So, that is not liftable ovBf,.. In the latter half of Section 2,
we give a sufficient condition for a pre-Tango structure to induce a complete surface having
non-closed global differential 1-forms (cf. Theorem 2.4). Unfortunatady,all pre-Tango
structures satisfy this sufficient condition and so the question mentioned above is difficult yet.
Meanwhile, there exist pre-Tango structures only on curves of genus greater than one (cf.
Theorem 1.4). Under the circumstances, we, for the present, pose the following question:

Does every curve of genus greater than one have a pre-Tango structure
which induces a complete surface having non-closed global differential
1-forms?

Still regrettably, the authors do not know the answer to this question. In Section 3, however,
we give a lower bound for the dimension of the locus of curves which have pre-Tango struc-
tures involving complete surfaces with non-closed global differential 1-forms, in the moduli
space (cf. Theorem 3.2).

1. PreTangostructuresonacurve. LetC be asmooth projective curve of genus
over an algebraically closed field Suppose that char= p > 0. LetF : C — C be the
relative Frobenius morphism over Set = F.Oz/Oc. We then have an exact sequence

Q) 0—>(’)C—>F*(95—>B—>O,

whereB is a locally freeO¢-module of rankp — 1 and of degreép — 1)(¢g — 1).

DEFINITION 1.1. (1) We call aninvertible subsheabf 15 a pre-Tango structure on
C if £ has positive degree.

(2) If we have, in additionp - degl = 2¢g — 2, then we call the invertible she#&fa
Tango structureon C.

REMARK 1.2. By virtue of the divisibility of the Picard variety af, if we have a
pre-Tango structure of degreeon C, then we may assume that the pre-Tango structure is of
the form£" with an inclusion inta3, whereL is an invertible sheaf of degree one.

The pre-Tango structure has the following notable property:

PrRoOPOSITION 1.3. The existence of a pre-Tango structure on a curve C implies the
existence of a stable locally free O¢-module £ of rank two whose pull-back F*£ is unstable.
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PROOF. Suppose that there exists a pre-Tango strucfumn C. By considering an
exact sequence

2) H°C,B® ™Y - HYC, ™Y — HYC, F* £ ™Y,

we have an elemerstin H1(C, £~1) coming from the section iH%(C, B ® £~1) corre-
sponding to the inclusiod — B. Moreover, we know that is a non-split extension

0-0Oc—&—L—0,
whose Frobenius pull-back*é:
0—-0Of— F&—-FL—-0

splits. Here we know thét is stable buf*£ is unstable. Indeed, we then have a commutative
exact diagram
0—-—Oc— & —L—0
I \ \

0—>Oc—>F*Oé—>B—>O,

where the last vertical morphism is the inclusion. Therefore, we have&tisaa subsheaf of
F.O¢. Suppose thaf has a positive invertible subsheaf. We then have\t C F.Og¢.
Taking its adjoint mapping, we havet” c Oc¢. However, this is impossible. Sbis stable.
Itis clear thatF*£ is unstable.

Denote byF*(£~1) the mappingd1(C, £~1) — HY(C, F*£~1) for an invertible sheaf
L. Tango ([10]) introduced an invariantC) concerning the injectivity of*(£~1). Namely,
n(C) is the maximal degree of invertible subsheaves3of Since the kernel of the map
F*(£™ Y is HO(C, B ® £~1) = Hom (L, B), the positivity ofn(C) implies the existence
of an extensior§ as above. Tango, furthermore, gave a lower bouna6y:

g —h(C)
p—1

whereh(C) is the rank of the Hasse-Witt matrix af. Wheng = h(C), this bound is not
effective on the positivity oh(C). However, he gave an example of a cutvevith positive
n(C) andg = h(C) ([loc. cit.]). On the other hand, there exists the following inequality

) i-degF —r -mi(F) <i(r—1i)g,

where we denote by; (F) the maximal degree of subsheaves of ranka locally free sheaf
F of rankr on C. This inequality was proved by Nagata ([5]) for= 2, and by Mukai and
Sakai ([4]) forr > 3. Note that the invariani(C) is justmy(B). By using the inequality (3),
we could have a lot of such curves as Tango constructed, as follows.

THEOREM 1.4. Inthe same notation as above, we have
29 — 2
L—1§n<C>s[ g }
p—1 P
where [m] denotes the largest integer not greater than m.
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PrROOF. By directly applying the inequality (3) to the sheigf we have the first in-
equality. The second inequality is well-known. For reader’s convenience, we, however, give a
proof. Suppose that is an invertible subsheaf &. Since the shed is a subsheaf of. 2,
we have an injection front to F.£2¢. By taking its adjoint map, we have an injection from
LP 1o 2¢. This implies the second inequality.

Immediately, we have

COROLLARY 1.5. Inthe same notation as above, we have:
(1) Ifg =0,thenn(C) = —-1;
(2) Ifg = p,thenn(C) =1,
(3) Ifg > p,thenn(C) > 0.
Hence we obtain that any curve with ¢ > p hasa pre-Tango structure.

COROLLARY 1.6. For any curve C with ¢ > n(p — 1), the sheaf B contains an
invertible subsheaf £ of degreen.

2. Formsof theaffinelineinduced from pre-Tango structures. Let X be a scheme
over a schemd&. We say thatX is a form of the affine line oves if there exist a surjective
morphismS — S and an isomorphism ove¥ from X x S to a certainA'-bundle overs.
In this section, we shall show that pre-Tango structures 6vieduce forms of the affine line
overC and shall consider geometric properties of completions of such forms, Whisrthe
same as in Section 1. From now on, we suppose the characteristigreater than 2. Let
F : C — C be the relative Frobenius morphism oefTo begin with, we state

THEOREM 2.1. Letn bean integer greater than one and relatively prime to p. Sup-
pose that we have a pre-Tango structure £" < B on C. Then we obtain a scheme X and
a smooth morphism¢ : X — C whose base change by F coincides with the geometric line
bundle L = Spec Symm(F*£~1) over C. In other words, ¢ : X — C isaform of the affine
line over C.

ProoF.  Our proof of this theorem consists of the following three steps:

Step 1. We construct a scherfieand a morphismy : Y — C such that every fibre of is
a rational curve with one cusp.

Step 2. We construct the required fortnby taking the normalization in the function field
k(Y) of the geometric line bundle” = Spec Symm(L~?) overC. Furthermore,
we show thatX is smooth over.

Step 3. We verify thakX is a form of the affine line.

Step 1. Take an affine open coveriflg };c; and local generatorg;};c; of £L" such
that eachy; generate€” overU;. Consider the following extension coming from the inclu-
sionL" — B:

(4) 0> Oc—&—L"—0,
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wheref is a locally freeOc-module of rank two contained iR, O. Take an inverse image
gi in & of eachg;. Theng; is a section off. O overU; and¢ is generated by 1 ang over
U;. Moreover, we can take transition matrices

(5 %))
0 1 i,jel

suchthay; = d.q;+bij and that{d;;}; je; are transition functions of andg; = d;q; over
Uinu;. Heredl."j andbp;; are local sections d¢ (U; NU;). Seta; = ql.” foreachi € 1. Then

we know thaty; is a section irO¢ (U;) and we have a relatian = dl.’;.”a.,' +b{’} overU; NU,.

For each affine open subdét, consider an affine scheme = SpedD¢ (U;)[u;, v;] overU;

with relationv/ = u}! +a;. Under the relations; = d/;v; +b;; andu; = d/ u;, we can then
glue{Y;};c; together so that we have a schekhever C. We then know that is locally a
hypersurface. Les be the structural morphism a&f overC, and letX be the subscheme of

Y defined locally by; = 0 with the reduced induced structure. From the defining equations
of Y;’s, it follows that the restriction ofy to Y — X' is smooth and that each fibre ofis a
rational curve with one cusp of typ& = u".

Step 2. Consider the geometric line buntbleé = Spec Symm(L~7) overC. We can
regardL? |y, = SpedDc (U;)[z;] with z; = dl.;”z,-. By identifying z; andui‘l, we have a
purely inseparable extensidriY)/k(L?) of degreep. Take the normalizatioX of L? in
k(Y). We then have a structural morphigm X — C.

normalization

X L?

ink(y)

Cc

Let us consider local equations definixg Sincev” = u? + a;, we havev” = z;" +a;
in the function fieldk(Y). Take the positive integersandm such that: + r = mp and
r < p. We can writez; "v” = z/ + a;z; " Sety; = Zv;. We then obtainy =z + a;z;".
By the Jacobian criterion, we know that the hypersurface which is defined by this equation
is smooth ovelC except for the closed subscheme defined locally;by 0. Therefore, this
hypersurface coincides witki outside of that closed subscheme. Sipcandr are relatively
prime, there exist integers and 8 such thatep + Br = 1. Setx; = yf’zj?‘ for eachi € I.
We then have? = z; (1 + aiz?)ﬁ andx! = y;(1+a;z}')™*. Nearz; = 0, the hypersurface
defined byx? = z;(1 + aizf’)ﬁ is smooth and coincides withi. Moreover, it follows that
@ : X — Cis smooth and thaDx (¢ ~1(U;)) containsOc (Uy)[yi, zi].

Step 3. Consider the geometric line bundle= Spec Symm(£~1) over C. We know
thatlL is defined by the transition functiors;; }; j<; and that_ is the pull-back oL. Recall
the relationy” = z/ +a;z;"” with a; € k(C). Leta andp be the same integers as in Step 2,
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and sek; = (yi—q,'z;”)ﬁzf‘. Thenwe have,.” =z; ands] = y;—q;z}". Sincez; = di;ij, we
know s; = dl»;lsj. So, we can regard|y, = SpedD¢ (U;)[s;] andI:|l~,i = SpedDs(U))si],
whereU; is the inverse image df; by F. In order to show that the base chargeX — C
of ¢ : X — C coincides withL over C, we consider the coordinate rir@3 (¢ ~(U;)).
By virtue of Step 2, we have an inclusidz(U)[s/,s/1 ¢ Ozx(@~1(U:)). SinceX is
smooth, we know that the coordinate riéy (¢~1(Uy)) is normal. Therefore, it follows that
03 (¢~1(Uy)) is the normalization 0® ¢ (U;)[s?, 571, which coinsides wittO (T;)s; 1.

1

1

hASH
hS}

(@}

Hence we obtain an isomorphism frofh to L over C. This completes the proof of the
theorem.

REMARK 2.2. From the argument above, it follows that we obtain a form of the affine
line overC if there exists an inclusiod” < BB, wheren is an integer greater than one and
relatively prime top and whereC is an invetible sheaf not necessarily positive.

Next, we shall consider a completion of the form obtained in the previous theorem. We
retain the same notation and assumptions as in the previous theorem and proof. Consider the
ruled surfaceP(L?P & O) — C and take the normalizatioh in k(X), i.e., ink(Y). We then
have two open immersion§s — Z andY — Z. Let® : Z — C be the structural morphism.

By considering the local equations &f and of Y, we know that® is a fibration such that
each fibre is a rational curve with one cusp of tyfe= u". Recall the subschem® defined
by the ideal sheaf generated locally fpy(cf. Step 1 in the previous proof). From the local
equations of, it follows that X is the moving cuspidal singularities of the fibratién

REMARK 2.3 (cf. [6], [7]). By applying the Jacobian criterion, we know that the com-
pletions of the forms mentioned above have no singular points when they are induced from
Tango structures. Some of them are well-known. Indeed, Raynaud constructed a honsingular
surface by taking the double covering of the ruled surfa@, where€ is the same extension
as (4) in Step 1 of the previous proof with a Tango structffe— B. That surface coincides
with one of the completions mentioned above. Moreover, he showed that, on that surface,
there exists an ample invertible sheaf which gives a counter-example to the Kodaira vanishing
theorem in positive characteristic. The ample invertible sheaf coincidegWitlt) @ @* (L)
in our notation, where is a section ofd determined locally by; =0,i.e,E=Z —Y.
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Meanwhile, by taking the quotients of ruled surfacespbglosed rational vector fields,
Russell generally constructed a certain clafsaro-ruled surfaces, wich contains the com-
pletions mentioned above. Furthermore, lesatibed specific examples, which are smooth
surfaces of general type with non-trivial gldbactor fields. Those examples coincide with
the completions of the forms which are induced from Tango structures of thedbrm B
withn = —1 (mod p) in our notation.

Since the above-mentioned famous examples are inducedrfmogo structures, we can
easily verify that their Euler numbers are negatand that they are not ruled surfaces. Hence
we know that those examples cannot be lifted to characteristic zero. On the other hand, the
completions of the forms induced fropne-Tango structures, discussed in the present article,
have some complicated singular points. So, in general, it is hard to compute the numerical
invariant of their desingularization. We, however, know the local equations defimgere-
fore, we can treat the differential forms intelligibly. Indeed, we have the following theorem:

THEOREM 2.4 (cf.[9]). Retainthe same notation and assumptions as above. Suppose
that we have a pre-Tango structure £ < B on C suchthat n > p2. Then Z has non-closed
global differential 1-formsif HO(C, £P) g HO(C, LP ®0p, @.05).

PROOFE SinceY is defined locally byvf’ = u! + a;, we have—nuf’*ldui = da; by
exterior differentiation. LeP be theOc-submodule of2¢/ locally generated by, where
¢/« is the sheaf of differentials o6. We then obtain an injectio®*P ®p, Oz((n —
1)x) - Q%/k, whereQ%/k is the sheaf of differentials oA. We consider the global differ-
ential 1-forms in®*P ®p, Oz((n — 1) X). OverU;, we have

1,_
du,- = ——Z? lda,- s
n

1 e
vi dut; =-;in,’»’1(’7 V7 g,

1 —D)—r—
__ylzl_ﬂ(p H—r lda'

ldy: —
vidl/t,— i< 1-

The left hand side of each equation says that the differential form is regukaaod the right
hand side says that the differential form is regulaowhenm(p — 1) —r — 1 > 0. Since
n > p?,we haven > r + 1. Therefore, we obtain thatg, v;du;, ... , vf’_ldu,» are sections
in ®*P ® Oz((n — 1)X) (@ 1(U;)) and so inP ® ¢.0z((n — 1)X)(U;). Let Q be the
Oc-submodule of° @, @07 ((n — 1) X) generated locally by:}. ThenQ is isomorphic
to £P. Consider the direct image of the structure sh@af of X by ¢. Since®.0Oy is
generated locally by &y, ... , vfﬁl as anOc-module, we have an inclusid®d®p,. .05 C
P Qo 9:0z((n —1)X). We summarize the above-mentioned inclusion®gtmodules as
follows:

Q C QR0 @05 C P R0, ®:0z((n—1X) C 0,027 ;.
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SinceQ is locally generated byud, any section ofQ is a closed differential 1-form of.
Meanwhile,Q ®o,. @O is locally generated by:d, v;du;, ..., vf‘ldu,-. So we conclude
that the sections o ®p,. .Os which are not inQ are non-closed differential 1-forms on
Z. Hence we arrive at the required assertion.

REMARK 2.5. Leto : Z* — Z be a desingularization. Since there is a natural injec-
tion o*2z,x — $27+/k, we know that, ifZ has non-closed global differential 1-forms, then
so doesZ*. In this case, the Hodge to de Rham spectral sequengé dbes not degenerate
in E1. Hence, by Corollaire 2.4 of [1], we know th&t* can not be lifted over the ring of
Witt-vectors of length two.

REMARK 2.6. If £" < B is a Tango structure, then we hav&%(z, &*P ®0,
Oz((n—-1)%)) = H°(Z, 9%/1) (cf. Takeda [8]). However, the authors do not know whether
the same equation holds in general. That is obstructed by the existence of the singular points.
Meanwhile, the argument in the previous proof treats only the sections of the)fdvmin
P*P ®0p, Oz((n —1)X). So, by our method, it is hard to investigate all differential 1-forms
on Z* and to state a necessary and sufficient conditon for the existence of non-closed global
differential 1-forms onz*. There seems to be a need of another method.

REMARK 2.7. LetC be the curve obtained by gluingpead¢ (U;)[gil}ics together
andF : C — C the canonical morphism, whegg's are the same as in Step 1 of the proof of
Theorem 2.1. Clearly, the normalization@fis none other thag' and they coincide provided
that£" — B is a Tango structure. Moreover, by identifyiggandv; on X', we know that
there exists a closed immersiéh— Z whose image coincides with.

Y C Z

1
S

normalization C P ¢

C

Hence, in the same notation and under the same assumptions as in the previous theorem, if
HO(C, £P) S HO(C, LP ®p,. F.O.), then we have that has non-closed global differential
1-forms.

3. PreTango structures on hyperélliptic curves. We have already seen that any
curve of sufficiently high genus has pre-Tango structures (cf. Section 1). In this section, by
using the Cartier operator, we shall explicitly describe some pre-Tango structures on hyperel-
liptic curves and shall conséd them more precisely. L&t be a hyperelliptic curve of genus
g overk of characteristipp > 2. From now on, we employ the absolute Frobenius morphism
F : C — C instead of the relative Frobeniismorphism. Then the she#fis defined to be
FOc/Oc¢. We use the Cartier operator: F,2¢ — $2¢, which is defined as follows. Let
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be a local parameter at a point 6n Then any rational functiorf of C can be written as
f=r+ 44yt
with f; € k(C). For a differential 1-formfds on C, we set
C(fdt) = fp_10r.

We can verify that the Cartier operatdrdoes not depend on the choice of a local parameter
t. MoreoverC induces a homomorphisth: F,2¢ — $2¢ of sheaves which induces a short
exact sequence

(5) O—>B—>F*.Qci>.(2c—>0.

The following lemma states the existerafea pre-Tango structure of high degree.

LEMMA 3.1. Let C be a hyperelliptic curve defined by an equation y2 = f(x) such
that degf = 2¢g + 1and f(0) = 0. Suppose that there existsaninteger i withO <i < g —1
suchthat C(x’dx/y) = 0. If n isanatural number relatively primeto p with 2g —2—2i —2p <
np < 2g — 2 — 2i, then there exists a pre-Tango structure of degreen on C.

PrROOFE By the assumption, we know that the hyperelliptic cuévbas a double cov-
eringm : C — P (x,y) — x such that two Weierstrass poin® and P, are lying
overx = 0 andx = oo, respectively. Then the divis@ridx/y) of the differential form
xidx/yis 2i Po+ (29 — 2 — 2i) P. Take a natural numberrelatively prime top such that
29—2—2i—2p < np < 29g—2—2i. Thenthe divisotxidx/y)—np P is effective. Hence we
have an inclusioi®¢ (np Ps) C £2¢ and so we have its adjoif¢ (n Ps) C Fy2¢. Mean-
while, by the short exact sequenc (5), we have that the seetibryy comes from3 since
C(x'dx/y) = 0. Hence we get an inclusidf¢c (nPs) C B. S0Oc¢(nPy) is a pre-Tango
structure.

Let us consider a pre-Tango structule — B satisfying:

The degrea is relatively prime top and greater thap?, and

() HO(C, £P) S HO(C, L? @0, F.Op).

HereC, F are the same as in Remark 2.7, i@is obtained by qumgSpecOc(U ) q,]},e,,
whereg;’s are local generators &, subjected to the relation = d;; 4 +Dbij andf : C — C

is the canonical morphism. Remarks 2.5 and 2.7 say that we can construct a smooth complete
surface which has non-closed global differential 1-forms by using a pre-Tango strdéture
satisfying ). Let us consider curves, especially hyperelliptic curves, having such pre-Tango
structures. More precisely, ¢, be the moduli space of curves of genuand consider the
following locus:

Ty ={C € M | C has a pre-Tango structuf? satisfying )} .

To close this article, we state the following theorem:
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THEOREM 3.2. If2g —4p > p2and p > 11, then the locus 7, contains a variety
of dimension g — 1.

ProoFk  Consider the subvariefy, of M consisting of hyperelliptic curves of genus
g. Itis well-known that the dimension 6{, is 2g — 1. Since each curve i/, is given by
an equation of type? = x(x — D)(x —a1) --- (x — azy—1), We have a rational mapping
A%29-1 . 3, whose image coinsides with,. Let C be a curve inH, defined by the
equationy? = x(x — 1)(x —a1) - - - (x — azg—1), and let

€11 ... Cig

Cgl ... Cgg

be the Hasse-Witt matrix af, i.e., the matrix representing the mapping BA(C, £2¢) in-
duced from the Cartier operat6t with respect to the basfglx/y, xdx/y, ..., x9 dx/y}.
Note that all entries of this matrix are polynomialsiif . . ., aog—1 (See Yui [12] for example,
where the Hasse-Witt matrix in our sense is called the Cartier-Manin matrix and the Cartier
operator is called the modified Cartier operator). Fer i < g, consider the subvariet§ of
A%9-1 defined byci1 = - -- = ¢;4 = 0. Namely,S; is the subvariety consisting of the points
corresponding to curves such that all entries inittie columns of their Hasse-Witt matrices
are zero. LeV; be the image irt{, of S;. If V; is not empty, then we have dilp > g — 1.
Suppose thaV; is not empty withi < p. Let C be a hyperelliptic curve corresponding
to a point inV;. Then we hav€ (x'~1dx/y) = 0. Sincei < p and ) — 4p > p°, we have
2g —2—2(i —1)—2p > p®. By virtue of the previous lemma, we have a pre-Tango structure
L£" with £ = O¢(Ps) andn > p2. Consider the exact sequence

(6) 0—)0@—)06%06/(9@%0

onC, whereC is the normalization of (cf. Remark 2.7). Sincep > 2g —2—2(i —1)—2p,
we know thatOz /O, is a torsion sheaf of degree less than2 1) + 2p. By tensoringC?
overO¢ to (6), we have

@) 0= 0s®LY - O ®LY — Ox/0p — 0.

Sincel = Oc¢(Ps), we obtain that din°(C, £P) = (p —1)/2+ 1. Moreover, we have that
O ® LP isisomorphic tac?’. Therefore, we have that dimO(Oé QLP) = (p?—1)/2+1.
Since de@ /O < 2i —2+2p < 4p—2, we know that din/%(Op ® LP) > (p>—1)/2+
1—4p +2. Hencep > 11 implies thatt°(C, LP) S HO(C, L? @0, F,0). Therefore, we
conclude tha¥; is contained irf7;. Now we have only to show that one @f; | i < p} is not
empty.

Setd = 2g +1 and letC be the hyperelliptic curve determined by = x? —x. Consider
the differential form d/y and its image by the Cartier operator. We have

yC <d_x> = C(yP~tdx) = C((x4 — x)P~D/2dy) .
y
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Only the terms
xPD/2  drp-D/2-1d((p-D/2-DHL d(p-D)/2

appear in(x¢ — x)?~D/2_|f ¢(dx/y) = 0, then we have that; is not empty. Assume that
C(dx/y) # 0. Then there exists an integesuch thatO< / < (p—1)/2andd!+ (p—1)/2—
I=p-1lie,d-1)+(p—1)/2= p—1(modp). Note thatd —1 £ 0 (modp). Letj be
the integer suchthat@ j < p—1andj = (I +1)(d —1) (mod p). Consider the differential
formx/dx/y. We then havg + (p — 1)2 = (I +1)(d — 1) + (p — 1)/2. Moreover, since the
mappingZ/pZ — Z/pZ;1 — I(d — 1) + (p — 1)/2 is bijective, we know that the integers
j+p-b0/2, j+d+(p-D/2-1,..., j+d(p—D/2-1)+1, j+d(p—1/2are
not equivalent tgp — 1 modulop. So, we hav& (x/dx/y) = 0. Hence we obtain that; 1

is not empty.
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