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Veronica Kelsey and Peter Rowley

We explore the minimal characteristic two parabolic geometries for the finite
sporadic simple groups, as introduced by Ronan and Stroth. The chamber graphs
of the geometries are studied, with the aid of Magma, focusing on their disc
structure and geodesic closures. For the larger sporadic geometries which are
beyond computational reach we give bounds on the diameter of their chamber
graphs.

1. Introduction

In this paper, with the aid of computer programs [Kelsey and Rowley 2019], we in-
vestigate the chamber graphs of the characteristic two minimal parabolic geometries
for the finite sporadic simple groups which are listed in [Ronan and Stroth 1984].
The motivation for the Ronan and Stroth catalogue was to obtain geometries which
captured certain features seen in the buildings associated with the finite groups of
Lie type.

The common thread of these geometries is a generalization of the idea of a
minimal parabolic subgroup of a group of Lie type. We briefly review minimal
parabolic subgroups, following Ronan and Stroth. Suppose G is a finite group, p
a prime and S ∈ Sylp(G). Set B = NG(S). A subgroup P of G which properly
contains B with Op(P) 6= 1 and for which B is contained in a unique maximal
subgroup of P is called a minimal parabolic subgroup of G with respect to B.

Let P1, . . . , Pn be minimal parabolic subgroups of G with respect to B. Put
I = {1, . . . , n}. If 〈Pi | i ∈ I 〉 = G and 〈Pj | j ∈ J 〉 6= G for all proper subsets
J of I , we call {Pi | i ∈ I } a characteristic p minimal parabolic system of G of
rank n.

From now on we suppose {Pi | i ∈ I } is a rank n minimal parabolic system. For
nonempty J ⊆ I , we set PJ = 〈Pj | j ∈ J 〉 and for J = ∅, PJ = B. If for all
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subsets J, K ⊆ I we have

Pj ∩ Pk = PJ∩K

the minimal parabolic system {Pi | i ∈ I } is called a geometric system.
We shall concentrate here on the case p = 2 with systems that are geometric.

In fact, it is the chamber graph of these geometries we focus on. Chamber graphs
were employed by Tits to give an alternative approach to buildings; see [Ronan
2009; Tits 1981]. They have proved to be a fruitful way of viewing buildings and
so it is natural to study the chamber graphs of related geometries.

We recollect the salient features of chamber systems and chamber graphs that
we need. Let 0 be the geometry associated with {Pi | i ∈ I }. In the group theory
context, the chambers of the chamber system are {Bg | g ∈ G}. The chambers are
the vertices of the chamber graph C(0).

Two (distinct) chambers Bg and Bh of C(0) are i-adjacent if gh−1
∈ Pi , and two

chambers are adjacent in the chamber graph, C(0), if they are i-adjacent for some
i ∈ I . Since B is self-normalizing in G, C(0) may also be described as having
{Bg
| g ∈ G} as its vertex set with Bg and Bh i-adjacent if gh−1

∈ Pi .
All the chamber systems we consider here will be flag transitive. See [Bueken-

hout 1995, Chapter 3] for further background on group geometries.
In [Ronan and Stroth 1984] a dictionary of rank 2 subdiagrams is given, re-

sulting in diagrams for these geometries analogous to the Dynkin diagrams of
buildings. Usually these diagrams for the sporadic geometries have just one rank 2-
subdiagram which is not associated with a crystallographic root system. So in this
sense they look very close to buildings. This raises the question as to how chamber
graphs of buildings and chamber graphs of the sporadic geometries compare. We
recall that all essential properties of a building are encoded in its chamber graph
(see [Tits 1981], for example) and so we cannot expect them to be too similar.

For γ a chamber of C(0) and i ∈ N,

1i (γ )= {γ
′
∈ C(0) | d(γ, γ ′)= i},

where d( , ) is the usual distance metric on the chamber graph C(0). We refer to
1i (γ ) as the i -th disc of γ . For γ, γ ′ ∈ C(0) any path of shortest distance between
them in C(0) is called a geodesic. The geodesic closure of a set of chambers X is
defined to be the set X of all chambers lying on some geodesic of γ, γ ′, for any
pair γ, γ ′ ∈ X . The graph theoretic structure and size of 1i (γ ) tells us much about
C(0). Suppose d = Diam C(0), the diameter of C(0), then we call 1d(γ ) the last
disc of γ .

Assume that γ ∈ C(0) is such that StabG(γ )= B. If G is a Lie type group and
0 its associated building, then the last disc of γ displays a number of interesting
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facets of 0. Firstly, S acts simply transitively on the chambers in the last disc of
γ (and so the size of this disc is |S|). More importantly if we choose any γ ′ in
the last disc of γ , then the geodesic closure of γ and γ ′ gives the chambers of an
apartment of 0.

Accordingly, for the minimal parabolic sporadic geometries we investigate here
we shall be looking for those with a small number of B-orbits in the last disc,
and for these we shall also probe their geodesic closures. The minimal parabolic
geometries of M12,M24, J2, J3, He,McL and Ru fall into this category.

2. Statement of results

Our first result concerns the diameter of C(0).

Theorem 2.1. The diameter, or bounds for the diameter, of the chamber graphs
of the minimal parabolic sporadic geometries are as shown in Table 1.

In the table, the second column gives the set {Pi/O2(Pi ) | i ∈ I }, which we refer
to as the set of induced panel residues of 0. The third column gives the diameter
of C(0), and the last gives the number norbits of B orbits of 1d(γ0).The use of −
indicates we have no information.

In Theorem 2.1, M23 has two different minimal parabolic geometries whose
induced panel residues are the same. They differ in the choice of 24

: L3(2) (
=〈P1, P3〉 or 〈P3, P4〉 in [Ronan and Stroth 1984]) in H = 24

: Alt (7). One choice
leaves a 1-space of O2(H) invariant and the other a 3-space of O2(H) invariant.
The former is called the 1-geometry and the latter the 3-geometry. Also in Theorem
2.1, to distinguish two of the McL geometries we use the same notation for minimal
parabolic subgroups as in [Ronan and Stroth 1984].

Surveying the last column of Theorem 2.1 we see a number of geometries for
which the last disc consists of relatively few B-orbits. These geometries certainly
warrant further attention — indeed, those of M24 and He have been dissected in
[Carr and Rowley 2018].

There has been considerable effort expended in collecting geometries, just as
in [Ronan and Stroth 1984], which share properties similar to those in buildings.
See [Buekenhout 1979a; 1979b; 1995; Kantor 1981; Ronan and Smith 1980; Tits
1980] for an overview of these. The, so-called, GABs which stands for geometries
that are almost buildings are among this collection. Perversely, from the point of
view of the number of B-orbits in the last disc these geometries are very different
from buildings; see [Kelsey and Rowley 2019]. In this sense some of the sporadic
geometries in Theorem 2.1 are more like buildings.
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group induced panel residues d = Diam C(0) norbits

M12 {L2(2), L2(2)} 12 1
M22 {L2(2), Sym(5)} 5 12
M23 {L2(2), L2(2), Sym(5)} 7 228

1-geometry
{L2(2), L2(2), Sym(5)} 7 224

3-geometry
M24 {L2(2), L2(2), L2(2)} 17 2
J2 {L2(2), L2(4)} 8 2
J3 {L2(2), L2(4)} 14 1
J4 {L2(2), L2(2), Sym(5)} 12≤ d ≤ 75 –

Co3 {L2(2), L2(2), L2(2)} 13≤ d –
Co2 {L2(2), L2(2), Sym(5)} 15 86
Co1 {L2(2), L2(2), L2(2), L2(2)} 15≤ d ≤ 48 –
HS {L2(2), Sym(5)} 8 39
He {L2(2), L2(2), L2(2)} 21 1
Ly {L2(2), Sym(9)} 5≤ d –

{L2(2), Sym(5)} 15≤ d –
McL {L2(2), L2(2), L2(2)} 20 4

{L2(2), L2(2), Sym(5)} 11 1596
{P1, Pσ

1 , P5}

{L2(2), L2(2), Sym(5)} 10 2042
{Pσ

1 , Pσ
2 , P5}

{L2(2), L2(2), L2(2), L2(2)} 14 881
O’N {L2(2), L3(4).2} 5≤ d –
Ru {L2(2), Sym(5)} 12 3
Sz {L2(2), L2(2), L2(4)} 16 57

Fi22 {L2(2), L2(2), Sym(5)} 8≤ d ≤ 18 –
Fi23 {L2(2), L2(2), L2(2), Sym(5)} 11≤ d ≤ 32 –
Fi ′24 {L2(2), L2(2), L2(2), L2(2)} 21≤ d ≤ 90 –
Th {L2(2), Alt (9)} 9≤ d ≤ 11 –
HN {L2(2), Alt (5) oZ2} 9≤ d ≤ 11 –
B {L2(2), L2(2), L2(2), Sym(5)} 17≤ d ≤ 64 –
M {L2(2), L2(2), L2(2), L2(2), L2(2)} 42≤ d ≤ 344 –

Table 1. Information on the the diameter of the chamber graphs of the minimal
parabolic sporadic geometries. The second column gives the set {Pi/O2(Pi ) | i ∈ I },
the third gives the diameter of C(0), and the last gives the number norbits of B orbits
of 1d(γ0).The use of − indicates we have no information.
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Our second result describes the disc structure of some of the minimal parabolic
sporadic geometries.

Theorem 2.2. Let G denote one of the sporadic simple groups M12, M22, M23, J2,
J3, Co2, HS, McL and Ru. Let 0 denote a minimal parabolic geometry associated
to one of these groups. Set C = C(0), and let γ0 be a fixed chamber of C. Put
B = StabG(γ0) and let norbits be the number of B orbits of 1d(γ0).

(i) If G ∼= M12 and 0 has induced panel residues {L2(2), L2(2)}, then C has
1485 chambers, 44 B-orbits, diameter 12 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 4 8 16 32 64 128 256 384 320 192 64 16

norbits 2 2 2 2 3 4 6 6 6 6 3 1

(ii) If G ∼= M22 and 0 has induced panel residues {L2(2), L2(2)}, then C has
3465 chambers, 60 B-orbits, diameter 5 and this disc structure:

i-th disc 1 2 3 4 5
|1i (γ0)| 16 56 432 1040 1920

norbits 4 6 15 17 17

(iii) If G ∼= M23 and 0 has induced panel residues {L2(2), L2(2), Sym(5)}, the
1-geometry, then C has 79,695 chambers, 835 B-orbits, diameter 7 and this
disc structure:

i-th disc 1 2 3 4 5 6 7
|1i (γ0)| 18 92 664 3104 10,728 36,032 29,056

norbits 5 13 32 81 157 318 228

(iv) If G ∼= M23 and 0 has induced panel residues {L2(2), L2(2), Sym(5)}, the
3-geometry, then C has 79,695 chambers, 835 B-orbits, diameter 7 and this
disc structure:

i-th disc 1 2 3 4 5 6 7
|1i (γ0)| 18 92 664 3104 10,728 36,544 28,544

norbits 5 13 32 81 157 322 224

(v) If G ∼= J2 and 0 has induced panel residues {L2(2), L2(4)}, then C has 1575
chambers, 20 B-orbits, diameter 8 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 6 16 48 128 384 640 288 64

norbits 2 2 2 2 3 3 3 2
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(vi) If G ∼= J3 and 0 has induced panel residues {L2(2), L2(4)}, then C has
130,815 chambers, 370 B-orbits, diameter 14 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12 13 14
|1i (γ0)| 6 16 48 128 384 1024 3072 7936 20,736 42,240 42,432 10,944 1656 192

norbits 2 2 2 2 3 4 10 22 55 114 115 30 7 1

(vii) If G ∼= Co3 and 0 has induced panel residues {L2(2).L2(2), L2(2)}, then C
has 484,147,125 chambers, 484,680 B-orbits and this disc structure as far
as i = 14 (note incomplete data here):

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 6 24 84 258 792 2344 6976 19,552 53,728

norbits 3 6 12 20 34 56 100 162 281

i-th disc 10 11 12 13 14
|1i (γ0)| 144,960 382,464 1,006,720 2,567,232 6,494,720

norbits 512 999 1991 3963 8133

(viii) If G∼=Co2 and 0 has induced panel residues {L2(2), L2(2), Sym(5)}, then C
has 161,382,375 chambers, 2791 B-orbits, diameter 15 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 18 92 664 3104 11,264 46,912 159,360 5,501,44 1,597,952

norbits 5 11 28 53 83 139 187 265 303

i-th disc 10 11 12 13 14 15
|1i (γ0)| 4,143,104 11,051,008 27,033,600 47,185,920 47,054,848 22,544,384

norbits 338 377 365 347 203 86

(ix) If G ∼= HS and 0 has induced panel residues {L2(2), Sym(5)}, then C has
86,625 chambers, 270 B-orbits, diameter 8 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8
|1i (γ0)| 16 56 440 1312 7872 17,664 40,448 18816

norbits 4 6 15 19 47 50 89 39

(x) If G∼=McL and 0 has induced panel residues {L2(2), L2(2), L2(2)}, then C
has 7,016,625 chambers, 57,866 B-orbits, diameter 20 and this disc structure:
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i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 6 20 56 144 376 936 2210 5124 11,656 26,640 60,544 136,032

norbits 3 5 8 13 24 45 82 135 216 383 714 1408

i-th disc 13 14 15 16 17 18 19 20
|1i (γ0)| 284,880 588,800 1,162,272 1,934,416 2,019,280 745,408 37,568 256

norbits 2638 5033 9432 15,379 16,026 6002 315 4

(xi) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), Sym(5)},
{P1, Pσ1 , P5}, then C has 7,016,625 chambers, 57,866 B-orbits, diameter 11
and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11
|1i (γ0)| 18 112 770 3964 17400 71440 294760 1078784 2789696 2555840 203840

norbits 5 16 52 138 358 998 3037 9182 22326 20157 1596

(xii) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), Sym(5)},
{Pσ1 , Pσ2 , P5}, then C has 7,016,625 chambers, 57,866 B-orbits, diameter
10 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10
|1i (γ0)| 18 116 880 5288 28,062 154,772 711,008 2,560,688 3,296,208 259,584

norbits 5 16 53 162 518 1814 6418 20769 26068 2042

(xiii) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), L2(2), L2(2)},
then C has 7,016,625 chambers, 57,866 B-orbits, diameter 14 and this disc
structure:

i-th disc 1 2 3 4 5 6 7 8 9
|1i (γ0)| 8 40 176 704 2384 7936 26,048 79,616 238,720

norbits 4 11 26 66 134 253 560 1228 2651

i-th disc 10 11 12 13 14
|1i (γ0)| 661,632 1,581,184 2,658,560 1,646,848 112768

norbits 5844 12,564 20,777 12,866 881

(xiv) If G ∼= Ru and 0 has induced panel residues {L2(2), Sym(5)}, then C has
8,906,625 chambers, 847 B-orbits, diameter 12 and this disc structure:

i-th disc 1 2 3 4 5 6 7 8 9 10 11 12
|1i (γ0)| 16 56 440 1344 10560 32000 231936 647168 3588096 3997696 385024 12288

norbits 4 6 11 12 27 33 65 94 304 250 37 3
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3. Diameters and geodesic closures

We first give three results concerning the diameter of chamber graphs. For 0 a
geometry and x ∈ 0, the residue of x , denoted 0x , is the subgeometry consisting
of all y ∈ 0 incident with x .

Lemma 3.1. Suppose that 0 is a string geometry with diagram

0 1 n− 1
,

where the type 0 and type 1 objects are, respectively, the points and lines of 0. Let
G(0) be the point-line collinearilty graph of 0. Assume that

(i) G = Aut (0) acts flag transitively on 0;

(ii) for x a point of 0, the chamber graph C(0x) is connected with Diam C(0x)= e;
and,

(iii) G(0) is connected with DiamG(0)= f .

Then
Diam C(0)≤ f (1+ e).

Proof. Let γ1 = {x1, x2, . . . , xn} be a chamber of 0 with x = x1, a point and `= x2

a line. Note that x and ` are incident. Let y be a point incident with ` and y 6= x .
Since 0 is a string geometry γ2 = {y, `, x3, . . . , xn} is a chamber of 0. Moreover,
in C(0), d(γ1, γ2) = 1. Also {`, x3, . . . xn} is a chamber in 0y . Hence for any
chamber γ of 0 which contains y, we have d(γ1, γ )≤ 1+ e. Let γ0 be a chamber
of 0. Because, by assumption, G(0) is connected, a straight forward induction
argument shows d(γ0, γ )≤ f (1+ e) for any chamber γ of 0. Hence, as G is flag
transitive on 0, we deduce that Diam C(0)≤ f (1+ e). �

Lemma 3.2. Suppose 0 = {P1, . . . , Pn} is a minimal parabolic geometry, and set
ai = [Pi : B], for i = 1, . . . , n. Let

a =
n∑

i=1
(ai − 1) and b =

n∑
i=1

(
(ai − 1)(a− (ai − 1))

)
.

Then

Diam C(0)≥
⌈

loga−1

(
a−2

b
(
|C(0)| − (1+ a)

)
+ 1

)⌉
+ 1.

Proof. Let γ be a type i neighbour of γ0, then γ is i-adjacent to all other type i
neighbours of γ0. And so γ is joined to at least ai − 1 chambers in 11(γ0)∪ {γ0}.
Hence γ has at most a−(ai−1) neighbours in12(γ0). There are (ai−1) chambers
of type i in11(γ0), and so there are at most

∑n
i=1

(
(ai−1)[a−(ai−1)]

)
chambers

in the second disc.



CHAMBER GRAPHS OF MINIMAL PARABOLIC SPORADIC GEOMETRIES 33

For i ≥ 2, each chamber in 1i (γ0) has at most a − 1 neighbours in 1i+1(γ0).
Consequently the number of chambers in 1i+1(γ0) is at most (a − 1)|1i (γ0)|.
Hence summing across the discs up to and including 1k+2(γ0), there are at most
1+ a+ b+ b(a− 1)+ · · ·+ b(a− 1)k chambers. Set d = Diam C(0). Then

|C(0)| ≤ 1+ a+ b+ b(a− 1)+ · · ·+ b(a− 1)d−2
= 1+ a+

b
(
(a− 1)d−1

− 1
)

a− 2

and hence

(a− 1)d−1
≥

a− 2
b

(
|C(0)| − (1+ a)

)
+ 1.

Taking log base a− 1 gives the inequality in the lemma. �

Lemma 3.3. Suppose 0 is a rank 2 geometry with point-line collinearity graph
G(0). If DiamG(0)= f , then 2 f − 1≤ Diam C(0)≤ 2 f + 1.

Proof. Given a path {x0, x1, . . . , x`}with lines li+1 joining xi to xi+1 for 0≤ i ≤`−1
in G(0), there is a corresponding path in C(0) given by

{(x0, l1), (x1, l2), (x1, l2), . . . , (x`, l`)}.

If the path in G(0) is a geodesic then so is the corresponding path in C(0), as any
shorter path in C(0) results in a shorter path in G(0).

Hence the longest geodesic in G(0) of length f gives rise to a geodesic of length
2 f − 1 in C(0). If there is a vertex x−1 joined to x0 by l0 such that d(x0, x f ) =

d(x−1, x f ) then prepending (x0, l0) to the induced path in C(0) creates a geodesic
of length 2 f . The same situation occurring at x f can result in a geodesic of length
2 f + 1. �

Proof of Theorem 1.2. The combined efforts of Magma [Cannon and Playoust
1997], and the code used in [Carr and Rowley 2018] or [Kelsey and Rowley 2019]
yield the data on disc structure given in Theorem 2.2. �

Proof of Theorem 1.1. The diameters for the geometries associated with M12, M22,
M23, J2, J3, Co2, HS, McL and Ru follow from Theorem 2.2. For the geometries
associated with M24 and He see [Carr and Rowley 2018] and for Suz see [Kelsey
and Rowley 2019]. The bounds for the Th and HN geometries follow from [Row-
ley and Taylor 2011] and Lemma 3.3. Now let 0 be the characteristic two minimal
parabolic geometry for one of the groups J4, Co1, Fi22, Fi23, Fi ′24, B and M given
in [Ronan and Stroth 1984]. These are all string geometries. Let G(0) be the point-
line collinearity graph for 0, where we will nominate in each case which objects
play the role of points. Set f = DiamG(0) and for x a point of 0 let e denote
the diameter of C(0x). We aim to determine, or obtain bounds for, e and f , first
looking at 0 for J4. Call those objects whose stabilizer in J4 has shape 21+123M222
and 23+12+2(Sym(3)× Sym(5)) points and lines respectively. Now subgroups H



34 VERONICA KELSEY AND PETER ROWLEY

of J4 of shape 22+122M222 have |Z(H)| = 2 and are self normalizing (H is in fact a
maximal subgroup, see [Conway et al. 1985]). Thus we may identify the points of
0 with the 2A conjugacy class of J4. Let x be a point of 0 and l a line incident with
x . Now l is incident with seven points and under this identification they correspond
to the seven involutions in the minimal normal subgroup of the stabilizer of l of
order 23. Since the stabilizer of x is transitive on the lines incident with x and the
first disc of the commuting involution graph of 2A has size 194106, we conclude
that G(0) is the same as the commuting involution graph for 2A. Therefore, by
[Bates et al. 2007, Theorem 1.1] G(0) has diameter 3. From [Rowley 2010] the
diameter of the chamber graph of the 3.M22.2 geometry is 24. Thus f = 3 and
e = 24 for J4. Now using [Segev 1988], [Rowley and Walker 1996, 2011; 2012b;
2012a; 2016; 2004a; 2004b] and [Rowley 2019] we have the values for f in the
table below. (For Co1, Fi23, Fi ′24 and M we note the given reference deals with
the point-line collinearity graph for their maximal parabolic geometries which is
the same as that for its minimal parabolic geometries.) The values given for e are
obtained from Theorem 2.2 except for M, where e ≤ 3(17+ 1)= 48 follows from
Lemma 3.1, using the data for Co1.

Group e f point-stabilizer

J4 24 3 21+12.3·M22.2
Co1 17 3 211.M24

Fi22 5 3 210.M22

Fi23 7 4 211.M23

Fi ′24 17 5 211.M24

B 15 4 21+22.Co2

M ≤48 ≤6 21+24.Co1

Applying Lemma 3.1 yields the bounds for C(0) as stated in Theorem 2.1. The
given lower bounds for Diam C(0) may be obtained using Lemma 3.2. �

We single out for special attention those chamber graphs having few B-orbits
in the last disc.

Theorem 3.4. Let γi be B-orbit representatives for the chambers in the disc γ0.
The geodesic closure of B-orbit representatives of the last disc are given below.

(i) If G ∼= M12 and 0 has induced panel residues {L2(2), L2(2)}, then C has the
following geodesic closure:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10 11 12
|{γ0, γ1} ∩1i (γ0)| 1 4 8 12 16 16 16 16 16 12 8 4 1
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(ii) If G ∼= J2 and 0 has induced panel residues {L2(2), L2(4)}, then for i = 1, 2,
the two B-orbits have the following geodesic closure data:

disc i of C(0) 0 1 2 3 4 5 6 7 8
|{γ0, γi } ∩1i (γ0)| 1 5 8 8 8 8 8 5 1

(iii) If G ∼= J3 and 0 has induced panel residues {L2(2), L2(4)}, then C has the
following geodesic closure:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10 11 12 13
|{γ0, γ1} ∩1i (γ0)| 1 6 16 40 52 56 56 56 52 48 40 16 6 1

(iv) If G ∼= McL and 0 has induced panel residues {L2(2), L2(2), L2(2)}, then,
for i = 1, 2, the four B-orbits have the following geodesic closure data:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10
|{γ0, γi } ∩1i (γ0)| 1 5 14 28 32 38 44 46 52 46 48
|{γ0, γ3} ∩1i (γ0)| 1 5 15 28 34 32 30 32 36 36 32
|{γ0, γ4} ∩1i (γ0)| 1 5 15 28 32 32 36 38 36 34 32

disc i of C(0) 11 12 13 14 15 16 17 18 19 20
|{γ0, γi } ∩1i (γ0)| 46 52 46 44 38 32 28 14 5 1
|{γ0, γ3} ∩1i (γ0)| 34 36 38 36 32 32 28 15 5 1
|{γ0, γ4} ∩1i (γ0)| 36 36 32 30 32 34 28 15 5 1

(v) If G ∼= Ru and 0 has induced panel residues {L2(2), Sym(5)}, then for i =
1, 2, 3, the three B-orbits have the following geodesic closure data:

disc i of C(0) 0 1 2 3 4 5 6 7 8 9 10 11 12
|{γ0, γi } ∩1i (γ0)| 1 14 40 40 40 40 40 40 40 40 40 14 1
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