
Geometry & Topology 16 (2012) 475–526 475

Orbifold Gromov–Witten theory
of the symmetric product of Ar

WAN KENG CHEONG

AMIN GHOLAMPOUR

Let Ar be the minimal resolution of the type Ar surface singularity. We study
the equivariant orbifold Gromov–Witten theory of the n–fold symmetric product
stack ŒSymn.Ar /� of Ar . We calculate the divisor operators, which turn out to
determine the entire theory under a nondegeneracy hypothesis. This, together with
the results of Maulik and Oblomkov, shows that the Crepant Resolution Conjecture
for Symn.Ar / is valid. More strikingly, we complete a tetrahedron of equivalences
relating the Gromov–Witten theories of ŒSymn.Ar /�=Hilbn.Ar / and the relative
Gromov–Witten/Donaldson–Thomas theories of Ar �P 1 .

14N35; 14H10

0 Introduction

0.1 Results

Let Ar be the minimal resolution of the type Ar surface singularity. The symmetric
group Sn on n letters acts on the n–fold Cartesian product An

r by permuting coordi-
nates. Thus, we obtain a quotient scheme Symn.Ar / WDAn

r=Sn , the n–fold symmetric
product of Ar , and a quotient stack ŒSymn.Ar /�, the n–fold symmetric product stack
of Ar . The stack ŒSymn.Ar /� is a smooth orbifold, whose coarse moduli space is the
symmetric product Symn.Ar /.

In this article, we compare the equivariant orbifold Gromov–Witten theory of the
symmetric products of Ar with the equivariant Gromov–Witten theory of the crepant
resolutions in the spirit of Bryan and Graber’s Crepant Resolution Conjecture [4].

Let T D C� �C� be a two-dimensional torus. The (localized) T –equivariant co-
homology of a point is generated by t1 and t2 . Our main objects are the 3–point
functions

hh˛1; ˛2; ˛3ii
ŒSymn.Ar /� 2Q.t1; t2/Œu; s1; : : : ; sr �;

which encode 3–point extended Gromov–Witten invariants of ŒSymn.Ar /� (see (2-6)).
Note that the equivariant orbifold quantum cohomology is traditionally defined by the

Published: 29 March 2012 DOI: 10.2140/gt.2012.16.475

http://www.ams.org/mathscinet/search/mscdoc.html?code=14N35,(14H10)
http://dx.doi.org/10.2140/gt.2012.16.475


476 Wan Keng Cheong and Amin Gholampour

above functions with the quantum parameter u set to be 0. Thus, 3–point extended
orbifold invariants provide more enumerative information than usual 3–point orbifold
invariants.

The above 3–point functions add a multiplicative structure to the equivariant Chen–
Ruan cohomology H�T ;orb.ŒSymn.Ar /�IQ/. The multiplication so obtained is called
the small (extended) orbifold quantum product.

The quotient space Symn.Ar / admits a unique crepant resolution of singularities,
namely the Hilbert scheme Hilbn.Ar / of n points in Ar . The T –equivariant quantum
cohomology of Hilbn.Ar / has been explored by Maulik and Oblomkov [15], so we
need only deal with the quantum ring of the orbifold ŒSymn.Ar /�. We fully cover 2–
point extended Gromov–Witten invariants of ŒSymn.Ar /� and find that the calculation
of these invariants is tantamount to the question of counting certain branched covers of
rational curves. Our discovery can be summarized in the following statement.

Theorem 0.1 Given any positive integers r and n, two-point extended equivariant
Gromov–Witten invariants of the symmetric product stack ŒSymn.Ar /� in nonzero
degrees are expressible in terms of equivariant orbifold Poincaré pairings and one-part
double Hurwitz numbers.

One-part double Hurwitz numbers, as shown by Goulden, Jackson and Vakil [9], admit
explicit closed formulas (Proposition 3.13), and therefore Theorem 0.1 provides a
complete solution to the divisor operators, ie, the operators of quantum multiplication
by divisor classes. These operators correspond naturally to the divisor operators on the
Hilbert scheme Hilbn.Ar /:

Theorem 0.2 After making the change of variables q D�eiu , where i2 D�1, and
extending scalars to an appropriate field F , there is a linear isomorphism of equivariant
quantum cohomologies

LW H�T ;orb.ŒSymn.Ar /�IF /!H�T .Hilbn.Ar /IF /

which preserves gradings, Poincaré pairings and respects small quantum product by
divisors. In other words, for any Chen–Ruan cohomology classes ˛1; ˛2 and divisor D ,
we have the following identity for 3–point functions:

hh˛1;D; ˛2ii
ŒSymn.Ar /� D hL.˛1/;L.D/;L.˛2/i

Hilbn.Ar /:

Here h�;�;�iHilbn.Ar / are the 3–point functions of Hilbn.Ar / in variables t1; t2 ,
q; s1; : : : ; sr (see (4-2)).
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In addition to the relation to the Hilbert schemes, the orbifold theory is related to the
relative Gromov–Witten theory of threefolds.

Theorem 0.3 Given cohomology-weighted partitions �1.E�1/, �2.E�2/ of n and ˛ D
1.1/n , .2/ or Dk , k D 1; : : : ; r (see Section 1.2.2 and (3-1) for these classes), we have

hh�1.E�1/; ˛; �2.E�2/ii
ŒSymn.Ar /� D GW.Ar �P1/�1.E�1/;˛;�2.E�2/

;

where the right hand side is a shifted partition function (see Section 4.1).

0.2 Tetrahedron of equivalences

The above theorems form a triangle of equivalences. We can include the Donaldson–
Thomas theory to make up a tetrahedron. In fact, Theorems 0.2 and 0.3, in conjunction
with the results of Maulik and Oblomkov [13; 14; 15], establish the following equiva-
lences for divisor operators.
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Figure 1. A tetrahedron of equivalences

Before the study of the Gromov–Witten theory of ŒSymn.Ar /�, the case of the affine
plane C2 was the only known example for the above tetrahedron to hold for all
operators; see Bryan and Graber [4], Bryan and Pandharipande [5] and Okounkov and
Pandharipande [17; 18]. If the generation conjecture (Conjecture 5.1) of Maulik and
Oblomkov is assumed, these four theories will be equivalent in our case of Ar as
well. The base triangle of equivalences is the work of Maulik and Oblomkov. And the
triangle facing the rightmost corner is worked out in this paper:

Theorem 0.4 Let L be as in Theorem 0.2 and �1.E�1/, �2.E�2/, �3.E�3/ any coho-
mology-weighted partitions of n. Assuming the generation conjecture, the identities

hh�1.E�1/; �2.E�2/; �3.E�3/ii
ŒSymn.Ar /� D hL.�1.E�1//;L.�2.E�2//;L.�3.E�3//i

Hilbn.Ar /

D GW.Ar �P1/�1.E�1/;�2.E�2/;�3.E�3/

hold under the substitution q D�eiu .
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We can make a more general statement on the Gromov–Witten theories of ŒSymn.Ar /�

and Hilbn.Ar / due to the WDVV equations.

Theorem 0.5 Let q D �eiu . Assuming the generation conjecture, the map L in
Theorem 0.2 equates the extended multipoint functions of ŒSymn.Ar /� to the multipoint
functions of Hilbn.Ar /. Moreover, these functions are rational functions in t1; t2 ,
q; s1; : : : ; sr . (Multipoint functions are those with at least three insertions.)

This theorem provides a new evidence for the Crepant Resolution Conjecture. We
will see that Theorems 0.4 and 0.5 are valid in the case of nD 2; r D 1 even without
presuming the generation conjecture (see Section 5.1).

0.3 Outline of the paper

The aim of Section 1 is to give a brief introduction to the resolved surface Ar and Chen–
Ruan’s orbifold cohomology for a symmetric product. In Section 2, we review some
background on orbifold Gromov–Witten theory and define extended Gromov–Witten
invariants as well as their connected counterparts.

Section 3 is the main part of this paper. We provide explicit formulas for any 2–
point extended invariants in nonzero degrees (Theorem 0.1). In Section 4, we show
Theorems 0.2 and 0.3, which establish the tetrahedron of equivalences for divisor
operators. Section 5, due to the first author, proves Theorem 0.4 and discusses multipoint
functions of ŒSymn.Ar /� as well as the full version of the Crepant Resolution Conjecture
(Theorem 0.5).

0.4 Notation and convention

The following notation will be used without further comment. Some other notation
will be introduced along the way.

(1) To avoid doubling indices, we identify

Ai.X /DH 2i.X IQ/; Ai.X /DH2i.X IQ/ and Ai.X IZ/DH2i.X IZ/;

just to name a few, for any complex variety X to appear in this article (note that
we drop Q but not Z). They will be referred to as cohomology or homology
groups rather than Chow groups.

(2) For any curve C on a complex variety X , the curve class ŒC � is simply denoted
by C .
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(3) An orbifold X is a smooth Deligne–Mumford stack of finite type over C . Denote
by cW X !X the canonical map to the coarse moduli space.

(4) For every positive integer s , �s is the cyclic subgroup of C� of order s . For
any finite group G , BG is the classifying stack of G , ie, ŒSpec C=G�.

(5) (a) T D .C�/2 is always a two-dimensional torus, and t1 , t2 are the gen-
erators of the T –equivariant cohomology A�T .point/ of a point, that is,
A�T .point/DQŒt1; t2�.

(b) Vm D V ˝QŒt1;t2�Q.t1; t2/ for each QŒt1; t2�–module V .

(6) Given any object O , On means that O repeats itself n times.

(7) For i D 1; 2, �i is a function on the set of nonnegative integers such that

�i.m/D

�
0 if m< i ,
1 if m� i .

(8) Let � be a partition of a nonnegative integer.

(a) `.�/ is the length of � . Unless otherwise stated, � is presumed to be written
as

� D .�1; : : : ; �`.�//:

To emphasize, if �k is another partition, it is simply .�k1; : : : ; �k`.�k//.
(b) Let Ę D .˛1; : : : ; ˛`.�// be an `.�/–tuple of cohomology classes associ-

ated to � so that we may form a cohomology-weighted partition �. Ę/ WD
�1.˛1/ � � � �`.�/.˛`.�//. The group Aut.�. Ę// is defined to be the group of
permutations on f1; 2; : : : ; `.�/g fixing�

.�1; ˛1/; : : : ; .�`.�/; ˛`.�//
�
:

Let Aut.�/ be the group Aut.�. Ę// when all entries of Ę are identical. Its
order is simply

Qn
iD1 mi ! if � D .1m1 ; : : : ; nmn/.

(c) j� j D n if �1C � � � C �`.�/ D n, and o.�/ D lcm.j�1j; : : : ; j�`.�/j/ is the
order of any permutation of cycle type � .

(d) .2/ WD .2; 1n�2/ and 1 WD .1n/ are partitions of length n� 1 and length n

respectively.
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1 Preliminaries

1.1 Resolutions of cyclic quotient surface singularities

We fix a positive integer r once and for all. Let the cyclic group �rC1 act on C2 by
the diagonal matrices �

� 0

0 ��1

�
;

where � 2 �rC1 . The quotient C2=�rC1 is a surface singularity. We denote by

� W Ar !C2=�rC1

its minimal resolution. It is well-known that � can be obtained via a sequence of
b

rC1
2
c blow-ups at the unique singularity. The exceptional locus Ex.�/ of � is a chain

of .�2/–curves,
r[

iD1

Ei ;

with Ei�1 and Ei intersect transversally. The intersection numbers of the exceptional
curves are given by

Ei �Ej D

8<:
�2 if i D j ,
1 if ji � j j D 1,
0 otherwise.

In particular, the intersection matrix is negative definite (as expected from the general
theory of complex surfaces). Additionally, E1; : : : ;Er give a basis for A1.Ar IZ/. We
also have two noncompact curves E0 and ErC1 attached to E1 and Er respectively.
The curve E0 (resp. ErC1 ) can be arranged to map to the �rC1 –orbit of the x–axis
(resp. the y –axis).

The natural action of T on C2 comes with tangent weights t1 and t2 at the origin. It
commutes with the �rC1 –action, so we have an induced T –action on the quotient
C2=�rC1 and thus on the resolved surface Ar . We fix these actions of T throughout
the article.

The T –invariant compact curves on Ar are E1; : : : ;Er . The T –fixed points are the
nodes of the chain

SrC1
iD0 Ei of curves. Precisely, they are

x1; : : : ;xrC1;

where fxig DEi�1\Ei . Let us assume that Li and Ri are respectively the weights
of the T –action on the tangent spaces to Ei�1 and Ei at xi . We have L1D .rC1/t1 ,
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RrC1 D .r C 1/t2 and the equalities

Li CRi D t1C t2; Ri D�LiC1;

for each i D 1; : : : r .

E0

Z
Z

Z
Z
Z

�
�
��

ZZ}L1 ��>R1�

x1

Z�

L2��=
�
x2

�
�
��

Z
Z

ZZ

�Z

� � �

Z
Z

ZZ

�
�
��

Z�

�
xr

ZZ~
Rr

Z
Z

ZZ

ZZ}LrC1 ��>RrC1�

xrC1

Z�
�
�
�
�
�
ErC1

Figure 2. The middle chain (without E0 and ErC1 ) is the exceptional locus
Ex.�/ . The labeled vectors stand for the tangent weights at the fixed points.

The above information will be sufficient for our calculation of Gromov–Witten invari-
ants. Certainly, one can also compute explicitly to obtain

.Li ;Ri/D
�
.r � i C 2/t1C .1� i/t2; .�r C i � 1/t1C i t2

�
:

From now on, we let
f!1; : : : ; !r g

be the dual basis of fE1; : : : ;Er g with respect to the Poincaré pairing.

1.2 Chen–Ruan cohomology

Given any smooth complex variety X , the symmetric group Sn acts on X n by
g.z/i D zg.i/ for all g 2 Sn , z 2 X n . The n–fold symmetric product Symn.X / is
defined to be X n=Sn , and the n–fold symmetric product stack ŒSymn.X /� is defined
to be the quotient stack ŒX n=Sn�. The space Symn.X / is in general singular and is
the coarse moduli space of the (smooth) orbifold ŒSymn.X /�.

1.2.1 Stack of cyclotomic gerbes The stack of cyclotomic gerbes to ŒSymn.X /�

(consult Abramovich, Graber and Vistoli [2; 3]), denoted by xI ŒSymn.X /�, is defined
to be a

s2N

HomRep.B�s; ŒSymn.X /�/=B�s;

where HomRep.B�s; ŒSymn.X /�/ is the stack of representable morphisms from the
classifying stack B�s to ŒSymn.X /�. There is another natural stack associated to
ŒSymn.X /�. It is the inertia stack I ŒSymn.X /� WD

`
s2N HomRep.B�s; ŒSymn.X /�/.

In fact, the stack of cyclotomic gerbes is obtained by rigidifying the inertia stack, ie,
removing the action of the cyclic groups �s ’s (consult [2; 3] and Abramovich, Corti
and Vistoli [1]).
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The stack xI ŒSymn.X /� is isomorphic to a disjoint union of orbifoldsa
Œg�2C

ŒX n
g =C.g/�;

where C is the set of the conjugacy classes of Sn , C.g/ is the centralizer of g , C.g/

is the quotient group C.g/=hgi, and X n
g is the g–fixed locus of X n . On the other

hand, I ŒSymn.X /� is just
`
Œg�2C ŒX

n
g =C.g/�.

The Chen–Ruan cohomology [7]

A�orb.ŒSymn.X /�/

is the cohomology A�.xI ŒSymn.X /�/ of the stack of cyclotomic gerbes in X . Thus, it
is simply M

Œg�2C

A�.X n
g =C.g//D

M
Œg�2C

A�.X n
g /

C.g/:

Remark 1.1 As both xI ŒSymn.X /� and I ŒSymn.X /� have the same coarse moduli
space, the Chen–Ruan cohomology is identical to the cohomology of the inertia stack.
We focus on the stack of cyclotomic gerbes because it is the space where the evaluation
maps land (see (2-1)).

As there is a one-to-one correspondence between the conjugacy classes of Sn and
the partitions of n, the connected components of xI ŒSymn.X /� can be labeled with the
partitions of n. If Œg� is the conjugacy class corresponds to the partition �, we may
write

X.�/DX n
g =C.g/;

X.�/DX n
g =C.g/:

The component ŒX n=Sn� is called the untwisted sector while all other components of
the stack xI ŒSymn.X /� are called twisted sectors.

Additionally, for ˛ 2 Ai.X.�//, the orbifold (Chow) degree of ˛ is defined to be
i C age.�/, where age.�/D n� `.�/ is the age of the sector ŒX.�/�.

1.2.2 Bases Assume that X admits a T –action. We can see easily that there are
induced T –actions on the above spaces. So we may put the cohomologies into an
equivariant context by considering T –equivariant cohomologies.

Let us sketch a basis, constructed in Cheong [8], for the equivariant Chen–Ruan
cohomology of the stack ŒSymn.X /�. Indeed, any cohomology-weighted partition �.E�/
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with �i ’s cohomology classes on X defines a class on the sector X.�/, which we
denote by �.E�/ as well: Pick a representative permutation g 2Sn of cycle type �. It
has a cycle decomposition g D g1 : : :g`.�/ with gi being a �i –cycle. We let

�.E�/D

�
jAut.�.E�//j

`.�/Y
iD1

�i

��1 X
h2C.g/

`.�/O
iD1

h�1gih.�i/ 2A�T .X
n
g /

C.g/
DA�T .X.�//:

Here the class h�1gih.�i/ is the pullback of �i by the isomorphism X
�i

h�1gi h
ŠX , and

the term .jAut.�.E�//j
Q`.�/

iD1
�i/
�1 is a normalization factor to ensure that no repetition

occurs. It is easy to see that the above expression is independent of the decomposition
of g .

Let B be a basis for A�T .X /. The classes �.E�/’s, running over all partitions � of n

and all �i 2B, serve as a basis for the Chen–Ruan cohomology A�T ;orb.ŒSymn.X /�/.
For classes �.E�/ 2A�T ;orb.ŒSymn.X /�/ and �.E�/ 2A�T ;orb.ŒSymm.X /�/, keep in mind
that the class

�1.�1/ � � ��`.�/.�`.�//�1.�1/ � � � �`.�/.�`.�// 2A�T ;orb.ŒSymnCm.X /�/

is denoted by
�.E�/�.E�/:

We use the shorthand
.2/

for the divisor class 2.1/1.1/n�2 . Also, we define the age of �.E�/, denoted by

age.�.E�//;

to be the age of the sector ŒX.�/�, ie, n� `.�/.

Fixed-point basis We can work with �.E�/’s with �k ’s in the localized cohomology
A�T .X /m to give a basis for A�T ;orb.ŒSymn.X /�/m .

Assume that X has exactly p T –fixed points z1; : : : ; zp . For partitions �1; : : : ; �p ,
we denote the class

�11.Œz1�/ � � � �1`.�1/.Œz1�/ � � � �p1.Œzp �/ � � � �p`.�p/.Œzp �/

z� WD .�1; : : : ; �p/:by

The classes z� ’s form a basis for A�T ;orb.ŒSymn.X /�/m . Note also that each z� corre-
sponds to a T –fixed point, which we denote by

Œz��;
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in the sector indexed by the partition .�11; : : : ; �1`.�1/; : : : ; �p1; : : : ; �p`.�p//. So we
refer to z� ’s as T –fixed point classes.

Moreover, given zı 2A�T ;orb.ŒSymn.X /�/m and z� 2A�T ;orb.ŒSymm.X /�/m (m� n), we
say that

zı � z�

if �k is a subpartition of ık , 8k D 1; : : : ;p ; in this case, we let

zı� z� D .ı1� �1; : : : ; ıp � �p/ 2A�T ;orb.ŒSymn�m.X /�/m:

(for instance, the difference .1; 1; 2; 2; 3/ � .1; 2; 3/ of two partitions is the parti-
tion .1; 2/.)

Tangent weights Given any fixed-point class z� , let

t.z�/D eT .TŒz�� xI ŒSymm.X /�/;

ie, the T –equivariant Euler class of the tangent space to xI ŒSymm.X /� at the fixed
point Œz��. A simple analysis shows that t.z�/D

Qp

kD1
eT .Tzk

X /`.�k/ . Thus, for each
zı � z� ,

(1-1) t.zı/D t.z�/t.zı� z�/:

1.2.3 Coefficients with respect to fixed-point basis We denote the T –equivariant
orbifold pairings on the Chen–Ruan cohomology A�T ;orb.ŒSymm.Ar /�/ by

h � j � i:

For �.E�/ 2A�T ;orb.ŒSymm.X /�/m , we let

(1-2) ˛
�.E�/

.z�/D
h�.E�/ j z�i

hz� j z�i

be the components of �.E�/ relative to fixed-point classes z� ’s. We intend to present an
algorithm to calculate ˛�.E�/.zı/.

First of all, we have two properties by direct verification:

(1) Suppose the classes �.E�/ and �.E"/ 2A�T ;orb.ŒSymn.X /�/m have explicit forms

nY
iD1

miY
jD1

i.�ij / and
nY

iD1

`iY
jD1

i."ij /;
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respectively, we have

h�.E�/ j �.E"/i D

8̂̂<̂
:̂

0 if mi ¤ `i for some i ,
nY

iD1

� miY
jD1

i.�ij /
ˇ̌̌ miY

jD1

i."ij /

�
if mi D `i for each i .

(2) Given �1; : : : ; �n 2A�T .X /m , T –fixed points y1; : : : ;yn of X . For m� n, the
coefficient ˛i.�1/���i.�n/.i.Œy1�/ � � � i.Œyn�// equalsX
�1;:::;�n

˛i.�1/���i.�m/.i.Œy1�/ � � � i.Œym�//˛i.�mC1/���i.�n/.i.ŒymC1�/ � � � i.Œyn�//;

where the sum is over all possible i.�1/ � � � i.�m/ and i.�mC1/ � � � i.�n/ such
that

i.�1/ � � � i.�n/D i.�1/ � � � i.�n/:

We may combine (1) with (2) to get a general statement.

Proposition 1.2 Given �.E�/; zı 2A�T ;orb.ŒSymn.X /�/m and z� 2A�T ;orb.ŒSymm.X /�/m
with zı � z� ,

(1-3) ˛�.E�/.
zı/D

X
P

˛
�.E�/

.z�/˛�.E/.
zı� z�/;

where the index P under the summation symbol means that the sum is taken over all
possible �.E�/ 2A�T ;orb.ŒSymm.X /�/m and �. E / 2A�T ;orb.ŒSymn�m.X /�/m satisfying
the equality �.E�/D �.E�/�. E /.

In the proposition, zı is separated into two parts z� and zı� z� . In general, we can break
it as many parts as possible. The form (1-3) is, however, convenient for our use.

2 Extended Gromov–Witten theory of orbifolds

To make our exposition as self-contained as possible, we review some relevant back-
ground on orbifold Gromov–Witten theory. We take the algebro-geometric approach in
the sense of Abramovich, Graber and Vistoli’s works [2; 3]. The reader may also want
to consult the original work [6] of Chen and Ruan in symplectic category.

In what follows, we utilize the isomorphism

A1.Symn.X /IZ/ŠA1.X
n
IZ/Sn ŠA1.X IZ/:

In other words, we may view E1; : : : ;Er as a basis for A1.Symn.Ar /IZ/.
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2.1 The space of twisted stable maps

For any curve class ˇ 2A1.X IZ/, the moduli space

SM0;k.ŒSymn.X /�; ˇ/

parametrizes genus zero, k –pointed, twisted stable map (or orbifold stable map in [6])

f W .C;P1; : : : ;Pk/! ŒSymn.X /�

with the following conditions:

� .C;P1; : : : ;Pk/ is an twisted nodal k –pointed curve. The marking Pi is an
étale gerbe banded by �ri

, where ri is the order of the stabilizer of the twisted
point. Moreover, over a node, C has a chart isomorphic to Spec CŒu; v�=.uv/=�s

where �s acts on Spec CŒu; v� by � �.u; v/D .�u; ��1v/, and the canonical map
cW C! C is given by x D us;y D vs in this chart.

� f is a representable morphism and induces a genus zero, k –pointed, degree ˇ
stable map fc W .C; c.P1/; : : : ; c.Pk//! Symn.X / by passing to coarse moduli
spaces. Note that the canonical map cW C! C is an isomorphism away from
the nodes and marked gerbes and that whenever we say that f is of degree ˇ ,
we actually mean fc is.

There are evaluation maps on the moduli space SM0;k.ŒSymn.X /�; ˇ/, which take
values in the stack of cyclotomic gerbes in X . At the level of Spec.C/–points, the
i –th evaluation map

(2-1) evi W
SM0;k.ŒSymn.X /�; ˇ/! xI ŒSymn.X /�

is defined by Œf W .C;P1; : : : ;Pk/! ŒSymn.X /�� 7�! Œf jPi
W Pi! ŒSymn.X /��.

The moduli space SM0;k.ŒSymn.X /�; ˇ/ can be decomposed into open and closed
substacks:

SM0;k.ŒSymn.X /�; ˇ/D
a

�1;:::;�k

ev�1
1 .ŒX.�1/�/\ � � � \ ev�1

k .ŒX.�k/�/

where the union is taken over all partitions �1; : : : ; �k of n. Let

SM .ŒSymn.X /�; �1; : : : ; �k Iˇ/D ev�1
1 .ŒX.�1/�/\ � � � \ ev�1

k .ŒX.�k/�/:

Note that its virtual dimension is given by

�KŒSymn.X /� �ˇC n � dim.X /C k � 3�

kX
iD1

age.�i/:
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The twisted map f representing an element of SM .ŒSymn.X /�; �1; : : : ; �k Iˇ/ amounts
to the commutative diagram

(2-2)

PC
f 0

����! X n??y ??y�
C

f
����! ŒSymn.X /�

c

??y ??yc

C
fc
����! Symn.X /:

Here � is the natural map, PC D C�ŒSymn.X /�X
n is a scheme by representability of f ,

and f 0 is Sn –equivariant. Away from the marked points and nodes, PC is a principal
Sn –bundle of C . It is branched over the markings with ramification types �1; : : : ; �k .

Additionally, there is such a diagram

(2-3)

zC
zf

����! X

p

??y
.C; c.P1/; : : : ; c.Pk//

associated to f that pW zC!C is an admissible cover branched over c.P1/; : : : ; c.Pk/

with monodromy given by �1; : : : ; �k , and zf W zC !X is a degree ˇ morphism such
that if † � C is a rational curve possessing less than 3 special points, then there is
a component of p�1.†/ which is not zf –contracted. In fact, (2-3) is induced by the
diagram (2-2) by taking f 0 mod Sn�1 and composing with the n–th projection.

The diagram (2-3) will be particularly helpful later in the descriptions of T –fixed loci
for the space of twisted stable maps to ŒSymn.Ar /�. The reader should look closely at
the above notation. We will use the diagrams (2-2) and (2-3) without further comment.

2.2 The space of connected coverings

Denote by
SM ı

0;k.ŒSymn.Ar /�; ˇ/

the locus in SM0;k.ŒSymn.Ar /�; ˇ/ which parametrizes connected covers (ie, each
cover zC associated to Œf W C ! ŒSymn.Ar /�� 2 SM

ı
0;k
.ŒSymn.Ar /�; ˇ/ is connected).

Note that the space SM ı
0;k
.ŒSymn.Ar /�; ˇ/ is generally not connected, however.
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Just like the situation in Section 2.1, SM ı
0;k
.ŒSymn.Ar /�; ˇ/ also admits an evaluation

map to the stack xI ŒSymn.Ar /� of cyclotomic gerbes in Ar . Moreover, we define the
space

SM ı.ŒSymn.Ar /�; �1; : : : ; �k Iˇ/

to be the intersection

SM ı
0;k.ŒSymn.Ar /�; ˇ/\ ev�1

1 .ŒAr .�1/�/\ � � � \ ev�1
k .ŒAr .�k/�/:

These spaces of connected coverings will help us define the connected version of
orbifold Gromov–Witten invariants, which will play a special role in our determination
of the usual (ie, not necessarily connected) orbifold invariants.

2.3 Gromov–Witten invariants

For any Chen–Ruan cohomology classes ˛i 2A�T ;orb.ŒSymn.Ar /�/ (i D 1; : : : ; k ), the
k –point equivariant Gromov–Witten invariant is defined by

(2-4) h˛1; : : : ; ˛ki
ŒSymn.Ar /�
ˇ WD

Z
Œ SM0;k.ŒSymn.X /�; ˇ/�vir

T

ev�1.˛1/ � � � ev�k.˛k/;

where the symbol Œ �vir
T indicates the T –equivariant virtual fundamental class. However,

it is convenient to express the integral in (2-4) as a sum of integrals against the virtual
fundamental classes of the components SM .ŒSymn.Ar /�; �1; : : : ; �k Iˇ/’s.

Note that the moduli space over which the integral takes is not necessarily compact. But
(2-4) is well-defined if the integral is written as a sum of residue integrals over T –fixed
components via the virtual localization formula (see Graber and Pandharipande [10]).
Alternatively, the definition (2-4) is valid when some insertions have compact supports,
eg, T –fixed point classes. So by extending scalars, we may treat (2-4) as a Q.t1; t2/–
combination of invariants with at least one compactly supported insertion. In general,
the invariant takes values in Q.t1; t2/.

Extended version Let us identify A0.ŒAr ..2//�IZ/ with Z. We may define k –point
extended Gromov–Witten invariant h˛1; : : : ; ˛ki

ŒSymn.Ar /�
.a;ˇ/

in twisted degree .a; ˇ/ 2
Z˚A1.Ar IZ/. We set the invariant to be zero in case a < 0. If a � 0, we include
additional a unordered markings in the twisted stable map of degree ˇ above such that
these markings go to the age one sector under the corresponding evaluation maps. To
make this precise, we present a formula

(2-5) h˛1; : : : ; ˛ki
ŒSymn.Ar /�
.a;ˇ/ D

1

a!
h˛1; : : : ; ˛k ; .2/

a
i
ŒSymn.Ar /�
ˇ :

In the expression, the last a insertions are all .2/. For later convenience of explanation,
we refer to the markings associated to ˛1; : : : ; ˛k as distinguished marked points and
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to the other a markings as simple marked points. Also the markings corresponding to
the twisted sectors are called twisted and are otherwise called untwisted.

The expression (2-5) is almost identical to the nonextended version except for the
appearance of the factor 1=a! due to the fact that we do not order simple markings.
Additionally, we say that h˛1; : : : ; ˛ki

ŒSymn.Ar /�
.a;ˇ/

is in nonzero (resp. zero) degree if it
is a Gromov–Witten invariant (up to a multiple) in nonzero (resp. zero) degree and that
h˛1; : : : ; ˛ki

ŒSymn.Ar /�
.a;ˇ/

is multipoint if k � 3.

Like ordinary Gromov–Witten theory, if ˇ¤ 0 or k � 3, we have a forgetful morphism

f tkC1W
SM .ŒSymn.X /�; �1; : : : ; �k ; 1Iˇ/! SM .ŒSymn.X /�; �1; : : : ; �k Iˇ/

defined by forgetting the last untwisted marked points. The (untwisted) divisor equation
holds as well in the orbifold case. Unfortunately, we are not allowed to forget twisted
markings in general.

Connected version We define k –point connected Gromov–Witten invariant as the
contribution of the space SM ı

0;k
.ŒSymn.Ar /�; ˇ/ to the extended Gromov–Witten in-

variant, namely,

h˛1; : : : ; ˛ki
ŒSymn.Ar /�;conn
ˇ D

Z
Œ SMı

0;k
.ŒSymn.Ar /�; ˇ/�

vir
T

ev�1.˛1/ � � � ev�k.˛k/:

Note that SM ı
0;k
.ŒSymn.Ar /�; ˇ/ is compact whenever ˇ ¤ 0, in which case the corre-

sponding connected invariant is an element of QŒt1; t2�.

Similarly, the connected invariant has an extended version. We define k –point extended
connected invariant by

h˛1; : : : ; ˛ki
ŒSymn.Ar /�;conn
.a;ˇ/ D

1

a!
h˛1; : : : ; ˛k ; .2/

a
i
ŒSymn.Ar /�;conn
ˇ :

Orbifold quantum product For any classes ˛1; : : : ; ˛k 2 A�T ;orb.ŒSymn.Ar /�/, we
define the extended k –point function of ŒSymn.Ar /� by

(2-6) hh˛1; : : : ; ˛kii
ŒSymn.Ar /�D

1X
aD0

X
ˇ2A1.Ar IZ/

h˛1; : : : ; ˛ki
ŒSymn.Ar /�
.a;ˇ/ uas

ˇ�!1

1
� � � sˇ�!r

r

and denote by
h˛1; : : : ; ˛ki

ŒSymn.Ar /�

the usual k –point function hh˛1; : : : ; ˛kii
ŒSymn.Ar /�juD0 .
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Now let f g be a basis for the Chen–Ruan cohomology A�T ;orb.ŒSymn.Ar /�/ and let
f_g be its dual basis. Define the small (extended) orbifold quantum product on
A�T ;orb.ŒSymn.Ar /�/ in this way:

˛1 �orb ˛2 D

X


hh˛1; ˛2;  ii
ŒSymn.Ar /�_:

Equivalently, ˛1 �orb ˛2 is defined to be the unique element satisfying

h˛1 �orb ˛2 j˛i D hh˛1; ˛2; ˛ii
ŒSymn.Ar /� 8˛:

The associativity of the product follows from the WDVV equation, and 1.1/n is the
multiplicative identity because of the fundamental class axiom. By extending scalars,
we work with

QA�T ;orb.ŒSymn.Ar /�/;

which is defined as the vector space

A�T ;orb.ŒSymn.Ar /�/˝QŒt1;t2�Q.t1; t2/..u; s1; : : : ; sr //

endowed with quantum multiplication �orb .

3 Divisor operators

For any divisor classes D , we want to study the operators

D �orb�

on the (small) quantum cohomology of the orbifold ŒSymn.Ar /�. We call them divisor
operators. Let

(3-1) Dk D 1.1/n�11.!k/; k D 1; : : : ; r:

These classes, along with .2/, form a basis for divisors on ŒSymn.Ar /�. Thus, the
divisor operators are determined by

.2/�orb�; D1 �orb�; : : : ; Dr �orb�;

which are governed by 2–point extended invariants to be calculated in this section.

Fix a nonnegative integer a throughout the rest of this section. We shorten our notation
by declaring

SM .ŒSymn.Ar /�; �1; : : : ; �k I .a; ˇ//D SM .ŒSymn.Ar /�; �1; : : : ; �k ; .2/
a
Iˇ/:

Also, we use
Eg D .g1; : : : ;grC1/
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to denote an .rC1/–tuple, whose entries are either all partitions or all nonnegative
integers. In the case of integers, define

j Egj D `;

if the entries of Eg add up to `. Moreover, given a partition �0 and a multipartition E� ,
we put

y� WD .�0; E�/D .�0; : : : ; �rC1/;

which we also realize as a partition of the integer
PrC1

kD0 j�k j.

3.1 Valuations

Let ƒ1 and ƒ2 be partitions of n. For each T –fixed connected component F of
the moduli space SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; ˇ//, the virtual normal bundle to F is
denoted by

N vir
F :

Let Œf W C! ŒSymn.Ar /� 2 F and
`
v Cv the union of one-dimensional, contracted,

connected components of C . We have a natural morphism

(3-2) �F W F ! F c
WD

Y
v

SM0;val.v/

defined by �F .Œf �/D .Œc.Cv/�/v . That is, all noncontracted components, zero-dimen-
sional contracted components, stack structures at special points, and the map f are
forgotten. Here val.v/ denotes the number of special points on Cv .

Given nonnegative integers i , j , s with 1� i � j � r and s� a. We consider effective
curve classes

Eij DEi C � � �CEj :

(Note that Eii DEi .)

Later in this section, we will introduce what we call the T –fixed components of types
I and II (Section 3.1.1) in SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; ˇ// for ˇ D dEij . Before pro-
ceeding, we state a lemma by the first author on .t1Ct2/–valuations, which will greatly
simplify our virtual localization calculation. The proof will be given in Section 3.1.2.

Lemma 3.1 Given any T –fixed component F of SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; ˇ//. If
ˇ D dEij for some d; i; j , and F is of type I, then the inverse Euler class 1=eT .N

vir
F
/

has valuation 1 with respect to .t1 C t2/. Otherwise, 1=eT .N
vir
F
/ has valuation at

least 2.
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3.1.1 Fixed components of types I and II For ˇ not a multiple of Eij for any
i; j , we do not need a detailed description of the T –fixed connected components of
the moduli space SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; ˇ//, and we will be able to show the
vanishing of the corresponding two-point extended invariants by applying Lemma 3.1
(see Section 3.2).

In this section, we focus on the classes ˇ D dEij for positive integers d; i; j . We
divide the T –fixed components of the moduli space

SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; dEij //

into two types: type I and type II.

In the following, we describe the components of types I and II (for ˇ D dEij ). Our
description is based on the fixed points to which the first two (distinguished) markings
are sent and on the configurations of the admissible covers associated to the twisted
stable maps (see the diagram (2-3) and the discussion there).

Given a nonnegative integer s � a. For each bL
0
2 f0; : : : ; sg and uL

0
2 f0; : : : ; a� sg,

put bR
0
D s� bL

0
and uR

0
D a� s�uL

0
. We let

(3-3) f SM bL
0
;�0;u

L
0

0 .1/g .resp. f SM bL
0
;�0;u

L
0

0 .2/g/

be the set consisting of all T –fixed connected components of the moduli space

SM ı.ŒSymj�0j.Ar /�; �0; �0; .2/
s; 1a�s

I dEij /

(see Section 2.2) such that each element Œf0W C ! ŒSymj�0j.Ar /�� 2 SM
bL

0
;�0;u

L
0

0
.1/

(resp. SM bL
0
;�0;u

L
0

0
.2/) has the following properties:

(i) f0 has its source curve decomposed as

C D CL0[D0[ CR0:

Here Ck0 ’s are disjoint f0 –contracted components, D0 is a chain of noncon-
tracted components with f0�.ŒD0�/D dEij , and Ck0\D0 D fPkg is a twisted
point for k DL;R.

Let D0;C;Pk be coarse moduli spaces of D0; C;Pk respectively (k DL;R) and zC0

the admissible cover associated to C .

(ii) zC0 WD
zCL0 [

zD0 [
zCR0 is connected with admissible covers zD0 ! D0 and

zCk0! Ck0 (k DL;R). Moreover,
� each irreducible component of the cover zD0!D0 is totally branched over

two points (either nodes or markings) and branched nowhere else.
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� the covering zCL0! CL0 is branched with monodromy

�0; .2/
bL

0 ; 1uL
0 ; �0 .resp. �0; �0; .2/

bL
0 ; 1uL

0 ; �0/

around markings and PL .
� the covering zCR0! CR0 is branched with monodromy

�0; .2/
bR

0 ; 1uR
0 ; �0 .resp. .2/b

R
0 ; 1uR

0 ; �0/

around markings and PR .

(iii) In the cover zD0 , there exists a unique chain " formed by rational curves not
contracted by zf0 . Additionally,
� " possesses j�iC1 irreducible components which are mapped to Ei ; : : : ;Ej

with the same degree d under the map zf0 .
� the contracted components attached to the two ends of " collapse to xi and

xjC1 respectively.

Now we turn our attention to SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; dEij //. We fix EbL and EbR ,
tuples of nonnegative integers, with jEbLj D uL

0
and jEbRj D uR

0
. We define

F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL

j EbR; E�/Œi; j ; s�D f SM bL
0
;�0;u

L
0 .1/g

where each SM bL
0
;�0;u

L
0 .1/ is a union of T –fixed connected components of the space

SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; dEij // (so ƒ1 D
y� and ƒ2 D y� as partitions) such that

any element Œf W C! ŒSymn.Ar /�� 2 SM
bL

0
;�0;u

L
0 .1/ satisfies the following properties:

(a) The domain curve C of f decomposes into three pieces

C D CL[D[ CR;

where Ck ’s are disjoint f –contracted components; D is a chain of noncontracted
components, which maps to ŒSymn.Ar /� with degree dEij ; and the intersection
Ck \D WD fQkg is a twisted point for k DL;R.

As in (2-3), there is an associated morphism zf W zC !Ar . Let D;C;Ck ;Qk be coarse
moduli spaces of D; C; Ck ;Qk respectively (k DL;R).

(b) CL carries bL
0
CuL

0
C 1 marked points, and CR carries the other bR

0
CuR

0
C 1D

a� bL
0
�uL

0
C 1 marked points.

(c) The covering zC ! C has components

zCk WD
zCLk [

zDk [
zCRk ; k D 0; : : : ; r C 1:
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For k ¤ 0, zCk , if nonempty, is contracted to xk in Ar . (Note that zCk is
possibly empty or disconnected for k ¤ 0, and we include empty sets just for
the simplicity of notation.)

(d) For k D 0; : : : ; r C 1,
� the covering

`rC1
kD0
zCLk ! CL (resp.

`rC1
kD0
zCRk ! CR ) is ramified with

monodromy

y�; .2/b
L
0
CuL

0 ; y� (resp. y�; .2/b
R
0
CuR

0 ; y�/

around markings and QL (resp. QR );
� each irreducible component of the cover zDk !D is totally branched over

two points and branched nowhere else;
� each zCLk!CL (resp. zCRk!CR ) is a covering ramified with monodromy

�k ; .2/
bL

k ; 1bL
0
CuL

0
�bL

k ; �k (resp. �k ; .2/
bR

k ; 1bR
0
CuR

0
�bR

k ; �k/

around markings and QL (resp. QR ).

(e) The diagram of maps

(3-4)
zC0

zf j zC0
����! Ar??y

C

corresponds to Œf0� 2 SM
bL

0
;�0;u

L
0

0
.1/ above.

Note that F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL j EbR; E�/Œi; j ; s� does not exist for certain parameters.

If it does, it is indexed by SM bL
0
;�0;u

L
0

0
.1/’s.

CL

��
��

�
��

�
�

HH
HH

H
HH

H
H

H �

�y�
�

.2/ � � �
.2/
�

�
y�

�
y�

D

�
y�

�
.2/

� �
�

�
.2/

CR

Figure 3. This is the configuration of a typical domain curve C for
SM bL

0
;�0;u

L
0 .1/ . Each straight line represents a chain of curves. All markings

and Qk ’s are labeled with their monodromy, and there are bk
0 Cuk

0 copies
of .2/ on Ck , k DL;R . In case bk

0
Cuk

0
D 0 , Ck is simply a twisted point.

Details on the covering zC associated to C are included in the above properties.
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Define
F E��0;�0;�0Ib

L
0
;uL

0
.E�; E�; EbL

j EbR/Œi; j ; s�D f SM bL
0
;�0;u

L
0 .2/g

in an analogous manner. The differences occur in properties (b), (d) and (e). Precisely,
(b) the curve CL carries bL

0
CuL

0
C2 marked points while the curve CR carries the other

bR
0
CuR

0
marked points; (d) the covering

`rC1
kD0
zCLk!CL (resp.

`rC1
kD0
zCRk!CR )

is ramified with monodromy

y�; y�; .2/b
L
0
CuL

0 ; y� .resp. .2/b
R
0
CuR

0 ; y�/

around markings and QL (resp. QR ), and the monodromy associated to the cover
zCLk ! CL (resp. zCRk ! CR ) is now

�k ; �k ; .2/
bL

k ; 1bL
0
CuL

0
�bL

k ; �k .resp. .2/b
R
k ; 1bR

0
CuR

0
�bR

k ; �k/I

(e) the diagram (3-4) corresponds to Œf0� 2 SM
bL

0
;�0;u

L
0

0
.2/.

CL

�
��

�
��

�
��

�
�

H
HH

H
HH

H
HH

H
H

H �

�
y� �

y�
�

.2/ � � � �
.2/

�
y�

�
y�

D

�
.2/

�
�

��
.2/

CR

Figure 4. This is the configuration of a typical domain curve C for
SM bL

0
;�0;u

L
0 .2/ . There are bk

0 Cuk
0

copies of .2/ on Ck , k D L;R . CL

is always a twisted curve. CR is of dimension �2.b
R
0
CuR

0
/; in particular, it

is a twisted point when bR
0 CuR

0 � 1 .

Let
F E��0;�0;�0Ib

L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s�

be the union

F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL

j EbR; E�/Œi; j ; s�[F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�; EbL

j EbR/Œi; j ; s�:

The components of its elements are said to be of type I.

The T –fixed connected component of SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; dEij // which is
not a component of any element in F E��0;�0;�0Ib

L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s� is said to be

of type II.

We will suppress the indices bL
0
; �0;u

L
0
; .k/ (k D L;R/ from SM bL

0
;�0;u

L
0 .k/ and

SM bL
0
;�0;u

L
0

0
.k/ and simply write SM and SM0 . For each

SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s�;
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we let
SMT

be the collection of all T –fixed components of SM .

3.1.2 Proof of Lemma 3.1 Let F be any T –fixed connected component of

SM .ŒSymn.Ar /�; ƒ1; ƒ2I .a; ˇ//:

Let f W C ! ŒSymn.Ar /� represent a point of F . As discussed earlier, there are a
morphism zf W zC ! Ar and an ordinary stable map fc W C ! Symn.Ar / associated
to f . We set � D �.r C 1/2t2

1
. To establish the assertion, we need to analyze the

contribution of following situations to the inverse Euler class 1=eT .N
vir
F
/.

(1) Infinitesimal deformations and obstructions of f with C held fixed:

(a) Any contracted component contributes zero .t1Ct2/–valuation: Let C0 � C be a
contracted component and pick any connected component Z of the cover associated
to C0 . We see that Z contributes

(3-5)
eT .H

1.Z; zf �TAr //

eT .H 0.Z; zf �TAr //

and is collapsed by zf to xk for some k . So the numerator is, by Mumford’s relation,
congruent modulo t1C t2 to

ƒ_.Lk/ƒ
_.Rk/� �

g;

where gD rank.H 0.Z; !Z // and ƒ_.t/D
Pg

iD0
ci.H

0.Z; !Z /
_/tg�i . The denom-

inator of (3-5) is eT .Txk
Ar /. Thus, the contribution of Z is simply

�g�1 mod .t1C t2/:

In other words, the contribution of C0 , being the product of the contributions of such Z ’s,
is not divisible by t1C t2 .

(b) The nodes joining contracted curves to noncontracted curves have zero .t1Ct2/–
valuation because each of them gives some positive power of � modulo .t1C t2/.

(c) Noncontracted curves: Suppose D is a noncontracted component with zD its
associated (possibly disconnected) covering. Its contribution is

eT .H
1.D; f �T ŒSymn.Ar /�//

mov

eT .H 0.D; f �T ŒSymn.Ar /�//mov
D

eT .H
1. zD; zf �TAr //

mov

eT .H 0. zD; zf �TAr //mov
:
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Here . /mov stands for the moving part. It is clear from (a) that each zf –contracted
component of zD has zero .t1Ct2/–valuation. However, any irreducible component †
of zD that is not zf –contracted contributes

(3-6)
t1C t2

�
mod .t1C t2/

2:

This can be seen as follows. Assume that zf maps † to E WD zf .†/ with degree ` > 0.
Let S1 D f0; : : : ; 2`� 2g� f`� 1g and S2 D f0; : : : ; 2`g� f`g.

The moving part of eT .H
1.†; zf �TAr /// arises from

H 1.†; zf �NE=Ar
/DH 0.†; !†˝ zf

�N _E=Ar
/_:

The curve E having self-intersection �2 implies NE=Ar
ŠOP1.�2/, and so the

invertible sheaf !†˝ zf �N _E=Ar
has degree 2`� 2. Hence, the moving part is

.t1C t2/
Y

k2S1

k.`�1
`
.r C 1/t1/C .2`� 2� k/.1�`

`
.r C 1/t1/

2`� 2
mod .t1C t2/

2

(which is simply .t1C t2/ for `D 1). We further simplify it to get

(3-7) .t1C t2/�
`�1

`�1Y
kD1

�
`� k

`

�2

mod .t1C t2/
2:

On the other hand, eT .H
0.†; zf �TAr //

mov equals eT .H
0.†; zf �TE//mov , that is

congruent modulo .t1C t2/ to

(3-8)
Y

k2S2

k.�.r C 1/t1/C .2`� k/..r C 1/t1/

2`
� �`

`�1Y
kD1

�
`� k

`

�2

:

Dividing (3-7) by (3-8) gives (3-6).

(2) Infinitesimal automorphisms of C :

We need only investigate the nonspecial points p , which lie on noncontracted curves †
and are mapped to fixed points. In fact, each p gives the weight of the tangent space
to † at p , which has zero .t1Ct2/–valuation.

(3) Infinitesimal deformations of C :

Given any node P joining two curves V1 and V2 . Let P;V1;V2 be coarse moduli
spaces of P;V1;V2 respectively and Stab.P/ the stabilizer of P . In each of the
following, we study the contribution arising from smoothing the node P .
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(a) V1 and V2 are noncontracted: We may assume that the restriction of fc to Vk is
a dk –sheeted covering

fcjVk
W Vk !†k WD fc.Vk/Š P1

for some dk > 0, k D 1; 2. The node-smoothing contribution is

(3-9) jStab.P/j
�
w1

d1

C
w2

d2

��1

;

where wk is the tangent weight of the rational curve †k at the fixed point fc.P /.
Thus, (3-9) is proportional to .t1C t2/

�1 only if d1 D d2 and w1Cw2 is a multiple
of t1C t2 .

(b) V1 is noncontracted but V2 is contracted: Let w be the tangent weight of V1 at
the node P and L the tautological line bundle formed by the cotangent space T �

P
V2 .

Denote by  the first Chern class of L. The node smoothing contributes

(3-10)
jStab.P/j
w� 

:

So, neither .t1C t2/ nor .t1C t2/
�1 is generated in this case.

Thus, only the situations described in (1)(c) and (3)(a) may produce any power of
.t1C t2/. We conclude that F gives positive .t1Ct2/–valuation because the number
of noncontracted curves is more than the number of nodes joining them.

Let ˇ D dEij . Suppose F is of type I, in which case we have a unique chain of
noncontracted rational components for the cover associated to C . The discussion in
(3)(a) shows that each node in the chain gives .t1Ct2/–valuation �1. In total, the node
smoothing contributes i � j in valuation. On the other hand, the chain has j � i C 1

irreducible components. By our calculation in (1)(c), 1=eT .N
vir
F
/ has valuation 1,

which establishes the first assertion.

Assume that F is of type II. If the associated cover has at least two disjoint chains
of noncontracted rational curves, a .t1Ct2/–valuation at least 2 is obtained because
each chain gives valuation at least 1. Otherwise, the cover has a unique chain but
property (e) (and hence (iii)) in Section 3.1.1 is not fulfilled for each i; j ; s . In this
case, we have the same consequence by the discussion in (3)(a) and the calculation
in (1)(c).

If ˇ is not a multiple of Eij for any i; j , and F is any component, then the discus-
sion in the preceding paragraph still works. This completes the proof of the second
assertion.
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3.2 Reduction

From now on, fix cohomology-weighted partitions �1.E�1/ and �2.E�2/ of n such that
each entry of the `.�i/–tuple E�i is 1 or a divisor on the surface Ar . We concentrate
on the 2–point extended invariant

(3-11) h�1.E�1/; �2.E�2/i
ŒSymn.Ar /�
.a;ˇ/

in twisted degree .a; ˇ/, ˇ ¤ 0. We will leave out the superscript ŒSymn.Ar /� when
there is no likelihood of confusion.

Let us write
�i.E�i/D �i.E�i1/�i.E�i2/

where all entries of E�i1 ’s are 1 and all entries of E�i2 ’s are divisors, i D 1; 2. We may
assume that

`.�1/� `.�2/:

Use the identity

1D

rC1X
kD1

1

LkRk

Œxk �;

we see readily that (3-11) is a Q.t1; t2/–linear combination of the invariants of the
form

(3-12) h�11.Œxm1
�/ � � � �1`.�1/.Œxm`.�1/

�/�1.E�12/; �2.E�2/i.a;ˇ/:

Additionally, (3-12) is an element of QŒt1; t2� as the first insertion has compact support.
Also, the sum of the degrees of the insertions is at most 1 larger than the virtual
dimension. Precisely, the difference is

`.�1/� `.�2/C 1:

Thus, the invariant (3-12) is a linear polynomial if `.�1/ D `.�2/; otherwise, it is a
rational number.

Assume that ˇ is not a multiple of Eij for any i; j . By Lemma 3.1, the invariant (3-12)
is zero by divisibility of .t1C t2/

2 (each of the two insertions is a linear combination of
fixed-point classes with coefficients being 0 or having nonnegative .t1Ct2/–valuation;
for details, consult the discussion preceding Lemma 3.6). It follows that (3-11) is zero
as well. So we can now set our mind on the invariant

h�1.E�1/; �2.E�2/i.a;dEij /; d; i; j > 0:

By virtual localization, (3-12) can be expressed as a sum of residue integrals over
T –fixed components. By Lemma 3.1, the invariant (3-12) is ˛.t1 C t2/ for some
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rational number ˛ , and it suffices to evaluate (3-12) over all T –fixed components
of the elements in the union

`i;j F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s�, where

`i;j

means that only i; j are fixed and other parameters can vary.

For any nonnegative integer s , let I.s/ be the total contribution of the components
of the elements lying in the union

`i;j ;s F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s� (all but

i; j ; s vary) to the invariant (3-12) with ˇ D dEij .

The following lemma, due to the first author, is crucial for obtaining our description of
2–point extended invariants of ŒSymn.Ar /� in Section 3.4.

Lemma 3.2 For any s < a,

I.s/� 0 mod .t1C t2/
2:

3.3 Proof of Lemma 3.2

Before proving Lemma 3.2, let us explain our strategy briefly.

For any T –fixed component F that can possibly make a contribution to I.s/ (s < a),
we relate it to F c via the morphism �F (see (3-2)). In this process, Hurwitz numbers
and deg.�F / emerge. Working modulo .t1C t2/

2 , we use these ingredients and an
expression of the inverse equivariant Euler class 1=eT .N

vir
F
/ to write I.s/ in terms

of some specific connected invariants. We will see later that each of these connected
invariants has an identity class insertion and is equal to 0, and so I.s/ will vanish
modulo .t1C t2/

2 .

Sections 3.3.1, 3.3.2, and 3.3.3 serve as preparation. The proof of Lemma 3.2 is given
in Section 3.3.4.

3.3.1 Counting branched covers In order to demonstrate Lemma 3.2, we count
certain coverings of (chains of) rational curves. Let us now review some related notions
and fix notation.

For partitions �1; : : : ; �s of n, the Hurwitz number

H.�1; : : : ; �s/

is the weighted number of possibly disconnected covers � W X ! .P1;p1; : : : ;ps/

such that � are branched over p1; : : : ;ps with ramification profiles �1; : : : ; �s and
unbranched away from p1; : : : ;ps . (Each cover is counted with weight 1 over the size
of its automorphism group.)
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The Hurwitz number H.�1; : : : ; �s/ is essentially a combinatorial object. It can be
described combinatorially by

1

n!
jH.�1; : : : ; �s/j:

Here H.�1; : : : ; �s/ is the set consisting of .g1; : : : ;gs/ 2
Qs

iD1 Sn satisfying

(i) for each i D 1; : : : ; s , gi has cycle type �i ;

(ii) g1 � � �gs D 1.

Let us introduce some other Hurwitz-type numbers. Let

H� .�1; : : : ; �s j �1; : : : ; �t /

be the subset of H.�1; : : : ;�s;�1; : : : ;�t / such that each element .g1; : : : ;gs;h1; : : : ;ht /

has an additional property that g1 � � �gs has cycle type � (and so h1 � � � ht has the
same cycle type as well). Put

H� .�1; : : : ; �s j �1; : : : ; �t /D
jH� .�1; : : : ; �s j �1; : : : ; �t /j

n!

(in case � is a vacuous partition, we set H� .�1; : : : ; �s j �1; : : : ; �t /D 1).

We readily find the following relations.

Lemma 3.3 The number H� .�1; : : : ; �s j �1; : : : ; �t / is exactly the product

jC.�/jH.�1; : : : ; �s; �/H.�; �1; : : : ; �t /:

Moreover, we have the equality

H.�1; : : : ; �s; �1; : : : ; �t /D
X
j� jDn

H� .�1; : : : ; �s j �1; : : : ; �t /:

3.3.2 Degrees Let

SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL

j EbR; E�/Œi; j ; s�

.resp. SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�; EbL

j EbR/Œi; j ; s�/:

As mentioned earlier, there are natural morphisms

�F W F ! SM0;bL
0
CuL

0
C2 �

SM0;bR
0
CuR

0
C2 (resp. SM0;bL

0
CuL

0
C3 �

SM0;bR
0
CuR

0
C1/

for F 2 SMT and

� SM0
W SM0!

SM0;bL
0
CuL

0
C2 �

SM0;bR
0
CuR

0
C2 (resp. SM0;bL

0
CuL

0
C3 �

SM0;bR
0
CuR

0
C1/:
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Obviously, F c D SM c
0

(see (3-2)).

We intend to show Lemma 3.2 by localization, which will be reduced to integrals
over F c ’s. So it is necessary to understand the degree

deg.�F /

of the morphism �F .

For F 2 SMT with SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL j EbR; E�/Œi; j ; s�, we let Œf W CL [D [

CR ! ŒSymn.Ar /�� 2 F (in the notation of Section 3.1.1) be a typical element. The
degree of �F is the product m1 �m2 . Here

� m1 D c0.o.y�/
�1
QrC1

kD1 jC.�k/j/
".F / is a factor arising from the nodes, which

are glued over the stack of cyclotomic gerbes. Here c0 is an overall factor coming
from nodes of the cover zC0! C (we do not have to give a careful description
here as c0 will be cancelled by an identical term in deg.� SM0

/), and ".F / is
the number �1.b

L
0
CuL

0
/C �1.b

R
0
CuR

0
/C j � i (the terms �1.b

L
0
CuL

0
/ and

�1.b
R
0
CuR

0
/ record the dimensions of CL and CR respectively).

� m2 is given by

dj�iC1 m0

�

rC1Y
kD1

H.�k ; .2/
bL

k ; 1bL
0
CuL

0
�bL

k ; �k/H.�k ; �k/
j�iC1H.�k ; .2/

bR
k ; 1bR

0
CuR

0
�bR

k ; �k/;

where dj�iC1 is an automorphism factor that takes care of the restriction f jD
forgotten by �F , m0 is the contribution of zC0 , and the other terms account for
the overall contribution of

`rC1
kD1
zCk .

Also, the degree of � SM0
can be calculated in a similar fashion. That is,

deg.� SM0
/D c0

�
1

o.�0/

�".F /
dj�iC1m0:

By Lemma 3.3, we may write deg.�F / as

(3-13) deg.� SM0
/

�
o.�0/

o.y�/

�".F /
�

rC1Y
kD1

H�k
.�k ; .2/

bL
k ; 1bL

0
CuL

0
�bL

k j .2/b
R
k ; 1bR

0
CuR

0
�bR

k ; �k/:
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Similarly, for F 2 SMT with SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�; EbL j EbR/Œi; j ; s�, deg.�F / is

given by

(3-14) deg.� SM0
/

�
o.�0/

o.y�/

�".F /
�

rC1Y
kD1

H�k
.�k ; �k ; .2/

bL
k ; 1bL

0
CuL

0
�bL

k j .2/b
R
k ; 1bR

0
CuR

0
�bR

k /;

where ".F / is now set to be 1C �2.b
R
0
CuR

0
/C j � i .

Remark 3.4 The term .o.�0/=o.y�//
".F / will cancel with a similar term in 1=eT .N

vir
F
/

(see Lemma 3.5 below). Moreover, forgetting the indices involving the partition 1 does
not change the value of the Hurwitz-type numbers. We did not do this in the above
formulas so as to keep track of the ramification profiles corresponding to the simple
marked points.

3.3.3 Virtual normal bundles Let us determine 1=eT .N
vir
F
/ modulo .t1C t2/

2 for
each component F of type I.

Lemma 3.5 Given any T –fixed connected component F 2 SMT where SM is in
F E��0;�0;�0Ib

L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s�, we have the congruence equation

1

eT .N
vir
F
/
�

�
o.y�/

o.�0/

�".F /
�

1
2
.a�s�`.E�/�`.E�//

eT .N
vir
SM0

/
mod .t1C t2/

2:

Here � D�.r C 1/2t2
1

, and ".F /’s are as in (3-13), (3-14) respectively.

Proof We just investigate the case where SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL j EbR; E�/ and

F 2 SMT , the other case being similar.

Let pD
PrC1

kD0 bL
k

and qD
PrC1

kD0 bR
k

, and so pCqD a. Assume that p; q > 0. Pick
any point Œf � 2 F . Again, we follow the notation of Section 3.1.1. The contribution
from the contracted component CL is

eT .H
1.CL; f

�ŒSymn.Ar /�//

eT .H 0.CL; f �ŒSymn.Ar /�//
� �

P
k.gk�1/ mod .t1C t2/:

Here gk ’s are the genera of connected components of the covering associated to CL .
We find, by Riemann–Hurwitz formula, that

P
k.gk�1/D 1

2
.p�`.y�/�`.y�//. Hence

CL contributes
�

1
2
.p�`.y�/�`.y�// mod .t1C t2/:
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Similarly, CR contributes

�
1
2
.q�`.y�/�`.y�// mod .t1C t2/:

And the contribution from nodes joining contracted components to D is

�2`.y�/ mod .t1C t2/:

These three contributions, taken together, yield

�
1
2
.a�`.y�/�`.y�/C2`.y�// mod .t1C t2/:

One can check that the same formula holds when p D 0 or q D 0.

As for the cover zCL0[
zD0[

zCR0 , by a similar argument, the combined contribution
of zCL0; zCR0 and nodes joining zCL0; zCR0 to zD0 is given by

�
1
2
.s�`.�0/�`.�0/C2`.�0// mod .t1C t2/:

Further, the covers zD1; : : : ; zDrC1 (including the nodes inside) contribute

1

�`.E�/
mod .t1C t2/:

We now study the infinitesimal deformations of C . Let k DL;R. When Ck is a curve,
smoothing the node Pk joining Ck to D contributes

o.y�/

wk � k

;

where wk is the T –weight of the tangent space to c.D/ at the point c.Pk/, and  k

is the class associated to T �c.Pk/
Ck (see (3-10)). By property (e) in Section 3.1.1,

zf W zC0!Ar corresponds to the point Œf0W CL0[D0[ CR0! ŒSymj�0j.Ar /�� 2 SM0 ,
so

o.�0/

wk � k

is the factor smoothing nodes joining Ck0 and D0 and is o.�0/=o.y�/ times the preced-
ing factor. Similarly, the overall contributions of node smoothing inside D and node
smoothing inside D0 differ by a factor .o.y�/=o.�0//

j�i . Hence, deformations of C
contribute the product of .o.y�/=o.�0//

".F / with the contribution of the deformations
of CL0[D0[ CR0 . The term �

o.y�/

o.�0/

�".F /
1

eT .N
vir
SM0

/

is the combined contribution of the deformations of C and the unique noncontracted
connected component zC0 of the associated cover zC .
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Putting all these together, we get

1

eT .N
vir
F
/
�

�
o.y�/

o.�0/

�".F /
1

eT .N
vir
SM0

/
�
�

1
2
.a�`.y�/�`.y�/C2`.y�//

�
1
2
.s�`.�0/�`.�0/C2`.�0//

�
1

�`.E�/

�

�
o.y�/

o.�0/

�".F /
�

1
2
.a�s�`.E�/�`.E�//

eT .N
vir
SM0

/
mod .t1C t2/

2;

as desired.

3.3.4 Vanishing and relation to connected invariants Now we are ready to prove
Lemma 3.2, ie, for any s < a,

I.s/� 0 mod .t1C t2/
2:

Given SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s� and F 2 SMT , we let

�F W F ! SM .ŒSymn.Ar /�; ƒ1; ƒ2; .a; dEij //

be the natural inclusion (as partitions, ƒ1 D
y�, and ƒ2 D y�). We fix a nonnegative

integer s<a and positive integers i; j ; d with i � j from here on. We also fix T –fixed
point classes EA, EB and define

I D
X
SM

X
F2 SMT

Z
F

��
F
.ev�

1
. EA/ev�

2
. EB//

eT .N
vir
F
/

;

where SM is taken over all possible elements in

(3-15)
a

�0;b
L
0
;uL

0
;E�;EbL;EbR

F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�I EbL; EbR/Œi; j ; s�:

We would like to deduce the lemma by replacing the two insertions of the invariant
(3-12) (ˇ D dEij ) with T –fixed point classes. By Proposition 1.2, the coefficient

h�11.Œxm1
�/ � � � �1`.�1/.Œxm`.�1/

�/�1.E�12/ j EAi

h EA j EAi
�
h�2.E�2/ j EBi

h EB j EBi

is either zero or has nonnegative valuation with respect to t1C t2 , and so Lemma 3.2
follows from the following lemma.

Lemma 3.6 I � 0 mod .t1C t2/
2 .
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Proof of Lemma 3.6 The lemma is clear if the condition

(3-16) �k �Ak ; �k � Bk ; 8 k D 1; : : : ; r C 1;

does not hold, in which case I is identically zero. Now we assume (3-16), and the
idea of the proof in this case is to relate I to certain connected invariants. We put

x�k DAk ��k ; x�k D Bk � �k :

That is, we may write

EAD ..�1; x�1/; : : : ; .�rC1; x�rC1//; EB D ..�1; x�1/; : : : ; .�rC1; x�rC1//:

Let
xAD .x�1; : : : ; x�rC1/ and xB D .x�1; : : : ; x�rC1/

be T –fixed point classes.

For simplicity, we drop the index Œi; j ; s� from (3-15). First, it is good to have some
observations on hand.

Lemma 3.7 For any partition �0 and .rC1/–tuples EbL; EbR , E� ,

J1.�0I b
L
0 ;u

L
0 / WD

X
SM2F E��0;�0;�0Ib

L
0
;uL

0
.E�;EbL j EbR;E�/

deg.� SM0
/

Z
SM c

0

��
SM0

.ev�
1
. xA/ev�

2
. xB//

eT .N
vir
SM0

/

X
SM2F E��0;�0;�0Ib

L
0
;uL

0
.E�;EcL j EcR;E�/

deg.� SM0
/

Z
SM c

0

��
SM0

.ev�
1
. xA/ev�

2
. xB//

eT .N
vir
SM0

/
;is

and

J2.�0I b
L
0 ;u

L
0 / WD

X
SM2F E��0;�0;�0Ib

L
0
;uL

0
.E�;E�;EbL j EbR/

deg.� SM0
/

Z
SM c

0

��
SM0

.ev�
1
. xA/ev�

2
. xB//

eT .N
vir
SM0

/

X
SM2F E��0;�0;�0Ib

L
0
;uL

0
.E�;E�;EcL j EcR/

deg.� SM0
/

Z
SM c

0

��
SM0

.ev�
1
. xA/ev�

2
. xB//

eT .N
vir
SM0

/
;is

for any EcL , EcR and E� satisfying j�k j D j�k j for each k D 1; : : : ; r C 1. Here the
collections of unions of T –fixed components under the summation symbols are all
nonempty.
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Proof The first identity follows as

F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL

j EbR; E�/ and F E��0;�0;�0Ib
L
0
;uL

0
.E�; EcL

j EcR; E�/

have the same number of elements and the same configuration for the unique noncon-
tracted connected component of the associated cover (see the description in Section
3.1.1). The second identity holds for similar reasons.

We apply Lemma 3.1 to the connected invariant

(3-17) h xA; xB; .2/s; 1a�s
i

conn
dEij

and find that (3-17) is given byX
�0;b

L
0
;uL

0

.J1.�0I b
L
0 ;u

L
0 /CJ2.�0I b

L
0 ;u

L
0 // mod .t1C t2/

2:

As a� s > 0, (3-17) is zero. We then have

(3-18)
X

�0;b
L
0
;uL

0

.J1.�0I b
L
0 ;u

L
0 /CJ2.�0I b

L
0 ;u

L
0 //� 0 mod .t1C t2/

2:

Here is an elementary but helpful combinatorial fact.

Lemma 3.8 Given nonnegative integers k , p and p1; : : : ;pk with p1C� � �Cpk Dp .
For any nonnegative integer m� p ,� p

p1; : : : ;pk

�
D

X
m1;:::;mk

� m

m1; : : : ;mk

�� p�m

p1�m1; : : : ;pk�mk

�
:

Note that
�

`
`1;:::;`k

�
WD 0 if ` is smaller than some of `i ’s or if some entries are negative

integers.

We continue the proof of Lemma 3.6. We set again � D�.r C 1/2t2
1

. Let

� D
1

2
.a� sC `.E�/C `. E�//:

For any .rC1/–tuple Eq with jEqj D a� s , let

Q.Eq/D f.EbL; EbR/ j bL
k C bR

k D qk ; 8k D 1; : : : ; r C 1g:

Fix �0; b
L
0
;uL

0
, we consider two cases:
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(1) The total contribution of F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL j EbR; E�/’s to I with the con-

straint .EbL; EbR/ 2Q.Eq/ is congruent modulo .t1C t2/
2 to

(3-19)
X

.EbL;EbR/2Q.Eq/

X
E�

X
SM

X
F2 SMT

Z
F

��
F
.ev�

1
.A/ev�

2
.B//

eT .N
vir
F
/

where SM 2 F E��0;�0;�0Ib
L
0
;uL

0
.E�; EbL j EbR; E�/ runs through all elements. Equation

(1-1) implies that for each F 2 SMT ,

��F .ev�1.A/ � ev�2.B//� �
`.E�/C`.E�/ ��SM0

.ev�1. xA/ � ev�2. xB// mod .t1C t2/:

Applying the pushforward �F� and Lemma 3.5, (3-19) is given by

��
X

.EbL;EbR/2Q.Eq/

X
E�

X
SM2F E��0;�0;�0Ib

L
0
;uL

0
.E�;EbL j EbR;E�/

X
F2 SMT

deg.�F /

�

�
o.y�/

o.�0/

�".F / Z
SM c

0

��
SM0

.ev�
1
. xA/ev�

2
. xB//

eT .N
vir
SM0

/
mod .t1C t2/

2:

By (3-13), (3-19) is congruent modulo .t1C t2/
2 to

��
X

.EbL;EbR/2Q.Eq/

�
uL

0

bL
1
; : : : bL

rC1

��
uR

0

bR
1
; : : : ; bR

rC1

�

�

X
E�

rC1Y
kD1

H�k
.�k ; .2/

bL
k ; 1bL

0
CuL

0
�bL

k j .2/b
R
k ; 1bR

0
CuR

0
�bR

k ; �k/

�

X
SM2F E��0;�0;�0Ib

L
0
;uL

0
.E�;EbL j EbR;E�/

deg.� SM0
/

Z
SM c

0

��
SM0

.ev�
1
. xA/ev�

2
. xB//

eT .N
vir
SM0

/
;

where the product �
uL

0

bL
1
; : : : bL

rC1

��
uR

0

bR
1
; : : : ; bR

rC1

�
is the number of choices to distribute simple ramification points lying above
simple markings. By Lemmas 3.3, 3.7 and 3.8, the above expression can be
simplified to� a�s

q1; : : : ; qrC1

�
��

rC1Y
kD1

H.�k ; .2/
qk ; 1a�qk ; �k/J1.�0I b

L
0 ;u

L
0 /:
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(2) By a similar argument, the total contribution of F E��0;�0;�0Ib
L
0
;uL

0
.E�; E�; EbL j EbR/’s

to I with the constraint .EbL; EbR/ 2Q.Eq/ is congruent modulo .t1C t2/
2 to

� a�s

q1; : : : ; qrC1

�
��

rC1Y
kD1

H.�k ; .2/
qk ; 1a�qk ; �k/J2.�0I b

L
0 ;u

L
0 /:

As a consequence, I is given by

H �
X

�0;b
L
0
;uL

0

.J1.�0I b
L
0 ;u

L
0 /CJ2.�0I b

L
0 ;u

L
0 // mod .t1C t2/

2;

H D
X
jEqjDa�s

� a�s

q1; : : : ; qrC1

�
��

rC1Y
kD1

H.�k ; .2/
qk ; 1a�qk ; �k/ 6D 0:where

By (3-18),

I � 0 mod .t1C t2/
2:

This shows Lemma 3.6 and ends the proof of Lemma 3.2.

3.4 Combinatorial descriptions of two-point extended invariants

By Lemma 3.2, we can deduce the following formula on 2–point extended invariants
in nonzero degrees.

Theorem 3.9 Given cohomology-weighted partitions �1.E�1/ and �2.E�2/ of n such
that each entry of the `.�i/–tuple E�i is 1 or a divisor class on Ar for i D 1; 2. For
any curve class ˇ ¤ 0, the invariant

(3-20) h�1.E�1/; �2.E�2/i.a;ˇ/

is given by the sum

(3-21)
X
h�.E�1/ j �.E�2/ih�1. E1/; �2. E2/i

conn
.a;ˇ/:

Here the sum is taken over all possible cohomology-weighted partitions �.E�1/, �.E�2/,
�1. E1/, �2. E2/ satisfying �1.E�1/ D �.E�1/�1. E1/ and �2.E�2/ D �.E�2/�2. E2/. (In
particular, �1; �2 are subpartitions of �1; �2 respectively and �1��1D � D�2��2 ).
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Proof of Theorem 3.9 The statement is clear if ˇ is not a multiple of Eij for each i; j

because both (3-20) and (3-21) vanish (see Theorem 3.14 below). Now fix i; j ; d > 0

and let ˇ D dEij .

We learn by Lemma 3.2 that I.a/ is the only possible contribution to (3-12). In other
words, only

F�0;b.�0; �0I E�/ WD F1[F2;

ranging over all possible �0; �0; �0; b; E� , can possibly make a contribution. Here

F1 D F E��0;�0;�0Ib;0
.E�; .0; : : : ; 0/ j .0; : : : ; 0/; E�/Œi; j ; a�;(3-22)

F2 D F .1
n/

�0;�0;�0Ib;0
.E�; E�; .0; : : : ; 0/ j .0; : : : ; 0//Œi; j ; a�:(3-23)

(With notation of Section 3.1.1, any admissible cover zC , associated to the components
of the elements in F�0;b.�0; �0I E�/, has all those simple ramification points that are
branched over simple markings in the connected component zC0 , and each zCk (k ¤ 0)
is either empty or a chain of rational curves.)

Thus, in order to evaluate the invariant (3-20), it is enough to perform localization
calculations over T –fixed components of the elements in F�0;b.�0; �0I E�/’s because
(3-20) is a linear combination of invariants of the form (3-12).

We have a lemma on the inverse Euler classes of virtual normal bundles.

Lemma 3.10 Given F 2 SMT with SM 2 F1[F2 , we have

1

eT .N
vir
F
/
D

�
o.y�/

o.�0/

�"k.F / 1

t.z�/ eT .N
vir
SM0

/

for SM 2 Fk , k D 1; 2. Here "1.F / D �1.b/ C �1.a � b/ C j � i and "2.F / D

1C �2.a� b/C j � i .

Proof All contracted connected components of the associated cover are necessarily of
genus 0. The proof of Lemma 3.5 can be carried through.

We let
I.�1; �2/ and I.�1; �2I E�/

be the contributions to (3-20) of
`
�0;b;E�

F�0;b.�1; �2I E�/ and
`
�0;b

F�0;b.�1; �2I E�/

respectively.

Now we compute I.�1; �2I E�/. In order for the contribution not to vanish, the partitions
�1 and �2 must be subpartitions of �1 and �2 respectively.
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We assume �1 � �1 , �2 � �2 . The configurations (3-22) and (3-23) force �1� �1 D

�2��2 . We set � D �1� �1 .

Recall ˛�.E�/.zı/ is the component of �.E�/ relative to the fixed-point class zı (see (1-2)).

Lemma 3.11 Given SM 2
`

b;�0
F E��0

.�1; �2; E�/. For k D 1; 2 and each F 2 SMT ,

(3-24) ��F ev�k.�k.E�k//D t.z�/
X
Pk

˛
�.E�k/

.z�/ ��SM0
ev�k.�k. Ek//:

Here Pk means that we take the sum over all possible �.E�k/ and �k. Ek/ satisfying
�k.E�k/D �.E�k/�k. Ek/.

Proof The left side of (3-24) is
P
zı�z�

˛�k.E�k/
.zı/ t.zı/. By Proposition 1.2, it equalsX

zı�z�

X
Pk

˛
�.E�k/

.z�/˛�1.Ek/
.zı� z�/ t.zı/D t.z�/

X
Pk

˛
�.E�k/

.z�/
X
z�

˛�1.Ek/
.z�/ t.z�/;

which gives the right side of (3-24).

It follows from Lemma 3.11 that for each F 2 SMT , ��
F
.ev�

1
.�1.E�1// � ev�

2
.�2.E�2///

coincides with

(3-25) t.z�/2
X
Q

˛
�.E�1/

.z�/˛
�.E�2/

.z�/��SM0
.ev�1.�1. E1// � ev�2.�2. E2///:

In the formula, the index Q means that the sum is over all possible �.E�1/, �.E�2/,
�1. E1// and �2. E2// satisfying �1.E�1/ D �.E�1/�1. E1/ and �2.E�2/ D �.E�2/�2. E2/.
Applying (3-25) and Lemma 3.10, the contribution I.�1; �2I E�/ is

t.z�/

a!

X
Q

˛
�.E�1/

.z�/˛
�.E�2/

.z�/
X

�0;b; SM0

H.z�/

Z
SM0

��
SM0

.ev�
1
.�1. E1// � ev�

2
.�2. E2//

eT .N
vir
SM0

/
;

where H.z�/D
QrC1

kD1 H.�k ; �k/ is a product of Hurwitz numbers. Thus, I.�1; �2I E�/

is simplified to

H.z�/t.z�/
X
Q

˛
�.E�1/

.z�/˛
�.E�2/

.z�/h�1. E1/; �2. E2/i
conn
.a;dEij /

:

Adding up all possible I.�1; �2I E�/’s, we obtain

I.�1; �2/D
X
Q

X
z�

H.z�/t.z�/˛
�.E�1/

.z�/˛
�.E�2/

.z�/h�1. E1/; �2. E2/i
conn
.a;dEij /

:
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Moreover,

h�.E�1/ j �.E�2/i D
X
z�

˛
�.E�1/

.z�/˛
�.E�2/

.z�/hz� j z�i D
X
z�

˛
�.E�1/

.z�/˛
�.E�2/

.z�/H.z�/t.z�/:

This implies that

I.�1; �2/D
X
Q

h�.E�1/ j �.E�2/ih�1. E1/; �2. E2/i
conn
.a;dEij /

:

Consequently, by taking into account of all I.�1; �2/’s, we deduce that (3-20) equalsX
h�.E�1/ j �.E�2/ih�1. E1/; �2. E2/i

conn
.a;dEij /

;

where the sum is taken over all possible choices stated in the theorem. This finishes
the proof.

Remark 3.12 In [13], the statement for the relative theory of Ar �P1 which corre-
sponds to Theorem 3.9 is obtained by writing each involved (disconnected) relative
invariant as a product of connected invariants. In [15], a similar statement for Hilbn.Ar /

is proved by reducing to a certain product of moduli spaces involving punctual Hilbert
schemes. It would be great if a similar phenomenon occurred in the theory of Symn.Ar /

since this would simplify the proofs of Lemma 3.2 and Theorem 3.9. Unfortunately,
although the T –fixed components can be arranged according to the configurations
of the covers associated to the source curves, they are seemingly not related to the
product of moduli spaces parametrizing the components of the associated covers in
general. Thus, it seems that we can not directly apply the ideas from [13; 15] to prove
our results above.

Now, it remains to determine the two-point extended connected invariants explicitly. For
partitions �; � of n, we denote the Hurwitz number H.�; �; .2/b/ (see Section 3.3.1) by

H g
�;�

where g D 1
2
.bC 2� `.�/� `.�// is determined by the Riemann–Hurwitz formula.

In general, it is not easy to obtain a closed formula for H
g
�;� . However, when � D .n/,

we have the following result due to Goulden, Jackson and Vakil.

Proposition 3.13 [9] Given any partition � of n. The so-called one-part double
Hurwitz number H

g

�;.n/
is the coefficient of t2g in the power series expansion of

.2gC `.�/� 1/! n2gC`.�/�2

jAut.�/j
t=2

sinh.t=2/

`.�/Y
iD1

sinh.�i t=2/

�i t=2
:
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Given nonnegative integers a1 , a2 , let ga1
, ga2

, g.a/ be integers satisfying

ak D 2gak
� 1C `.�k/ .k D 1; 2/;

g.a/D
1

2
.a� `.�1/� `.�2/C 2/:

For k D 1; 2, we put

Œ�k. Ek/�D
jAut.�k/j

jAut.�k. Ek//j
:

Our connected invariants can be expressed in terms of one-part double Hurwitz numbers.

Theorem 3.14 Assume that 1k , 2` ’s are E1; : : : ;Er or 1 and ˇ is a nonzero
effective curve class. If ˇ D dEij for some d; i; j and all 1k , 2` ’s are either Ei

or Ej , the invariant

(3-26) h�1. E1/; �2. E2/i
conn
.a;ˇ/

is given by

.t1C t2/.�1/g.a/.�1� ı1;r /
`.�1/C`.�2/da�1Œ�1. E1/�Œ�2. E2/�

na�2

X
a1Ca2Da

H
ga1

�1;.n/
H

ga2

�2;.n/

a1! a2!
;

where ı1;r is the Kronecker delta (which is 1 if r D 1 and 0 otherwise). Otherwise,
(3-26) vanishes. Thus, by Proposition 3.13, the invariant (3-26) admits an explicit
closed formula.

Proof Let r > 1. According to Lemma 3.1 and the discussion preceding Lemma 3.6,
(3-26) is divisible by t1C t2 .

As mentioned earlier, (3-26) is a polynomial in t1 and t2 . So if at least one of 1k ,
2` ’s is 1, the invariant must be zero because of .t1Ct2/–divisibility and the fact that
the sum of the degrees of the insertions is at most `.�1/C `.�2/� 1, which is the
virtual dimension.

Assume that all 1k , 2` ’s are E1; : : : ;Er , in which case (3-26) is proportional to
.t1C t2/. By Lemma 3.1 again, the invariant is zero if ˇ is not a multiple of Eij for
all i; j .

Now we assume further that ˇ D dEij for some d; i; j . We may evaluate (3-26)
modulo .t1 C t2/

2 , so any T –fixed component that contributes a factor .t1 C t2/
k

for some k � 2 may be ruled out. That is, it is enough to investigate those T –fixed
components defined in (3-3) with s D a, which we denote by F ’s. However, in order
for the contributions of these components to (3-26) not to vanish, the ramification
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points lying above the distinguished markings must map to xi or xjC1 . As a result,
(3-26) vanishes if one of 1k , 2` ’s is Ek for some k ¤ i; j . This completes the proof
of the second assertion.

Now we show the first assertion. Let

P D�
1

Li
Œxi �; QD�

1

RjC1

ŒxjC1�:

It remains to evaluate (3-26) with 1k , 2` ’s equal to Ei or Ej . We check that Ei �P

and Ei �Q (“�” means that the difference between the left side and the right side
can be written in terms of classes ŒxiC1�; : : : ; Œxj � and 1 as long as we are working
modulo .t1C t2/); similarly, Ej � P and Ej �Q.

By the vanishing claims just verified, we can replace all 1k ’s with P and all 2` ’s
with Q. The invariant (3-26) is not exactly the resulting invariant

h�11.P / � � ��1`.�1/.P /; �21.Q/ � � ��2`.�2/.Q/i
conn
.a;dEij /

:

Instead, it is congruent modulo .t1C t2/
2 to

(3-27) J WD Œ�1. E1/�Œ�2. E2/�h�11.P / � � ��1`.�1/.P /;

�21.Q/ � � ��2`.�2/.Q/i
conn
.a;dEij /

:

With (3-27) in mind, we can thus execute localization calculations over those F ’s with
one more constraint on the source curve C0 : CL0 carries the marking corresponding
to �1 , and CR0 carries the marking corresponding to �2 because the ramification
points associated to �1 (resp. �2 ) are mapped to xi (resp. xjC1 ). This means that in
(3-3), �0 D �1 , �0 D �2 , and �0 D .n/.

To summarize, in order to evaluate (3-27), we only have to consider such T –fixed
components, denoted by Fa1;a2

, where the source curve C decomposes into three
pieces Ca1

[†[ Ca2
: Cak

is a contracted component carrying ak simple markings,
and its unique distinguished marking corresponds to �k ; the intersection Ca1

\ Ca2

is empty; the cover zCak
associated to Cak

is of genus gak
; and † is a chain of

noncontracted components, which connects Ca1
and Ca2

, and the two twisted points
of intersection have stack structures given by the monodromy .n/. Note that Cak

’s are
twisted points whenever they contain less than three special points and are otherwise
twisted curves.

In this way, we reduce our calculation to the integral over

SM .BSn; �1; .n/I a1/� SM .BSn; �2; .n/I a2/;
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followed by division by the product of the automorphism factor dj�iC1 and the
distribution factor a1! a2! of simple marked points.

Let �1W
SM .BSn; �1; .n/I a1/! SM0;a1C2 be the natural morphism mapping Ca1

to
its coarse moduli space Ca1

(the node Ca1
\† is mapped to the marking Q1 ) and L1

the tautological line bundle formed by the cotangent space T �
Q1

Ca1
. Let  1D c1.L1/.

We define �2W
SM .BSn; �2; .n/I a2/! SM0;a1C2 and  2 in a similar way.

To proceed, we summarize the contributions of virtual normal bundles (see Lemma 3.1).
Set � D .r C 1/t1 .

� Contracted components: For k D 1; 2, Cak
contributes

.�1/gak
�1�2gak

�2 mod .t1C t2/:

� A chain of noncontracted components: The contribution of each node smoothing
is just ..t1Ct2/=d/

�1 . All other node contributions are LkRk , kD i; : : : ; jC1,
each of which equals ��2 mod t1C t2 . Furthermore, all noncontracted curves
contribute ..t1C t2/=� �

2/j�iC1 mod .t1C t2/
2 . Hence the total contribution

equals
��2dj�i.t1C t2/ mod .t1C t2/

2:

� Smoothing nodes joining a contracted curve to a noncontracted curve: The
contributions are given by

1

.1=n/.nRi=d � �
�
1
 1/

;
1

.1=n/.nLjC1=d � �
�
2
 2/

:

The contribution of the component Fa1;a2
to J , denoted by Ia1;a2

, is congruent
modulo .t1C t2/

2 to

� �2dj�i.t1C t2/
Œ�1. E1/�Œ�2. E2/�

dj�iC1a1! a2!
�`.�1/.��/`.�2/ �

.�1/a1

�4

�

2Y
kD1

.�1/gak �2gak
1

nak�1

�
d

�

�ak
Z
SM .BSn;�k ;.n/Iak/

��k 
ak�1

k
:

Note that each factor in the second line is replaced with 1 in case ak D 0. Simplifying
the expression yields

.t1C t2/.�1/g.a/C`.�1/C`.�2/da�1Œ�1. E1/�Œ�2. E2/�

na�2a1! a2!

2Y
kD1

Z
SM .BSn;�k ;.n/Iak/

��k 
ak�1

k
:
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For ak > 0,Z
SM .BSn;�k ;.n/Iak/

��k 
ak�1

k
D deg.�k/

Z
SM0;akC2

 
ak�1

k
DH

gak

�k ;.n/
:

We conclude that Ia1;a2
is congruent to

.t1C t2/.�1/g.a/C`.�1/C`.�2/da�1Œ�1. E1/�Œ�2. E2/�

na�2
�
H

ga1

�1;.n/
H

ga2

�2;.n/

a1! a2!
mod .t1Ct2/

2:

The theorem then follows by summing Ia1;a2
over all possible a1; a2 with a1Ca2D a

and using the fact that (3-26) is a multiple of t1C t2 .

The case r D 1 is similar, and so we omit the proof.

By applying the intersection matrix with respect to the curve classes E1; : : : ;Er , we
arrive at the following statement.

Corollary 3.15 Let 1k , 2` ’s be 1 or divisors on Ar and ˇ a nonzero effective curve
class. If ˇ D dEij for some d; i; j , the connected invariant h�1. E1/; �2. E2/i

conn
.a;ˇ/

is
given by

.t1C t2/Œ�1. E1/�Œ�2. E2/�

`.�1/Y
kD1

.Eij � 1k/

`.�2/Y
kD1

.Eij � ık/

�
.�1/g.a/da�1

na�2

X
a1Ca2Da

H
ga1

�1;.n/
H

ga2

�2;.n/

a1! a2!
:

Otherwise, it is zero.

Theorem 3.9 and Theorem 3.14 provide an effective method to compute 2–point
extended invariants of ŒSymn.Ar /� in nonzero degrees. With the equations in the
following proposition, this also determines the divisor operators as a consequence of
3–point extended invariants in degree zero being determined by the Gromov–Witten
theory of ŒSymn.C2/�; see Cheong [8].

Proposition 3.16 Given any classes ˛1; : : : ; ˛k 2A�T ;orbŒSymn.Ar /�. We have

(3-28) hh˛1; : : : ; ˛k ; .2/ii D
d

du
hh˛1; : : : ; ˛kii;

and for each `D 1; : : : ; r ,

(3-29) hh˛1; : : : ; ˛k ;D`ii D hh˛1; : : : ; ˛k ;D`iijs1;:::;srD0C s`
d

ds`
hh˛1; : : : ; ˛kii:
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Proof By definition,

h˛1; : : : ; ˛k ; .2/i.a;ˇ/ D .aC 1/h˛1; : : : ; ˛ki.aC1;ˇ/;

and by the untwisted divisor equation (ˇ ¤ 0 or k � 3),

h˛1; : : : ; ˛k ;D`i.a;ˇ/ D .!` �ˇ/h˛1; : : : ; ˛ki.a;ˇ/:

These relations yield (3-28) and (3-29). (Note, however, that (3-29) is read as

hh˛1; : : : ; ˛k ;D`ii D s`
d

ds`
hh˛1; : : : ; ˛kii

for k � 3.)

The sine function sin.u/ is a rational function of eiu , where i2 D �1. It is straight-
forward to verify that extended 3–point functions involving .2/ or D` are rational
functions in t1; t2 , eiu; s1; : : : ; sr by the above equations.

4 Comparison to other theories

4.1 Relative Gromov–Witten theory of threefolds

Given P1 with k distinct marked points p1; : : : ;pk , and partitions �1; : : : ; �k of a
positive integer n. Following Maulik [13], we let

SM �
g .Ar �P1; .ˇ; n/I�1; : : : ; �k/

be the moduli space parametrizing relative stable maps to Ar �P1 with the following
data:

� The domains are nodal curves of genus g and are allowed to be disconnected.

� The relative stable maps have degree .ˇ; n/2A1.Ar �P1IZ/ and have nonzero
degrees on any connected components.

� The maps are ramified over the divisor Ar �pi with ramification type �i . The
ramification points are taken to be marked and ordered.

Given any cohomology-weighed partition �i.E�i/, i D 1; : : : ; k , we have an evaluation
map

evij W
SM �

g .Ar �P1; .ˇ; n/I�1; : : : ; �k/!Ar
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corresponding to the ramification point of type �ij over the divisor Ar � pi . The
genus g relative invariant h�1.E�1/; : : : ; �k.E�k/i

Ar�P1

g;ˇ
is defined by

1Qk
iD1 jAut.�i.E�i//j

Z
Œ SM�g .Ar�P1;.ˇ;n/I�1;:::;�k/�

vir
T

kY
iD1

l.�i /Y
jD1

ev�ij .�ij /:

We are interested in the shifted partition function

GW.Ar �P1/�1.E�1/;:::;�k.E�k/

defined as

u2n�
Pk

iD1 age.�i /
X
g;ˇ

h�1.E�1/; : : : ; �k.E�k/i
Ar�P1

g;ˇ u2g�2s
ˇ�!1

1
� � � sˇ�!r

r :

Our results recover certain relative Gromov–Witten invariants by the following equali-
ties.

Proposition 4.1 For ˛ D 1.1/n , .2/ or Dk , k D 1; : : : ; r ,

(4-1) hh�1.E�1/; ˛; �2.E�2/ii
ŒSymn.Ar /� D GW.Ar �P1/�1.E�1/;˛;�2.E�2/

:

Proof When specialized to s1 D � � � D sr D 0, the equality (4-1) has been justified in
Cheong [8]. In particular, (4-1) is valid for ˛ D 1.1/n without the constraint.

For ˛D .2/ or Dk , the coefficients of uis
j1

1
: : : s

jr
r , where j1C� � �Cjr > 0, match up

on both sides of (4-1) by a direct comparison of [13, Proposition 4.4] with our results
in Section 3.4. Hence, (4-1) follows as well in this case.

4.2 Quantum cohomology of Hilbert schemes of points

4.2.1 Nakajima basis We review the Nakajima basis for the equivariant cohomology
A�T .Hilbn.Ar / of the Hilbert scheme Hilbn.Ar / of n points in Ar .

Let � be a partition of n and E�D .�1; : : : ; �`.�// an associated `.�/–tuple with entries
in A�T .Ar /. Let j0i D 1 2A0

T .Hilb0.Ar //, we define

a�.E�/D
1

jAut.�.E�//j

`.�/Y
iD1

1

�i
p��i

.�i/j0i;

where p��i
.�i/W A

�
T .Hilbk.Ar //! A

�C�i�1Cdeg.�i /=2

T .HilbkC�i .Ar // are Heisen-
berg creation operators; see Grojnowski [11], Li, Qin and Wang [12] and Nakajima [16].

Choose a basis B for A�T .Ar /. The classes a�.E�/’s, running through all partitions �
of n and all �i 2B, give a basis for A�T .Hilbn.Ar //. They are called the Nakajima
basis associated to B.
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4.2.2 Quantum cup product Let �HC
� W A1.Hilbn.Ar /IZ/ ! A1.Symn.Ar /IZ/

be the homomorphism induced by the Hilbert–Chow morphism �HCW Hilbn.Ar /!

Symn.Ar /. There are isomorphisms

A1.Hilbn.Ar /IZ/Š Ker.�HC
� /˚A1.Symn.Ar /IZ/Š Ker.�HC

� /˚A1.Ar IZ/:

Let ` be the class dual to the divisor �a1.1/
n�2a2.1/ on Hilbn.Ar /. It is an effective

rational curve class generating the kernel Ker.�HC
� /. For any classes ˛1; : : : ; ˛k on

Hilbn.Ar /, we consider the k –point function

(4-2) h˛1; : : : ; ˛ki
Hilbn.Ar /D

1X
dD0

X
ˇ2A1.Ar IZ/

h˛1; : : : ; ˛ki
Hilbn.Ar /

.d`;ˇ/
qds

ˇ�!1

1
� � � sˇ�!r

r :

Now given any basis fıg for A�T .Hilbn.Ar // and fı_g its dual basis. Define the small
quantum cup product �q on A�T .Hilbn.Ar // by the 3–point functions as follows:

˛1 �q ˛2 D

X
ı

h˛1; ˛2; ıi
Hilbn.Ar /ı_:

Like the orbifold case, we define

QA�T .Hilbn.Ar //

as the vector space A�T .Hilbn.Ar //˝QŒt1;t2�Q.t1; t2/..q; s1; : : : ; sr // with the multi-
plication �q .

4.2.3 SYM/HILB correspondence In Section 3, we provide a combinatorial de-
scription of any divisor operator on the quantum ring A�T ;orb.ŒSymn.Ar /�/. In [15],
on the other hand, any divisor operator on A�T .Hilbn.Ar // is expressed in terms of
the action of affine Lie algebra ygl.r C 1/ on the basic representations. These two
expressions are actually equivalent via the correspondence L given in the work [8] of
the first author.

Let us make the substitution q D�eiu where i is a square root of �1, and put

F DQ.i; t1; t2/..u; s1; : : : ; sr // and K DQ.t1; t2/..u; s1; : : : ; sr //:

We recall the map L. It is defined by

L.�.E�//D .�i/age.�/a�.E�/:

Obviously, L is a one-to-one correspondence and extends to a F –linear isomorphism

LW QA�T ;orb.ŒSymn.Ar /�/˝K F !QA�T .Hilbn.Ar //˝K F:
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(The Chow degree of a�.E�/ is clearly n� `.�/C
P`.�/

kD1
deg.�k/, the orbifold degree

of �.E�/.)

Denote by h � j � i as well the equivariant Poincaré pairing on Hilbn.Ar /. We know
from [8] that L preserves (orbifold) Poincaré pairings, ie,

h�.E�/ j �.E�/i D hL.�.E�// jL.�.E�//i

for all partitions �; � of n and cohomology classes �i ; �j ’s on Ar . Further, we have
the following SYM/HILB correspondence.

Proposition 4.2 The F –linear isomorphism L respects quantum multiplication by
divisors:

(4-3) L.D �orb ˛/DL.D/�q L.˛/

for any class ˛ and divisor D .

Proof For cohomology-weighted partitions �1.E�1/, �2.E�2/ and ˛ D .2/ or Dk ,

hh�1.E�1/; ˛; �2.E�2/ii
ŒSymn.Ar /� D GW.Ar �P1/�1.E�1/;˛;�2.E�2/

D hL.�1.E�1//;L.˛/;L.�2.E�2//i
Hilbn.Ar /:

The first equality is Proposition 4.1 while the second equality is [15, Proposition 6.6].

As L preserves Poincaré pairings, it follows from the above equalities that

hL.�1.E�1/�orb ˛/ jL.�2.E�2//i D hL.�1.E�1//�q L.˛/ jL.�2.E�2//i:

This implies that L respects quantum multiplication by .2/ and Dk ’s. The equal-
ity (4-3) now follows due to the fact that .2/ and Dk ’s give a basis for divisor classes.

5 The Crepant Resolution Conjecture

Let us study a simple example before discussing the full version of Bryan–Graber
Crepant Resolution Conjecture.

5.1 An example

We would like to give an explicit expression for the divisor operator D1 �orb� on the
quantum ring A�T ;orb.ŒSym2.A1/�/. Let us substitute q D�eiu so that

sin.u/D
1

2i

�
.�q/ �

1

.�q/

�
:
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Consider the following basis

B WD f1.E1/1.E1/; 2.E1/; 1.1/1.E1/; 2.1/; 1.1/1.1/g;

whose elements are ordered according to their orbifold degrees. The matrix representa-
tion of the operator D1 �orb� with respect to B is given by0BBBBB@

2�.1� 1
1Csq

�
1

1Cs=q
/ i�. 1

1Csq
�

1
1Cs=q

/ �1 0 0

�2i�. 1
1Csq

�
1

1Cs=q
/ �.2� 1

1Csq
�

1
1Cs=q

�
2

1�s
/ 0 �1 0

2t1t2 0 ��.1Cs/
1�s

0 �1
2

0 4t1t2 0 0 0

0 0 4t1t2 0 0

1CCCCCA
where � D t1C t2 and s D s1 . This is also the matrix representation of the operator

L.D1/�q�

with respect to the ordered basis L.B/; see Maulik and Oblomkov [15].

It is straightforward to check that D1 �orb� has distinct eigenvalues. In particular, we
have a basis fv1; : : : ; v5g of eigenvectors. By quantum multiplication by D1 and the
identity 1, we find

vi �orb vi D

�
aivi for some ai ¤ 0;

0 for all i ¤ j:

So by replacing vi with vi=ai , we may assume that fv1; : : : ; v5g is an idempotent
basis; in which case,

(5-1) 1D

5X
iD1

vi :

Moreover, the Vandermonde matrix associated to the eigenvalues of D1 �orb � is
invertible. In other words, by (5-1), the set

f1;D1;D
2
1 ;D

3
1 ;D

4
1g

is a basis for the quantum cohomology QA�T ;orb.ŒSym2.A1/�/. Similarly, L.D1/

generates the quantum ring QA�T .Hilb2.A1//˝K F . We conclude that

LW QA�T ;orb.ŒSym2.A1/�/˝K F !QA�T .Hilb2.A1//˝K F

is indeed an F –algebra isomorphism.

This simple example raises the question: Do divisor classes generate the whole quantum
ring? In response to this, one may wish to examine the eigenvalues of divisor operators
for bigger n. This, however, seems a difficult task to perform directly.
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If one of the operators .2/�orb�, Dk �orb�’s turns out to have distinct eigenvalues,
the ring structure will be determined, and L will be an F –algebra isomorphism. The
hypothesis has yet to be entirely verified and may seem a little too good to be true. It is
reasonable to expect something weaker (maybe certain combinations of these operators
work).

5.2 Generation Conjecture

The following statement is referred to as generation conjecture. The reader is urged to
consult [15] for a partial evidence of the conjecture.

Conjecture 5.1 [15] Let L be as in Section 4.2.3. The commuting family of the
operators

L..2//�q�; L.D1/�q�; : : : ; L.Dr /�q�

on the quantum cohomology of Hilbn.Ar / is nonderogatory. That is, its joint eigen-
spaces are one-dimensional.

Let us briefly explain some consequences of the nonderogatory conjecture on our
quantum cohomology rings. Set RDQ.i; t1; t2; q; s1; : : : ; sr / and q D�eiu . Since
the quantum ring A�T .Hilbn.Ar //˝QŒt1;t2� R is semisimple, it admits a basis, say
fv1; : : : ; vmg, of idempotent eigenvectors summing to the identity 1. The basis elements
are also the simultaneous eigenvectors for L..2//�q�;L.D1/�q�; : : : ;L.Dr /�q�.

Suppose e0k ; e1k ; : : : ; erk are respectively the eigenvalues of the operators L..2//�q�;

L.D1/�q�; : : : ;L.Dr /�q� corresponding to the eigenvector vk . The nonderogatory
property ensures that we can find numbers a0; a1; : : : ; ar such that

rX
jD0

aj ej1; : : : ;

rX
jD0

aj ejm

is a sequence of distinct elements. Thus, the Vandermonde argument given earlier shows
that the element a0 �L..2//C

Pr
jD1 aj �L.Dj / generates A�T .Hilbn.Ar //˝QŒt1;t2�R.

This implies that a0 � .2/ C
Pr

jD1 aj � Dj generates the quantum cohomology of
ŒSymn.Ar /� over R as well. We thus obtain the following “corollary”1.

“Corollary” 5.2 The divisor classes .2/ and D1; : : : ;Dr generate the quantum coho-
mology ring QA�T ;orb.ŒSymn.Ar /�/, and any extended three-point function is a rational
function in t1; t2 , eiu; s1; : : : ; sr . Under the substitution q D�eiu , the map

1Whenever we use double quotation marks (“ ”), we emphasize that the statements or words inside
come with the hypothesis of the generation conjecture.
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LW QA�T ;orb.ŒSymn.Ar /�/˝K F !QA�T .Hilbn.Ar //˝K F

gives an isomorphism of F –algebras.

On the other hand, we can match the orbifold Gromov–Witten theory with the relative
Gromov–Witten theory.

“Corollary” 5.3 The equality

hh�1.E�1/; �2.E�2/; �3.E�3/ii D GW.Ar �P1/�1.E�1/;�2.E�2/;�3.E�3/

holds for any cohomology-weighted partitions �1.E�1/, �2.E�2/, �3.E�3/ of n.

5.3 Multipoint functions

Once the generation conjecture holds, all extended 3–point functions are known by
“Corollary” 5.2. In this situation, we are actually able to generalize “Corollary” 5.2
to cover multipoint invariants. This can be done by proceeding in an analogous
manner to Okounkov and Pandharipande’s determination of multipoint invariants of
Hilbn.C2/ [18].

Let B be a basis for the Chen–Ruan cohomology A�T ;orb.ŒSymn.Ar /�/. We recall the
WDVV equation from [3], but we write it in terms of extended functions to better suit
our needs. For the time being, we drop the superscript ŒSymn.Ar /�.

Proposition 5.4 [3] Given Chen–Ruan cohomology classes ˛1; ˛2; ˛3; ˛4 and ˇ1;

: : : ; ˇk . Let S be the set f1; : : : ; kg, we haveX
S1

`
S2DS

X
2B
hh˛1; ˛2; ˇS1

;  iihh_; ˇS2
; ˛3; ˛4ii

D

X
S1

`
S2DS

X
2B
hh˛1; ˛3; ˇS1

;  iihh_; ˇS2
; ˛2; ˛4ii:

Here, for instance, hh˛1; ˛2; ˇS1
;  ii WD hh˛1; ˛2; ˇi1

; : : : ; ˇi` ;  ii if S1 D fi1; : : : ; i`g.

“Proposition” 5.5 All extended multipoint functions of ŒSymn.Ar /� can be deter-
mined from extended three-point functions and all are rational functions in t1; t2 ,
eiu; s1; : : : ; sr .

Proof We may see this by induction. Suppose that any extended m–point function
with m� k is known and is a rational function in t1; t2 , eiu; s1; : : : ; sr . To determine
extended .kC1/–point functions, it suffices to study

N WD hh˛0; ˛1; : : : ; ˛kii
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for ˛0 D .2/` �orb D
m1

1
�orb � � � �orb D

mr
r , where `, m1; : : : ;mr are nonnegative

integers. We may assume that `Cm1C � � �Cmr � 2 in light of Proposition 3.16 and
the fundamental class axiom. Let us write ˛0 D D �orb ı for some D D .2/ or Dj .
Clearly,

N D
X
2B
hhD; ı;  iihh_; ˛1; : : : ; ˛kii:

Let S D f1; : : : ; k � 2g. By the WDVV equation,X
2B
hhD; ı;  iihh_; ˛S ; ˛k�1; ˛kiiC

X
2B
hhD; ı; ˛S ;  iihh

_; ˛k�1; ˛kii

D

X
2B
hhD; ˛k�1;  iihh

_; ˛S ; ı; ˛kiiC

X
2B
hhD; ˛k�1; ˛S ;  iihh

_; ı; ˛kii

C (terms with extended m–point functions, 3�m� k):

This says that N is determined by lower-point functions and extended .kC1/–point
functions with a ı–insertion. By replacing D �orb ı with ı if necessary and continuing
the above procedure, we conclude that N can be calculated from lower-point functions
and is a rational function in t1; t2 , eiu; s1; : : : ; sr . By induction, our claim is thus
justified.

“Theorem” 5.6 (The Crepant Resolution Conjecture) Let q D�eiu and k � 3. For
any Chen–Ruan cohomology classes ˛1; : : : ; ˛k on ŒSymn.Ar /�, we have

hh˛1; : : : ; ˛kii
ŒSymn.Ar /� D hL.˛1/; : : : ;L.˛k/i

Hilbn.Ar /:

In particular, h˛1; : : : ; ˛ki
ŒSymn.Ar /� D hL.˛1/; : : : ;L.˛k/i

Hilbn.Ar /jqD�1 .

Proof We suppress the indices ŒSymn.Ar /� and Hilbn.Ar /. The proof of “Proposition”
5.5 works as well for multipoint functions on Hilbn.Ar /. What makes things nice
is that we get exactly the same set of WDVV equations on both ŒSymn.Ar /� and
Hilbn.Ar / sides via L provided that we have the equalities

hh˛1; ˛2; ˛3;Dii D hL.˛1/;L.˛2/;L.˛3/;L.D/i

for DD .2/ and Dj (j D 1; : : : ; r ). But these are clear by (both twisted and untwisted)
divisor equations and “Corollary” 5.2. Thus by a recursive argument, we conclude that
L preserves (extended) multipoint functions, and the first claim follows. The second
claim is now clear.
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5.4 Closing remarks

All “results” discussed above are honestly true for the case n D 2 and r D 1 since
the divisor operator D1 �orb � has distinct eigenvalues and determines the orbifold
quantum product.

Also, in the definition of the map L, we may choose �i instead of i , in which setting
the correct change of variables is q D�e�iu . Indeed, the transformation q 7�! 1=q

takes

hh�1.E�1/; : : : ; �k.E�k/ii
ŒSymn.Ar /� to .�1/

Pk
jD1 age.�j /hh�1.E�1/; : : : ; �k.E�k/ii

ŒSymn.Ar /�:

To illustrate this, just look at the matrix in Section 5.1. There we observe that terms
involving q and 1=q agree up to a sign.

The calculation of ŒSymn.Ar /�–invariants in Section 3 gives an indication that these
invariants might be closer, geometrically and combinatorially, to the relative invariants of
Ar�P1 than the invariants of Hilbn.Ar /. In reality, it is the form the relative invariants
take that motivates our calculation. We do know that GW.Ar � P1/�1.E�1/;:::;�k.E�k/

can be “reduced” to the 3–point case by the degeneration formula; consult [13]. It is,
however, unclear if the WDVV equation “behaves” in a similar way to the degeneration
formula. At the moment, we expect that the equality

hh�1.E�1/; : : : ; �k.E�k/ii
ŒSymn.Ar /� D GW.Ar �P1/�1.E�1/;:::;�k.E�k/

should be true. Particularly, the usual k –point function h�1.E�1/; : : : ; �k.E�k/i
ŒSymn.Ar /�

should be the coefficient of

u
Pk

iD1 age.�i /�2n in Z0.Ar �P1/�1.E�1/;:::;�k.E�k/
:
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