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Target-local Gromov compactness

JOEL W FISH

We prove a version of Gromov’s compactness theorem for pseudoholomorphic curves
which holds locally in the target symplectic manifold. This result applies to sequences
of curves with an unbounded number of free boundary components, and in families
of degenerating target manifolds which have unbounded geometry (eg no uniform
energy threshold). Core elements of the proof regard curves as submanifolds (rather
than maps) and then adapt methods from the theory of minimal surfaces.

32Q65; 53D99

1 Introduction

In his seminal 1985 paper [5], Gromov introduced the notion of a “pseudoholomorphic
curve” and established the fundamental notion of compactness for families of such
J –curves. Since then, the majority of modern proofs of Gromov’s compactness
theorem (and its generalizations) have all followed the same basic recipe, namely
to study J –curves as a type of special harmonic map. This essentially reduces the
compactness problem to applying Deligne–Mumford compactness to the underlying
Riemann surfaces and then applying bubbling analysis. However, there are a growing
number of examples in which this approach badly breaks down – for instance, J –
curves in a family of symplectic manifolds which lacks a uniform energy threshold, or
sequences of J –curves with bounded area but unbounded topology. Such a case was
considered in the author’s PhD thesis [4], in which a compactness result was proved
for J –curves in the connected sum of two contact manifolds for which the connecting
handle collapsed to a point. More generally, the author is interested in studying
J –curves in symplectic cobordisms between noncompact and/or degenerate contact
manifolds (eg manifolds for which the contact form vanishes along a submanifold).
Examples of each of these phenomena arise in the so-called “sideways stretching”
operation in Symplectic Field Theory which the author is currently developing. The
idea for this new operation is to “stretch the neck” along R�† in R�N where †�N

is an appropriately adapted convex hypersurface in a contact manifold N . At present, it
appears that sideways stretching touches on a number of different topics in symplectic
topology, including full Symplectic Field Theory, Sutured Contact Homology, as well
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as the effect to (cylindrical, linearized, rational, full) Contact Homology that arises
from surgery along isotropic submanifolds.

A key difficulty which arises in the above research directions is the lack of a uniform
energy threshold. The lack of this quantity is so fundamental that standard bubbling
analysis (and a host of results which crucially rely on bubbling analysis) become
inapplicable a priori. This in turn necessitates an alternate approach to the compactness
problem: namely, to regard J –curves as submanifolds, and then by incorporating
elements from minimal surface theory to prove a compactness result which holds
locally in the target. Indeed, in this article and [3], the author takes precisely this
approach; the main arguments for this target-local version of Gromov compactness
are provided here, and the author develops supporting analysis for these arguments
in [3]. In successive papers, the author will extend the following results to a variety
of noncompact cases and refine the notion of Gromov compactness near nodes and
critical points.

1.1 Statement of main result

The main result of this article is Theorem 3.1 from Section 3. We state a simplified
version (in fact an immediate corollary) as Theorem A below.

Theorem A Let .M;J;g/ be a compact almost Hermitian1 manifold with boundary.
Let .Jk ;gk/ be a sequence of almost Hermitian structures which converge to .J;g/
in C1.M /, and let .uk ;Sk ; jk ;Jk/ be a sequence of compact Jk –curves (possibly
disconnected, but having no constant components) satisfying

(1) uk W @Sk ! @M

(2) Areau�
k

gk
.Sk/� CA

(3) Genus.Sk/� CG .

Then there exists a subsequence (still denoted with subscripts k ) of the uk , an � > 0,
and an open dense set I � Œ0; �/ with the following significance. For each ı 2 I , define
zSı

k
WD f� 2Sk W distg

�
uk.�/; @M /� ıg; then the Jk –curves .uk ; zS

ı
k
; jk ;Jk/ converge

in a Gromov sense2.

1That is, for .M;J;g/ we require that g is a Riemannian metric, and the almost complex structure J

is an isometry.
2For a precise formulation of Gromov convergence, see Definition 2.11 below.
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Note that we have not assumed that the uk.@Sk/ lie in a Lagrangian submanifold, and
we have not assumed that the Sk have bounded topological type. Indeed, the number
of connected components of either the @Sk or the Sk may not be bounded. It is for
this reason that the above result is significantly different from all other versions of
Gromov compactness.

To see the relevance of Theorem A, we shall consider its application in a couple of
examples. Observe that in the case that M is closed, the above result only recovers the
usual Gromov compactness theorem, however the strength the Theorem A becomes
more apparent when considering target manifolds with rather arbitrary smooth bound-
ary. Furthermore, this latter scenario occurs quite naturally when considering closed
symplectic manifolds for which the almost complex structure degenerates in a small
region. We explore such a case at present.

Example 1 Consider a closed symplectic manifold .M; !/, fix p 2 M , and let
ˆW O.p/ ! R2n be Darboux coordinates around p . Locally define the complex
structure zJ near p by zJ@xi D @yi , and let �M be the manifold obtained by performing
a zJ –complex blowup at p . Recall that �M can be equipped with a family of closed
two-forms !� which are symplectic for � > 0. Furthermore the !�–volume of the
exceptional divisor D� �M tends to zero as � does, and the !� converge in C1loc .

�M nD/
to !0 which has the property that . �M nD; !0/ and .M nfpg; !/ are symplectomorphic.
In other words, we have performed symplectic blowups of weight � at p . Lastly,
equip �M with a family J� of !�–compatible almost complex structures which also
converge in C1loc .

�M nD/. We now consider the following question: given a sequence
�k ! 0 and a sequence of pseudoholomorphic curves uk W .S

2; i/! . �M ;J�k
/ with

uniformly bounded !�k
–energy, does there exist a subsequence which converges in a

reasonable sense (eg in a Gromov sense)?

There are some obvious tricks if the J� are integrable in a neighborhood of D or if
the uk.S

2/ have empty intersection with D , however answering the more general
question is nontrivial. Indeed, one key point here is that by construction, this family
of symplectic forms and almost complex structures lacks a uniform energy threshold.
That is, as �! 0, there exist symplectic spheres of arbitrarily small symplectic area.
This is a serious problem since (to the best of the author’s knowledge) all proofs of
Gromov compactness rely on an energy threshold in a critical way: energy thresholds
guarantee that only finitely many bubbles develop in the limit. Indeed, a priori it might
be the case that for the above example the gradient blows up at arbitrarily many points
in S2 .

Despite these difficulties, we see that the J� converge in C1loc .
�M nD/ by construction,

so it seems reasonable that the portion of the J�k
–curves which have image in the
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complement of a neighborhood of D should converge in a reasonable sense. Thus a
natural attempt to prove some sort of compactness would be to fix a neighborhood U
of D , and define the curves uk W u

�1
k
. �M n U/! �M , and attempt to prove Gromov

convergence for a subsequence of these domain-restricted curves. The boon here
is that �M n U is compact, it has a uniform energy threshold, and the J� converge
in C1. �M n U/. However one now faces a new problem, namely that the surfaces
zSk WD u�1

k
. �M nU/ have no a priori bound on the number of connected components,

nor an a priori bound on the number of boundary components. This is seriously
problematic for standard proofs of Gromov compactness because a lack of a topology
bound on the underlying Riemann surfaces precludes one from applying Deligne–
Mumford compactness to the domain curves. This is in turn problematic because it is
the Deligne–Mumford compactness (together with a uniformization theorem) which
yields convenient reparameterizations of the given pseudoholomorphic curves.

It is at this point that we see the utility of Theorem A above. Indeed, it is not dif-
ficult to choose U so that �M n U and the u�1

k
. �M n U/ � Sk have the structures

of compact manifolds with smooth boundary. Furthermore the restricted curves
.uk ;u

�1
k
. �M n U/; jk ;J�k

/ certainly satisfy the hypotheses of Theorem A. We can
then conclude that after passing to a subsequence, we have convergence of our pseu-
doholomorphic curves “away from U � D .” Let us make this more precise. From
the above result, we can deduce the following: for each open set U �D , there exists
an open set V such that D � V � U , and there exists a subsequence of the above
curves such that for zSk WD u�1

k
. �M nV/, the domain-restricted curves

�
uk ; zSk ; jk ;J�k

/

converge in a Gromov sense. We now make two important observations. First, for
these curves to Gromov-converge it must be the case that the . zSk ; jk/ converge in a
Deligne–Mumford sense, which guarantees that the “trimmed” surfaces zSk have fixed
topological type for all sufficiently large k . The second important point is that even
though we have “trimmed away” some portion of our original curves .uk ;Sk ; jk ;J�k

/

to obtain convergence, we have only trimmed away portions of the curves which have
image in the “small” region V � U . This latter point can be stated more concisely as
uk.Sk n

zSk/� V � U .

Example 2 The previous example was somewhat simplistic, so we now consider a
larger class of similar, but much more general, examples. Fix a symplectic manifold
.M; 7!/, and consider a compact embedded submanifold N � M with dim N <

dim M . Consider a sequence of almost complex structures Jk which converge in
C1loc .M nN / and which degenerate along N . Again, we ask if energy bounds and
genus bounds for closed curves are sufficient to obtain a convergent subsequence,
and again Theorem A guarantees convergence away from N for some subsequence.
Also note that this example is significantly less artificial than the previous one since
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it contains both the contact-type neck-stretching construction from Symplectic Field
Theory, as well as the degenerating symplectic-connected sums setup arising in the
symplectic sum formula for Gromov–Witten invariants. Furthermore the condition that
N be a compact embedded submanifold is easily relaxed to the condition that N be a
compact set of zero measure, so one expects Theorem A to play a role in a wide variety
of degeneration problems in symplectic geometry.

The above examples hopefully illuminate the flexibility and generality of Theorem A, so
we now take a moment to point out certain things that it does not guarantee. Firstly note
that Theorem A makes no claims about curves with Lagrangian boundary condition,
however in light of estimates proved by the author in [3], it appears that such a
generalization is quite probable. Secondly, Theorem A does not guarantee convergence
up to the boundary of M . Indeed, since the .uk ; zS

ı
k
; jk ;Jk/ converge for each ı 2 I

where I� Œ0;1/ is an open dense set in a neighborhood of 0, one is tempted to consider
a sequence fıkgk2N � I such that ık ! 0 and then conclude from Theorem A that
the subsequence .uk ; zS

ık

k
; jk ;Jk/ converges in a Gromov sense, however in general

this is false. Indeed, the key point is that after passing to the subsequence guaranteed
by Theorem A, we find that for each fixed ı 2 I the topological type of the zSı

k
is

bounded as k varies over N , but the topological type of zSı
k

is not necessarily bounded
as k varies over N and ı varies over I .

In discussing the limitations of Theorem A, we return to our previous examples from
symplectic geometry, and make the important observation that Theorem A does not
guarantee any sort of convergence along the region in which J degenerates. In other
words, in the symplectic blow-up example we do not obtain convergence in collapsingly
small neighborhoods of the symplectic divisor D ; in the neck stretching example we
do not obtain convergence to multilevel buildings which fall into the contact-type
hypersurface; in the degenerating symplectic-connected sums example we do not
capture curves falling into the collapsing handle. The reason that the above theorem
makes no claims about compactness in these regions is that the behavior of curves in
these regions is critically dependent on the manner in which J –degenerates – something
not specified in the hypotheses of Theorem A. However, for all of those examples, and
a wide variety of others, there exist diffeomorphisms of neighborhoods of the set N

along which J degenerates to some long/wide/vast region N (eg N WDR�N in the
neck-stretching case) on which J is standard. If the original curves were closed and
of bounded topological type, then one can apply Theorem A on compact domains (eg
Œa; b��N in the contact case) contained in the “long” region N provided one has a
uniform area bound in this compact domain. Indeed, such bounds occur quite often,
and in such cases one can then use the above result to build-up a variety of compactness
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results in noncompact or degenerating target manifolds. As mentioned above, such an
example was considered in [4], and a second example (namely sideways stretching) is
currently being developed.

1.2 Proof outline

We begin by recalling a result on which our proof relies. Indeed, if ukD .uk ;S; jk ;Jk/

is a sequence of compact pseudoholomorphic curves with bounded area, fixed domain
manifold S , varying conformal structures jk , and has annular neighborhoods Ai

of each component of @S which have conformal modulus uniformly bounded away
from zero, then there exists a subsequence which Gromov-converges after removing a
neighborhood of small conformal modulus near the boundary @S . Indeed, such a result
was proved by Ivashkovich and Shevchishin in [7] (stated there as Theorem 1), however
the language in that article does not explicitly mention this conformal trimming since
convergence there is understood on compact sets of the interior of S . We mention
this difference because this trimming is a subtle but critically important consideration
for the results that follow. The primary goal of this paper then becomes the following:
for pseudoholomorphic curves as in the hypotheses of Theorem A, and each ı > 0,
pass to a subsequence and find zSk � Sk with the property that each of the zSk are
diffeomorphic to some zS , and

uk.Sk n
zSk/� fq 2M W distg.q; @M / < ıg;

and that each boundary component of zSk has annular neighborhood Ai;k which has
conformal modulus bounded away from zero, and

uk.Ai;k/� fq 2M W distg.q; @M / < ıg:

This essentially reduces the problem to the result proved in [7], and after the conformal
trimming near the boundaries is taken, one is left with a subsequence of curves with
no area loss in the deep interior fq 2M W distg.q; @M /� ıg and which converges in
a Gromov sense. Theorem A can then be deduced by repeating the argument for a
sequence ık ! 0, and then passing to a diagonal subsequence.

Thus the primary difficulty addressed in this article is to find the desired trimmings.
To that end, we build the result up in three steps. We begin by observing that pseudo-
holomorphic curves satisfy a mean curvature equation of the form H� D trS Q where
H� is the mean curvature vector along the image of a J –curve uW S !M , Q is a
.1; 2/–tensor defined on M which depends on J and g , and by trS Q we mean the
trace of Q along planes tangent to the image of u. We then incorporate elements
of minimal surface theory as follows. The first step is to show that if a sequence of
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immersed J –curves has uniformly bounded area and uniformly L1–bounded second
fundamental forms Buk

, then one can extract a convergent subsequence. Of importance
here is that boundedness of the topological type of the underlying Riemann surfaces is
not assumed, but rather constructed during the proof for the subsequence. It is this result
which allows one to obtain compactness without a priori knowledge of the domain
topology.

In light of this result, we see that given a sequence of J –curves which satisfy the
hypotheses of Theorem A, the goal becomes to pass to some subsequence, and to find
some region of the form

(1) M ı0;ı1 WD fq 2M W 0< ı0 � dist.q; @M /� ı1 < ıg

so that the portion of the J –curves (in the subsequence) with image in M ı0;ı1 are
immersed and have L1–bounded curvature. Since J –curves can of course develop
unbounded curvature, (consider the formation of the standard node, or the formation of a
critical point from immersed curves) and may not be immersed, we temporarily impose
two additional hypotheses on the curves in question, namely that the number of critical
points is uniformly bounded and the total curvature

R
kBk2 is uniformly bounded.

In [3], the author showed that the square-length of the second fundamental form of a
J –curve satisfies an �–regularity result similar to the result shown by Choi and Schoen
in [2] for minimal surfaces. This guarantees that after passing to a subsequence, the
curvature of the J –curves can only point-wise blow-up at finitely many points in the
interior of M . Consequently after passing to a subsequence, one finds a region of the
form (1) on which the J –curves are immersed with L1–bounded curvature.

In light of this result, the goal then becomes to verify that neither the total curvatureR
kBk2 nor the number critical points can increase without bound on the deep interior

of M . The first step here is to employ a desingularization result which reduces the
problem of arbitrarily many critical points to the problem of unbounded total curvature
of immersed curves. To exclude the possibility of unbounded total curvature we first
argue that if � 2 S and inju�g.�/ is very small and u.�/ is in the deep interior of M

and Genus.S/ is zero then there exists a short closed loop which has the property
that its removal disconnects S into two components, and each components has a
threshold amount of area. Iterating this argument shows that the curves in question
cannot develop too many nodes in the deep interior of M – even in the case of nonzero
genus. We conclude that after passing to a subsequence, the injectivity radius can
only be arbitrarily small in a neighborhood of a finite number of points in M , so
by restricting our attention to complementary regions, we may assume the injectivity
radius is uniformly bounded away from zero. Then by employing a covering argument,
it is sufficient to show that on an intrinsic disk Dr .�0/ WD f� 2 S W distu�g.�0; �/ < rg
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a J –curve with a uniformly bounded area cannot have arbitrarily large total curvature.
This is proved by recalling that J –curves have Gaussian curvature which is uniformly
bounded from above, and by recalling a differential equation relating the area and
curvature of such intrinsic disks. In particular we show that if the total curvature on
Dr=2.�0/ is arbitrarily large, then so too is the area of the disk Dr .�0/. Since the
J –curves in question have a priori bounded area, this is sufficient to conclude that the
total curvature of the J –curves with image in the interior of M is not arbitrarily large,
and the proof of Theorem A is then immediate.

It should be noted that the techniques used to prove Theorem A are sufficiently strong
to develop a more refined version of Gromov convergence which neither relies on
bubbling-analysis of harmonic maps nor relies on Deligne–Mumford compactness. This
approach will be addressed in future work, and for now we suffice to prove Theorem A
as stated and outlined above.
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2 Preliminaries

We begin by providing some pertinent definitions. For instance, let M be a compact real
2n–dimensional manifold (possibly with boundary) equipped with a smooth section
J 2 �.End.TM // for which J 2 D�1; we call .M;J / an almost complex manifold,
and J the almost complex structure. Note that J need not be integrable; that is, it need
not be induced from local complex coordinates. Indeed, this will only be true if the
Nijenhuis tensor NJ associated to J vanishes identically, and do not make such an
assumption.

If .M;J / is equipped with a smooth Riemannian metric g for which J is an isometry
(ie g.x;y/ D g.Jx;Jy/ for all x;y 2 TM ), then we call .M;J;g/ an almost
Hermitian manifold. Observe that any almost complex manifold can be given an almost
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Hermitian structure .J;g/ by choosing an arbitrary Riemannian metric zg , and defining
g.x;y/ WD 1

2

�
zg.x;y/C zg.Jx;Jy/

�
.

To an almost Hermitian manifold .M;J;g/ one can associate a fundamental two form
(cf Kobayashi and Nomizu [8]) ! 2 �

�
ƒ2TM

�
given by !.x;y/ WD g.Jx;y/. We

call ! the almost symplectic form associated to .J;g/, where the “almost” refers to
the fact that in general d! ¤ 0. Indeed, ! is nondegenerate by definition, so if ! is
closed then it is a symplectic form, and in such case J is an !–compatible almost
complex structure. Again, we do not make this additional assumption.

We also consider pseudoholomorphic curves, or more concisely J –curves, which for
our purposes will be four-tuples u D .u;S; j ;J /, with entries defined as follows.
Given a target manifold M , J will be a smooth almost complex structure on M , S

will be a smooth manifold of real dimension two, j will be a smooth almost complex
structure on S , and uW S !M will be a smooth map for which J � T u D T u � j .
Unless otherwise specified, we will allow for S to be noncompact, to have smooth
boundary, and to have unbounded topology (ie countably infinite connected components,
boundary, and genus). We will say that a J –curve u is compact provided S has the
structure of a compact manifold with smooth boundary, and we will say u is closed
provided S has the structure of a compact manifold without boundary.

Since S can be quite complicated, we will need to make the notion of “genus” precise.
We do this in Definition 2.2 below, but first we introduce the notion of a compact
region.

Definition 2.1 (Compact region) Let M be a manifold. Suppose U �M is an open
set for which its closure cl.U/ inherits from M the structure of a smooth compact
manifold possibly with boundary. Then we call cl.U/ a compact region in M .

Definition 2.2 (Genus) Let S be a connected compact two-dimensional manifold
with boundary. We define Genus.S/ to be the genus of the surface obtained by capping
off the boundary components of S by disks. If S is disconnected but compact, then we
define Genus.S/ WD

Pn
kD1 Genus.Sk/ where the Sk are the connected components

of S . If S is non compact (but with at most countably infinite connected compo-
nents), we define Genus.S/ WD limk!1Genus.Sk/, where S1 � S2 � S3 � � � � is an
exhausting sequence of compact regions in S .

This raises an important point, namely that we will often abuse notation by referring to
the genus of u or u, when we actually mean the genus of S . We will similarly abuse
language by saying that u is connected or compact by which will we mean S has these
properties.
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We now turn our attention to some less standard definitions, which have some flavor of
geometric measure theory, and are necessary for later proofs.

Definition 2.3 (K–Proper sequence and K–convergence) Consider a sequence of
maps uk W Sk !M to and from manifolds which possibly have boundary and may be
noncompact. Let K � Int.M / be a compact set in the interior of M . We call this a
robustly K–proper sequence provided there exists another compact set zK � Int.M /

for which K � Int. zK/ and if u�1
k
. yK/ n @Sk is compact for every compact set yK � zK .

Similarly a single map uW S!M is robustly K–proper provided the constant sequence
u;u;u; : : : is robustly K–proper.

Furthermore, we say the above sequence of maps robustly K–converge in C1 provided
there exists an auxiliary manifold zS and diffeomorphisms  k W

zS! k. zS/� Sk with
the property that uk

�
Sk n k. zS/

�
�M n zK , and the “trimmed” reparameterizations

uk ı k W
zS !M converge in C1 .

Definition 2.4 (Uniformly robust K–covers) Let M be a manifold, and K� Int.M /

a compact set. Suppose uW S !M is a smooth robustly K–proper map. Then we say
.u;S/ is K–covered by maps �i W Dr ! S for i D 1; : : : ; n provided that

u
�
S n

Sn
iD1 �i.Dr /

�
�M nK;

where Dr WD fX 2Rdim S W kXk< rg.

We say a sequence of robustly K–proper maps uk W Sk !M is uniformly K–covered
provided dim Sk is independent of k and each .uk ;Sk/ is K–covered by �i;k with
i D 1; : : : ; n; in other words, the number of maps needed to K–cover each uk is
independent of k . Furthermore, we say a uniformly K–covered sequence is a uniformly
robust K–covered sequence provided there exists � > 0 and a compact set zK �M

with the properties that K is contained in the interior of zK , and

uk

�
Sk n

Sn
iD1 �i;k.Dr 0/

�
�M n zK

for all r 0 2 .r��; r/. We call the .�i;k ;Dr / uniformly robust K–covers of the sequence
.uk ;Sk/.

Remark 2.5 Note that a uniformly robust K–covered sequence .uk ;Sk/ with K–
covers �i;k W Dr ! Sk , has two convenient properties: first the .uk ;Sk/ are a robustly
K–proper sequence, and second for all sufficiently large r 0 < r (independent of k ),
the restricted maps �i;k W Dr 0 ! Sk again form uniformly robust K–covers for the
sequence .uk ;Sk/.
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Definition 2.6 (Kloc –convergence) Given a uniformly robust K–covered sequence
uk W Sk !M , we say that the uk converge in a smooth Kloc sense provided there
exists a sequence of uniformly robust K–covers �i;k W Dr ! Sk with the property that
for each i D 1; : : : ; n the maps uk ı�i;k W Dr !M converge in C1.Dr ;M /. We say
the limit is immersed provided each zui;1 WD lim uk ı�i;k is immersed.

It is instructive to point out that smooth Kloc –convergence in general does not imply
smooth K–convergence. This is due to the fact that Kloc –convergence does not guar-
antee any sort of topological convergence of the underlying Sk . Consider for instance,
a sequence of double covers of S1 , for which the domains alternate between being
connected and disconnected. Nevertheless, given Kloc –convergence, one expects that
after passing to a subsequence K–convergence can be obtained. Indeed, this is the
content of Proposition 2.7 below.

Proposition 2.7 Let M be a manifold, and K � Int.M /. Let uk W Sk ! M be a
uniformly robust K–covered sequence which smoothly Kloc converge to an immersed
limit. Then a subsequence robustly K converges in C1 .

The proof of Proposition 2.7 is provided in Section 4.1. We now return to establishing
some notation, and discussing some elementary properties of J –curves which will be
exploited in later sections.

If M is a manifold and A�M , then we will use the notation O.A/ to denote some
open set containing A. Furthermore, if M is equipped with a metric g , then we will
use the notation Og

ı
.A/ WD fp 2M W distg.p;A/ < ıg to denote a ı–neighborhood

of A. In the case that AD p 2M is just a point, and ı > 0 is sufficiently small so that
a ı neighborhood of p is a ball, then we will use the notation Bg

ı
.p/DOg

ı
.p/. Also,

recall that for a map F W O.0/ � Rm! Rn , we say that F.x/D O`.jxj
k/ provided

jD˛F.x/j DO
�
jxjk�j˛j

�
for all multi-indices ˛ with j˛j D 0; : : : ; `.

Definition 2.8 (Generally immersed) We shall say a smooth map uW S!M between
smooth manifolds (which may have boundary and corners, be disconnected, or be
noncompact) is a generally immersed provided that for each point z 2 S for which
Tzu ¤ 0 we have Rank.Tzu/ D dim S , and the set of critical points, which we
henceforth denote as Zu WD fz 2S WTzuD0g, has no accumulation points. Furthermore
if M is equipped with a Riemannian metric g , then we require that the conformal
structure Œu�g� on S nZu admits a smooth extension across Zu .

Lemma 2.9 (Local model) Let .M;J;g/ be an almost Hermitian manifold, with
K � Int.M / a compact set. Suppose .u;S; j ;J / is a robustly K–proper generally
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immersed J –curve in M , and fix z 2 u�1.K/. Then there exists a local holomor-
phic coordinate chart �z W O.z/ ! O.0/ � C ' R2 , geodesic polar coordinates
ˆz W O.u.z// ! O.0/ � Cn ' R2n , and unique kz 2 N such that �z.z/ D 0,
ˆz.u.z0//D 0, and such that

ˆz ıu ı��1
z .�/D .�kz ; 0; : : : ; 0/CFz.�/;

where Fz.�/DOkzC1.j�j
kzC1/.

Proof First, we will drop the z–dependence from our notation, and simply write k , � ,
ˆ, and F . Next, let z�W O.z/!O.0/�C'R2 be a holomorphic coordinate chart for
which z�.z/D 0, and let ẑ W O.u.z//!O.0/�R2n be polar geodesic coordinates for
which ẑ .u.z//D 0 and . ẑ�J /.p/DW zJ .p/D J0CO.jpj/; here J0 is the standard
almost complex structure defined by J0@x˛ D @y˛ for ˛ D 1; : : : ; n. Next, recall a
consequence of Aronszajn’s theorem, which guarantees that if O � R2 is open and
connected, and zuW O!Rm is a smooth map which satisfies

j�zuj � C.jzujC j@szujC j@t zuj/

on O , and .D˛zu/.0/D 0 for all multi-indices ˛ , then zu� 0 on O ; here we are using
subscripts to denote partial differentiation. Since duCJ.u/ �du �j D 0, it follows that
for zu WD ẑ ıu ı z�

�1
we have zusC

zJ .zu/zut D 0, and hence

j�zuj D j.� zJ .zu/zut /sC . zJ .zu/zus/t j

D j� . zJ .zu//szut C . zJ .zu//t zusj

� C.jzusjC jzut j/;

where we have made use of the fact that the C 1 norms of J and u are uniformly
bounded. By assumption u is generally immersed, and hence zu is not a constant map,
so it follows that zu.s; t/D P .s; t/CF.s; t/, where F.s; t/DO.jsC i t jkC1/ and P

is a homogeneous polynomial of degree k 2N .

Next define linear maps

`˛W R
2
!R2 `˛x D ˛x(2)

L˛W R
2n
!R2n L˛.x/D ˛x:(3)

Observe that .L�� zJ /.p/D zJ .�p/DJ0C�O.jpj/, and thus as �!0 we have .L�� zJ /!
J0 in C1 . Let us also define the maps v� WDL��k ı zu ı `� so that

v�.s; t/D P .s; t/C ��kF.�s; �t/

D P .s; t/C �O.jsC i t jkC1/;
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and thus v�! P in C1 . Also observe that

@sv�C .L
�

�k
zJ /.v�/@tv� D �

1�k
zus ı `�C �

1�k zJ .zu ı `�/zut ı `� D 0:

From this together with the fact that v� ! P and .L�
�k
zJ / ! J0 , it follows that

PsCJ0Pt D 0, and hence P has the form

P .s; t/D cH �
�

Re..sC i t/k/; Im..sC i t/k/; 0; : : : ; 0
�
;

where c 2RC , and H 2R2n�2n is a real matrix for which H T H D1 and J0H DHJ0 .
Consequently for ˆ WDH�1 � ẑ and � WD c1=k z� the lemma is proved.

In light of Lemma 2.9, it will be convenient to make the following definition.

Definition 2.10 Let u be a generally immersed J –curve. Then for any interior
point z0 , we define the order of z0 to be

ord.z0/D k � 1;

where k is the integer guaranteed by Lemma 2.9.

Since much of the analysis that follows will regard J –curves as submanifolds, we take
a moment to establish some convenient notation for certain pullback bundles associated
to a given immersion uW S !M with image in a Riemannian manifold .M;g/:

u�TM WD f.�;X / 2 S �TpM W u.�/D pg

T WD f.�;X / 2 u�TM WX 2 T u.T�S/g

N WD f.�;X / 2 u�TM W hX;Y ig D 0 8 .�;Y / 2 T g:

We also define the second fundamental form Bu along the image of u by

Bu 2 �
�

Hom.T � T ;N /
�

given by Bu.X;Y /D .rX Y /?;

where X;Y are sections of T �u�TM , and r is the Levi-Civita connection on u�TM

induced from TM , and X 7!X? is the g–orthogonal projection from u�TM to N .
Recall that the mean curvature vector H� 2 �.N / of an immersion uW S !M is
given by

H� WD

dim SX
iD1

Bu.ei ; ei/

where fe1; : : : ; edim Sg is any orthonormal frame in T . Recall that if the almost
symplectic form ! D g ı .J � 1/ is actually symplectic (ie d! D 0), then J –curves
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are minimal surfaces – or more precisely generalized minimal immersions. However,
when ! is not closed, then immersed J –curves satisfy the mean curvature equation

(4) H� D trS Q

where Q WD JrJ , and trS Q is the trace trS Q WDQ.e; e/CQ.f; f / where e; f 2 T
form an orthonormal frame. Consequently, we can recall the Gauss equations for
two-dimensional immersions uW S !M are

(5) Ksec.Tu.�//DKg.�/� hBu.e; e/;Bu.f; f /igCkBu.e; f /k
2
g;

which reduce to the following when .u;S; j ;J / is an immersed J –curve:

(6) Ksec.Tu.�//C
1
2
k trS Qk2g DKu�g.�/C

1
2
kBuk

2
g:

Next we wish to define Gromov convergence of J –curves, however to do this we
need some preliminary definitions; here we will essentially follow Sections 4 and 7
in Bourgeois et al [1]. To that end, we define a marked J –curve to be a pair .u; �/
where uD .u;S; j ;J / is a J –curve and � � S n @S is a finite set of points called
marked points.

A nodal J –curve is a triple .u; �;D/ where .u; �/ is a marked J –curve, and D is an
unordered finite set of pairs of distinct points D D fxd1; d1; : : : ; xdı; dıg � S n@S with
the property that u.xdi/D u.d i/ for i D 1; : : : ; ı and �\D D∅. As in Section 4.4
of [1], we define SD to be the oriented blow-up of S at the points D , and we let x�i WD

.Txdi
.S/nf0g/=R�C�SD and � i WD .Td i

.S/nf0g/=R�C�SD denote the newly created
boundary circles over the di . Furthermore, we say a nodal J –curve is stable provided
that for each connected component zS of S we have 3 � 2 Genus. zS/C #.z� [ zD/
where z�D zS \� and zD WD zS \D . Note that in the case that zS is compact, then this
condition is equivalent to �. zS/� #.z�[ zD/ < 0, so that there exists a unique complete
finite area hyperbolic metric of constant curvature �1 on S 0 WD S n .�[D/ which is
in the same conformal class as j and for which each connected component of @S is a
geodesic; we denote this metric by hj ;�[D .

A decorated nodal J –curve .u; �;D; r/ is a quadruple for which .u; �;D/ is a nodal
J –curve and r is a set of orientation reversing orthogonal maps ri W

x�i! � i , which
we call decorations. We also define SD;r to be the smooth surface obtained by
gluing the components of SD along the boundary circles fx�1; �1; : : : ; x�ı; �ıg via the
decorations ri . We will let �i denote the special circles x�i D � i � SD;r . Observe
that the smooth map uW S !M then lifts to a continuous map uW SD;r !M .

Definition 2.11 (Gromov convergence) A sequence .uk ;Sk ; jk ;Jk/ of compact
Jk –curves (ie potentially with boundary) is said to converge in a Gromov sense to a
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nodal J –curve with boundary .u;D/ with uD .u;S; j ;J /, provided the following
are true for all sufficiently large k 2N .

(1) Jk ! J in C1 .
(2) There exist sets of marked points �k � Sk n @Sk and �� S n .@S [D/ with

the property that #� D #�k for all k , and the marked J –curves .uk ; �k/

and the nodal curve .u; �;D/ are all stable. We further require that if zS is
a connected component of S and uW zS ! M is a constant map, then 3 �

2 Genus. zS/C #.D\ zS/.
(3) There exists a decoration r for .u;D/ and sequences of diffeomorphisms

�k W S
D;r ! Sk such that �k.�/ D �k and for each i D 1; : : : ; ı the curve

�k.�i/ is a hjk ;�k –geodesic in S 0
k

.

(4) ��
k

hjk ;�k!hj ;�[D in C1loc

�
SD;r n.�[

S
i �i/

�
; here we have abused notation

by letting hj ;�[D also denote its lift to SD;r .
(5) ��

k
uk ! u in C 0.SD;r /.

(6) ��
k

uk ! u in C1loc .S
D;r n

S
i �i/.

With this definition in hand, we finish this section by defining the notion of robust
K–convergence in a Gromov sense.

Definition 2.12 (Robust K–convergence in Gromov sense) Consider an almost Her-
mitian manifold given by .M;J;g/ and a sequence of almost Hermitian structures
.Jk ;gk/ for which .Jk ;gk/! .J;g/ in C1 , and a compact set K � Int.M /, and a
robustly K–proper sequence of generally immersed Jk –curves uk D .uk ;Sk ; jk ;Jk/.
We say that the uk robustly K–converge in a Gromov sense provided there exists
a compact set zK � Int.M / for which K � Int. zK/, and there exist compact regions
zSk � Sk with the property that uk.Sk n

zSk/ � M n zK , and the domain restricted
Jk –curves .uk ; zSk ; jk ;Jk/ converge in a Gromov sense. We additionally require that
the sequence of marked points added to the . zS ; jk/ to obtain Gromov convergence are
chosen so that lengths of each connected component of @ zSk (computed with respect to
the associated Poincaré metric) are uniformly bounded away from zero and infinity.
Moreover we require that each component of the limit curve with nonempty boundary is
nonconstant, and u1 restricted to some neighborhood of the boundary is an immersion.

3 Target-local compactness

The goal of this section is to prove Theorem 3.1 below, which is the main result of this
article. Also of importance in this section is the proof of Corollary 3.10 below, which
is a restatement of Theorem A from the introduction.
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Theorem 3.1 Let .M;J;g/ be an almost Hermitian manifold, and let .Jk ;gk/ be a
sequence of almost Hermitian structures which converge in C1 to .J;g/. Also let
K � Int.M / be a compact region, and let uk be a sequence of generally immersed
Jk –curves which are robustly K–proper and satisfy

(1) Areau�
k

gk
.Sk/� CA <1

(2) Genus.Sk/� CG <1.

Then a subsequence robustly K–converges in a Gromov sense.

The proof of Theorem 3.1 consists of three main steps. The first step is to prove
Theorem 3.1 with the additional assumptions that the curves are immersed and kBuk

kL1

is uniformly bounded, but without the assumption of bounded topology; this is the
content of Section 3.1. The second step is to use this result to prove Theorem 3.1 with
the additional assumptions that kBuk

kL2 is uniformly bounded and that the number
of critical points of the uk are uniformly bounded; this is the content of Section 3.2.
Finally, the third step is to use this result to prove Theorem 3.1 with no additional
assumptions.

3.1 Compactness with kBkL1 bounds

In this section we prove the following result.

Proposition 3.2 Let .M;J;g/ be a compact almost Hermitian manifold with bound-
ary, and let .Jk ;gk/ be a sequence of almost Hermitian structures which converge
in C1 to .J;g/. Also let K � Int.M / be a compact region, and let uk be a sequence
of immersed compact Jk –curves which are robustly K–proper. Suppose further that

(1) Areau�
k

gk
.Sk/� CA <1

(2) sup�2Sk
kB

gk
uk
.�/kgk

� CB <1.

Then a subsequence robustly K–converges. Here B
gk
uk

denotes the second fundamental
form the immersions uk W Sk !M computed with respect to the metrics gk on M .

Proof We note that as a consequence of Proposition 2.7, it is sufficient to show that a
subsequence robustly Kloc –converges. Consequently, we need some convenient local
parameterizations. In particular we will consider local graphical parameterizations over
coordinate tangent planes. We make this precise with the following.
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Proposition 3.3 (Uniform local graph) Let M be a be a compact manifold of dimen-
sion 2n and possibly with boundary. Let .Jk ;gk/! .J;g/ be a sequence of almost
Hermitian structures on M which converge in C1 . Fix a compact set K � Int.M /,
and a constant CB > 0. Then there exist positive constants r0;C0;C1;C2;C3; : : : de-
pending only on CB , distg.K; @M /, and the geometry of .M;J;g/ with the following
significance. For each proper immersed Jk –curve denoted by .uk ;Sk ; jk ;Jk/ for
which

@Sk D u�1
k .@M / and sup

�2Sk

kBgk
uk
.�/k � CB;

and each � 2 Sk such that uk.�/ 2 K there exists a map �W Dr0
! Sk and geodesic

normal coordinates ˆW Bgk

2r0
.u.�//!R2n with the following properties.

(1) zu.s; t/ WDˆ ıu ı�.s; t/D
�
s; t; zu3.s; t/; : : : ; zu2n.s; t/

�
.

(2) �.0/D � , zu.0; 0/D 0, and D˛zu
i.0; 0/D 0 for j˛j D 1 and i D 3; : : : ; 2n.

(3)
P
j˛jD1

P2n
iD3 kD˛zu

ik2
C 0.Dr0

/
� 10�20 and kzukC k.Dr0

/ � Ck for k 2N .

(4) For Euclidian coordinates �D .s; t/, on Dr0
, we have

1
2
j�j � dist.ukı�/�gk

.0; �/� 2j�j and 1
2
j�j � distgk

�
uk.�.�//;uk.�.0//

�
� 2j�j:

A proof of Proposition 3.3 was given by the author in [3]; the idea of the proof goes
as follows. First one shows that J –curves satisfy an inhomogeneous mean curvature
equation of the form H D trS Q with Q a tensor on M . Next one writes this equation
in local coordinates on M to see that locally the u solve a second order partial
differential equation. The uniform curvature bound guarantees that in geodesic normal
coordinates, in a small disk centered at � tangent planes don’t deviate too much from
being “horizontal.” One concludes the existence of a graphical parameterization, in
which case the partial differential equation that the graphically (but not holomorphically)
parameterized J –curves solve is uniformly elliptic. One readily sees that uniform
curvature bounds then guarantee uniform C 2 bounds, in which case the uniform bounds
on the kD˛zu

ik with j˛j> 2 then follows from the usual elliptic regularity theory.

In order to prove robust Kloc –convergence we must now show that the parameterizations
of Proposition 3.3 can be used to construct a uniformly robust K–cover. The desired
convergence will then follow essentially from the Arzelà–Ascoli theorem. To construct
the desired K–cover, we first recall the extrinsic monotonicity of area lemma.
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Proposition 3.4 (Monotonicity of area) Let .M;J;g/, be a compact almost Hermit-
ian manifold possibly with boundary. Then for all .J 0;g0/ sufficiently close to .J;g/
in a C 2 –sense, the following holds. Let .u;S; j ;J 0/ be a compact generally immersed
pseudoholomorphic curve for which u.@S/\Og0

r .u.�//D∅ for some r > 0 satisfying

8r <min
�
C�1; injg.u.�//

�
;

sup
p2M

jKg
sec.p/j �

1
4
C 2 and sup

p2M

krJkg �
1
4
C;where

where r is the Levi-Civita connection associated to g and jKg
sec.p/j is defined by

(7) jKg
sec.p/j WD supfjKg

sec.X;Y /j WX;Y 2 TpM and X ^Y ¤ 0g:

Then for all 0< a< b � r we have

1

a2
Areau�g0

�
Sa.�/

�
�

2

b2
Areau�g0

�
Sb.�/

�
;

where Sa.�/ is the connected component of u�1
�
Og0

a .u.�//
�

which contains � . In
particular, letting a! 0 and b D r yields the familiar result

(8)
�r2

2
� Areau�g0

�
Sr .�/

�
:

A proof of the above proposition can be found in [3]; it is a modification of the well
known result for minimal surfaces. Also note that the weaker version of monotonicity
given in (8), is a very well known result for J –curves (cf Gromov [5], Hummel [6]
and Muller [9]), and it is sufficient for our purposes the remainder of this article. We
now prove a fairly standard covering result.

Lemma 3.5 Let K , M , .Jk ;gk/, and uk , be as in the hypotheses of Proposition 3.2.
Then after passing to a subsequence, a robust uniform K–cover can by obtained using
only the graphical parameterizations � given by Proposition 3.3.

Proof We begin by fixing two auxiliary compact regions3 yK; zK � M for which
K � Int. yK/, yK � Int. zK/, and zK � Int.M /, and for which the uk are robustly zK–
proper. Observe that the functions defined by fk.p/ WD .distgk

.p; yK//2 , are all smooth
in a neighborhood of the form O. yK/ n yK . Observe that the functions fk ı uk have
critical values which are the compliment of an open dense set in .0; �/. It follows that
there exists some �0> 0 which is not a critical value of any of the uk , and hence the Jk

curves .uk ;u
�1
k
.ff � �0g/; jk ;Jk/ satisfy the hypotheses of Proposition 3.3. Without

loss of generality, we will henceforth assume that Sk D u�1
k
.ff � �0g/. Then for each

3See Definition 2.1.
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� 2 u�1
k
. yK/ we let ��;k W Dr0

! Sk and ˆ� W O
gk

2r0
.uk.�//! R2n denote the maps

guaranteed by Proposition 3.3. Next, for each k , choose f�1;k ; �2;k ; : : : ; �mk ;kg �

u�1
k
. yK/ so that the open sets

Ou�
k

gk

r0=8
.�1;k/;O

u�
k

gk

r0=8
.�2;k/; : : : ;O

u�
k

gk

r0=8
.�mk ;k/

are maximally disjoint. For clarity, we define �i;k WD ��i;k ;k so that �i;k.0/ D �i;k .
We now observe that to complete the proof of Lemma 3.5, it is sufficient to prove
the following two claims: firstly there exists an m 2 N such that mk � m for all
sufficiently large k , and secondly

(9) u�1
k . yK/�

mk[
iD1

�i;k.Dr0=2/:

We prove the former statement first. Indeed, recall that by Proposition 3.3, we have

uk ı�i;k.@Dr0
/\Ogk

r0=2

�
uk.�i;k/

�
D∅;

so by Proposition 3.4 it follows that

�.r0=16/2=2� Areau�
k

gk

�
Sr0=16.�i;k/

�
;

where Sr0=16.�i;k/ is the connected component of u�1
k

�
Bgk

r0=16
.uk.�i;k//

�
contain-

ing �i;k . Again by Proposition 3.3, one finds that

Sr0=16.�i;k/�Ou�
k

gk

r0=8

�
�i;k.0/

�
:

Since the these latter sets are disjoint, it follows that

2�9mk�r2
0 �

mkX
iD1

Areau�
k

gk

�
Ou�

k
gk

r0=8

�
�i;k.0/

��
� Areau�

k
gk
.Sk/� CA;

and thus the mk are uniformly bounded. To prove the latter statement, namely the
containment (9), we first observe that as a consequence of Proposition 3.3, it follows
that Ou�

k
gk

r0=4
.�i;k/� �i;k.Dr0=2/, and thus to prove (9) it is sufficient to show that

(10) u�1
k . yK/�

mk[
iD1

Ou�
k

gk

r0=4
.�i;k/:

To see this, we suppose not. Then there exists � 2 u�1
k
. yK/ such that

min
1�i�mk

distu�
k

gk
.�; �i;k/� r0=4:
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However, it then follows that for all i D 1; : : : ;mk we have

Ou�
k

gk

r0=8
.�/\Ou�

k
gk

r0=8
.�i;k/D∅;

but by the maximality of the

Ou�
k

gk

r0=8
.�1;k/;O

u�
k

gk

r0=8
.�2;k/; : : : ;O

u�
k

gk

r0=8
.�nk ;k/;

we must have
Ou�

k
gk

r0=8
.�/\Ou�

k
gk

r0=8
.�i;k/¤∅

for some i 2 f1; : : : ;mkg. This contradiction proves (10), and hence completes the
proof of Lemma 3.5.

With Lemma 3.5 in hand, we now complete the proof of Proposition 3.2. To that end, we
note that it is sufficient to prove that for each i D 1; : : : ;m a subsequence of the maps
uk ı�i;k converges in C1.Dr0��0 ;M / for some small �0 2 .0; r0=2/. To see this, we
first note that after passing to a subsequence we arrange that for each i D 1; : : : ;m the
sequence of points uk ı�i;k.0/ converges, as well as linear maps T0ˆ

�1
i;k
W T0R2n!

Tukı�i;k.0/M ; here, as before with � , we have let ˆi;k WD ˆ�i;k ;k be the geodesic
polar coordinates guaranteed by Proposition 3.3. By that same proposition, all the
derivatives of the maps ˆi;k ıuk ı�i;k are uniformly bounded, and hence by the Arzelà–
Ascoli theorem, it follows that after passing to a further subsequence the uk ı �i;k

converge in C1.Dr0��0 ;M /. Furthermore we have shown that the �i;k W Dr0��0!Sk

form a uniform robust K–cover, and hence we have passed to a subsequence for
which the uk robustly Kloc –converge. The proof of Proposition 3.2 now follows from
Proposition 2.7.

3.2 Compactness with kBkL2 bounds

The purpose of this section is to prove Theorem 3.6 below.

Theorem 3.6 Let .M;J;g/, .Jk ;gk/ and K be as in the hypotheses of Proposition 3.2.
Let uk D .uk ;Sk ; jk ;Jk/ be a robust K–proper sequence of compact Jk –holomorphic
curves which satisfy

(1) Genus.Sk/� CG <1

(2) Areau�
k

gk
.Sk/� CA <1

(3) #Zuk
� CZ <1

(4)
R

Sk
kB

gk
uk
k2gk
� CTotal <1,

where CG , CA , CZ , and CTotal do not depend on k . Then a subsequence robustly
K–converges in a Gromov sense.

Geometry & Topology, Volume 15 (2011)



Target-local Gromov compactness 785

Proof We begin by letting zK� Int.M / be a compact set for which K� Int. zK/, and for
which the uk are robustly zK–proper. Next we observe that since #Zuk

�CZ , it follows
that after passing to a subsequence, we may assume that Zuk

D fz1;k ; z2;k ; : : : ; zn0;kg,
and for each i D 1; : : : ; n0 either the sequence uk.zi;k/ converges to a point in zK or
else distgk

�
zK;uk.zi;k/

�
� ı > 0; we denote the associated limit set in zK by S1 . Next

we claim the following.

Lemma 3.7 (Finite points of curvature blowup) Let .M;J;g/, .Jk ;gk/, K , and
uk D .uk ;Sk ; jk ;Jk/ be as in Theorem 3.6. Fix a compact set K0 �M such that
K � Int.K0/ and K0 � Int. zK/. Then after passing to a subsequence, there exists a
finite set S2 �K0 with the following significance. For each � > 0, there exists C > 0

and k0 2N such that for all k � k0 ,

sup
�2u�1

k
.K0nOg

� .S2//
kBgk

uk
.�/k2 � C:

Proof The proof of Lemma 3.7 has one major technical component, which we now
state.

Proposition 3.8 (Curvature threshold) Let .M;J;g/ be a compact almost Hermitian
manifold possibly with boundary, and let � > 0. Then for all .J 0;g0/ sufficiently
close to .J;g/ in a C 3 sense, there exists an „> 0 depending on � and the geometry
of .M;J;g/ with the following significance. If .u;S; j ;J 0/ is a compact immersed
J 0–curve, with � 2 S satisfying distg0.u.�/; @M / � � , and u.@S/\Og0

„
.u.�//D∅,

and for some 0< r < „,

kBg0

u .�/kg0 �
1

rZ
Sr .�/

kBg0

u k
2
� „;then

where integration is taken with respect to u�!0 where !0 WD g0 ı .J 0 � 1/, and Sr .�/

is the connected component of u�1
�
Og0

r .u.�//
�

which contains � .

A proof of this result was provided by the author in [3]; it is a modification of the
proof of the �–regularity of the second fundamental form of a minimal surface in a
Riemannian three-manifold (cf Choi and Schoen [2]). We proceed with the proof of
Lemma 3.7.

Next we define an iterative procedure to construct the desired set S2 . Begin by defining
S2;0 WD S1 . Then either it’s the case that there exists a sequence �1;k 2 u�1

k
.K0/

such that lim sup kBgk
uk
.�1;k/k D 1 and distg.S2;0; �1;k/ � � for some � > 0, or
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else we define S2 WD S2;0 and we are done; we suppose the former. In this case we
pass to a subsequence so that kBgk

uk
.�1;k/k!1, and uk.�1;k/ converges to a point

p1 2K0 , and we define the finite set S2;1 WD S2;0[fp1g. Again either it’s the case
that there exists a sequence �2;k 2 u�1

k
.K0/ such that lim sup kBgk

uk
.�2;k/k D1 and

distg.S2;1; �2;k/� � for some � > 0, or else we define S2 WDS2;1 and we are done; we
again suppose the former and pass to a further subsequence so that kBgk

uk
.�2;k/k!1,

uk.�2;k/ converges to a point p2 2K0 , and we define S2;2 WD S2;1[fp2g. We now
iterate this procedure to construct a collection of sets: S2;0 � S2;1 � � � � .

We now claim that this process must terminate after a finite number of iterations. Indeed,
fix � > 0 such that Og

2�
.K0/ � Int. zK/, and let „ > 0 be the constant guaranteed by

Proposition 3.8 and is associated to .M;J;g/ and � ; also fix n0 2 N , and suppose
that k is sufficiently large so that for some ı 2 .0; „/ the following conditions hold:

(1) distg.S1;S2;n0
nS1/� ı

(2) distg
�
uk.�i;k/;uk.�j ;k/

�
� ı for all i; j 2 f1; : : : ; n0g for which i ¤ j

(3) for all i 2 f1; : : : ; n0g we have kBgk
uk
.�i;k/k � 2=ı .

Then by Proposition 3.8, it follows that

n0„ �

n0X
iD1

Z
S

gk
ı=2
.�i;k/

kBgk
uk
.�i;k/k

2
gk
�

Z
Sk

kBgk
uk
k

2
� CTotal;

and thus n0 is bounded. This completes the proof of Lemma 3.7.

We now continue with the proof of Theorem 3.6. As a consequence of Lemma 3.7,
it follows that after passing to a subsequence, there exist compact sets Ki �M for
i D 0; : : : ; 4 such that KiC1 � Int.Ki/, K0 � Int. zK/, K � Int.K4/, and such that

sup
�2u�1

k
.K1nK4/

kBgk
uk
.�/kgk

� C <1;

for all k . In this case we define �M WD Int.K1/ nK4 and yK WD K2 n Int.K3/, and
yuk WD .uk ; ySk ; jk ;Jk/ where ySk WD u�1

k
. �M /. Observe that �M , yK , and the yuk satisfy

the hypotheses of Proposition 3.2, and thus after passing to a further subsequence, there
exist a compact manifold yS with boundary, and there exist maps y k W

yS! ySk which are
diffeomorphic with their images and satisfy uk

�
ySk n
y k. yS/

�
� �M n yK , and additionally

the maps yuk ı
y k W
yS ! �M converge in C1 to an immersion. Consequently, we may

define the set of boundary circles

�� WD .uk ı
y k/
�1.K3/\ @ yS and �C WD .yuk ı

y k/
�1
�
M n Int.K2/

�
\ @ yS
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so that ��\�C D∅ and @ yS D ��[�C . We can also define

zSk WD u�1
k .Int.K2//[ y k. yS/;

so that @ zSk D
y k.�C/, and we have y k W

yS ! zSk . By construction we have

(11) uk.Sk n
zSk/�M nK2 and uk. zSk/�K0

for all k ; also recall that K � Int.K2/ and K0 � Int. zK/. Next we observe that the
number of boundary components of zSk is equal to the number of connected components
of �C which is independent of k ; furthermore since Genus.Sk/� CG it follows that
Genus. zSk/ � CG . Also note that the number of connected components of zSk must
also be bounded; this follows from monotonicity of area4, which guarantees that the
image of each closed connected component of zSk captures a threshold amount of area.
As a consequence of these facts, it follows that after passing to a further subsequence
the zSk are all diffeomorphic; we denote these diffeomorphisms 'k W

zS ! zSk . Thus
we define

zuk WD .zuk ; zS ; zjk ;Jk/D .uk ı'k ; zS ; '
�
k jk ;Jk/;

and observe that by construction these Jk –curves have uniformly bounded area, and
their images are contained in K0� Int.M /. We would like to claim that a subsequence
converges in a Gromov sense, however some care must be taken near @ zS , a matter to
which we now attend.

Let A WD
Sn0

iD1
Ai be the union of pair-wise disjoint annular neighborhoods of �C� yS ,

and let �i W Ai! S1 � Œ0; 1/ be diffeomorphisms. Next define the diffeomorphisms

 i;k WD '
�1
k ı

y k ı �
�1
i W S

1
� Œ0; 1/!  i;k

�
S1
� Œ0; 1/

�
� zS ;

and observe that the  i;k satisfy the following.

(1) For each fixed k , the images of the maps  i;k are pairwise disjoint.

(2) Each  i;k is a diffeomorphism with its image.

(3) For each fixed k we have @ zS D
Sn0

iD1
 i;k.S

1 � f0g/.

(4) For each fixed i the maps zuk ı i;k converge in C1 to an immersion.

By construction, for all k remaining in our subsequence we have uk

�
Sk n'k. zS/

�
�

M nK2 with K2� Int. zK/, and by Proposition 3.9 below, it follows that a subsequence
of the zuk converge in a Gromov sense. This completes the proof of Theorem 3.6.

4See Proposition 3.4.
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Proposition 3.9 Let .M;J;g/ be a compact almost Hermitian manifold with bound-
ary, and let .Jk ;gk/ be a sequence of almost Hermitian structures which converge
in C1 to .J;g/. Suppose uk D .uk ;S; jk ;Jk/ is a sequence of compact Jk –curves
which satisfy the following conditions.

(1) Areau�
k

gk
.S/� C <1.

(2) distg
�
uk.S/; @M

�
� ı > 0.

(3) For i D 1; : : : ; n (where n is the number of connected components of @S )
and for all k 2 N , there exist maps  i;k W S

1 � Œ0; �/! S with the following
properties.

(a) For each fixed k , the images of the maps  i;k are pairwise disjoint.
(b) Each  i;k is a diffeomorphism with its image.
(c) For each fixed k we have @S D

Sn
iD1  i;k.S

1 � f0g/.
(d) For each fixed i the maps uk ı i;k converge in C1 to an immersion.

Then a subsequence of the uk converges in a Gromov sense. Furthermore, the sequence
of marked points added to the .S; jk/ in order to obtain Gromov convergence can be
chosen in such a way so that the lengths of the connected components of @S (with
respect to the Poincaré metrics) are uniformly bounded away from zero and infinity.
Moreover, each component of the limit curve with nonempty boundary is nonconstant,
and the map is an immersion in a neighborhood of the boundary.

A proof of this result can be found in Section 4.2.

3.3 Compactness without curvature bounds

In this section we prove Theorem 3.1, as stated in the beginning of Section 3. Before
providing the proof of this result, we assume its validity for the moment and state an
immediate corollary (stated in the introduction as Theorem A).

Corollary 3.10 Let .M;J;g/ be a compact almost Hermitian manifold with boundary.
Let .Jk ;gk/ be a sequence of almost Hermitian structures which converge to .J;g/
in C1.M /, and let .uk ;Sk ; jk ;Jk/ be a sequence of compact Jk –curves (possibly
disconnected, but having no constant components) satisfying

(1) uk W @Sk ! @M

(2) Areau�
k

gk
.Sk/� CA

(3) Genus.Sk/� CG .
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Then there exists a subsequence (still denoted with subscripts k ) of the uk , an � > 0,
and an open dense set I � Œ0; �/ with the following significance. For each ı 2 I , define
zSı

k
WD f� 2 Sk W distg.uk.�/; @M /� ıg; then the Jk –curves .uk ; zS

ı
k
; jk ;Jk/ converge

in a Gromov sense.

Proof Begin by defining a function f W M !R by f .p/ WD distg.p; @M /, and define
the sets M ı WDf �1.Œı;1//. Observe that by construction M DM 0 , M ı2� Int.M ı1/

whenever ı2> ı1 , and for all sufficiently small ı > 0 the sets M ı are compact regions,
and kdf k is uniformly bounded away from zero near @M . We then apply Theorem 3.1
to this sequence with K D M 1 , to obtain a subsequence. Apply Theorem 3.1 to
this subsequence with K DM 1=2 to obtain a further subsequence. We iterate this
procedure with KDM 1=` and ` 2N , and pass to further and further subsequences.
Taking a diagonal subsequence we are left with a subsequence of Jk –curves which
robustly K–converge in a Gromov sense for each K� Int.M /. The regular values of f
composed with the limit curves are an open dense set I � .0; ı/ for some sufficiently
small ı > 0. The corollary is then immediate.

We proceed with the proof of Theorem 3.1 momentarily, but first we state a result upon
which the proof heavily relies.

Proposition 3.11 (A priori total curvature bounds) Let .M;J;g/, .Jk ;gk/, K
and uk be as in the hypotheses of Theorem 3.1. Then for each compact set zK� Int.M /

for which K� Int. zK/ and for which the uk are robustly zK–proper, there exist positive
constants CZ and CTotal with the following significance. For zSk WD u�1

k
.Int. zK//, the

Jk –curves defined by zuk WD .uk ; zSk ; jk ;Jk/ are robustly K–proper, have uniformly
bounded area and genus, and satisfy

(1) #Zuk
� CZ <1

(2)
R
zSk
kB

gk
uk
k2 � CTotal <1.

Postponing the proof of Proposition 3.11 for the moment, we now use it to prove
Theorem 3.1.

Proof of Theorem 3.1 We begin by applying Proposition 3.11 to obtain the compact
set zK and associated Jk –curves zuk . However these curves satisfy the hypotheses of
Theorem 3.6, and so a subsequence robustly K–converges in a Gromov sense.

The proof of Proposition 3.11 relies on two main technical results, which we now state.
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Proposition 3.12 (Desingularization) Consider .M;J;g/ an almost Hermitian man-
ifold, and a compact generally immersed J –curve u D .u;S; j ;J / with immersed
boundary. Then for each � > 0, there exists an 0<�0<� and an immersion yuW S!M

such that the following properties hold.

(D1) The sets B�0
.z/ WD f� 2 S W distu�g.z; �/ < �0g for z 2Zu WD fz 2 S W TzuD 0g

are pairwise disjoint. Also yu.�/D u.�/ whenever � 2 S n
�S

z2Zu
B�0

.z/
�
.

(D2) sup�2S distg
�
u.�/; yu.�/

�
� �0 .

(D3) For every vector X tangent to the image of yu we have

k.JX /?kg � �0kXkg;

where the map Y 7! Y ? is the g–orthogonal projection to the normal bundle
over the immersion yuW S !M .

(D4) For any open set U � S ,

jAreau�g.U/�Areayu�g.U/j � �0:

(D5) The following point-wise estimate holds

sup
�2S

Kyu�g.�/� �0C sup
q2M

jKsec.q/jC sup
q2M

J PqDPq

1
2
k trPq

JrJk2g

where Kyu�g.�/ is the Gaussian curvature of S at the point � with respect to
the metric yu�g , jKsec.q/j is defined as in (7), and trPq

JrJ is the trace of the
.1; 2/–tensor JrJ along the J –invariant plane Pq DRe˚RJe � TqM .

(D6) Let U � S be an open set, and define the set

U�0 WD f� 2 U W distu�g.�; @U/ > �0g:

�

Z
U

Ku�gC .1� �0/2�
X

z2Zu\U�0

ord.z/� �
Z
U

Kyu�gC �0Then

where ord.z/ is given as in Definition 2.10.

The proof of Proposition 3.12 is given Section 4.3. We take a moment to summarize the
results of said proposition. Roughly it guarantees that any J –curve can be perturbed a
C 0 small amount only near its critical points, in such a way that it becomes immersed,
and the resulting tangent planes are C 0 –close to being J –invariant, the resulting area
changes by only a small amount, the Gaussian curvature is uniformly bounded from
above, and each original critical point is locally traded for a threshold amount of total
curvature.
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We now continue with the proof of Proposition 3.11. To that end, we turn our attention
towards showing that it is not possible for too many nodes to develop, and that away
from a finite set of points in zK , the integral of the Gaussian curvature is bounded from
below. We make this precise with Proposition 3.13 below.

Proposition 3.13 Let .M;J;g/ be an almost Hermitian manifold possibly with
boundary, suppose .Jk ;gk/! .J;g/ in C1.M /, and let K ��M be a compact
set. Suppose further that uk WD .uk ;Sk ; jk ;Jk/ is a sequence of compact generally
immersed Jk –curves which are robustly K–proper, and satisfy

(1) Areau�
k

gk
.Sk/� CA <1

(2) Genus.Sk/� CG <1

(3) Zuk
\ @Sk D∅.

Furthermore, for a sequence of positive numbers �k ! 0, let vk be the immersed
approximations associated to .uk ; �k/ yielded by Proposition 3.12. Then after passing
to a subsequence, there exists a finite set S D f�1; : : : ; �n0

g �M and ı0 > 0 with the
following significance. For each 0< ı < ı0 , there exists � > 0 and k0 2N such that

if k � k0 and vk.�/ 2K nO
gk

ı
.S/ then injv

�
k

gk

Sk
.�/ > �;

where injv
�
k

gk

Sk
.�/ is the injectivity radius of Sk at the point � computed with respect to

the metric v�
k
gk . Furthermore, for each 0 < ı < ı0=2 there exists a constant C > 0

such that for all sufficiently large k in the subsequence we have

�

Z
ySı

k

Kv�
k

gk
� C; where ySık WD v

�1
k

�
Int.K/ nOgk

ı
.S/

�
;

where Kv�
k

gk
W ySı

k
!R is the Gaussian curvature associated to the metric v�

k
gk .

The proof of Proposition 3.13 can be found Section 4.4. Roughly, the idea is to show
that if there were many locations in which the injectivity radius were very small,
then one could remove many small loops and disconnect the Jk –curves into many
connected components each of which has a threshold amount of area, which would
yield a contradiction. Then one sees that in the absence of arbitrarily small injectivity
radii, exceedingly negative Gaussian curvature results in exceedingly large area, which
also yields a contradiction. At present, we now provide the proof of Proposition 3.11

Proof of Proposition 3.11 Suppose not. Then there exists a compact set zK� Int.M /

with K� Int. zK/ for which the uk are robustly zK–proper, and either the total curvature
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or the number of critical points is unbounded on zK . Since the uk are robustly zK–
proper it follows that there exist compact regions †k � Sk with the property that
Zuk
\@†k D∅, and uk.Sk n†k/�M nK0 for some compact set K0 � Int.M / for

which zK� Int.K0/. By assumption, the restricted Jk –curves uk W †k!M are again
robustly zK–proper, and this sequence of curves again has either an unbounded number
of critical points or else unbounded total curvature on zK . Rather than expending
notation to keep track of the uk restricted to the †k , we will (without much loss of
generality) assume †k � Sk for all k .

Next we consider a sequence of positive numbers �k! 0 as k!1, and consider the
immersed approximations vk associated to .uk ; �k/ and yielded by Proposition 3.12.
We then apply Proposition 3.13 for some auxiliary compact set {K� Int.M / for which
zK � Int. {K/ and for which the uk are again robustly {K–proper. Consequently, after
passing to a subsequence there exists a finite set S D f�1; : : : ; �n0

g �M with the
properties guaranteed by that proposition. As a further consequence of Proposition 3.13,
for each sufficiently small ı>0 there exists a constant C >0 such that for all sufficiently
large k in our subsequence, we have

�

Z
ySı

k

Kv�
k

gk
� C; where ySık WD v

�1
k

�
Ogk

ı
. zK/ nOgk

ı
.S/

�
:

Fix ı > 0 sufficiently small so that the sets Ogk

3ı
.�i/ are pair-wise disjoint for all

sufficiently large k , and Og

4ı
. zK/� Int. {K/. Next define

�M 0
WDOg

3ı
. zK/ nOg

ı
.S/; �M WDOg

2ı
. zK/ nOg

2ı
.S/ and yK WDOg

ı
. zK/ nOg

3ı
.S/:

then for all sufficiently large k we have

(12) �

Z
v�1

k
. �M 0/Kv�

k
gk
� C:

However, recall that the Areau�
k

gk
.Sk/ are uniformly bounded; by property (D4)

of Proposition 3.11 the Areav�
k

gk
.Sk/ are also uniformly bounded. Furthermore by

property (D5) of Proposition 3.12, it follows that the Gaussian curvatures Kv�
k

gk

uniformly point-wise bounded from above. Consequently (12) and property (D6) of
Proposition 3.12 allow us to conclude that for all sufficiently large k we have

(13) #
�
Zuk
\u�1

k . �M /
�
� C 0 and

Z
u�1

k
. �M /

Ku�
k

gk
� C 0;

where C 0 depends on C , g , J , and the uniform area and genus bounds on the uk .
Next we recall the Gauss equations for J –curves:

KsecC
1
2
k trS Qk2 DKgC

1
2
kBk2;
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where Ksec is the sectional curvature and Kg is the Gaussian curvature. Integrating
these equations then yields

1

2

Z
u�1

k
. �M /

kBgk
uk
k

2
D

Z
u�1

k
. �M /

Ksec�

Z
u�1

k
. �M /

Ku�
k

gk
C

1

2

Z
u�1

k
. �M /

k trS Qk2

�
�
kKseckL1 C 2krJk2L1

�
Areau�

k
gk

�
u�1

k . �M /
�
CC 0;

which is uniformly bounded. Combining this fact with the left-most statement of (13),
then shows that the Jk –curves yuk WD .uk ;u

�1
k
. �M /; jk ;Jk/ are robustly yK–proper,

and satisfy the hypotheses of Theorem 3.6. We conclude that after passing to a further
subsequence, there exists a compact manifold xS with boundary, and diffeomorphisms
�k W
xS ! �k. xS/� u�1

k
. �M /� Sk with the following properties:

(1) uk

�
Sk n�k. xS/

�
�Og

3ı
.S/[ .M n zK/.

(2) uk ı�k j@ xS converges in C1 to an immersion.

(3)
R
xS kB

gk

ukı�k
k2gk

is uniformly bounded.

(4) #Zukı�k
is uniformly bounded.

The first two properties are consequences of Theorem 3.6, and the last two are by
construction. We now take a moment to recall our method of proof for Proposition 3.11:
we are assuming that either the number of critical points or total curvature in zK is
unbounded. However, after passing to a subsequence we see as a consequence of points
(1), (3) and (4) above, it is only possible for these quantities to blow up in the set
Og

3ı
.S/D

Sn0

iD1
Og

3ı
.�i/. This leads us to define

{Si;k WD
�
Sk n�k. xS/

�
\u�1

k

�
Og

3ı
.�i/

�
and {ui;k D .uk ; {Si;k ; jk ;Jk/:

We note that these curves have uniformly bounded area and genus, and each has
image in Og

3ı
.�i/. Also note that for each i D 1; : : : ; n0 we have @ {Si;k � �k.@ xS/,

and by point (2) above, uk ı�k j@ xS converge in C1 to an immersion. Consequently
the geodesic curvature �u�

k
gk

of @ {Si;k �
{Si;k is uniformly bounded. Thus we let

vi;k WD u
�k

k
be the approximations of uk j {Si;k

guaranteed by Proposition 3.12. Arguing
as before (ie making use of properties (D4), (D5), and (D6) of Proposition 3.12) we
see that to complete our proof by contradiction, it is sufficient to show that

(14) �

Z
{Si;k

Kv�
i;k

gk
� C 00 <1

for all sufficiently large k . However, at this point we invoke the Gauss–Bonnet theorem,
and find that

�

Z
{Si;k

Kv�
i;k

gk
D��. {Si;k/C

Z
@ {Si;k

�v�
i;k

gk
:
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We have already argued that the last term on the right hand side is uniformly bounded,
so it is sufficient to show that ��. {Si;k/ is uniformly bounded. However recall that
��. {Si;k/D�2C 2 Genus. {Si;k/C b , where b is the number of boundary components
of {Si;k . However Genus. {Si;k/ � Genus.Sk/ � CG , and @ {Si;k � �k.@ xS/ and xS has
finitely many boundary components (and no k –dependence), from which it follows that
indeed ��. {Si;k/ is uniformly bounded. This shows inequality (14) holds, which in turn
provides the desired contradiction, which completes the proof of Proposition 3.11.

4 Proofs

Here we prove some of the more technical results from the previous sections.

4.1 Proof of Proposition 2.7

We begin by fixing some notation. Let �i;k W Di
r0
! Sk be the maps guaranteed by the

definition of Kloc –convergence, and define the maps

zui;k WD uk ı�i;k W Di
r0
!M and zui;1 WD lim

k!1
zui;k W Di

r0
!M:

Note that Dr0
DDi

r0
; in this case the superscript i simply enumerates the domains the

maps �i;k . Note that since the limit is immersed and since the sequence is uniformly
and robustly covered, it is possible to construct a refined uniform and robust cover
which has the additional property that each zui;k and zui;1 is an embedding.

Next we fix a smooth auxiliary Riemannian metric g on M which has the property

(15) kXkxg � kXkzu�
i;k

g

for all X DXq 2 TqDr0
; here xg is the canonical Euclidean metric on Dr0

. Recall our
notation that if .W; zg/ is a Riemannian manifold, p 2W , and � > 0, then

Ozg� .p/ WD fq 2W W distzg.p; q/ < �g:

The proof of Proposition 2.7 is now split into three main steps: constructing the auxiliary
manifold zS , constructing (almost) reparameterizations  k W

zS!Sk , and then showing
that these maps have the desired properties. We approach these steps in order, and
begin with a rather technical result.

Lemma 4.1 Fix r1 2 .0; r0/, and suppose � 2Di
r1

and �0 2Dj
r1

and

(16) distu�
k

g

�
�i;k.�/; �j ;k.�

0/
�
! 0:

Geometry & Topology, Volume 15 (2011)



Target-local Gromov compactness 795

Then for each ı 2
�
0; .r0� r1/=16

�
and all sufficiently large k , the maps

(17) ��1
j ;k ı�i;k W O

zu�
i;k

g

2ı
.�/!O

zu�
j ;k

g

2ı
.�0/

are well defined, and they are smooth diffeomorphisms. Furthermore, with � and �0 as
above and for which (16) holds, and for any points z�2O zu�i;1g

ı
.�/ and z�0 2O zu�j ;1g

ı
.�0/

with zui;1.z�/D zuj ;1.z�
0/ we have

(18) distu�
k

g

�
�i;k.z�/; �j ;k.z�

0/
�
! 0;

and the maps in (17) with domains restricted to O zu�i;1g
ı

.�/ converge in C1 to the
map

(19) zu�1
j ;1 ı zui;1W O zu

�
i;1

g
ı .�/!O zu

�
j ;1

g
ı .�0/:

Proof We begin by fixing k0 2N so that for all k � k0 we have

distu�
k

g

�
�i;k.�/; �j ;k.�

0/
�
< ı:

Next we note that

(20) �i;k W O
zu�

i;k
g

2ı
.�/!O u�

k
g

2ı

�
�i;k.�/

�
is a diffeomorphism; this follows as a consequence of inequality (15), namely

O zu
�
i;k

g

2ı
.�/�Oxg

2ı
.�/�Di

r0
I

a similar statement holds with i and � replaced with j and �0 respectively. Thus to
prove the maps in (17) are smooth diffeomorphisms, it is sufficient to prove that

(21) �i;k

�
O zu
�
i;k

g

2ı
.�/
�
� �j ;k.Dj

r0
/:

To that end, we fix z� 2 Di
r0

such that distzu�
i;k

g.�; z�/ < 2ı . It then follows that
distu�

k
g

�
�i;k.�/; �i;k.z�/

�
< 2ı . By (16) and the triangle inequality, it follows that

distu�
k

g

�
�j ;k.�

0/; �i;k.z�/
�
<3ı , or in other words �i;k.z�/2O

u�
k

g

3ı

�
�j ;k.�

0/
�
. However,

since 3ı < .r0� r1/ it again follows from (15) that

(22) �i;k.z�/ 2O
u�

k
g

3ı

�
�j ;k.�

0/
�
� �j ;k

�
Oxg

3ı
.�0/

�
� �j ;k.Dj

r0
/:

Since z� was an arbitrary point in O zu
�
i;k

g

2ı
.�/, we see that we have proved (21), and

thus the maps in (17) are smooth diffeomorphisms.

To prove the next part of the lemma we assume that z�2O zu�i;1g
ı

.�/ and z�02O zu�j ;1g
ı

.�0/

with zui;1.z�/Dzuj ;1.z�
0/, and we will show that (18) holds. Indeed, since the sequences

of maps zui;k and zuj ;k converge in C1 , it follows that for all sufficiently large k , we
have

distu�
k

g

�
�j ;k.�

0/; �j ;k.z�
0/
�
< 2ı;
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and thus by (17) we can define

z�0k WD �
�1
i;k ı�j ;k.z�

0/ 2O zu
�
i;k

g

2ı
.�/� SDi

.r0C3r1/=4
�Di

r0
:

Passing to a subsequence, we may assume the z�0
k

converge to z�01 2Di
r0

. We then find

zui;1.z�
0
1/D lim

k!1
zui;k.z�

0
k/D lim

k!1
uk

�
�j ;k.z�

0/
�
D zuj ;1.z�

0/D zui;1.z�/:

However, since zui;1W Di
r0
!M is an embedding, it follows that z�D z�01 ; consequently

distzu�
i;k

g

�
z�; ��1

i;k
ı�j ;k.z�

0/
�
! 0, and thus (18) holds.

To prove the last part of the lemma, we observe that ��1
j ;k
ı�i;k D zu

�1
j ;k
ı zui;k which

converges in C1 to zu�1
j ;1 ı zui;1 . This completes the proof of Lemma 4.1

For clarity, now we define

Uij WDDi
r1
\ zu�1

i;1

�
zuj ;1.Dj

r1
/
�

and xUij WD
SDi

r1
\ zu�1

i;1

�
zuj ;1.SDj

r1
/
�
I

we note that xUij is closed and contains the closure of Uij in Di
r0

. Next for ı as
above, and for each i; j 2 f1; : : : ; ng for which xUij ¤∅, and for `D 1; : : : ;mij we
let �ij` 2

xUij be points such that

(23) xUij �

mij[
`D1

O zu
�
i;1

g
ı .�ij`/�Di

r0
:

Note that the finiteness of the f�ij1; �ij2; : : :g is a consequence of the fact that xUij �Di
r0

is compact and
S
�2xUij

O zu�i;1g
ı

.�/ is an open cover of xUij . Next, define �0
ij`
2 SDj

r1
to

be the unique point for which zuj ;1.�
0
ij`
/D zui;1.�ij`/. Now, since the set of points

f�ij`g is finite we may pass to a subsequence (still denoted with subscripts k ) so that
for each pair .�ij`; �

0
ij`
/ one of the two statements holds:

(1) lim inf
k!1

distu�
k

g

�
�i;k.�ij`/; �j ;k.�

0
ij`
/
�
> 0

(2) lim
k!1

distu�
k

g

�
�i;k.�ij`/; �j ;k.�

0
ij`
/
�
D 0.

Thus we may define Pij � f�ij1; : : : ; �ijmij
g to be those points which satisfy the

second condition. For convenience we also define P 0ij WD zu
�1
j ;1 ı zui;1.Pij /. As a

consequence of Lemma 4.1, it follows that the sets

zUij WDDi
r1
\

[
�2P 0

ij

zu�1
i;1 ı zuj ;1

�
O zu
�
j ;1

g
ı .�/\Dj

r1

�
are open, and the maps denoted by zu�1

j ;1ı zui;1W
zUij!

zUji are smooth diffeomorphisms.
We now provide a convenient characterization of the zUij .
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Lemma 4.2 (Characterization of zUij ) Having passed to the subsequence as above,
we suppose that � 2Di

r1
, �0 2Dj

r1
, and

(24) lim inf
k!1

distu�
k

g

�
�i;k.�/; �j ;k.�

0/
�
D 0:

Then � 2 zUij , �0 2 zUji , and zui;1.�/ D zuj ;1.�
0/. Also, if � 2 zUij , �0 2 zUji , and

zui;1.�/D zuj ;1.�
0/ then

(25) lim
k!1

distu�
k

g

�
�i;k.�/; �j ;k.�

0/
�
D 0:

Proof As we shall see, this result follows quickly from the definition of the zUij and
Lemma 4.1. We begin by noting that if � and �0 are as in the first part of the lemma,
and if (24) holds, then since the sequences of points zui;k.�/ and zuj ;k.�

0/ converge,
it follows that zui;1.�/D zuj ;1.�

0/, and thus � 2 Uij and �0 2 Uji . By construction,
there exists �ij`0

2 xUij and �0
ij`0
2 xUji which satisfy

(1) zui;1.�ij`0
/D zuj ;1.�

0
ij`0

/

(2) distzu�
i;1

g.�; �ij`0
/ < ı

(3) either

(a) lim
k!1

distu�
k

g

�
�i;k.�ij`0

/; �j ;k.�
0
ij`0

/
�
D 0, or

(b) lim inf
k!1

distu�
k

g

�
�i;k.�ij`0

/; �j ;k.�
0
ij`0

/
�
> 0.

Since (24) holds it follow from Lemma 4.1 that property (3a) must hold. It then follows
from the definition of the zUij , that � 2 zUij , and thus �0 2 zUji .

To prove the second part of the lemma we note that if � 2 zUij and �0 2 zUji , with
zui;1.�/D zuj ;1.�

0/, then again by construction there exist �ij`0
2 xUij and �0

ij`0
2 xUji

which satisfy properties (1), (2) and (3) above. Observe that since � 2 zUij , it follows
from the definition of the zUij that it must be the case that property (3)(a) holds. By
Lemma 4.1 it then follows that (25) must also hold.

Later it will be convenient to have the following corollary at our disposal.

Corollary 4.3 For each r4 2 .0; r1/ there exists k0 2 N and � > 0 such that the
following holds. If k � k0 , � 2Di

r4
, �0 2Dj

r4
, i ¤ j , and

distu�
k

g

�
�i;k.�/; �j ;k.�

0/
�
< �;

then � 2 zUij and �0 2 zUji . Furthermore, for each compact set V � zUij , and each
open set O � Dj

r for which zu�1
j ;1 ı zui;1.V/ � O there exists a k0 2 N such that

�i;k.V/� �j ;k.O/ for all k � k0 .
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Proof Suppose not. Then for some r4 2 .0; r1/ (and after possibly passing to a
subsequence) there exist some i ¤ j and sequences of points �k 2Di

r4
and �0

k
2Dj

r4
,

such that

(26) distu�
k

g

�
�i;k.�k/; �j ;k.�

0
k/
�
! 0;

and �k …
zUij . After passing to a further subsequence, we assume that these sequences

converge: �k ! �1 2 SDi
r4

and �0
k
! �01 2

SDj
r4

. By the uniform convergence of the
zui;k and zuj ;k it follows that zui;1.�1/D zuj ;1.�

0
1/, or in other words �1 2 Uij and

�01 2 Uji . Furthermore,

distu�
k

g

�
�i;k.�1/; �j ;k.�

0
1/
�

� distzu�
i;k

g.�k ; �1/C distu�
k

g

�
�i;k.�k/; �j ;k.�

0
k/
�
C distzu�

j ;k
g.�
0
k ; �
0
1/

! 0:

Thus by Lemma 4.2, we have �1 2 zUij , but the latter is an open set, so �k 2
zUij for

all sufficiently large k . This contradiction completes the proof of the first part of the
corollary.

To prove the second part, argue by contradiction. Indeed, if the second part were not
true, then there would exist a closed (and hence compact) set V � zUij and open set
O �Dj

r which contains the image of V via zu�1
j ;1 ı zui;1 with the property that there

exist arbitrarily large k 2N for which �i;k.V/ª �j ;1.O/. After passing to a further
subsequence, one constructs a sequence of points y�k � V which converge to y�1 2 V
and have the property that

lim inf distu�
k

g

�
�i;k.y�k/; �j ;k ı zu

�1
j ;1 ı zui;1.V/

�
> 0:

However, this implies that

lim inf distu�
k

g

�
�i;k.y�1/; �j ;k ı zu

�1
j ;1 ı zui;1.y�1/ > 0;

but this of course is a contradiction since y�1 2 V � zUij . This completes the proof of
the corollary.

We now define the topological space S1 WD
Fn

iD1 D
j
r1
=� where � � �0 provided

� 2 zUi;j , �0 2 zUji , and zui;1.�/D zuj ;1.�
0/. We now claim the following.

Lemma 4.4 S1 is a smooth manifold.

The proof of Lemma 4.4 is elementary; we do not provide it here. We now turn our
attention to constructing the desired reparameterizations of the uk . To that end we
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define the local normal bundles �i W E i! zui;1.Di
r1
/ with total space

E i
WD fX 2 TpM W p D zui;1.�/ and 0D hX;Y ig 8Y 2 Tpzui;1.Di

r1
/g:

Given a smooth unitary trivialization ˆi W E i ! zui;1.Di
r1
/ �Rdim M�dim S we can

consider the map

‰i W zui;1.Di
r1
/�B�!M

‰i.�;X / WD expg

�iıˆ
�1
i
.�;X /

�
ˆ�1

i .�;X /
�
;

which is a diffeomorphism with its image provided � > 0 is sufficiently small; here
B� WD fRdim M�dim S W kXk < �g, and expg is the exponential map associated to the
metric g . Since i D 1; : : : ; n, let us suppose that � is sufficiently small so that each of
these maps is a diffeomorphism with its image, and let us denote these images by N i .
Recall that by construction the maps zu�1

j ;1 ı zui;1W
zUij !

zUji are diffeomorphisms.
Thus by construction of the ‰i we see that the maps

‰�1
j ı‰i W zui;1. zUij /�B�! zuj ;1. zUji/�B�

are bundle isomorphisms. In other words these maps are homomorphisms (in fact
diffeomorphisms) for which pr1 ı‰

�1
j ı‰i D pr1 , and the ‰�1

j ı‰i are linear maps
on the fibers; here pr1 is the canonical projection to the first component of the cartesian
product. It will also be convenient to define the maps

z�i W N i
!Di

r1
by z�i WD zu

�1
i;1 ı pr1 ı‰

�1
i :

We also recall that the maps zui;k WD uk ı�i;k W Di
r1
!M converge to zui;1 , and thus it

follows that for each r2 2 .0; r1/ we have zui;k.Di
r2
/�N i for all sufficiently large k .

Furthermore for all sufficiently large k the maps given by z�i ı zui;k W Di
r2
!Di

r1
are

diffeomorphisms with their images. In fact,

(27) z�i ı zui;k ! Id in C1.Di
r2
;Di

r1
/:

Consequently, for each r3 2 .0; r2/, and for all sufficiently large k , we have

(28) Di
r3
� z�i ı zui;k.Di

r2
/ and z�i ı zui;k.Di

r3
/�Di

r2
;

in which case we can define the maps

 i;k W Di
r3
! Sk by  i;k WD �i;k ı .z�i ı zui;k/

�1:

Fix r4 2 .0; r3/ and define the sets yUij WD Di
r4
\ zu�1

i;1 ı zuj ;1

�
Dj

r4
\ zUji

�
, and the

smooth manifold
zS1 WD

Fn
iD1 Di

r4
=�
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where ���0 provided �2 yUij �
02 yUji and zui;1.�/Dzuj ;1.�

0/. With these definitions
made, we now claim the following.

Lemma 4.5 The maps  i;k defined above, with domains restricted to Dr4
, descend

to smooth maps  k W
zS1! Sk .

Proof We begin by comparing the �i;k to the  i;k . Indeed, by applying  i;k to each
side of the second containment of (28) we see that

(29) �i;k.Di
r3
/�  i;k.Di

r2
/;

and thus the maps  �1
i;k
ı�i;k W Di

r3
!Di

r2
are well defined. Furthermore,

 �1
i;k ı�i;k D

�
�i;k ı .z�i ı zui;k/

�1
��1
ı�i;k

D z�i ı zui;k

! Id in C1.Di
r3
;Di

r2
/;(30)

where the convergence in the last line follows from (27). Consequently for all
sufficiently large k , the maps  i;k W Di

r3
!  i;k.Di

r3
/ � Sk are diffeomorphisms.

Recall Lemma 4.2 which guarantees that if � 2 yUij �
zUij , �0 2 yUji �

zUji , and
zui;1.�/D zuj ;1.�

0/ then

lim
k!1

distu�
k

g

�
�i;k.�/; �j ;k.�

0/
�
D 0;

and combining this with (30) yields

lim
k!1

distu�
k

g

�
 i;k.�/;  j ;k.�

0/
�
D 0:

We now claim that for all sufficiently large k , we have

(31)  j ;k. yUji/�  i;k. zUij / and  j ;k. yUji/� �i;k. zUij /:

Indeed, to see this observe that cl. yUji/� zUji , and ��1
jk
ı jk! Id, so that by the latter

part of Corollary 4.3 we see that for all sufficiently large k we have

�j ;k ı�
�1
j ;k ı j ;k. yUji/� �i;k. zUij /:

From this we conclude the second containment in (31). The first containment is similarly
obtained from

�j ;k ı�
�1
j ;k ı j ;k. yUji/� �i;k ı�

�1
i;k ı i;k. zUij /:
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Now let � 2 yUij and �0 2 yUji with zui;1.�/D zuj ;1.�
0/; to prove the lemma, we must

show that  i;k.�/ D  j ;k.�
0/. As a consequence of (31) there exist z�k 2Di

r3
such

that  i;k.z�k/D  j ;k.�
0/. However, observe that

zuj ;1.�
0/D zuj ;1 ı 

�1
j ;k

�
 j ;k.�

0/
�

D zuj ;1 ı z�j ı zuj ;k ı�
�1
j ;k

�
 j ;k.�

0/
�

D zuj ;1 ı zu
�1
j ;1 ı pr1 ı‰

�1
j ıuk

�
 j ;k.�

0/
�

D pr1 ı‰
�1
j ı‰i ı‰

�1
i ıuk

�
 j ;k.�

0/
�

D pr1 ı‰
�1
i ıuk

�
 j ;k.�

0/
�

D zui;1 ı z�i ıuk

�
 j ;k.�

0/
�

D zui;1 ı z�i ıuk

�
 i;k.z�k/

�
D zui;1 ı z�i ı zui;k ı�

�1
i;k

�
 i;k.z�k/

�
D zui;1.z�k/:

Recall that zui;1.�/D zuj ;1.�
0/, and thus zui;1.z�k/D zui;1.�/, however zui;1 is an

embedding. Therefore z�k D � , and thus  i;k.�/D  i;k.z�k/D  j ;k.�
0/, and thus the

 i;k do indeed descend to maps  k on zS1 .

We are now ready to finish the proof of Proposition 2.7. We begin by observing that
the above results hold for all ri whenever 0 < r4 < r3 < r2 < r1 < r . Since the
�i;k W Di

r ! Sk form a sequence of uniformly robust K–covers, it follows that we may
choose r6 2 .0; r4/ so that the maps �i;k W Di

r6
!Sk also form a sequence of uniformly

robust K–covers of the .uk ;Sk/. We let zK � Int.M / be a compact set (the existence
of which is guaranteed by the definition of a robust cover) whose interior contains K
and for which

(32) uk

�
Sk n

Sn
iD1 �i;k.Di

r6
/
�
�M n zK

for all k . Next we observe that uk ı �i;k ! zui;1 in C1.Di
r1
;M /, and these limit

maps descend to a smooth immersion zu1W S1 !M . We have also seen that the
maps  i;k W Di

r4
! Sk descend to  k W

zS1! Sk , and they have the property that the
sequence uk ı k W

zS1!M converges in C1 . We then fix r5 2 .r6; r4/ and define
zS � zS1 to be a compact region5 for whichSn

iD1 �i;k.Di
r6
/�  k. zS/�

Sn
iD1 �i;k.Di

r5
/;

for all sufficiently large k . We then note that by (32) we have uk

�
Sk n  k. zS/

�
�

M n zK . Thus all that remains to finish the proof is to show the maps  k W
zS ! Sk

5See Definition 2.1.
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are diffeomorphisms with their images. Since  �1
i;k
ı�i;k ! Id in C1.Dr3

;Dr2
/, it

follows that the  k are immersions, and since dim zS D dim Sk it follows that it is
sufficient to show that the  k W

zS ! Sk are one-to-one for all sufficiently large k .

To prove this, suppose not. Then after possibly passing to a subsequence, there exist
sequences of points Œ�k �; Œ�

0
k
� 2 zS � zS1 with representatives �k 2Di

r5
and �0

k
2Dj

r5

for which neither i nor j depend on k , Œ�k �¤ Œ�
0
k
�, and  i;k.�k/D  j ;k.�

0
k
/. Next

observe that the  i;k W Di
r3
! i;k.Di

r3
/ are diffeomorphisms for all sufficiently large k

(and similarly for j ), so if i D j , then �k D �
0
k

and hence Œ�k �D Œ�
0
k
� 2 zS which is a

contradiction. Thus we henceforth assume that i ¤ j .

Since  i;k.�k/ D  j ;k.�
0
k
/ 2 Sk , and  �1

i;k
ı �i;k ! Id in C1.Di

r3
/ and similarly

for j , we conclude that distu�
k

g

�
�i;k.�k/; �j ;k.�

0
k
/
�
! 0. We then apply the first part

of Corollary 4.3, and conclude that for all sufficiently large k , �k 2
zUij \Di

r5
and

�0
k
2 zUji \Dj

r5
. Consequently for all sufficiently large k there exist z�k 2

zUij �Di
r1

with the property that zui;1.z�k/D zuj ;1.�
0
k
/. Our goal now is to show that for some

large k , we have z�k 2 Di
r4

. Indeed, if this were true, then  i;k.z�k/ is well defined;
furthermore, z�k 2

zUij \Di
r4

and zu�1
j ;1 ı zui;1.z�k/D �

0
k
2 zUji \Dj

r4
(in other words,

z�k 2
yUij ), so that  i;k.z�k/D j ;k.�

0
k
/. However by assumption  i;k.�k/D j ;k.�

0
k
/,

so  i;k.�k/D i;k.z�k/; but for all sufficiently large k ,  i;k is a diffeomorphism with
its image, so we conclude that �kD z�k . Then we would have shown that �k 2

zUij\Di
r4

,
�0

k
2 zUji \Dj

r4
, and zui;1.�k/D zuj ;1.�

0
k
/. In other words Œ�k �D Œ�

0
k
� 2 zS , which is

the desired contradiction.

We have so far shown that to complete the proof of Proposition 2.7, it is sufficient
to show that for some large k , we have z�k 2 Di

r4
. To that end, we pass to a further

subsequence so that �k ! �1 2 cl. zUij /\ cl.Di
r5
/, and z�k ! z�1 2 cl.Di

r1
/. By the

definition of z�k and z�1 , and the uniform convergence of the zui;k and zuj ;k to an
embedding, it follows that zui;1.�1/D zui;1.z�1/. Consequently, for all sufficiently
large k we have z�k 2Di

r4
, and due to the discussion in the previous paragraph, this

shows that we have completed the proof of Proposition 2.7.

4.2 Proof of Proposition 3.9

In what follows, it will be convenient to have the following notation:

(33) †� WD .R=2�Z/� Œ0; �/;

with � 2RC[f1g. We shall call the product metric xg WD dx2C dy2 the standard
metric on †� , and Œxg� the standard conformal structure. We also abuse notation
by defining †0 WD .R=2�Z/ � f0g. Also, by assumption S has a finite number
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of connected components, so without loss of generality we shall assume that S is
connected.

Much of the proof is standard, so we focus primarily on the less standard aspects,
namely showing the existence of reparameterizations of the uk W S !M which have
the desired boundary convergence. To that end we recall several important results.

Lemma 4.6 (Uniformization) Let .S;g/ be a smooth connected compact Riemann-
ian manifold of dimension two with boundary, and consider the finite set � � S n @S .
If �.S/� #� < 0, then there exists a unique smooth geodesically complete metric h

on PS WD S n� in the conformal class of g such that Areah. PS/ <1; furthermore the
Gauss curvature of h is identically �1, and the boundary components of S are all
h–geodesics.

Proof This is a well known result. A proof via variational partial differential equation
methods in the case that � D ∅ D @S case was provided by Tromba in [11]. The
case with boundary can be treated by modifying the argument in [11] to consider
an associated Neumann boundary value problem. The case with punctures can be
treated by removing disks of arbitrarily small radius centered at points in � and taking
limits.

Lemma 4.7 (Conformal distance) Consider the half-cylinders †� endowed with the
standard conformal structure and with moduli � 2RC[f1g. Then for each number
r > 0 there exists a number `D `.r/ > 0 with the following significance. If U �†1
is conformally diffeomorphic to †r , and †0 � U , then †` � U .

Proof This is a restatement of Lemma 2.1 of [7].

Lemma 4.8 (Quasiconformal estimate) Let .S;g/ be a two dimensional Riemannian
manifold, and let †� be equipped with the standard metric and conformal structure as
above. Suppose furthermore there is an annular region A� S and a diffeomorphism
(but not necessarily conformal)  W †�!A for which

sup
�2†�

kT� kkT .�/ 
�1
k � C <1;

where k � k denotes the norm of a linear map between normed vector spaces. Then,
letting modŒg�.A/ denote the modulus of the cylinder .A; Œg�/� .S; Œg�/, we have

C�1��modŒg�.A/� C�:

Proof By the uniformization theorem, it is sufficient to prove the result for S DR2

with the standard conformal structure. The result then follows from Lemmas 2.3.1 and
2.3.2 in [10].
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The following lemma follows from a straight-forward computation. We state the result
here for convenient reference later.

Lemma 4.9 (Model hyperbolic cylinder) The metric h WD cosh2.t/ds2Cdt2 on R2 ,
satisfies the following properties.

(1) h is a hyperbolic metric; ie h has constant Gauss curvature equal to �1.

(2) If .S; zh/ is a two-dimensional Riemannian manifold equipped with a hyperbolic
metric zh, and ˛W .s0; s1/!S is an zh–unit speed geodesic, and � is a continuous
zh–unit normal vector field along ˛ , then hD ��zh where

�.s; t/D exp
zh
˛.s/.t�/:

(3) The metric h descends to .R=`Z/�R. Furthermore the map given by

z�W .R=`Z/�R! .R=2�Z/� .��2`�1; �2`�1/

z�.s; t/D
�
Œ2�`�1s�; 2�`�1 arctan.sinh.t//

�
is a conformal diffeomorphism for the conformal structures associated to h on
the domain of z� and the standard Euclidean metric on the range of z� .

Let us now proceed with the proof of Proposition 3.9.

Lemma 4.10 (Convenient marked points) With .S; jk/ as in Proposition 3.9, and
S connected, there exists a sequence of finite sets �k � S n @S with the following
properties.

(1) #�k DN

(2) �.S/� #�k < 0

(3) The hyperbolic metrics hk on S n �k guaranteed by Lemma 4.6, have the
property that each connected component of @S has length uniformly bounded
away from 0 and 1.

Proof Observe that if @S D ∅, then Lemma 4.10 is trivially true, so henceforth
we assume @S ¤ ∅. Letting  i;k W †� D S1 � Œ0; �/ ! S be the maps as in the
assumptions of Proposition 3.9, we denote the metrics zgi;k WD .uk ı i;k/

�gi;k , which
converge in C1 to the metrics zgi;1 on †� . By the uniformization theorem (and
possibly restricting the domains of the  i;k ) we may assume that for each i we have
zgi;1 D efi .dx2 C dy2/; in other words the limiting conformal structures on †�
are standard. We then define z�i;k WD f i;k.0; �=4/;  i;k.0; �=3/;  i;k.0; �=2/g, and
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z�k WD
S

i
z�i;k . Since S is connected with at least one boundary component, it follows

that �.S/� #z�k < 0; we then let zhk be the hyperbolic metrics on S n z�k guaranteed
by Lemma 4.6.

We now claim that the zhk length of each boundary component of S is uniformly
bounded. To prove this, we observe that since the Œzgi;1� D Œxg� on †� , it follows
from Lemma 4.8 that each boundary component of S has an annular neighborhood of
modulus at least �=5. Then Lemma 4.9 guarantees that the zhk –lengths of the boundary
components of S are uniformly bounded.

Before completing the proof of Lemma 4.10, we will need to make use of the following
result.

Lemma 4.11 (Hyperbolic neighborhood) Let S and  i;k be as in Proposition 3.9,
and let z�k , zhk , †� be as above. Let @iS denote the i –th boundary component of S ,
and define the open set

O zhk
ı .@S/ WD f� 2 S W disthk

.�; @S/ < ıg:

Then there exists �>0 and ıi;k>0 such that the O zhk
ıi;k
.@iS/ are annular neighborhoods

of the @iS with modulus equal to �, and are contained in every annular neighborhood
of @iS with modulus at least �=5.

Proof We begin by defining PSk WD S n z�k , and the doubled surfaces

2 PSk WD . PSk t
PSk/=�

where � is the identification via the identity map along6 @ PSk . Observe that since the
components of @S are zhk –geodesics, it follows that the zhk extend via reflection to
smooth hyperbolic metrics on 2 PSk ; we abuse notation by also denoting these metrics zhk .
Next note that there is a natural inclusion @ PSk ,! 2 PSk , and the image of the i –th
boundary component is a simple zhk –geodesic of length z̀i;k � C <1. Next, it is
straight-forward to show that the maps

�i;k W
�
.R= z̀i;kZ/�R; h

�
! .2 PSk ; zhk/;

defined as in property (2) of Lemma 4.9 (and associated to the simple closed geodesics
@i
PSk of length z̀i;k ), are isometric covering maps and hence conformal. Combining

these maps with the conformal diffeomorphisms

'i;k W
�
.R= z̀i;kZ/� Œ0; ı/; Œh�

�
!
�
†

2� z̀�1
i;k

arctan.sinh.ı//; Œxg�
�

6To be clear, @ PSk D @S , or in other words, @ PSk does not contain the “degenerate boundary compo-
nents” z�k .

Geometry & Topology, Volume 15 (2011)



806 Joel W Fish

given by property (3) of Lemma 4.9, we observe that any annular neighborhood of @i
PSk

can be conformally lifted by 'i;k ı�
�1
i;k

to annular neighborhoods of †0 �†1 with
the standard conformal structure. Next, observe that as a consequence of Lemma 4.7,
there exists a � > 0 such that any annular neighborhood of †0 �†1 of modulus at
least �=5 contains †� . Thus to complete the proof of Lemma 4.11, it is sufficient to
show that there exist ıi;k > 0 such that

(34)
2�

z̀
i;k

arctan.sinh.ıi;k//D �:

Without loss of generality, we may assume that � < infi;k �
2 z̀�1

i;k
, however in this

case arctan ı sinh is invertible, and the existence of the ıi;k that satisfy Equation (34)
follows immediately. This completes the proof of Lemma 4.11.

With Lemma 4.11 proved, we now finish the proof of Lemma 4.10. Indeed, let
�k WD

z�k [ f�1;k ; : : : ; �n;kg where �i;k D �i;k ı '
�1
i;k
.0; �=2/, and �, �i;k , and 'i;k

are defined as in the proof of Lemma 4.11. By construction, properties (1) and (2)
of Lemma 4.10 are satisfied. To prove property (3), we note that by definition each
boundary component of S n�k has an annular neighborhood of modulus �=4> 0, so
again by property (3) of Lemma 4.9, it follows that the hk –lengths of the components
of @S are uniformly bounded. All that remains then is to show that the hk –lengths
of the components of @S are uniformly bounded away from 0. Note that if this
were not the case, it would follow from property (3) of Lemma 4.9 that for any fixed
ı > 0, there would exist an i and k such that @iS has a metric annular neighborhood
Ohk
ı
.@iS/� S n�k of modulus as large as we wish (in particular, greater than �=5).

But then
�i;k ı'

�1
i;k .†�/DO zhk

ıi;k
.@iS/�Ohk

ı .@iS/;

where the equality follows by construction of � and ' , and containment follows from
Lemma 4.11 since

mod
Œzhk �

�
O zhk
ıi;k
.@iS/

�
> �=5

by assumption. However, this is impossible because �k \ �i;k ı '
�1
i;k
.†�/ ¤ ∅ by

definition of �k and �k\Ohk
ı
.@iS n�k/D∅ as a consequence of the definition of hk .

This contradiction shows that the hk –lengths of the components of @S are uniformly
bounded away from zero, and thus the proof of Lemma 4.10 is complete.

Before proceeding with the proof of Proposition 3.9, we need one more technical result.

Lemma 4.12 (Convergence near the boundary) Let uk D .uk ;S; jk ;Jk/,  i;k and
†� be as in the statement of Proposition 3.9; also let 'i;k and �i;k be the maps defined

Geometry & Topology, Volume 15 (2011)



Target-local Gromov compactness 807

as in proof of Lemma 4.11. Then after passing to a subsequence, there exists ı > 0

such that the restricted maps

uk ı�i;k ı'
�1
i;k W †ı!M

converge in C1.†ı;M /.

Proof Recall that by assumption the uk ı  i;k converge in C1 , so in order to
prove Lemma 4.12, it is sufficient to prove the  �1

i;k
ı�i;k ı'

�1
i;k
W †ı!†� converge

in C1 . To that end we treat these maps as pseudoholomorphic curves with a real
one-dimensional Lagrangian boundary condition. Indeed, we observe that for some
ı > 0 we must have uniform gradient bounds, since otherwise one could “bubble-off”
a nonconstant holomorphic map from C (or the upper half plane) to a compact set in
S1 �R, which is impossible. Elliptic regularity then guarantees C1 bounds on †ı ,
and thus by passing to a subsequence we have the desired C1 convergence. This
completes the proof of Lemma 4.12.

Finally, we finish the proof of Proposition 3.9. The remainder of this proof is fairly
standard, so we simply sketch the argument. We first note that by construction, the
marked Jk –curves .uk ; �k/ with �k WD �k are all stable, and these marked curves
will remain stable even after more marked points are added. Next we note that either
we have uniform hk –gradient bounds on the uk , or else we don’t. If we do, then
Deligne–Mumford compactness (and the uniformization theorem) guarantee the ex-
istence of a decorated nodal Riemann surface .S; j ; �;D; r/ and diffeomorphisms
�k W S

D;r!Sk such that properties (2)–(4) of Definition 2.11 (ie Gromov Convergence)
are satisfied. Elliptic regularity and Arzelà–Ascoli yield property (6), or rather the
desired C1loc –convergence away from nodes and boundary. Smooth convergence in
boundary neighborhoods then follows from Lemma 4.12. Property (5), in other words
C0 –convergence on SD;r , then follows from Gromov’s removable singularity theorem,
monotonicity of area, and the uniform gradient bounds with respect to the hyperbolic
metric.

On the other hand, we may not have uniform hk –gradient bounds on the uk . In this
case, one applies the usual bubbling analysis to guarantee the existence of a sequence
of finite sets y�k � �k D �k , which satisfy the conclusions of Lemma 4.10 and for
which one indeed has uniform yhk –gradient bounds. Note that as a consequence of
Lemma 4.12, we have disthk

.y�k ; @Sk/ � � > 0 for some � > 0 independent of k .
The arguments of the previous paragraph then apply, and we again conclude Gromov
convergence. This completes the proof of Proposition 3.9.
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4.3 Proof of Proposition 3.12

Fix � > 0. Recall Lemma 2.9, which guarantees that for each z 2 Zu there exists
holomorphic coordinate charts �z W Oz.z/� S!Oz.0/�C'R2 and polar geodesic
coordinate charts ˆz W Oz.u.z//�M !Oz.0/�Cn'R2n which satisfy �z.z/D 0,
ˆz.u.z//D 0, .ˆz�J /.0/D i D J0 , and

ˆz ıu ı��1
z .�/D .�kz ; 0; : : : ; 0/CFz.�/ 2Cn

'R2n

where �z.�/ D � D s C i t , Fz.�/ D OkzC1.j�j
kzC1/, kz � 2, and the subscript z

denotes dependance on z 2Z . Consequently we make the following definition.

Definition 4.13 Let g0 be the standard metric on R2n , and let g , J0 , Fz , ˆz , �z ,
and u be as above. Then define �0> 0 to be a positive constant for which the following
hold.

(e1) �0 <min.1; �/.

(e2) The sets B�0
.z/ WD f� 2 S W dist
 .z; �/ < �0g are pair-wise disjoint as z varies

over Zu .

(e3) B�0
.z/�Oz.z/� S for all z 2 Zu .

(e4) jFz.�/j< �0 for all � 2 �z

�
B�0

.z/
�

and z 2 Zu .

(e5) B3�0
.u.z//�Oz.u.z//�M for each z 2 Zu .

(e6) kdFz.�/kg0
�

1
2
j�jkz�1 for all � 2 �z

�
B�0

.z/
�
.

Next define a smooth cut-off function ˇW R! Œ0; 1� for which ˇ0 � 0 and

ˇ.a/D

(
1 if a� 1

4
;

0 if a� 3
4
:

Also define the following family of perturbed maps for ı 2 Œ0; �0/.

yu.�/D

(
u.�/ if � 2 S n

S
z2Zu

B�0
.z/;

ˆ�1
z ı yvz ı�z.�/ if � 2 B�0

.z/;

where for each z 2 Zu we have yvz W Oz.0/�C 'R2!Cn 'R2n given by

yvz.�/Dˆz ıu ı��1
z .�/C

�
0; ıkz�1ˇ.j�j=r0/�; 0; : : : ; 0

�
where r0 2 .0; �0/ has been chosen so that

(35) Dr0
WD f� 2C W j�j< r0g �

\
z2Zu

�z

�
B�0

.z/
�
:
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More concisely, our locally defined family of perturbed maps is given by

yv.�/D
�
�k ; ık�1ˇ.j�j=r0/�; 0; : : : ; 0

�
CF.�/

where F.�/DOkC1.j�j
kC1/ and we have stopped denoting z dependance. We now

take a moment to verify that the yu are well-defined. Indeed, each yvz is well defined
on Oz.0/, so it is sufficient to show that yvz ı�z.�/�ˆz

�
Oz.u.z//

�
for each z 2 Zu

and � 2 ��1
z .Dr0

/, and that u.�/Dˆ�1
z ı yvz ı�z.�/ for all � near @B�0

.z/� S . To
that end, define vz WD yvzjıD0 and observe that supp.yvz�vz/�Dr � �z

�
B�0

.z/
�
�C ,

and thus indeed u.�/ D ˆ�1
z ı yvz ı�z.�/ for all � near @B�0

.z/ � S . Also observe
that since supp.yvz � vz/�Dr0

, it follows that for � 2Dr0
we have

jyvz.�/j � j�
kz jC ıkz�1

j�j
ˇ̌
ˇ.j�j=r0/

ˇ̌
CjFz.�/j � r

kz

0
C r0ı

kz�1
CjFz.�/j< 3�0;

where we have made use of the fact that r0; ı � �0 < 1, and (e4). Consequently, by
(e5), we have yvz ı �z.�/ � ˆz

�
Oz.u.z//

�
for each z 2 Zu and � 2 ��1

z .Dr0
/. This

shows that the yu are well defined perturbations of u.

With the above perturbed maps yu defined, our next goal is to show that for all sufficiently
small ı > 0, all six properties of Proposition 3.12 are satisfied. To that end, let
prj W C

n ! C denote the canonical projection to the j –th complex coordinate; by
(e6) it follows that d.pr1 ıyv/.�/ D 0 only if � D 0, and by definition of yv we have
d.pr2 ıyv/.0/ ¤ 0 provided ı ¤ 0. Consequently the maps yv are immersions for all
ı > 0 sufficiently small.

Observe that property (D1) follows from (e2) and Equation (35). To prove property (D2),
we note that yu! u in C 0.S;M / (moreover in C1.S;M /) as ı ! 0, and hence
(D2) is also satisfied for all sufficiently small ı > 0.

We now prove property (D3). First observe that for any compact region K � S nZu ,
we have yu! u in C 1.K;M / as ı! 0, and the limit is an immersed J –curve. Since
the limit curve has J –invariant tangent planes, it follows that there exists a ı0 > 0

(dependent on K and �0 ) such that the desired estimate holds for all ı 2 .0; ı0/ and
X 2 T� with � 2K . To prove the result on the complement of K we work locally and
fix z 2 Zu and define zg WD ˆz�g , zJ WD ˆz�J , F WD Fz , k WD kz , and yv WD yvz . To
finish proving property (D3), it is then sufficient to prove the following lemma.

Lemma 4.14 There exist constants ı0 > 0 and 0 < r < r0=4 (dependent on zg , zJ
and F ) with the following significance. If ı 2 .0; ı0/, j�j � r , and X 2 yv�.T�R2/ with
kXkzg D 1, then

k. zJX /?kzg � �:
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Before providing the proof of Lemma 4.14, we first introduce some notation which
will be useful later on. We will let C (resp. c ) denote any sufficiently large (resp.
small) positive constant depending on F , zJ , and zg , but not ı . Next, consider a plane
P � TqR2n . Then we can define the zg and g0 orthogonal projections

…
>zg

.q;P/W TqR2n
! P …

>g0

.q;P/W TqR2n
! P

…
?zg

.q;P/W TqR2n
! P?zg …

?g0

.q;P/W TqR2n
! P?g0 :

Note that we may identify each tangent space TqR2n with R2n via coordinate transla-
tion, and in this manner we may regard the above projections simply as maps from R2n

to P , P?zg and P?g0 �R2n . In particular, this allows one to add, subtract, compose,
etc. these projections even with different .q;P/. We clarify this last point. Without a
fixed identification of the fibers TqR2n , the following quantity would be nonsensical:

…
>zg

.q1;P1/
.Xq1

/C…
>zg

.q2;P2/
.Yq2

/:

Moreover, even with the above identification defined, the following statements hold in
general:

…
>zg

.q1;P/
ı…
?zg

.q2;P/
¤ 0(36)

…
?zg

.q1;P/
ı…
>zg

.q2;P/
D 0:(37)

The point of (36) is that in general q1 ¤ q2 , and thus the inner products zgjq1
and zgjq2

need not be equal, and thus neither do the orthogonal compliments of P . Of course, if
q1 D q2 , then the nonequality in (36) should be replaced with an equality. Given this
discussion, one may expect that in general (37) should be false, however the point here
is that …?zg

.q;P/jP � 0, independent of q . We make use of these facts below.

We now abuse this notation for the application we have in mind. Indeed, for smooth
immersions '; W Dr0

�R2!R2n we will use the notation

…?.';T / D…
?
.'.�/; �.T�Dr0

//;

and similarly for the other projections. It will also be convenient to define the
complex polynomial P .�/ D .�k ; ık�; 0; : : : ; 0, so that for j�j < r0=4 we have
yv.�/D P .�/CF.�/, where F.�/ where F.�/DOkC1.j�j

kC1/. With this notation
established, we are now prepared to prove Lemma 4.14.
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Proof of Lemma 4.14 Let X be a zg–unit vector tangent to the image of yv , and define
the following.

E1 W D
�
…
?g0

.yv;T yv/
�…

?g0

.P;TP/

�
.J0X /

E2 W D…
?g0

.yv;T yv/

�
. zJ �J0/X

�
E3 W D

�
…
?zg

.yv;T yv/
�…

?g0

.yv;T yv/

�
. zJX /;

so that

(38) …
?zg

.yv;T yv/
. zJX /D…

?g0

.P;TP/
.J0X /C E1C E2C E3:

Next we recall the estimates jyv.�/j � C j�j, kzg.q/ � g0.q/kg0
� C jqj2 , and also

k zJ .q/�J0.q/kg0
� C jqj, so that

(39) kE2kg0
CkE3kg0

� C j�j:

To estimate E1 , we note that kdPkg0
D .j�j2k�2 C ı2k�2/1=2 , and since P is a

complex polynomial, it follows that the linear maps

kdPk�1
g0

TP W T�R
2
! TP.�/R

2n

are g0 –isometries. Furthermore kdFkg0
� C j�jk � C j�jkdPkg0

, so

kdPk�1
g0

TP �kdPk�1
g0

T yv




g0
� C j�j;

from which it follows that

(40)


…?g0

.yv;T yv/
�…

?g0

.P;TP/



� C j�j;

and thus

(41) kE1kg0
� C j�j:

Lastly, we observe that since P is a complex polynomial, J0 preserves the tangent and
g0 –normal bundles along the image of P ; consequently J0 and …

?g0

.P;TP/
commute.

It then follows from (40) that

(42) k…
?g0

.P;TP/
.J0X /kg0

� C j�j:

Combining the above inequalities then yields

k.JX /?zgkg0
� C j�j;

which then proves Lemma 4.14, and completes the proof of property (D3).
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Observe that uı! u uniformly in C 1.S;M / (in fact, in C1 ), and S is compact, so
that (D4) follows immediately.

We now move on to the proof of property (D5). Here we consider two cases: compact
sets of Dr0

n f0g, and small neighborhoods of 0 2 Dr0
. We handle the former case

first.

Lemma 4.15 For each compact set K � Dr0
n f0g, there exists ı0 > 0 with the

following significance. For each ı 2 .0; ı0/, the following estimate holds for all � 2K :

Kyv�zg.�/�Kv�zg.�/C �:

Proof Observe that yv ! v in C1.Dr0
;R2n/ as ı ! 0, and v is immersed on

Dr0
nf0g, so Kyv�zg!Kv�zg in C1loc .Dr0

nf0g;R2n/. The result is then immediate.

The proof in the case of neighborhoods of 0 is more complicated, however we claim it
follows quickly from the following technical result.

Lemma 4.16 There exist constants 0 < r < r0=4 and ı0 > 0, which depend on F

and zg (but not ı ) with the following significance. For all ı 2 .0; ı0/ and � 2Dr0
, the

following inequality holds:

hB.yvs; yvs/;B.yvt ; yvt /izg

kyvs ^ yvtk
2
zg

� �C sup
q2M

J PqDPq

1
2
k trPq

JrJk2
zg;

with notation as above.

Before proceeding with the proof of Lemma 4.16, let us use it to finish the proof of
property (D5). Indeed, recall that the Gauss equations for immersed surfaces guarantee
that

Kyv�zg.�/DKsec
�
yv�.T�S/

�
C
hB.yvs; yvs/;B.yvt ; yvt /izg

kyvs ^ yvtk
2
zg

�

kB.yvs; yvt /k
2
zg

kyvs ^ yvtk
2
zg

� sup
q2M

jKsec.q/jC sup
q2M

J PqDPq

1
2
k trPq

JrJk2
zgC �;

which is precisely the desired result. Thus to prove property (D5), all that remains
is to prove Lemma 4.16. To that end, we will make use of our notation from the
proof of property (D3) concerning the zg–orthogonal projections …>. � ; � / and …?. � ; � / .
Furthermore, for the remainder of the section we will regard vs; yvs; vss; yvss , etc. as
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either vector fields along the image of v or yv (as appropriate), or else as maps from Dr0

to R2n , with the distinction determined by context. Consequently, we may now write

Bv.vs; vs/D…
?zg

.v;T v/
.rvs

vs/ and Byv.yvs; yvs/D…
?zg

.yv;T yv/
.ryvs
yvs/;

and more importantly it will allow us to estimate quantities like the following:

…?zg
.v;T yv/

.rvs
vs/�…

?zg

.yv;T yv/
.ryvs
yvs/




g0
:

Here, as above, g0 is the Euclidian metric, and r is the Levi-Civita connection
associated to zg . We locally define the .1; 2/–tensor � by the following.

rX Y D dY .X /C�.X;Y /;

where X;Y are vector fields on R2n . As above, it will be important to track the point
q 2R2n at which � is evaluated, and we denote this �q.X;Y /. Abusing notation as
before, we will also write �v.X;Y /D �v.�/.X;Y /.

We are nearly ready to prove Lemma 4.16, but we need just a few simple estimates,
which are collected in the following result.

Lemma 4.17 For all � 2Dc , the following inequalities hold:

.1�C j�j/kyvskg0
� kyvtkg0

� .1CC j�j/kyvskg0
(43)

kvskzg � Ckyvskzg(44)

kvtkzg � Ckyvtkzg(45)

kyvskzgkyvtkzg � .1CC j�j/kyvs ^ yvtkzg:(46)

Proof We begin by observing that zg.q/Dg0.q/CO.jqj2/, and jyv.�/jCjv.�/j�C j�j,
so it is sufficient to prove the above estimates with zg replaced with g0 . Next recall that
P .�/D .�k ; ık�1�; 0; : : : ; 0/ and thus yv D P CF , with F defined at the beginning
of this section. Observe that

kFtkg0
CkFskg0

� C j�jk � C j�j.j�j2k�2
C ı2k�2/1=2(47)

kPskg0
D .j�j2k�2

C ı2k�2/1=2 D kPtkg0
:(48)

Consequently, for all � 2Dc we have

.1�C j�j/.j�j2k�2
C ı2k�2/1=2 �min.kyvskg0

; kyvtkg0
/(49)

max.kyvskg0
; kyvtkg0

/� .1CC j�j/.j�j2k�2
C ı2k�2/1=2;(50)

so inequalities (43) are immediate. Also,

(51) kvskg0
Ckvtkg0

� C j�jk�1
� C.j�j2k�2

C ı2k�2/1=2:
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Combining this with (49) proves inequalities (44) and (45). To prove (46), we note that
hPs;Pt ig0

D 0 since P is a complex polynomial; then by using (47)–(49) we haveˇ̌
hyvs; yvt ig0

ˇ̌
� kFskg0

kFtkg0
CkPskg0

kFtkg0
CkPtkg0

kFskg0

� C j�jkyvskg0
kyvtkg0

;

for all � 2Dc . Consequently

kyvs ^ yvtk
2
g0
D kyvsk

2
g0
kyvtk

2
g0
� hyvs; yvt i

2
g0

� .1�C j�j2/kyvsk
2
g0
kyvtk

2
g0
;

and inequality (46) follows immediately.

The following result will also be important in the proof of Lemma 4.16.

Lemma 4.18 Let .u;S; j ;J / be an immersed J –curve in an almost Hermitian mani-
fold .M;J;g/, let � 2 S , and let .s; t/ be local complex coordinates around � so that
usCJut D 0. Then

.rus
usCrut

ut /
>
D 0;

where r is the Levi-Civita connection associated to g , and X 7!X> is the orthogonal
projection to the tangent space of the image u.

Proof We compute

.rus
usCrut

ut /
>
D .rus

usCrut
.Jus//

>
D .rus

usCJrut
us/
>

D .rus
us/
>
CJ.rus

ut /
>
D .rus

us/
>
CJ 2.rus

us/
>
D 0;

where to obtain the second equality we have employed the Leibniz rule, together with
the fact that ..rJ /us/

> D 0: Indeed, this result follows from the fact that the tangent
planes of the image of u are J –invariant, and h.rJ /X;X iD 0Dh.rJ /X;JX i. This
latter result is elementary, and a proof was given by the author in [3]. The remaining
equalities are then standard.

With our preparations completed, we now finish the proof of property (D5).

Proof of Lemma 4.16 We begin by defining

Es
1 WD

�
…
?zg

.yv;T yv/
�…

?zg

.v;T yv/

�
ı…
?zg

.v;T yv/
.vss/(52)

Es
2 WD…

?zg

.yv;T yv/

�
�yv.yvs; yvs/

�
�…

?zg

.v;T yv/

�
�v.vs; vs/

�
:(53)

Recall that …?zg
.yv;T yv/

ı…
?zg

.v;T yv/
D 0, and thus

(54) …
?zg

.yv;T yv/
.vss/D Es

1C…
?zg

.v;T yv/
.vss/:
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Recall that for any 0< r < r0=4 and � 2Dr we have ˇ.j�j=r0/D 1, so it follows that
yv� v is a linear function on Dr0

, so yvss D vss . Consequently,

Byv.yvs; yvs/D…
?zg

.v;T yv/
.rvs

vs/C Es
1C Es

2:

Next we estimate the Es terms. First note that max.jv.�/j; jyv.�/j/ � C j�j for all
� 2Dc . Combining this with k�qkg0

� C jqj yields

(55) k�v.vs; vs/kg0
Ck�yv.yvs; yvs/kg0

� C j�j.kvsk
2
g0
Ckyvsk

2
g0
/;

and thus by (44) we have

(56) kEs
2kg0

� C j�jkyvsk
2
g0
:

To estimate E1 , we first recall that zg.q/D g0.q/CO.jqj2/, and thus for any plane
P �R2n ' T R2n , we have

…?zg

.q1;P/
�…

?zg

.q2;P/




g0
� C.jq1j

2
Cjq2j

2/

for any q1; q2 2R2n with max.jq1j; jq2j/� c . Combining this with our estimates for
v , yv , and � yields the following:

kEs
1kg0

� C j�j2k…
?zg

.v;T yv/
.vss/kg0

� C j�j2k…
?zg

.v;T yv/
.rvs

vs/kg0
CC j�j3kvsk

2
g0
:

Combining these inequalities then yields

kEs
1kg0
CkEs

2kg0
� C j�j

�
k…
?zg

.v;T yv/
.rvs

vs/kg0
Ckyvsk

2
g0

�
:

By replacing s with t above, one may define E t
1

and E t
2

, and prove

Byv.yvt ; yvt /D…
?zg

.v;T yv/
.rvt

vt /C E t
1C E t

2;

with similar estimates for the E t terms. We now employ Lemma 4.18, and the fact that
H WD tr B D trT JrJ , to obtain

rvs
vsCrvt

vt D J.rvs
J /vsCJ.rvt

J /vt ;

and consequently

…
?zg

.v;T yv/
.rvt

vt /D�…
?zg

.v;T yv/
.rvs

vs/C…
?zg

.v;T yv/

�
J.rvs

J /vsCJ.rvt
J /vt

�
k…
?zg

.v;T yv/
.rvt

vt /kzg � k…
?zg

.v;T yv/
.rvs

vs/kzgCCkyvsk
2
zg:
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Combining this with (43) and our above inequalities then yields

(57)
2X

iD1

�
kEs

i kg0
CkE t

i kg0

�
� C j�j

�
k…
?zg

.v;T yv/
.rvs

vs/kg0
Ckvsk

2
g0

�
:

For clarity, we then define

Es
WD Es

1C Es
2; E t

WD E t
1C E t

2; E WDmax.Es; E t /

X s
WD…

?zg

.v;T yv/
.rvs

vs/; X t
WD…

?zg

.v;T yv/
.rvt

vt /

V WD…
?zg

.v;T yv/

�
J.rvs

J /vsCJ.rvt
J /vt

�
;

so that Byv.yvs; yvs/DX sCEs , Byv.yvt ; yvt /DX t CE t , and V DX sCX t . Finally, we
can estimate

hByv.yvs; yvs/;Byv.yvt ; yvt /izg � �kX
s
k

2
zgCkX

s
kzgkV kzgC 2kEkzgkX s

kzg

CkEkzgkV kzgCkEk2zg
�

1
2
kV k2

zgC .�
1
2
CC j�j/kX s

k
2
zgCC j�jkyvsk

4
zg:

Recall that .1�C j�j/kyvsk
4
zg
�kyvs^yvtk

2
zg

, so that if j�j is sufficiently small (depending
only on the g , J ,F , and � , but not ı ) we find that indeed

hByv.yvs; yvs/;Byv.yvt ; yvt /izg

kyvs ^ yvtk
2
zg

� �C sup
q2M

sup
e2TqM
kekzgD1

1
2
kJ.reJ /eCJ.rJeJ /Jek2

zg;

which is precisely the desired inequality. This completes the proof of Lemma 4.16, and
hence property (D5) is proven as well.

We now move on to proving property (D6). We begin by showing that Gaussian
curvature Ku�gW S nZu!R is integrable. Since Ku�g is defined and smooth on the
compliment of the set of critical points Zu � S , it is sufficient to prove that Kv�zg is
integrable on Dr . To that end, recall that the Gauss equations for immersed J –curves
guarantee that Kv�zg is uniformly bounded from above in terms of rJ and the sectional
curvature of M . Since Areav�zg.Dr / <1 (more precisely, Dr has finite measure), it
follows that a modification of the of the monotone convergence theorem guarantees
that Kv�zg is integrable whenever

lim
a!0

Z
Dr nDa

Kv�zg > �1:
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To show this integral is finite, we define for each a > 0 the parameterized paths
˛; y̨W R=2�Z!R2n by

˛.�/ W D v.aei� /

D .akeik� ; 0; : : : ; 0/CF.aei� /

y̨.�/ W D .akeik� ; 0; : : : ; 0/:

Along the image of ˛ we define the vector field �.�/ 2 T˛.�/R
2n to be the unique

“inward pointing” zg–unit vector field which is tangent to the image of v and zg–
orthogonal to v.@Da/. We similarly define the g0 –unit vector field y� along the image
of yv , which can be explicitly written as

y�.�/D�.eik� ; 0; : : : ; 0/:

Using zg.q/�g0.q/DO.jqj2/ and k�qkzg � C jqj it is straight forward to showˇ̌̌̌ Z 2�

0

hr˛0˛
0; �izg

k˛0kzg
d� �

Z 2�

0

hy̨00; y�ig0

ky̨0kg0

d�

ˇ̌̌̌
� Ca:

Furthermore, letting �v�zg denote the geodesic curvature of @Da , and applying the
Gauss–Bonnet theorem, we findˇ̌̌̌

2�k �

�Z
Dr nDa

Kv�zg

�
�

�Z
@Dr

�v�zg

�ˇ̌̌̌
D

ˇ̌̌̌
2�k �

Z
@Da

�v�zg

ˇ̌̌̌
D

ˇ̌̌̌
2�k �

Z 2�

0

hr˛0˛
0; �izg

k˛0kzg
d�

ˇ̌̌̌
� CaC

ˇ̌̌̌
2�k �

Z 2�

0

hy̨00; y�ig0

ky̨0kg0

d�

ˇ̌̌̌
D Ca;

which tends to zero as a! 0, and hence the Ku�g is integrable on S . Moving on
with the proof of property (D6), we again let Zu � S denote the set of critical points
of u, and B�.z/ WD f� 2 S W distu�g.z; �/ < �g. Then we break the open set U � S

into three regions:

U1 D

[
z2Zu\U�

B�.z/

U2 D U \
� [

z2Z

B�.z/ nU1

�
U3 D U n .U1[U2/:
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Note that by construction, for all � 2 U3 we have u.�/D yu.�/, and thus

(58) �

Z
U3

Ku�g D�

Z
U3

Kyu�g:

Next, we fix �0 > 0 and note that since Ku�g is integrable and property (D1) holds,
without loss of generality we may assume � > 0 is sufficiently small so that

(59) max
�
�

Z
U1

Ku�g;�

Z
U2

Ku�g

�
�

X
z2Zu

Z
B�.z/

jKu�gj � �
0=3:

Since Areau�g.S/ is finite, it follows from property (D4) that without loss of generality
we may assume that � > 0 is sufficiently small so that the following holds:

.�CCgeom/Areayu�g

�S
z2Zu

B�.z/
�
� �0=3;(60)

Cgeom WD sup
q2M

jKsec.q/jC sup
q2M

J PqDPq

k trPq
JrJk2g:where

Z
U2

Kyu�g � .�CCgeom/Areayu�g

�S
z2Zu

B�.z/
�

Consequently,

� �0=3

� 2�0=3C

Z
U2

Ku�g:(61)

Lastly, recall that the definition of yu guarantees that for every � 2 @B�.z/ with z 2Zu

we have yu.�/D u.�/. Thus we compute

�

Z
B�.z/

Kyu�g D�2� C

Z
@B�.z/

�yu�g

D�2� C

Z
@B�.z/

�u�g

! 2�.k � 1/(62)

as � ! 0. Recall that k � 1 D ord.z/, so by integrating over U1 we find that for
sufficiently small � > 0 we have

(63) .1� �0/2�
X

z2Zu\U�
ord.z/� �

Z
U1

Kyu�g:

Combining (58), (59) (61) and (63) yields the desired estimate:

.1� �0/2�
X

z2Zu\U�
�

Z
U

Ku�g � �
0
�

Z
U

Kyu�g

This completes the proof of property (D6) as well as Proposition 3.12.
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4.4 Proof of Proposition 3.13

The proof of Proposition 3.13 consists of two main parts. The first part consists of
passing to the desired subsequence and constructing the finite set S and showing
the first part of the proposition holds. The basic argument here is to construct the
subsequence and S by iteratively passing to further and further subsequences with #S
getting larger in each subsequent iteration. We then argue that if #S is arbitrarily large,
then by monotonicity the Sk must have arbitrarily large area, which is a contradiction.
The second part of the proof consists of a covering argument which reduces the problem
to showing that the integral of the Gaussian curvature on disks cannot be arbitrarily
negative; we prove the reduced problem by recalling a differential equation which
relates the area of an intrinsic disk to the integral of the Gaussian curvature on said
disk, and conclude that since the area is a priori bounded, so too is the desired integral.

Moving on to the actual proof, we note that since the uk are robustly K–proper, there
exists a compact set zKi for i D 1; 2 such that

K WD zK0 ��
zK1 ��

zK2 ��M;

and for which the uk are robustly zK2 –proper. Next we fix ı0 > 0 such that the
following conditions hold.

(1) Ogk

10ı0
. zKi/� zKiC1 for all k 2N and i 2 f0; 1g.

(2) 1010ı0 <min
�
C
�1=2
1 ; infq2zK2

injg
M
.q/
�
, where

C1 WD 2C sup
q2M

jKg
sec.q/jC sup

q2M

krJk2g:

(3) For each p 2 zK2 and gk –geodesic polar coordinates .x1; : : : ;x2n/ centered
at p for which Jk.p/@xi D @xiCn for i D 1; : : : ; n define the differential forms
{!p and {�p on Op WDOgk

10ı0
.p/ by

{!p WD
Pn

iD1dxi
^ dxiCn and {�p WD

Pn
iD1xidxiCn:

We then require that ı0 > 0 is sufficiently small so that

sup
p2zK2

k2N

k{�pkL1.Op/ � 1; sup
p2zK2

k2N

k{!pkL1.Op/ � 2

inf
q2Op

X2TqMnf0g

ˇ̌
1� {!p.X;JX /=kXk2

ˇ̌
� 10�10:

We now aim to prove the following:
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(�) After passing to a subsequence (still denoted with subscripts k ), there exists a
finite set S �M with the property that for each ı 2 .0; ı0/ there exists an � > 0

and k0 2N such that if k � k0 and vk.�/ 2 zK1 nOgk

ı
.S/ then injv

�
k

gk

Sk
.�/ > � .

Since by construction Ogk

ı0
.K/ � zK1 , we see that if (�) holds, then the first part of

Proposition 3.13 is true. To find the set S and the desired subsequence one can argue
iteratively in the following way. Define S0 WD∅, and find a sequence �1;k 2 Sk which
has the property that a subsequence (denoted with subscripts k1 ) satisfies

vk1
.�1;k1

/ 2 zK1; inj
v�

k1
gk1

Sk1

.�1;k1
/! 0 and lim

k1!1
vk1
.�1;k1

/DW �1 … S0:

Define S1 WDS0[f�1g, and pass to a further subsequence (denoted with subscripts k2 )
and find a sequence �2;k2

2 Sk2
which has the property that

vk2
.�2;k2

/ 2 zK1; inj
v�

k2
gk2

Sk2

.�2;k2
/! 0 and lim

k2!1
vk2
.�2;k2

/DW �2 … S1:

Define S2 WD S1[f�2g, and iterate. Of course if the procedure terminates after a finite
number of iterations, then (�) is true; otherwise one can construct a singular set Sn0

with n0 distinct points in zK1 for n0 arbitrarily large. To derive a contradiction, we
assume the latter, in which case we conclude that there exists a point p 2 zK1 , a k 2N ,
a ı0 satisfying 0< ı0 <min.1; ı0/=1010 , and points f�1; : : : ; �n0

g � Sk for which the
following hold:

(1) n0 > CG C 8CA=.�ı
2
0
/.

(2) vk.�i/ 2O
gk

ı0
.p/ for i D 1; : : : ; n0 .

(3) mini¤j distgk

�
vk.�i/; vk.�j /

�
� ı0 .

(4) 1010�k <�ı
02�min.1; ı0/ where vk is the immersed approximation associated

to the pair .uk ; �k/.

(5) injv
�
k

gk

Sk
.�i;k/ <

1
4

min
�
ı02=.n01010/;C�1

1 ; ı0
�
DW �0 .

(6) supq2M jK
gk
sec.q/jC supq2M krJkk

2
gk
C 1� C1 .

Since ı0 can be chosen from an open set, we may assume without loss of generality
that the “trimmed” Jk –curves given by

zuk WD .uk ; zSk ; jk ;Jk/ with zSk WD u�1
k

�
Ogk

4ı0
.p/

�
are compact curves with smooth boundary, and

@ zSk D u�1
k

�
@Ogk

4ı0
.p/

�
:
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Such a choice is possible since the uk are robustly zK2 –proper and Ogk

10ı0
. zK1/ �

zK2 . Recall that by property (D5) of Proposition 3.12, it follows that the Gaussian
curvature Kv�

k
gk
.�/ is uniformly bounded from above by C1 for all � 2 Sk . Since

injv
�
k

gk

Sk
.�i/ � C�1

1 � C
�1=2
1 , it follows that for each i D 1; : : : ; n0 , there exists a

simple v�
k
gk –unit speed geodesic ˛i W Œ0; `i �! Sk such that �i D ˛i.0/D ˛i.`i/ and

Lengthv�
k

gk
.˛i/ D `i � 2�0 , and the ˛i are pair-wise disjoint. Note that in general

˛0i.0/ ¤ ˛0i.`i/. Observe that zSk need not be connected but it has finitely many
connected components; furthermore if we consider the (noncompact) manifold zSk n˛1 ,
and recall Definition 2.2, we see that one of the two scenarios must occur:

(1) Genus. zSk/ > Genus. zSk n˛1/.

(2) The number of connected components of zSk n ˛1 is strictly larger than the
number of connected components of zSk .

Indeed, in general removing a simple loop from a surface either decreases its genus,
or increases the number of connected components. Since the genus of the Sk (and
hence zSk ) are bounded by CG , and the ˛i are pair-wise disjoint and simple, it follows
that zSk n

Sn0

iD1
˛i has at least n1 WD n0�CGC1 connected components of zero genus

which have nontrivial intersection with v�1
k

�
Ov
�
k

gk

2ı0
.p/

�
. We label these connected

components {S i for i D 1; : : : ; n1 . We now make the following claim.

Lemma 4.19 For each i D 1; : : : ; n1 , the connected component {S i has nontrivial
intersection with v�1

k

�
@Ov

�
k

gk

4ı0
.p/

�
.

Before proceeding with the proof of Lemma 4.19, we use it to finish the proof of
the first part of Proposition 3.13. Indeed, as a consequence of the above lemma, it
follows that for each i D 1; : : : ; n1 we have vk.@ {S

i/�Ogk

2ı0
.p/[@Ogk

4ı0
.p/, and there

exists a �0i 2 {S
i with the property that distgk

�
p; vk.�

0
i/
�
D 3ı0 . We conclude from the

monotonicity of area (Proposition 3.4) that �ı2
0
=8� Areau�

k
gk
. {S i/. Then

.n0�CG C 1/�ı2
0=8�

Pn1

iD1
Areau�

k
gk
. {S i/� Areau�

k
gk
.Sk/� CA;

which is the desired contradiction. The proof of the first part of Proposition 3.13 will be
complete once we prove Lemma 4.19. To that end, we will make use of the following
lemma.

Lemma 4.20 Let .M;Jk ;gk/, O
gk

10ı0
.p/, .uk ;Sk ; jk ;Jk/, CA , vk �k , {!p , and {�p

be as above. Furthermore, let U � Sk be an open set for which vk.U/ � Ogk

10ı0
.p/.

Then ˇ̌̌̌
Areav�

k
gk
.U/�

Z
U
v�k {!p

ˇ̌̌̌
�

1

2
Areav�

k
gk
.U/:
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Proof Let E be a unit vector tangent to the image of v . Define another tangent vector
F WD .JE/>=k.JE/>k which is orthonormal to E ; here X 7!X> is the orthogonal
projection to the plane tangent to the image of v . Recall that Jk is a gk –isometry, and
k.JE/?k � �k by property (D3) of Proposition 3.12, so it is elementary to show that
1� �k � k.JE/>k and kJE �Fk � 2�k=.1� �k/. Employing our above estimates
for {! , we then find

j1� {!.E;F /j � j1� {!.E;JE/jC j{!.E;JE �F /j �
1

2
:

The desired result then follows immediately by integrating.

Proof of Lemma 4.19 Suppose not. Let cl. {S i/ denote the metric compactification of
. {S i ; v�

k
gk/. For example, if zSk is a torus, and {S i WD zSk n˛1 is an open cylinder, then

cl. {S i/ is a compact cylinder – not a torus – with piece-wise smooth boundary. Note
that each boundary component of cl. {S i/ is a copy of the piece-wise smooth geodesic
˛l for some l 2 f1; : : : ; n1g. There are several cases to consider.

Case I @ cl. {S i/D∅.

In this case {S i is closed, and vk. {S
i/�Ogk

4ı0
.p/ on which {!pDd{�p . By Lemma 4.20,

we see that Areav�
k

gk
. {S i/D 0, and hence vk W

{S i!M is a constant map. This is not
possible since the vk are immersions. Contradiction.

Case II @ cl. {S i/ has exactly one component.

By assumption {S i has zero genus, is connected, and has empty intersection with
v�1

k

�
@Ogk

4ı0
.p/

�
. Consequently {S i is a disk with boundary component ˛l . Let �0 2

Œ��; �� denote the exterior angle between ˛0
l
.0/ and ˛0

l
.`l/. But then we compute the

following.

� � 2� � �0 D

Z
{S i

Kv�
k

gk
� C1Areav�

k
gk
. {S i/

� 2C1

Z
{S i

v�k! D 2C1

Z
@ {S i

v�k�

� 2C1`i � 4C1�0 � 1;

which is a contradiction.

Case III @ cl. {S i/ has exactly two components, each of which is a copy of the same ˛l .

In this case cl. {S i/ is a compact cylinder, and {S i[˛l is a torus. As in Case I, it follows
that uk is not generally immersed, which is a contradiction.
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Case IV @ cl. {S i/ has at least two components ˛l and j̨ with l ¤ j .

In this case we note that there exists a � 2 {S i such that

min
l

distgk

�
uk.�/;uk.˛l/

�
� ı0=10:

By the monotonicity of area, Proposition 3.4, and property (D4) of Proposition 3.12, it
follows that

(64) Areav�
k

gk
. {S i/� �ı02=.2 � 102/� �k � ı

02=103:

However, we note that cl. {S i/ can have at most 2n0 geodesic boundary components.
Thus we compute

Areav�
k

gk
. {S i/� 2

Z
{S i

v�k! D 2

Z
@ {S i

v�k�� 8n0�
0 < ı02=108;

but this contradicts (64).

Thus we see that all possible cases lead to contradictions, and thus we have completed
the proof of Lemma 4.19.

We have completed the proof of the first part of Proposition 3.13 – indeed, we have
proved more, namely the statement (�). We now turn our attention toward proving the
second part of Proposition 3.13, namely we will show that for each 0< ı < ı0=2 there
exists a C > 0 such that for all sufficiently large k in the subsequence, we have

�

Z
yS2ı

k

Kv�
k

gk
� C; where ySık WD v

�1
k

�
Int.K/ nOgk

ı
.S/

�
:

To that end, we begin by fixing ı 2 .0; ı0=2/, and let S �M , k0 2N , and � > 0 be
the set and quantities guaranteed by (�); furthermore we henceforth assume that we
have passed to an appropriate subsequence. Observe that as a consequence of properties
(D4) and (D5) of Proposition 3.12, it is sufficient to show that for each there exists
a CK > 0, n0

0
> 0 , ı0 > 0, and open sets Ov

�
k

gk

ı0
.�i;k/ � Sk for i D 1; : : : ; nk (all

depending on ı ) such that

yS2ı
k �

nk[
iD1

Ov
�
k

gk

3ı0
.�i;k/(65)

nk � n00(66)

�

Z
O
v�

k
gk

3ı0
.�i;k/

Kv�
k

gk
� CK :(67)
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To that end, we fix ı0 such that

0< 6ı0 <min.�; 2ı;C�1=2
1 /:

For each k � k0 choose �i;k 2 yS2ı
k

, for i D 1; : : : ; nk , so that the sets Ov
�
k

gk

ı0
.�i;k/

are a maximal collection of disjoint sets. In other words, we choose the �i;k so that the
sets Ov

�
k

gk

ı0
.�i;k/ are pairwise disjoint, and so that if � 2 yS2ı

k
, then

Ov
�
k

gk

ı0
.�i;k/\Ov

�
k

gk

ı0
.�/¤∅

for some i 2 f1; : : : ; nkg. Note that since �i;k 2 yS2ı
k

and 6ı0 < � it follows from (�)
that Ov

�
k

gk

r .�i;k/ is a disk for all r 2 .0; 6ı0�.

We are now ready to show that (65) holds. Indeed, suppose not; then there exists
� 2 yS2ı

k
such that

� …
Snk

iD1
Ov
�
k

gk

3ı0
.�i;k/:

By the triangle inequality, it follows that

Ov
�
k

gk

ı0
.�/\Ov

�
k

gk

ı0
.�i;k/D∅

for i D 1; : : : ; nk ; however this contradicts the maximality of the Ov
�
k

gk

ı0
.�i;k/. This

proves (65).

We now show (66) holds. Recall that since it’s the case that the Ov
�
k

gk

ı0
.�i;k/� Sk are

pair-wise disjoint for i D 1; : : : ; nk , and since it’s the case that Areav�
k

gk
.Sk/� CA ,

it is sufficient to show that there exists a constant c > 0, which is independent of k ,
such that

Areav�
k

gk

�
Ov
�
k

gk

ı0
.�i;k/

�
� c:

To that end, we define the functions

A.r/ WD Areav�
k

gk

�
Ov
�
k

gk

r .�i;k/
�

and L.r/ WD Lengthv�
k

gk

�
@Ov

�
k

gk

r .�i;k/
�
:

By the co-area formula we recall that d
dr

A.r/D L.r/. Furthermore the variation of
volume formula and Gauss–Bonnet theorem yield

(68)
d

dr
L.r/D

Z
@O

v�
k

gk
r .�i;k/

�v�
k

gk
D 2� �

Z
O
v�

k
gk

r .�i;k/

Kv�
k

gk
:

Thus A satisfies the differential inequality

(69) A.0/D 0; A0.0/D 0; A00.r/� 2� �C1A.r/;
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with C1 defined as above. We now claim the for all r 2 Œ0; 6ı0�, we must have
A.r/� �r2=2. Indeed, if this were not the case, then for some r0 2 .0; 6ı

0� we would
have A.r/� �r2

0
=2 for all r 2 Œ0; r0�. But then the inequality in (69) yields

A00.r/� 2� �C1�r2
0 =2� 3�=2;

where we have used the fact that r0 � 6ı0 < C
�1=2
1 . Integrating up then yields

A.r0/� 3�r2
0
=4 which contradicts our assumption that A.r0/� �r2

0
=2. We conclude

that A.r/� �r2=2 for all r 2 Œ0; 6ı0�. Moreover,

Areav�
k

gk

�
Ov
�
k

gk

ı0
.�i;k/

�
� �ı02=2;

and by our previous discussion, we see that (66) holds.

All that remains to complete the proof of Proposition 3.13, is to show that (67) holds.
To that end, we suppose not. Or in other words, for every CK � 0, there exists i and k

such that

(70) �

Z
O
v�

k
gk

3ı0
.�i;k/

Kv�
k

gk
� CK :

Our above discussion shows that A satisfies the following integral equation and subse-
quent inequality

A.r/D �r2
�

Z r

0

Z t

0

�Z
O
v�

k
gk

s .�i;k/

Kv�
k

gk

�
ds dt

� �r2
�

1
2
C1CAr2

C

Z r

0

Z t

0

�Z
O
v�

k
gk

s .�i;k/

C1�Kv�
k

gk

�
ds dt:(71)

Since we have the point-wise bound C1 � Kv�
k

gk
, the triple integral in (71) is a

monotone increasing function in r . Consequently

�

Z
O
v�

k
gk

3ı0
.�i;k/

Kv�
k

gk
� CK )

Z
O
v�

k
gk

r .�i;k/

.C1�Kv�
k

gk
/�

(
0 if r < 3ı0;

CK if r � 3ı0;

and thus

A.r/� �r2
�

1

2
C1CAr2

C

(
0 if r < 3ı0;
1
2
CK .r � 3ı0/2 if r � 3ı0:

Evaluating the above inequality at 6ı0 shows that if (70) holds for arbitrarily large
CK > 0, then A.6ı0/D Areav�

k
gk

�
Ov
�
k

gk

6ı0
.�i;k/

�
is also arbitrarily large. This contra-

dicts our assumption that the areas of the Sk are uniformly bounded. This contradiction
shows that (67) must hold, which in turn completes the proof of Proposition 3.13.
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