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Free groups in lattices

LEWIS BOWEN

Let G be any locally compact unimodular metrizable group. The main result of this
paper, roughly stated, is that if F <G is any finitely generated free group and � <G

any lattice, then up to a small perturbation and passing to a finite index subgroup, F

is a subgroup of � . If G=� is noncompact then we require additional hypotheses
that include G D SO.n; 1/ .

20E07; 20F65, 20F67, 22D40, 20E05

1 Introduction

Consider the following general problem. Let � be a discrete cocompact subgroup of
a locally compact metrizable unimodular group G . Can we use information about
the subgroups of G to infer the existence of subgroups of � satisfying prescribed
properties?

For example, suppose G D PSL2.C/, the group of orientation-preserving isometries of
hyperbolic 3–space. G contains a large variety of surface subgroups, that is, subgroups
that are each isomorphic to the fundamental group of a closed surface of genus at
least 2. It is a well-known open problem whether � , an arbitrary discrete cocompact
subgroup of G , contains a surface subgroup.

This paper investigates the following strategy: given a subgroup F < G , attempt to
change F in some small way so that the resulting subgroup F 0 lies in � and retains
important properties of F . For example, we would like F 0 to be isomorphic to a
finite-index subgroup of F and the embedding F 0 <G to have asymptotic geometric
properties close to those of F .

To be precise, let F be an abstract group and �W F!G a homomorphism. Let S �F

be a finite symmetric generating set. Let d be a left-invariant proper metric on G

inducing its topology. For � > 0, we say that a map ��W F !G is an �–perturbation
of F if

d.��.f s/; ��.f /�.s//� �

for all f 2 F and s 2 S . The map �� need not be a homomorphism. Indeed, we do
not even require that it maps the identity element to the identity element.
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For example, if G DR, F D Z and �W Z!R is the homomorphism �.n/D n� for
some number � > 0 then ��W Z! R need only satisfy j��.nC 1/� ��.n/� � j � �

for all n 2 Z.

We say that ��W F ! G is virtually a homomorphism if there exists a finite index
subgroup F 0 < F such that

��.f1f2/D ��.f1/��.f2/ 8f1 2 F 0; f2 2 F:

If, in addition, ��.F 0/ < � then we say it is virtually a homomorphism into � .

Theorem 1.1 (Main theorem: Uniform case) Let G; �; d;F;S and � be as above.
Suppose F is free and S is a symmetric free generating set for F . Then for every
� > 0 there exists an �–perturbation �� of � that is virtually a homomorphism into � .

I do not know if the theorem remains true if F is required to be a surface group instead.

Theorem 1.2 (Main theorem: Nonuniform case) Let G D SO.n; 1/, � < G be a
discrete group with finite covolume, F < G a convex cocompact free group, S a
symmetric free generating set for F and � > 0. Then there exists an �–perturbation ��
of the inclusion map �W F !G that is virtually a homomorphism into � .

1.1 Asymptotic Geometry

Next we make a precise claim to the effect that, under special negative-curvature con-
ditions, asymptotic geometric properties do not change much under an �–perturbation.
The terms used below are standard. For the reader’s convenience, they are listed in
Section 6.1.

Let .X; d/ be a proper Gromov-hyperbolic space. Let @X denote the Gromov boundary
of X . Given a subset Y �X [@X , let L.Y /D @X \ xY where xY denotes the closure
of Y in X [@X . If ��W H ! Isom.X / is a map (where H is an abstract group), then
define the limit set of �� by L.��/DL.��.H /p/ where p 2X is any point. L.��/

does not depend on the choice of p .

Fix a visual metric d@ on X with respect to some point p 2X . Let dHaus denote the
Hausdorff distance on closed subsets of @X with respect to d@ . Let HD denote the
Hausdorff dimension of subsets of @X with respect to d@ .

Theorem 1.3 Let H be an abstract group with finite symmetric generating set S

and �W H ! Isom.X / be an injective homomorphism onto a quasi-convex cocompact
subgroup of the group of isometries of X . Let dIsom.X / be a left-invariant metric on
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Isom.X / inducing the topology of uniform convergence on compact sets. Then for all
C > 0, there exists an �0 > 0 such that if 0 � � � �0 and ��W H ! Isom.X / is an
�–perturbation of � then

(1) �� is injective,

(2) if �� maps the identity in H to the identity then dHaus.L.��/;L.�//� C and

(3) if �� is virtually a homomorphism then jHD.L.��//�HD.L.�//j � C .

1.2 Applications

Let Hn denote n–dimensional hyperbolic space. IsomC.Hn/, the group of orientation-
preserving isometries of Hn is identified with SO.n; 1/. If H is any subgroup of
IsomC.Hn/, let Dfree.H / denote the set of all numbers d such that d DHD.L.F //,
the Hausdorff dimension of the limit set of a free convex cocompact subgroup F <H .

Theorem 1.4 If � is a lattice in IsomC.Hn/ then Dfree.�/DDfree.IsomC.Hn//.

This follows immediately from the above theorems.

Remark 1 It is easy and well-known that Dfree.IsomC.H2//D .0; 1/. We claim that
Dfree.IsomC.H3//D .0; 2/. In [14], McMullen proves the following. Let Teich.S/
denote the Teichmüller space of a compact connected surface of negative Euler char-
acteristic. We will assume that S has nonempty boundary so that �1.S/ is free.
For every .X;Y / 2 Teich.S/�Teich.S/ there is discrete convex cocompact group
�.X;Y / < IsomC.H3/ isomorphic to �1.S/ (via the Bers embedding). Moreover, the
Hausdorff dimension of the limit set of �.X;Y / varies continuously (with respect to
the Teichmuller metric) [14, Proposition 9.1] and for any X 2Teich.S/, there exists a
sequence Xi 2 Teich.S/ such that the Hausdorff dimension of the limit set of �.X;Xi/

tends to 2 [14, Corollary 9.4]. It is easy to show that there also exists a sequence
Xi 2Teich.S/ such that the Hausdorff dimension of the limit set of �.Xi ;Xi/ tends
to 0. Since Teichmüller space is connected, this implies the claim. It is not known
whether this result extends to IsomC.Hn/ for any n� 4.

A surface group is a group isomorphic to the fundamental group of a closed surface of
genus at least 2.

Remark 2 Let Ds.�/ denote the set of Hausdorff dimensions of limit sets of surface
subgroups of � . In general, Ds.�/ is very mysterious. For example, in case � <
SO.3; 1/ is a uniform lattice, it is not known whether Ds.�/D Œ1; 2� for any � or for
all � (even for well-studied lattices like the fundamental group of the figure-eight knot
complement). It is even unknown whether Ds.�/ contains an interval for any such �
or for all � .
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Let P be a right-angled, compact Coxeter polyhedron in H3 , and let �.P /� Isom.H3/

be the group generated by reflections in the faces of P .

Theorem 1.5 (Masters [13]) Every finitely generated free subgroup of �.P / is
contained in a subgroup Q< �.P / isomorphic to the fundamental group of a closed
orbifold of negative Euler characteristic.

The corollary below was pointed out by Joseph Masters.

Corollary 1.6 For every d < 2 there exists a surface subgroup Hd < �.P / such that
the Hausdorff dimension of the limit set of Hd is at least d .

Proof By Remark 1 and Theorem 1.4 there exists a finitely generated free subgroup
F < � with HD.L.F // � d . By the theorem above, there exists a group Q with
F <Q< � such that Q is isomorphic to the fundamental group of a closed orbifold
of negative Euler characteristic. Because F <Q, HD.L.Q//� d . It is well-known
that Q contains a finite-index surface subgroup Q0 . Because Q0 has finite index in Q,
HD.L.Q0//DHD.L.Q//� d .

The next application regards mapping class groups. Let S denote an oriented closed
hyperbolic surface and Mod.S/D�0.HomeoC.S// its group of orientation preserving
self-homeomorphisms up to isotopy. Let Dfree.S/ denote the set of all numbers of
the form HD.L.F //, where F is a free convex compact subgroup of Mod.S/ and
HD.L.F // is the Hausdorff dimension of the limit set of F on the boundary at infinity
of Teichmüller space. The result below was first observed by Chris Leininger.

Theorem 1.7 Œ0; 1��Dfree.S/.

Remark 3 It seems highly unlikely that Œ0; 1�DDfree.S/ but I do not know that this
is false.

Proof There exist disks (called Teichmüller disks) contained in Teichmüller space
that are isometric with the hyperbolic plane H2 . By Veech [18], there exists such a
disk whose stabilizer in the mapping class group is a lattice in PSL2.R/, the group of
all (orientation-preserving) isometries of H2 . The circle at infinity of the hyperbolic
plane piecewise projectively embeds in the Thurston boundary of Teichmüller space.
So Hausdorff dimension in the circle is the same as in Thurston’s boundary with
respect to the natural piecewise projective structure. This theorem now follows from
Theorem 1.4.
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Theorem 1.4 plays a key role in the two recent papers by Lackenby, Long and Reid [11]
and Lackenby [10]. The first relates LERF with the Lubotzky–Sarnak conjecture and
the second proves that Kleinian groups that contain noncyclic finite subgroups are
either virtually free or contain a surface subgroup.

1.3 Organization

To prove Theorem 1.1, the action of F on �nG is embedded into a symbolic dynamical
system over F . A result in the symbolic dynamics over a free group implies that
this larger system contains a periodic point. That point is used to construct the �–
perturbation �� . Thus, the core of the proof is a symbolic dynamics result. That result
is stated and proven in Section 2. In Section 3, Theorem 1.1 is proven.

A more general symbolic dynamics result is proven in Section 4. That result is used to
prove Theorem 1.2 in Section 5. Section 6 contains the proof of Theorem 1.3. In the
last section, we explore attempts to replace free groups with surface groups in Theorem
1.1. We prove that a continuous version of the symbolic dynamics result of Section
2 does not hold. But we conjecture that with an additional hypothesis, the result of
Section 2 is true for surface groups. We show that this conjecture implies the surface
subgroup conjecture.

Acknowledgements I’d like to thank Joe Masters and Chris Leininger for the appli-
cations above. Conversations with Chris Leininger were helpful in formulating the
proof of Theorem 1.2. I’m grateful to Marc Lackenby for pointing out several errors
in a previous version and making helpful suggestions. I’d like to thank Alan Reid
and Darren Long for useful conversations that have improved the paper. Last but not
least, the referee has been most helpful by carefully going over the paper and making
recommendations.

2 Symbolic dynamics

The core of the proof of Theorem 1.1 is a result in the symbolic dynamics over a finitely
generated free group F . To describe it, let S be a symmetric free generating set for F .
Let G D .V;E/ be a graph. Assume that each edge is directed and has a label in S . G
is allowed to have loops and multiple edges but for each s 2 S and vertices v;w 2 V ,
we require that there is at most one edge that is labeled s and directed from v to w .
Such an edge is denoted by the triple .v; wI s/. We will associate to G a dynamical
system over F .
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Let V F be the set of all functions xW F!V with the topology of uniform convergence
on finite sets. Let X DXG be the set of all x 2 V F such that for all f 2 F and s 2 S ,
there is a directed edge in G from x.f / to x.f s/ labeled s . X is called the graph
subshift determined by G . G is the constraint graph of X .

To buttress the analogy with the classical symbolic dynamics over the integers, an
element of V F is called a treequence. For g 2 F , the shift operator �gW V

F ! V F is
defined by .�gx/.f /D x.g�1f /. This defines an action of F on V F . XG is closed
and shift-invariant. Thus F acts on XG .

The symmetry group of a treequence x 2X is defined by Fx WD ff 2 F j �f x D xg.
If it has finite index in F then x is said to be periodic. A measure � on X is shift-
invariant if �.�gE/D �.E/ for all g 2 F and all measurable sets E . Equivalently,
� is F –invariant.

Theorem 2.1 Let X � V F be the graph subshift defined by a finite graph G . If there
exists a shift-invariant Borel probability measure � on X , then there exists a periodic
treequence x 2 X . Moreover, if for some v 2 V , �

�
fx 2 X jx.id/ D vg

�
> 0 then

there exists a periodic treequence x 2X with x.id/D v . Here, id denotes the identity
element.

Remark 4 This theorem is the only place in the proof of Theorem 1.1 where the
fact that F is a free group is used. Theorem 2.1 is not true if F is replaced by the
fundamental group of a closed surface of genus at least 2. However, it is possible that
under additional hypotheses on X , it remains true. See Section 7 for further discussion.

Remark 5 If F has rank at least 2 then, because F is nonamenable, it is possible that
there are no shift-invariant Borel probability measures on X .

The proof of Theorem 2.1 given next is essentially the same as the proof given in [1],
where it was introduced. The idea comes from a simple observation: if xW F ! V is
periodic, then it descends to a function xxW FxnF ! V by xx.Fxf /D x.f /. To prove
Theorem 2.1, we will construct a periodic treequence by reversing this procedure. That
is, we will construct a right action of F on a finite set K and a function xxW K! V

such that some “lift” of this function (defined by x.f /D xx.k1 �f / where k1 2K is
fixed), is a periodic treequence in X . This is accomplished through a study of weights
on the constraint graph G which are defined next.

Let V D V .G/;E.G/ denote the vertex set and edge set of G respectively. We write
.v; wI s/ to denote the edge in E.G/ from v to w labeled s (where v;w 2 V , s 2 S )
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if one exists. A weight on G is a function W W V .G/[E.G/! Œ0;1/ such that

8 v 2 V .G/; s 2 S; W .v/D
X
w2V

W .v; wI s/D
X
w2V

W .w; vI s/;(1)

8 v;w 2 V .G/; s 2 S; W .v; wI s/DW .w; vI s�1/:(2)

The first sum above is over all w 2 V such that .v; wI s/2E.G/ and the second sum is
over all w 2 V such that .w; vI s/ 2E.G/. A weight is nontrivial if it is not identically
zero.

Lemma 2.2 Let � be a shift-invariant Borel probability measure on X . Let

W�.v/D �
�
fx 2X jx.id/D vg

�
;

W�.v; wI s/D �
�
fx 2X jx.id/D v; x.s/D wg

�
:

Then W� is a nontrivial weight on G .

Proof The following equation holds by additivity of �:

W�.v/D
X
w2V

W�.v; wI s/D
X
w2V

W�.w; vI s/:

The equation W�.v; wI s/ DW�.w; vI s
�1/ is true because � is shift-invariant and

�s

�
fx 2X jx.id/D v; x.s/D wg

�
D fx 2X jx.id/D w; x.s�1/D vg:

Lemma 2.3 Let W W V .G/ [E.G/ ! Œ0;1/ be a nontrivial weight. If, for some
v1 2 V .G/, W .v1/ > 0, then there exists a periodic treequence x 2X with x.id/D v1 .

Proof The weight equations (1)–(2) are linear equations. So the space of all weights
on G is the intersection of a certain linear subspace of RV .G/[E.G/ with the positive
orthant. Because these equations have coefficients in Z, the existence of the weight W

with W .v1/ > 0 implies the existence of a rational weight W 0 such that W 0.v1/ > 0.
Rational means that W 0.v/ and W 0.e/ are rational numbers for every v 2 V .G/ and
e 2 E.G/. In fact, we may assume that W 0.v/ and W 0.e/ are integers for every
v 2V .G/ and e 2E.G/ since multiplying a weight by a positive scalar does not change
the fact that it is a weight.

Since S is a symmetric free generating set for F , we may write S D fs1; : : : ; sr ;

s�1
1
; : : : ; s�1

r g. Let SC D fs1; : : : ; sr g. So F D hs1; : : : ; sr i.

By the above, we may assume that W .v/ and W .e/ are integers for every v 2 V .G/
and e 2 E.G/. For each v 2 V .G/, let K.v/ be a set with jK.v/j D W .v/. For
every v 2 V .G/ and s 2 SC , choose a partition fKC.v; wI s/gw2V of K.v/ so that
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jKC.v; wI s/j DW .v; wI s/. This is possible because of the weight equations (1)–(2).
Similarly, choose a partition fK�.v; wI s/gw2V of K.v/ so that jK�.v; wI s/j D
W .w; vI s�1/. For each v;w2V and s2SC, choose a bijection bv;wIsW KC.v; wI s/!

K�.w; vI s/.

Let K be the disjoint union
F
v2V K.v/. For s 2 SC , the bijections fbv;wIsgv;w2V

form a permutation of K as follows. For k 2K.v/, let k �s WD bv;wIs.k/ where w 2V

is the unique element such that k 2 KC.v; wI s/. Since S freely generates F as a
group, this defines a right action of F on K .

Let xxW K!V .G/ be the function xx.k/Dv if k 2K.v/. Now we can choose a periodic
treequence x 2 X as follows. Let k1 2 Kv1

. For f 2 F , define x.f / D xx.k1 � f /.
Because K is finite, the stabilizer Fk1

WD ff 2 F j k1 � f D k1g has finite index
in F . Since �f x D x for every f 2 Fk1

, x is periodic. Also x.id/ D xx.k1/ D v1 .
Apriori, x is only in V F . Let us check that x 2X . Let f 2F; s 2SC . Let l D k1 �f ,
vDx.f /Dxx.l/ and wDx.f �s/Dxx.l �s/. Then bv;wIs.l/D l �s . Thus W .v; wI s/>0

which implies .v; wI s/ 2E.G/. So x 2X .

Theorem 2.1 is an immediate consequence of the lemmas above.

3 The uniform case

In this section, Theorem 1.1 is proven. So all the hypotheses of Theorem 1.1 are assumed.
Briefly, the proof goes as follows. F acts on �nG on the left by f .�g/ WD�g�.f �1/.
The space �nG is partitioned into subsets of small diameter. This partitioning is
used to measurably embed �nG into a graph subshift X . Since G is unimodular,
Haar measure on G descends to a G–invariant Haar measure on �nG . This pushes
forward to a shift-invariant measure on X . Theorem 2.1 implies the existence of a
periodic treequence x 2 X . This treequence is “decoded” to produce the required
�–perturbation.

3.1 The graph subshift

Consider �nG with the quotient metric xd given by xd.�g1; �g2/Dmin2� d.g1;g2/.
Recall that S is a symmetric free generating set for F . Let ı > 0 be such that for all
g1;g2 2G with d.g1; id/ < ı and d.g2; id/ < ı , if s 2 S then

d
�
g1�.s/g2; �.s/

�
< �:

Let V D fv1; v2; : : : ; vng be a Borel partition of �nG into sets vi of diameter less
than ı . Assume that each vi has positive Haar measure. Let G be the graph with vertex

Geometry & Topology, Volume 13 (2009)



Free groups in lattices 3029

set V D fv1; : : : ; vng and edges defined as follows. For each v;w 2 V , if there exist
elements p 2 v , q 2w and s 2 S such that p�.s/D q then there is a directed edge in
G from v to w labeled s which we denote by .v; wI s/. There are no other edges.

Let X � V F be the graph subshift determined by G .

3.2 Perturbations from treequences

We will choose, for each x 2X , an �–perturbation �x of � . To get started, choose a
basepoint pi 2 vi for each i . Without loss of generality, assume p1 D � .

If there is an edge e D .v; wI s/ in G then there exist points p 2 v; q 2 w such
that p�.s/ D q . Let pv; qw be the basepoints of v and w respectively. Because
v and w each have diameter at most ı , there exists elements gv;gw 2 G such that
d.gv; id/ < ı , d.gw; id/ < ı , pvgv D p and qwgw D q . Let  e D gv�.s/g

�1
w . Note

that pv e D pvgv�.s/g
�1
w D qw . By choice of ı , d. e; �.s// < � .

There is also an edge e0 D .w; v W s�1/ in G . We choose  e0 D  
�1
e , and observe that

qw e0 D pv and d. e0 ; �.s
�1// < � .

Let x 2X . For f 2 F , represent f as f D t1 � � � tm for some ti 2 S . Let t0D id. Let
�x.f /D  e1

� � � em
where

ei D
�
x.t0 � � � ti�1/;x.t1 � � � ti/I ti

�
:

This is independent of the choice of representation of f because of the choice for  e0

above and because F is freely generated by S .

That �x is an �–perturbation of � follows from the next lemma.

Lemma 3.1 A map �W F !G is an �–perturbation of � if for any sequence t1; : : : ;

tm 2 S , there exist elements t 0i 2G such that d.�.ti/; t
0
i/ < � and �.t1 � � � ti/D t 0

1
� � � t 0i

for all i D 1; : : : ;m.

Proof Let f 2 F and s 2 S . Then there exists a sequence t1; : : : ; tm 2 S such that
f D t1 � � � tm . Let tmC1 D s . By hypothesis, for 1� i �mC 1, there exist elements
t 0i 2 G such that d.�.ti/; t

0
i/ < � and �.t1 � � � ti/ D t 0

1
� � � t 0i for all i D 1; : : : ;mC 1.

Thus
d
�
�.f s/; �.f /�.s/

�
D d

�
t 01 � � � t

0
mC1; t

0
1 � � � t

0
m�.s/

�
D d

�
t 0mC1; �.s/

�
D d

�
t 0mC1; �.tmC1/

�
< �:

Corollary 3.2 For every x 2X , the map �x W F !G is an �–perturbation of � .
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3.3 Embedding �nG in X

Let LW �nG ! V be the labeling map. That is, L.�g/ D v if �g 2 v . For each
�g 2 �nG , let ‰.�g/ 2 V F be the treequence ‰.�g/.f /DL.�g�.f //.

F acts on the left on �nG by: f ��g WD �g�.f �1/. This action preserves �, the
normalized Haar measure on �nG . ‰ is equivariant with respect to the left actions
of F . The image of ‰ lies inside X by definition, so ‰�.�/ is a shift-invariant Borel
probability measure on X . By Theorem 2.1, there exists a periodic treequence z 2X .
Indeed, since �.v1/ > 0,

‰�.�/
�
fx 2X jx.id/D v1g

�
> 0:

Thus, there exists a periodic treequence z 2X such that z.id/D v1 .

To finish the proof of Theorem 1.1, we claim that �z is virtually a homomorphism
into � . We will need the following lemma.

Lemma 3.3 For any x 2X and f;g 2 F , �x.f /�f �1x.g/D �x.fg/:

Proof Let f D t1 � � � tm , g D u1 � � �uk with ti ;ui 2 S . Let t0 D u0 D id. Let

ei WD
�
x.t0 � � � ti�1/;x.t1 � � � ti/I ti

�
;

e0j WD
�
x.f u0 � � �uj�1/;x.f u1 � � �uj /Iuj

�
:

By definition, �x.f /D  e1
� � � em

and �x.fg/D  e1
� � � em

 e0
1
� � � e0

k
.

Note that
e0i D

�
.f �1x/.u0 � � �ui�1/; .f

�1x/.u1 � � �ui/Iui

�
:

Therefore, �f �1x.g/D  e0
1
� � � e0

k
D �x.f /

�1�x.fg/.

Now, let Fz < F be the symmetry group of z . Since z is periodic, Fz has finite index
in F . Let f 2 Fz and g 2 F . Then

�z.fg/D �z.f /�f �1z.g/D �z.f /�z.g/:

This shows that �z is virtually a homomorphism. To show that �z.Fz/ < � , we need
the next lemma.

Lemma 3.4 Let x 2 X be such that x.id/ D v1 . Then, for any f 2 F , ��x.f / is
the basepoint of x.f / 2 V .
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Proof Let f D t1 � � � tm with ti 2 S . Let t0 D id. Let

ei WD
�
x.t0 � � � ti�1/;x.t1 � � � ti/I ti

�
:

By definition, �x.f /D  e1
� � � em

.

Let qi be the basepoint of x.t0 � � � ti/ 2 V . By definition of  e , qi�1 ei
D qi . So

q0�x.f / D qm . Since x.id/ D v1 , q0 D � . So ��x.f / D qm is the basepoint of
x.t0 � � � tm/D x.f /.

The lemma implies that for f 2 Fz , ��z.f / is the basepoint of z.f / � �nG . But
z.f /D z.id/D v1 since f 2Fz . So the basepoint of z.f / is � . That is, ��z.f /D� .
Of course, this implies �z.Fz/ < � . This completes the proof of Theorem 1.1.

4 Subshifts determined by infinite graphs

The proof of Theorem 1.2 follows the same ideas as the proof of Theorem 1.1. However,
because �nG may be noncompact, it is necessary to work with infinite partitions and
therefore, with subshifts determined by infinite graphs. Theorem 2.1 does not apply
in this case. So we generalize Theorem 2.1 to certain infinite-graph subshifts. This is
used in the next section to prove Theorem 1.2. To begin, we need some definitions.

Definition 1 Recall that S � F is a finite symmetric free generating set. Let F be
the Cayley graph of F . It has vertex set F and for every f 2 F and s 2 S , there
is a directed edge from f to f s labeled s . The induced subgraph of a set F � F
is the largest subgraph of F with vertex set F . If it connected then we say F is
S –connected. An S –connected component of a set F � F is an S –connected subset
D � F that is maximal among all S –connected subsets of F with respect to inclusion.

Theorem 4.1 Let X � V F be a graph subshift determined by a graph G D .V;E/.
Suppose that there is a finite set A� V and a shift-invariant Borel probability measure
� on X such that for �–almost every x 2X , every S –connected component the of
set x�1.V �A/� F is finite. Then there exists a periodic treequence in X . If for some
a1 2 A, �

�
fx 2 X jx.id/D a1g

�
> 0, then there exists a periodic treequence x 2 X

with x.id/D a1 .

The rest of this section proves this theorem. The next section shows how to apply
this result to obtain Theorem 1.2. To prove this theorem, we show that there exists a
weight supported on a finite subgraph of G and then invoke Lemma 2.3. To do this,
we represent the weight W� as a sum of functions that correspond to x�1.A/ and the
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connected components of x�1.V �A/ for x 2X . Then a simple convex geometric
argument yields the existence of the desired weight. We will need some definitions.

Let W� be as defined in Lemma 2.2. Let W 0�W V [E! Œ0;1/ be the function defined
by “truncating W�” off of V �A. To be precise:

� W 0�.a/DW�.a/ for a 2A,
� W 0�.a; bI s/DW�.a; bI s/ for a; b 2A and s 2 S ,
� W 0�.v/D 0 for v 2 V �A,
� W 0�.v; wI s/D 0 if either v 2 V �A or w 2 V �A.

W 0� is not a weight in general. We will write W� as a sum of W 0� and some other
functions, defined next.

The outer boundary of a set C � F is the set of all elements f 2 F such that f … C

but f is adjacent to an element in C (ie, 9s 2 S such that f s 2 C ). It is denoted by
@oC .

Let Z be the collection of all functions zW Dz! V such that

� the domain of z , denoted Dz � F , is finite and
� if Cz D z�1.V �A/ then Cz is S –connected and Dz D Cz [ @oCz .

For z 2 Z , let Œz� � V F be the set of all functions xW F ! V such that there is an
f 2 F satisfying

� f �1 2 Cz ,
� x.fd/D z.d/ for all d 2Dz .

Recall that .v; wI s/ denotes the edge in E.G/ from v to w labeled s (where v;w 2V

and s 2 S ) if one exists. For z 2Z , define a function Wz W V .G/[E.G/! Œ0;1/ as
follows.

� For a 2A, let Wz.a/D 0.
� For v 2 V �A, let

Wz.v/D �
�
fx 2X jx.id/D v;x 2 Œz�g

�
:

� For v 2 V �A, w 2 V and s 2 S , let

Wz.v; wI s/D �
�
fx 2X jx.id/D v;x.s/D w;x 2 Œz�g

�
:

� For a 2A; v 2 V �A; s 2 S let Wz.a; vI s/DWz.v; aI s
�1/.

� Let Wz.a; bI s/D 0 for any a; b 2A and s 2 S .
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The function Wz is not a weight in general. Since the domain of each z 2Z is finite,
Wz is supported on a finite subgraph of G (ie, the subset of V [E on which Wz is
nonzero is finite). Choose a subcollection Z0 �Z such that for all z 2Z there exists
a unique z0 2 Z0 with Œz� D Œz0�. Note that for any z1; z2 2 Z either Œz1� D Œz2� or
Œz1�\ Œz2�D∅. Therefore, fŒz0� W z0 2Z0g is a partition of the set of all x 2 V F such
that x.id/ 2 V �A and the S –connected component of x�1.V �A/ containing id is
finite.

Lemma 4.2
W� DW 0�C

X
z2Z 0

Wz :

Proof This follows immediately from the definitions and the hypothesis on � (namely
that � is supported on the set of all x 2V F such that either x.id/2A or x.id/2V �A

and the S –connected component of x�1.V �A/ containing id is finite).

Let Ev 2RA�S be the vector

Ev.a; s/D
X

b2V�A

W�.a; bI s/:

For z 2Z , let Evz 2RA�S be the vector

Evz.a; s/D
X

b2V�A

Wz.a; bI s/:

The lemma above implies Ev.a; s/D
P

z2Z 0 Evz.a; s/. The next lemma enables us to
replace this sum with a finite sum.

Lemma 4.3 Let RD fErig
1
iD1

be a sequence of nonnegative vectors in Rk for some
k <1. Let Er1 be the sum Er1 WD

P1
iD1 Eri . If Er1 2Rk (ie, every component of Er1

is finite) then there exists an N > 0 and nonnegative coefficients t1; : : : ; tN such that
Er1 D

PN
iD1 tiEri :

Proof If U is a set of vectors in Rk , then the positive cone of U is the set of all
vectors that can be expressed as

P1
iD1 ciui with ci � 0 and ui 2 U . Let C be the

closure of the positive cone of RD fErig
1
iD1

.

If the interior of C is empty, then C lies inside some linear subspace of Rk of positive
codimension in which C has nonempty interior. After replacing Rk with this subspace
if necessary, it may be assumed that the interior of C is nonempty.

Claim 1 Er1 is in the interior of C .

Geometry & Topology, Volume 13 (2009)



3034 Lewis Bowen

Proof Suppose for a contradiction that Er1 is on the boundary of C . Because C is
convex, there exists a supporting hyperplane … to C at Er1 . So, Er1 2… and C lies
in one of the closed halfspaces determined by …. Since the interior of C is nonempty,
there exists Erj 2R such that Erj …….

Since Erj …… and Er1 2…, it follows that the vector Er1�Erj lies in the open half-space
determined by … that does not contain Erj , ie, the half-space that does not contain the
interior of C . But Er1� Erj D

P
i¤j Eri is contained in C . This contradiction proves

the claim.

Let Cn be the positive cone of fEr1; : : : ; Erng.

Claim 2 If Ew is any point in the interior of C , then there exists N > 0 such that
Ew 2 CN .

Proof Suppose for a contradiction that Ew is not in Cn for any n. Because Cn is
convex there exists a hyperplane …n containing Ew that has trivial intersection with
Cn . The sequence f…ng has a subsequential limit hyperplane … (with respect to the
Hausdorff topology). Because fCng is an increasing sequence of convex sets, it follows
that … does not intersect any of the Cn ’s. Therefore C must be contained in one of
the closed half-spaces determined by …. But this contradicts the hypothesis that Ew is
in the interior of C .

The two claims imply the lemma.

By the lemma, there exists a finite collection Z00 �Z0 and nonnegative coefficients
tz (for z 2 Z00 ) such that Ev D

P
z2Z 00 tz Evz : Define a function W on G by W D

W 0�C
P

z2Z 00 tzWz :

Lemma 4.4 W is weight on G . It is supported on a finite subgraph. If for some
a1 2A, W�.a1/ > 0 then W .a1/ > 0.

Proof It is immediate from the definitions that W .v; wI s/ D W .w; vI s�1/ for all
v;w2V and s2S . We must show that Equation (1) holds for W . This is accomplished
in two separate cases.

Case 1 Let a 2A and s 2 S . We must show that W .a/D
P

b2V W .a; bI s/: First,X
b2V�A

W .a; bI s/D
X

b2V�A

X
z2Z 00

tzWz.a; bI s/

D

X
z2Z 00

tz Evz.a; s/D Ev.a; s/D
X

b2V�A

W�.a; bI s/:
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If b 2A then W .a; bI s/DW 0�.a; bI s/DW�.a; bI s/. So,

W .a/DW�.a/D
X
b2A

W�.a; bI s/C
X

b2V�A

W�.a; bI s/

D

X
b2A

W .a; bI s/C
X

b2V�A

W .a; bI s/D
X
b2V

W .a; bI s/:

Case 2 Let v 2 V �A and s 2 S . We must show that W .v/D
P
w2V W .v; wI s/:

For any z 2Z ,

Wz.v/D �
�
fx 2X jx.id/D v;x 2 Œz�g

�
D

X
w2V

�
�
fx 2X jx.id/D v;x.s/D w;x 2 Œz�g

�
D

X
w2V

Wz.v; wI s/:

W .v/D
X

z2Z 00

tzWz.v/D
X

z2Z 00

tz
X
w2V

Wz.v; wI s/D
X
w2V

W .v; wI s/:Thus,

From Cases 1 and 2 and the fact that W .v; wI s/DW .w; vI s�1/, it follows that for
any v 2 V and s 2 S ,

W .v/D
X
w2V

W .v; wI s/D
X
w2V

W .w; vI s�1/:

Thus W is a weight. It is supported on a finite subgraph because Z00 is finite and each
Wz for z 2Z00 has finite support.

Theorem 4.1 now follows from the lemma above and Lemma 2.3.

5 The nonuniform case

The key ingredient to proving Theorem 1.2 from Theorem 4.1 is the next lemma. Fix a
nonuniform lattice � <G D SO.n; 1/D IsomC.Hn/. After passing to a finite index
subgroup, we may assume, by Selberg’s lemma, that � is torsion-free. So Hn=� is
a manifold. Let �W F !G be an injective homomorphism onto a convex cocompact
subgroup of G . Note that SO.n; 1/ is unimodular, so Haar measure on G induces a
G –invariant probability measure on �nG .

Lemma 5.1 For any ı > 0 there exists a Borel partition V D fv1; v2; : : :g of �nG
into sets of diameter at most ı and a finite set A� V such that the following holds.

Let LW �nG!V be the labeling map. So L.�g/D v if �g 2 v . For each �g 2�nG ,
let ‰.�g/2V F be the treequence ‰.�g/.f /DL

�
�g�.f /

�
. Let � be the probability
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measure on �nG induced by Haar measure on G . Then for �–almost every �g2�nG ,
every S –connected component of ‰.�g/�1.V �A/ is finite. (See the previous section
for the definition of S –connected).

Proof Let C � @Hn be the cusp set of � . That is, C is the set of all points c 2 @Hn

such that there exists a nontrivial parabolic element g 2 � with gc D c . It is countable
since � is countable.

Identify Hn with G=K where K <G is a maximal compact subgroup. Then Hn=�

is identified with �nG=K . Let QW Hn!Hn=� be the quotient map. By Margulis’
thin/thick decomposition of Hn=� , there exists a compact set T �Hn=� such that
if T c denotes the complement of T in Hn=� then every connected component of
Q�1.T c/ is a horoball. Each of these horoballs has a unique limit point l 2 @Hn that
is contained in the cusp set C .

Choose a set T as above so that �K 2 T . Also choose T so that for any g 2G and
s 2 S , �gK and �g�.s/K cannot be in different connected components of T c . To
accomplish this, let d� be the distance function on Hn=� given by

d�.�g1K; �g2K/Dmin
˚
d.1g1k1; 2g2k2/ j 1; 2 2 �; k1; k2 2K

	
:

Choose T so large so that if p; q are in different components of T c then d�.p; q/ >

maxs2S d.�.s/; id/. Then for any g 2 G , d�.�gK; �g�.s/K/ < d.�.s/; id/. Thus
�gK and �g�.s/K cannot be in different components of T c .

Let � W �nG!Hn=� be the projection map. Choose a Borel partition V Dfv1; v2; : : :g

of �nG into sets of diameter at most ı so that for some A� V , ��1.T /D
S

a2A a.

Claim If g 2G is such that some S –connected component of ‰.�g/�1.V �A/ is
infinite then gL.�.F//\C ¤∅.

Proof If some S –connected component of ‰.�g/�1.V �A/ is infinite then there
exists a set F0 � F that is S –connected, infinite and ‰.�g/.f / 2 V � A for all
f 2 F0 . The last condition implies that �g�.f /K … T for all f 2 F0 . Because F0

is S –connected, the choice of T implies that there is a component H0 of Q�1.T c/

such that g�.F0/K � H0 . Since �.F0/ is infinite and discrete, there exist a point
l 2 L.�.F// � @Hn in the closure of �.F0/K . Then gl is in the closure of H0 .
Therefore, gl is in the cusp set C . This proves the claim.

For c 2C , let Gc D fg 2G jg�1c 2L.�.F//g. Because �.F/ is a convex cocompact
free group, L.�.F// has measure zero in @Hn (with respect to Lebesgue measure).
Therefore, Gc has Haar measure zero. Since C is countable,

S
c2C Gc has Haar
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measure zero. By the claim, the set of all g2G such that some S –connected component
of ‰.�g/�1.V �A/ is infinite is contained in

S
c2C Gc . So it has measure zero. This

proves the lemma.

As in Section 3.1, let ı > 0 be such that for all g1;g2 2 G with d.g1; id/ < ı and
d.g2; id/ < ı , if s 2 S then d

�
g1�.s/g2; �.s/

�
< �:

Let � be the probability measure on �nG induced by Haar measure on G . Choose
a Borel partition V D fv1; v2; : : :g of �nG into sets vi of diameter less than ı such
that � 2 v1 , �.v1/ > 0 and V satisfies the conclusion of the lemma above.

Let G be the graph with vertex set V D fv1; v2; : : :g and edges defined as follows. For
each v;w 2 V , if there exists elements p 2 v , q 2 w and s 2 S such that p�.s/D q

then there is a directed edge in G from v to w labeled s . There are no other edges.

Let X � V F be the graph subshift determined by G . As in Section 3.2, for every
x 2X , there is an �–perturbation �x W F !G of � .

Define ‰W �nG!X as in the lemma above. As in Section 3.3, this map commutes with
the actions of F . Therefore ‰�.�/ is a shift-invariant Borel probability measure on X .
By the lemma above and Theorem 4.1, there exists a periodic treequence z 2X . Indeed,
since �.v1/ > 0, ‰�.�/

�
fx 2 X jx.id/ D v1g

�
> 0. Thus, there exists a periodic

treequence z 2X such that z.id/D v1 . As in Section 3.3, �z is a �–perturbation of �
that is virtually a homomorphism into � . This proves Theorem 1.2.

6 Asymptotic geometric properties

The goal of this section is to prove Theorem 1.3. For the reader’s convenience, the next
subsection defines the terms used in the statement of the theorem.

6.1 Definitions

A nice reference for all the concepts below is Bridson and Haefliger [3].

Definition 2 Let .X; d/ be a metric space. A geodesic is a map  W I ! X where
I �R is an interval and d. .t/;  .t 0//D jt � t 0j for all t 0; t 2 Œa; b�. It is a geodesic
ray from x 2X if, in addition, I D Œ0;1/ and  .0/D x . A geodesic from x to y 2X

is a geodesic of the form  W Œa; b�! X with  .a/ D x and  .b/ D y . The image
of  is a geodesic segment from x to y and is commonly denoted Œx;y� (although it
depends on  and not just on x and y ). A geodesic triangle with vertices x;y; z 2X

is a union of three geodesic segments; one from x to y , one from y to z and one
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from z to x . .X; d/ is a geodesic space if for any two points x;y 2X there exists a
geodesic between them.

For ı � 0, a metric space .X; d/ is ı–hyperbolic if it is a geodesic space and for every
geodesic triangle ��X , each side of � is contained in the ı–neighborhood of the
union of the other two sides. If .X; d/ is ı–hyperbolic for some ı � 0, then we say it
is Gromov-hyperbolic.

Definition 3 (Gromov boundary) Let .X; d/ be a proper metric space. Two geodesic
rays 1W Œ0;1/!X , 2W Œ0;1/!X are equivalent if there exists a K � 0 such that
for any t � 0, j1.t/� 2.t/j �K . The Gromov boundary of X , denoted @X , is the
set of equivalence classes of geodesic rays.

If  W Œ0;1/!X is a geodesic ray in the equivalence class � 2 @X , then we say that
 limits on � and write  .1/D � .

If .X; d/ is ı–hyperbolic for some ı � 0, then given two points �1; �2 2 @X , there
exists a geodesic  W .�1;C1/!X such that the map t 7!  .�t/ is a geodesic ray
limiting on �1 and the map t 7!  .t/ is a geodesic ray limiting on �2 [3, Chapter III.H,
Lemma 3.2]. In this case, we say that  is a geodesic from �1 to �2 and write
 .�1/D �1;  .C1/D �2 .

Definition 4 A generalized ray is a geodesic  W I !X where either I D Œ0;R� for
some R> 0 or I D Œ0;1/. In the former case, define  .t/D  .R/ for all t 2 ŒR;1�.
We say that  is a generalized ray from  .0/ to  .R/.

Definition 5 Let .X; d/ be a proper Gromov-hyperbolic space with basepoint p 2X .
We topologize X [ @X as follows. Say that a sequence fxig

1
iD1

converges to x1 if
and only if there exists generalized rays i from p to xi such that every subsequence
of fig has a subsequence that converges uniformly on compact subsets to a geodesic
from p to x1 .

It is well-known that this defines a topology which is independent of p and makes
X[@X a compact space in which @X is closed (eg, [3, Chapter III.H, Proposition 3.7]).

Definition 6 For any subset Y �X [ @X , let L.Y / be the intersection of @X with
the closure of Y in X [ @X .

Definition 7 (Visual metric) Let .X; d/ be a proper Gromov-hyperbolic space with
basepoint p 2X . A metric d@ on @X is called a visual metric with parameter a> 0,
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if it induces the same topology on @X as given above and there exists a constant C > 0

such that for all �1; �2 2 @X , if  is a geodesic from �1 to �2 then

C�1a�d.p; /
� d@.�1; �2/� Ca�d.p; /:

Here, d.p;  /D inft d.p;  .t//.

Definition 8 A subset Y � X is �–quasi-convex if any geodesic segment Œx;y�
between points x;y 2 Y is contained in the �–neighborhood of Y . We say that Y is
quasi-convex if it is �–quasiconvex for some � > 0.

Definition 9 An infinite group � acting by isometries on a proper Gromov-hyperbolic
space .X; d/ is called quasi-convex cocompact if the action is properly discontinuous,
� does not fix any point of @X , and for some � –invariant quasi-convex subset A�X ,
the quotient A=� is compact.

6.2 Quasi-isometries and quasi-geodesics

In order to prove Theorem 1.3, we show (in the next subsection) that if p 2X and � > 0

is sufficiently small, then the map h 7! ��.h/p is a quasi-isometry of H into X (with
respect to a fixed word metric on H ). In this subsection, we introduce the necessary
definitions and standard results needed to prove this.

Definition 10 Let .X; dX /; .Y; dY / be metric spaces, �� 1; c� 0. A map � W X!Y

is a .�; c/–quasi-isometric embedding if for all x;y 2X ,

��1dX .x;y/� c � dY

�
�.x/; �.y/

�
� �dX .x;y/C c:

We say that � is a quasi-isometric embedding if it is a .�; c/–quasi-isometric embedding
for some constants �� 1; c � 0.

Definition 11 For �� 1; c � 0 a .�; c/–quasi-geodesic in a metric space .X; d/ is a
.�; c/–quasi-isometric embedding qW I ! X where I is an interval on the real line
(bounded or unbounded) or else the intersection of Z with such an interval. It is a
quasi-geodesic ray if I D Œ0;1/ or Œ0;1/\Z.

The theorem below is proven in [3, Chapter III.H, Theorem 1.7].

Theorem 6.1 (Stability of quasi-geodesics) For all ı � 0; �� 1, c � 0, there exists
a constant RDR.ı; �; c/ with the following property.

Let .X; d/ denote a proper ı–hyperbolic space. If qW I!X is a .�; c/–quasi-geodesic
in X and Œx;y� is a geodesic segment joining the endpoints of q , then the Hausdorff
distance between Œx;y� and the image of q is less than R.
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Definition 12 Let .X; d/ be a metric space and M �0; ��1; c�0. A path qW I!X

is said to be an .M; �; c/–local-quasi-geodesic if for all a; b 2 I with 0� b�a�M ,
the restriction of q to Œa; b� is a .�; c/–quasi-geodesic.

Theorem 6.2 below states that any .M; �; c/–local-quasi-geodesic in a ı–hyperbolic
space is a .�0; c0/–quasi-geodesic for some .�0; c0/ that depend only on ı; � and c .
This is stated in [9, Remark 7.2B] and proven in [5, Théorème 1.4].

Theorem 6.2 For any ı� 0; �> 1 and c� 0, there exists M1� 0, K� 0, �0D�0� 1

and c0 � 0 such that the following holds. Let .X; d/ be a ı–hyperbolic space. Let
qW I ! X be an .M; �; c/–local-quasi-geodesic for some M � M1 . Then q is a
.�0; 2K/–quasi-geodesic.

Definition 13 Let X;Y be metric spaces and 0�M; �� 1; c � 0. A map qW Y !X

is said to be an .M; �; c/–local-quasi-isometric embedding if for all y 2Y , q restricted
to the ball of radius M centered at y is a .�; c/–quasi-isometric embedding.

Corollary 6.3 Let M1; �
0; c0 be as in Theorem 6.2. Let .X; d/ be a ı–hyperbolic

space and .Y; dY / a geodesic space. If M �M1 and qW Y !X is an .M; �; c/–local-
quasi-isometric embedding then q is a .�0; c0/–quasi-isometric embedding.

Proof If  W I ! Y is a geodesic then q ı  is an .M; �; c/–local-quasi-geodesic.
The theorem above implies that q ı  is a .�0; c0/–quasi-geodesic. Since this is true
for all  , q is a .�0; c0/–quasi-isometry.

6.3 Perturbations and quasi-isometric embeddings

In this subsection, we take the first step in proving Theorem 1.3 by showing that if
� > 0 is sufficiently small, then for some p 2 X , the orbit map h 7! ��.h/p is a
quasi-isometric embedding.

Definition 14 Let H be an abstract group with finite symmetric generating set S .
The Cayley graph C of H induced by S is the graph with vertex set H and so that for
every h 2H and s 2 S there is an edge from h to hs . Let each edge be isometric with
the unit interval and let dS denote the resulting path metric. This makes C a geodesic
space.

From now on, fix H;S as above. Let .X; d/ be a ı–hyperbolic space. We assume that
X contains more than one point. Since X must contain a nontrivial geodesic segment,
this implies that it is uncountable. Let �W H! Isom.X / be an injective homomorphism
onto a quasi-convex cocompact subgroup. Let dIsom.X / be a left-invariant metric on
Isom.X / inducing the topology of uniform convergence on compact sets.
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Lemma 6.4 Let p 2 X . Define �pW H ! X by �p.h/ D �.h/p . Then �p is a
quasi-isometric embedding.

Proof Let A � X be a �.H /–invariant quasi-convex subset such that A=�.H / is
compact. Since X is a geodesic space, there exists a C > 0 such that for every C 0>C ,
the C 0–neighborhood NC 0.A/ of A is path-connected. This neighborhood is also
�.H /–invariant, quasi-convex and NC 0.A/=�.H / is compact. By quasi-convexity,
there is some constant C 00 > 0 so that any geodesic segment with endpoints in A lies
in the C 00–neighborhood of A. So after replacing A with a neighborhood of A if
necessary, we may assume that A is path-connected and for some a 2A all geodesic
segments with endpoints in �.H /a lie inside A.

Let dA be the metric on A defined by dA.x;y/ equals the infimum of lengths of
paths in A from x to y . By the Švarc–Milnor lemma, the map h 7! �.h/a is a
.�; c/–quasi-isometric embedding for some � � 1; c � 0 with respect to the metric
dA . This lemma was discovered in the fifties by Efremovič [7] and Švarc [17] and
rediscovered by Milnor [15, Lemma 2]. It is also proven in Bridson and Haefliger [3].
Since dA equals d on �.H /a, this implies that h 7! �.h/a is a .�; c/–quasi-isometric
embedding with respect to d as well.

For any h;g 2H ,ˇ̌
d
�
�.h/p; �.g/p

�
� d

�
�.h/a; �.g/a

�ˇ̌
� d

�
�.h/p; �.h/a

�
C d

�
�.g/a; �.g/p

�
D 2d.a;p/:

Since ��1dS .h;g/� c � d
�
�.h/a; �.g/a

�
� �dS .h;g/C c , this implies

��1dS .h;g/� c � 2d.a;p/� d
�
�.h/p; �.g/p

�
� �dS .h;g/C cC 2d.a;p/:

Hence h 7! �.h/p is a .�; cC 2d.p; a//–quasi-isometric embedding.

Lemma 6.5 For any N; � > 0 and any p 2 X , there exists an �0 > 0 such that the
following holds. If 0� � � �0 and ��W H !G is an �–perturbation of � then for all
g; h 2H with dS .g; h/�N ,ˇ̌

d
�
�.g/p; �.h/p

�
� d

�
��.g/p; ��.h/p

�ˇ̌
� �:

Proof Let �0 > 0 be such that if m�N , s1; : : : ; sm 2 S and s0
1
; : : : ; s0m 2 Isom.X /

are such that dIsom.X /.s
0
i ; �.si//� �0 thenˇ̌

d.s01 � � � s
0
mp;p/� d

�
�.s1/ � � ��.sm/p;p

�ˇ̌
� �:

Let 0� �� �0 and let �� be an �–perturbation of � . Let g; h2H with dS .g; h/�N .
So gDhs1s2 � � � sm for some si 2S and m�N . Because �� is an �–perturbation of � ,
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there exist elements s0i 2 G with dIsom.X/.s
0
i ; �.si// � � and ��.g/D ��.h/s01 � � � s

0
m .

Thusˇ̌
d
�
�.g/p; �.h/p

�
� d

�
��.g/p; ��.h/p

�ˇ̌
D
ˇ̌
d
�
�.s1/ � � ��.sm/p;p

�
� d

�
s01 � � � s

0
mp;p

�ˇ̌
� �:

Proposition 6.6 Let p 2 X . There exists an �0 > 0; �0 � 1 and c0 � 0 such that
if 0 � � � �0 and ��W H ! Isom.X / is any �–perturbation of � , then the map
h 7! ��.h/p is a .�0; c0/–quasi-isometric embedding of H into X .

Proof By Lemma 6.4, the map h 7! �.h/p is a .�; c/–quasi-isometric embedding for
some �� 1; c� 0. Let � � 0. Let M �M1 where M1DM1.ı; �C�; cC�C2�C2/

is as defined in Corollary 6.3.

By the previous lemma, it follows that there exists an �0 such that if 0 � � � �0

and ��W H ! Isom.X / is an �–perturbation of � , then the map h 7! ��.h/p is
an .M; �C �; cC �/–local-quasi-isometric embedding. We can extend this map
to the Cayley graph C . For example, for each edge we could choose an endpoint
and map the entire edge to the image of that endpoint. The resulting map is an
.M; �C �; cC � C 2�C 2/–local-quasi-isometric embedding. By Corollary 6.3, the
map h 7! ��.h/p is a .�0; c0/–quasi-isometry for some constants �0 � 1; c0 � 0.

6.4 Bi-Lipschitz maps

In this section, we conclude that there exists p 2X such that the map �.h/p 7!��.h/p

is bi-Lipschitz with constant that tends to 1 as � tends to 0. This result is the key
ingredient to proving Theorem 1.3. We need the next two lemmas.

Lemma 6.7 There exists a point p 2 X such that p is not a fixed point of any
nontrivial element of �.H /. For any such point, there exists a � > 0 such that if
g; h 2H and g ¤ h then d

�
�.g/p; �.h/p

�
� � .

Proof It is well-known that any nonidentity isometry of a Gromov-hyperbolic space
fixes at most 1 point. Since H is countable and X is uncountable, there exists a
point p that is not fixed by any nontrivial element of �.H /.

By Lemma 6.4, there exists � � 1 and c � 0 such that the map f 7! �.f /p is
a .�; c/–quasi-isometric embedding of H into X . Let N be an integer such that
��1N � c � 1. Let

�0 Dmin
˚
d.p; �.g/p/ j dS .g; id/�N; g ¤ id

	
:
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Because p is not fixed by any nontrivial element of �.H /, �0 > 0. Let g; h 2H with
g¤h. If dS .g; h/�N then d

�
�.g/p; �.h/p

�
Dd

�
�.h�1g/p;p

�
��0: If dS .g; h/>

N then, since the map f 7! �.f /p is a .�; c/–quasi-isometry, d
�
�.g/p; �.h/p

�
�

��1N � c � 1: Set �Dmin.1; �0/ to finish the lemma.

Lemma 6.8 Let RDR.ı; �; c/ be as in Theorem 6.1. If Y is a geodesic space and
 W Y !X a .�; c/–quasi-isometric embedding then  .Y / is R–quasi-convex.

Proof Let x;y 2Y and let Œ .x/;  .y/� be a geodesic in X from  .x/ to  .y/. Let
 W I ! Y be a geodesic segment from x to y . Then  ı is a .�; c/–quasi-geodesic
from  .x/ to  .y/ for some �� 1; c � 0 that depend only on  and not on x and y .
By Theorem 6.1, Œ .x/;  .y/� is contained in the R–neighborhood of  ı .I/. Since
the latter is contained in  .Y /, Œ .x/;  .y/� is in the R–neighborhood of  .Y /.
Since  is arbitrary, this implies  .Y / is R–quasi-convex.

Proposition 6.9 Let p 2X be such that no nontrivial element of �.H / fixes p . Let
� > 1. Then there exists an �3 > 0 such that if 0� � � �3 and ��W H ! Isom.X / is
an �–perturbation of � , then for all g; h 2H ,

��1d
�
�.h/p; �.g/p

�
� d

�
��.h/p; ��.g/p

�
� �d

�
�.h/p; �.g/p

�
:

Proof By Proposition 6.6, there exists an �0 > 0; �� 1; c � 0 such that if 0� � � �0

then the map h 7! ��.h/p is a .�; c/–quasi-isometric embedding. By the previous
lemma, there exists a C > 0 such that �.H /p and ��.H /p are C –quasi-convex (for
any � � �0 ). By Lemma 6.7 and Lemma 6.5 there exists an �1 > 0 and � > 0 such
that if 0� � � �1 then for all g; h 2H with g ¤ h,

d
�
�.g/p; �.h/p

�
� � and d

�
��.g/p; ��.h/p

�
� �:

Let � > 0 be small enough so that 1C �=� < � . Let N > 0 be an integer such that

1< 1C
2.� C 2C /

��1N � c
< �:

By Lemma 6.5, there exists �2 > 0 such that if g; h 2H are such that dS .g; h/�N

and 0� � � �2 , thenˇ̌
d
�
��.g/p; ��.h/p

�
� d

�
�.g/p; �.h/p

�ˇ̌
� �:
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We now assume that 0 � � � �3 WD min.�0; �1; �2/. Let g; h 2 H . Suppose that
dS .g; h/�N . Then by the definition of �2 and the choice of � ,

��1d
�
�.h/p; �.g/p

�
� ��1

�
d
�
��.h/p; ��.g/p

�
C �

�
� ��1

�
1C

�

�

�
d
�
��.h/p; ��.g/p

�
� d

�
��.h/p; ��.g/p

�
� d

�
�.h/p; �.g/p

�
C �

�

�
1C

�

�

�
d
�
�.h/p; �.g/p

�
� �d

�
�.h/p; �.g/p

�
:

This proves the theorem in the case dS .g; h/�N . So suppose dS .g; h/ >N . Then
there exists elements g0;g1; : : : ;gk 2H with k � 2 such that

� g0 D g , gk D h,

�
Pk�1

iD0 dS .gi ;giC1/D dS .g; h/,

� dS .g0;g1/�N and

� dS .gi ;giC1/DN for 1� i � k � 1.

Let xi D �.gi/p and x0i D ��.gi/p . By definition of �2 , for any i ,ˇ̌
d
�
xi ;xiC1

�
� d

�
x0i ;x

0
iC1

�ˇ̌
� �:

Since �.H /p is C –quasi-convex,

�2C kC

k�1X
iD0

d.xi ;xiC1/D

k�1X
iD0

�
d.xi ;xiC1/� 2C

�
� d.x0;xk/;

Since � is a .�; c/–quasi-isometry,

d.x0;xk/� �
�1dS .g; h/� c � ��1.k � 1/N � c:

d.x00;x
0
k/�

k�1X
iD0

d.x0i ;x
0
iC1/�

k�1X
iD0

d.xi ;xiC1/C �Thus,

� d.x0;xk/C �kC 2C k D d.x0;xk/C .� C 2C /k

� d.x0;xk/C
.� C 2C /kd.x0;xk/

��1.k � 1/N � c
:
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Observe that

.� C 2C /k

��1.k � 1/N � c
D
.� C 2C /. k

k�1
/

��1N � c
k�1

�
2.� C 2C /

��1N � c
� � � 1:

Thus we have shown that d.x0
0
;x0

k
/� �d.x0;xk/. Equivalently,

d
�
��.h/p; ��.g/p

�
� �d

�
�.h/p; �.g/p

�
:

Observe that all of the above inequalities and equations remain true if the roles of �
and �� are switched. Therefore,

d
�
�.h/p; �.g/p

�
� �d

�
��.h/p; ��.g/p

�
:

This implies the theorem.

6.5 Proof of Theorem 1.3

We will prove each item of Theorem 1.3 separately.

Proposition 6.10 There exists an �0 > 0 such that if 0 � � � �0 and ��W H ! G is
an �–perturbation of � then �� is 1–1.

Proof Let p 2X and � > 0 be as in Lemma 6.7. Let � > 1. By Proposition 6.9 there
exists an �0 > 0 such that if 0� � � �0 then for all g; h 2H with g ¤ h,

0< ��1� � ��1d
�
�.h/p; �.g/p

�
� d

�
��.h/p; ��.g/p

�
:

Fix a visual metric d@ on @X . The next lemma is well-known. For example, it is an
immediate consequence of Lemma 3.6 in [3, Chapter III.H].

Lemma 6.11 Let p 2X , W > 0 and C > 0. Then there exists a N � 0 such that if
q1W Œ0;1/!X and q2W Œ0;1/!X are geodesic rays with q1.0/D q2.0/D p and
d
�
q1.N /; q2.N /

�
<W then d@.q1.1/; q2.1// < C .

Because the map h 7! �.h/p is a quasi-isometric embedding into a ı–hyperbolic
space, it follows that the Cayley graph of H , denoted C , is Gromov-hyperbolic. Let
@H D @C .

Proposition 6.12 For all C > 0 and p 2 X , there exists an �0 > 0 such that if
0� � � �0 and ��W H !G is an �–perturbation of � such that ��.id/D id then

dHaus
�
L.�.H /p/;L.��.H /p/

�
< C:

Geometry & Topology, Volume 13 (2009)



3046 Lewis Bowen

Proof By Proposition 6.6, there exists �0 � 1; c0 � 0; �2 > 0 such that if 0� � � �2

then the map h 7! ��.h/p is a .�0; c0/–quasi-isometry.

Let � > 0 and let W WD 4RC 2� where RDR.ı; �0; c0/ is as in Theorem 6.1. Let
N be as in the previous lemma.

By the proof of Lemma 6.5 and the assumption ��.id/ D id, there exists an �1 > 0

such that if 0 � � � �1 then for all h 2 H with dS .h; id/ � �0.N C R/ C �0c0 ,
d.��.h/p; �.h/p/� �:

Now let �0 D min.�1; �2/. Let 0 � � � �0 . Let ��W H ! Isom.X / be any �–
perturbation of � . Let ��W H !X be the map ��.h/D ��.h/p . Extend �� to all of
the Cayley graph C by choosing, for each edge in C , one of its endpoints and mapping
the entire edge to the image of its endpoint. The resulting map is still a quasi-isometric
embedding. By [3, Chapter III.H, Theorem 3.9], �� has a unique continuous extension
��W C [ @C!X [ @X that restricts to a topological embedding of @C into @X with
image equal to L.��.H /p/.

Similarly, let �0W H!X be the map �0.h/D�.h/p . Extend it to a map �0W C[@C!
X [ @X in a similar manner.

Let � 2 @H . Let qW Œ0;1/! C be a geodesic ray with q.0/D id and q.1/D � . By
definition �� ı q is a .�0; c0/–quasi-geodesic. Let �� D ��.�/. Let �W Œ0;1/!X be
a geodesic ray with �.0/D p and �.1/D �� . Similarly, let 0W Œ0;1/!X be a
geodesic ray with 0.0/D p and 0.1/D �0 .

By Theorem 6.1, the Hausdorff distance between �� ı q.Œ0;1/\Z/ and �.Œ0;1//
is at most R. So there exists an h 2 H with d.�.N /; ��.h// � R. Since �� is a
.�0; c0/–quasi-isometry,

dS .h; id/� �0d.��.h/;p/C�0c0 � �0.N CR/C�0c0:

By definition of �1 , d.��.h/; �0.h//� � . By Theorem 6.1, there exists a t � 0 with
d.�0.h/; 0.t//�R. Observe that

jt �N j D
ˇ̌
d
�
0.t/;p

�
� d

�
�.N /;p

�ˇ̌
� d

�
0.t/; �.N /

�
� d

�
0.t/; �0.h/

�
C d

�
�0.h/; ��.h/

�
C d

�
��.h/; �.N /

�
� 2RC �:

This implies

d
�
0.N /; �.N /

�
�
ˇ̌
d
�
0.N /;p

�
� d

�
0.t/;p

�ˇ̌
C
ˇ̌
d
�
0.t/;p

�
� d

�
�.N /;p

�ˇ̌
� 4RC 2�:

By the choice of N , this implies that d@
�
��.�/; �0.�/

�
� C . Since this is true for all

� 2 @H , it follows that dHaus.��.@H /; �0.@H //� C as claimed.
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To prove the last part of Theorem 1.3, we rely on a well-known generalization of
Patterson–Sullivan theory to word hyperbolic groups due to Coornaert. This is explained
next.

Definition 15 Let � � Isom.X / be a discrete subset, p; q 2X and s > 0. Then the
Poincaré series of � with respect to the visual parameter a> 0 is defined by

gs.p; q/D
X
2�

a�sd.p;q/:

A short calculation shows that if gs.p; q/ is finite for some pair .p; q/ then it is finite
for all such pairs. So let ıa.�/D inffs W gs.p; q/ <1g be the exponent of convergence
of � with respect to the parameter a. In [4] it was proven that if � is a quasi-convex
cocompact subgroup then ıa.�/DHD.L.�//, the Hausdorff-dimension of the limit
set of � with respect to a visual metric d@ with parameter a.

In order to apply Coornaert’s result, we need the next lemma.

Lemma 6.13 There exists an �0 > 0 such that if 0� � � �0 , ��W H ! Isom.X / is an
�–perturbation of � and �� restricted to H 0 is a homomorphism (for some H 0 <H

with finite index) then ��.H 0/ is quasi-convex cocompact.

Proof Let p 2X . By Proposition 6.6, there exists �0 > 0 such that if 0� � � �0 then
the map h 7! ��.h/p is a quasi-isometry. By Lemma 6.8, if AD f��.h/p j h 2H 0g,
then A is quasi-convex. Of course, it is ��.H 0/–invariant. Since A=��.H

0/ is a single
point, it is compact.

Proposition 6.14 Let C > 0. There exists an �0 > 0 such that if 0 � � � �0 and
��W H ! Isom.X / is an �–perturbation of � that is virtually a homomorphism then
jHD.L.��//�HD.L.�//j � C .

Proof It follows from Proposition 6.9 that there exists an �0> 0 such that if 0� �� �0

and ��W H ! Isom.X / is an �–perturbation of � then jı.�.H //� ı.��.H //j< C .

Assume �� is virtually a homomorphism. So there exists a finite-index subgroup
H 0 <H such that �� restricted to H 0 is a homomorphism. By the previous lemma
and Coornaert’s result (mentioned in Definition 15), ıa.��.H 0//DHD.L.��.H 0/p//.
So it suffices to show that ıa.��.H 0//D ıa.��.H // and L.��.H

0/p/DL.��.H /p/.
These are easy exercises left to the reader.

Theorem 1.3 now follows from Propositions 6.10, 6.12 and 6.14.

Geometry & Topology, Volume 13 (2009)



3048 Lewis Bowen

7 Surface groups and aperiodic tilings

Because of the surface subgroup conjecture, we would like to generalize Theorem 1.1
to allow F to be a surface group. The only step in the proof which requires F to be a
free group is in Theorem 2.1: showing the existence of a periodic point in a certain
graph subshift over F . This points to a general problem: find conditions on graph
subshifts over a surface group that guarantee the existence of a periodic point. We
will consider a continuous version of this problem; replacing the surface group with
PSL2.R/D IsomC.H2/ and show, by an explicit counterexample, that the existence of
an invariant Borel probability measure is not sufficient. However, up to minor variations,
this is the only known counterexample. We make a precise conjecture to the effect that
this counterexample is unique and show that it implies the surface subgroup conjecture.

To begin, let us define tiling spaces, which are the continuous analog of graph subshifts.

Definition 16 A tile is a curvilinear polygon in H2 . We think of it as a compact subset
H2 (equal to the closure of its interior) and also as a finite CW–complex isomorphic
to a polygon. If P D f�1; �2; : : :g is a set of tiles, then a tiling by P is a collection T

of congruent copies of the tiles in P such that

� (covering) the union of all tiles in T equals the whole plane and

� (edge-to-edge) for any distinct pair �1; �2 of tiles in T the intersection of �1

with �2 is either empty, a vertex of both, or an edge of both.

Let T .P / be the set of all tilings by P . It has the following topology. If fTig is a
sequence of tilings then Ti converges to T1 if for every tile � 2 T1 , there exist tiles
�i 2 Ti with �i converging to � in the Hausdorff topology on closed subsets of the
plane.

IsomC.H2/ acts on T .P / in the obvious way: for all g 2 IsomC.H2/, gT D

fg� j � 2 T g. The symmetry group of T is the group of all isometries that fix T .
T is periodic if its symmetry group is cofinite. If P is finite, then the symmetry group
of T is necessarily discrete.

If the set of tiles P is such that T .P / is nonempty and every tiling T 2 T .P / is
nonperiodic then P is said to be aperiodic.

Here is a brief history of aperiodic tilings of the hyperbolic plane. The first aperiodic
tile set P is described by Penrose [16]. It has only one tile which is nonconvex. More
examples were discovered by Margulis and Mozes [12]: indeed they discovered a
set P consisting of a single tile, a triangle, that admits only nonperiodic tilings. In
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Goodman-Strauss [8], an example is provided of a finite set P of tiles such that each
tiling T 2 T .P / has no nontrivial symmetries. Dranishnikov and Schroeder [6] gave a
new construction of aperiodic tile sets. The first example of an aperiodic tile set P such
that T .P / admits an invariant Borel probability measure appears in Bowen, Holton,
Radin and Sadun [2]. It is sketched below. Except for minor variations it is the only
example known.

Theorem 7.1 There exists an aperiodic set of tiles P D f�; �g such that T .P / is
nonempty and there is a IsomC.H2/–invariant Borel probability measure on T .P /.

Proof sketch This is only a sketch. For details, see Bowen et al [2]. The starting
point is a slight modification of an aperiodic tile set described in [16]. Identify H2

with the upperhalf plane model. So H2 D fx C iy 2 C jy > 0g with the metric
ds2 D .dx2C dy2/=y2 . Euclidean similarities that preserve H2 are isometries of the
hyperbolic metric.

For w> 0, let � D �w be the Euclidean rectangle with vertices i; iCw; 2i; 2iCw . As
a CW–complex, it is to be regarded as a pentagon where the extra vertex is at i Cw=2.

Figure 1: Part of a tiling by f�g in the upper-half plane model

Let t; s be the isometries of H2 given by t.z/ D zCw and s.z/ D 2z . Then T D

fsntm�w j n;m 2 Zg is a tiling by P . See Figure 1. Thus T .f�g/ is nonempty.

However, it can be shown that T .f�g/ does not admit any PSL2.R/–invariant Borel
probability measures. This is because there is a PSL2.R/–equivariant map from T .f�g/
onto @H2 defined by T 7! p where p is the unique point which is contained in the
geodesic extension of every “vertical” edge of tiles in T . If there is a PSL2.R/–invariant
Borel probability measure on T .f�g/ then it pushes forward to a PSL2.R/–invariant
measures on @H2 . But, an easy exercise shows that there are no PSL2.R/–invariant
Borel probability measures on @H2 .
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To get an invariant measure we will need another tile. Consider the standard horoball
packing as shown in Figure 2 in the Poincaré model. It is invariant under PSL2.Z/ <
PSL2.R/. Let � be one of the curvilinear triangles in the complement of the horoballs.
Let w be the length of one of its edges.

Let P Df�; �wg. P tiles in the following way. Consider the standard horoball packing.
Tile each horoball with copies of �w . Use the triangle � to tile the complement of
the horoballs. See Figure 2. In [2] it was shown that P is aperiodic and there are
uncountably many ergodic PSL2.R/–invariant Borel probability measures on T .P /.
Here we only sketch aperiodicity and existence of a Borel probability measure.

Figure 2: Left: Part of the horoball packing invariant under PSL2.Z/ . Right:
Part of a tiling by f�; �wg .

Let T 2 T .P /. Note that T contains a copy of �w since it is not possible to tile with
copies of the triangle � alone. Let � 0 be such a copy. Note that only another copy
of �w is allowed to be next to � 0 on either its left or its right edges. Therefore, T

contains a copy of the set ft i�wji 2 Zg where t is the isometry t.z/D zCw . So if
e is the “top” edge of � 0 then the set h D ft iej i 2 Zg is a horocycle. So there is a
horocycle contained in the edges of T .

If � is the symmetry group of T then the quotient space H2=� admits a tiling by
f�; �g (the quotient tiling). So the horocycle h must descend to a closed horocycle
on H2=� . Thus H2=� is noncompact. But any tile placed deep enough in a cusp
necessarily has self-intersections. So H2=� has no cusps. So it cannot have finite
volume. This contradiction implies T is nonperiodic. Since T is arbitrary, P is
aperiodic.

To produce a PSL2.R/–invariant Borel probability measure on T .P /, consider the
standard horoball packing as in Figure 2. Use the triangle � to tile the complement
of the union of horoballs. For N > 0, tile the first N “rows” of each horoball with
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copies of �w . This can be done in such a way that the resulting partial tiling has
symmetry group HN with finite index in PSL2.Z/. Hence HN is a lattice. So there is
an invariant probability measure �N supported on the translates of this partial tiling.

The set of partial tilings of H2 by P is topologized in a manner analogous to how
T .P / is topologized. With this topology, it is compact and metrizable. So the Banach–
Alaoglu theorem implies the existence of a weak* limit point of the sequence f�N g.
Let � be such a point. Given any fixed point p 2H2 , the �N –probability that p is
contained in a tile tends to 1 as N !1. Hence � is supported on full tilings (as
opposed to partial tilings). Since each �N is PSL2.R/–invariant, � is also PSL2.R/–
invariant.

Recall that the support of a measure � on a topological space X is the complement
of the largest open subset O with �.O/D 0. It is denoted here by support.�/. The
action of a group G on X is minimal if every orbit Gx is dense in X .

In the example provided above, PSL2.R/ does not act minimally on the support of any
invariant probability measure � on T .P /. Indeed, if T is any tiling by P then there
exists a tiling T 0 in the closure of the PSL2.R/–orbit of T that is a tiling by f�g alone.
In fact, T .f�g/ is contained in the closure of the PSL2.R/–orbit of T . PSL2.R/ acts
minimally on T .f�g/� T .P /, but no PSL2.R/–invariant Borel probability measure
has support in T .f�g/. I conjecture that this phenomenon holds for every finite
aperiodic tile set:

Conjecture 1 Let Q be an aperiodic finite set of tiles of H2 . Suppose there exists a
PSL2.R/–invariant Borel probability measure � on T .Q/. Then PSL2.R/ does not
act minimally on the support of �.

Recall that a surface group is the fundamental group of a closed surface of genus at
least 2. Here is a discrete form of the same conjecture:

Conjecture 2 Let X � V † be the graph subshift defined by a finite graph G where
† is a surface group. If there exists a shift-invariant Borel probability measure � on
X such that † acts minimally on the support of � then there exists a periodic point
x 2 X (ie, the stabilizer of x has finite index in †). Moreover, if for some v 2 V ,
�
�
fx 2X j x.id/D vg

�
> 0 then there exists a periodic point x 2X with x.id/D v .

Theorem 7.2 If the conjecture above is true, then the surface subgroup conjecture
is true. That is, if � < PSL2.C/ is a cocompact discrete group then there exists a
subgroup † < � that is isomorphic to the fundamental group of a closed surface of
genus at least 2.
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Proof Let †< PSL2.R/ be a discrete cocompact surface group. Let Y be any subset
of �nPSL2.C/ that is †–invariant, closed and such that the action of † on Y is
minimal. We claim that there is a †–invariant probability measure supported on Y .

Consider the set

zY D
n
.yg; †g/ 2 �nPSL2.C/�†nPSL2.R/

ˇ̌
y 2 Y; g 2 PSL2.R/

o
:

We claim that this set is closed. To see this, let f.yigi ; †gi/g
1
iD1

be a sequence in zY
where fyig � Y and fgig � PSL2.R/. Let D � PSL2.R/ be a compact set such that
†D D PSL2.R/. Then there exists hi 2 † and di 2 D such that gi D hidi . After
passing to a subsequence we may assume that fyihig � Y has a limit point y1 and
that fdig has a limit point d1 2 D . Thus f.yigi ; †gi/g D f.yihidi ; †di/g has the
limit point .y1d1; †d1/ 2 zY . This proves that zY is sequentially compact which
implies the claim.

Since zY is invariant under the diagonal action of PSL2.R/ on the right, Ratner’s theo-
rems on unipotent flows imply that there exists a PSL2.R/–invariant Borel probability
measure z� supported on zY . Now let K � PSL2.R/ be a fundamental domain for the
action of †. That is, K is a Borel set such that †K D PSL2.R/ and if g1 ¤ g2 2K

then g1K\g2K has Haar measure zero. If Y0 � Y is Borel then define

�.Y0/D z�
�˚
.yk; †k/ 2 zY jy 2 Y0; k 2K

	�
:

Then � is a †–invariant probability measure supported on Y . This proves the claim.

Let d denote the usual distance function on PSL2.C/. Let S �† be a finite symmetric
generating set. Let

�Dmin
˚
d.id;gg�1/ W  2 � �fidg;g 2 PSL2.C/

	
> 0:

Without loss of generality, let us assume that † has a presentation of the form †D

hS jRi where R is a finite set of words in S .

Let �W � ! PSL2.C/ be the inclusion map. Choose �0 so that 0 < �0 � � and
if r D s1 � � � sk is in R (with si 2 S ) if g0;g1; : : : ;gk 2 PSL2.R/ are such that
d.�.si/;gi/� �0 for all i then d

�
g1 � � �gk ; id

�
< �:

Let ı > 0 be such that for all g1;g2 2PSL2.C/ with d.g1; id/< ı1 and d.g2; id/< ı1
if s 2 S then, d

�
g1�.s/g2; �.s/

�
< �0:

Let V D fv1; v2; : : : ; vng be a Borel partition of Y into sets vi of diameter less than ı .
Assume that each vi has positive �–measure.

Let G be the graph with vertex set V D fv1; : : : ; vng and edges defined as follows. For
each v;w 2 V , if there exist elements p 2 v , q 2 w and s 2 S such that ps D q then
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there is a directed edge in G from v to w labeled s which we denote by .v; wI s/.
There are no other edges.

Let X � V † be the graph subshift determined by G .

We will choose, for each x 2X , an �–perturbation �x of � . To get started, choose a
basepoint pi 2 vi for each i . Assume p1 D � .

If there is an edge e D .v; wI s/ in G then there exists points p 2 v; q 2 w such
that ps D q . Let pv; qw be the basepoints of v and w respectively. Because v and
w each have diameter at most ı , there exists elements gv;gw 2 PSL2.C/ such that
d.gv; id/ < ı , d.gw; id/ < ı , pvgv D p and qwgw D q .

Let  e D gvsg�1
w . Note that pv e D pvgvsg�1

w D qw . By choice of ı , d. e; s/ < � .

There is also an edge e0 D .w; v W s�1/ in G . We choose  e0 D  
�1
e , and observe that

qw e0 D pv and d. e0 ; �.s
�1// < � .

Let x 2X . For f 2†, represent f as f D t1 � � � tm for some ti 2 S . Let t0 D id.

Let �x.f /D  e1
� � � em

where

ei D
�
x.t0 � � � ti�1/;x.t1 � � � ti/I ti

�
:

To show that �x is well-defined, it suffices to show that if r D s1 � � � sk 2R is a relator
(with si 2 S ) and e1; e2; : : : ; ek is a directed cycle in G such that ei is labeled si

for all i , then  e1
� � � ek

D id. Let v be the source of e1 and p 2 v its basepoint.
Since e1; : : : ; ek is a directed cycle, p e1

� � � ek
D p . Thus, if p D �g for some

g 2 PSL2.C/, then  e1
� � � ek

2 g�1�g .

As noted above, d. .ei/; �.si// < �0 . So by the choice of �0 , d
�
 e1
� � � ek

; id
�
< � .

By definition of � , this implies  e1
� � � ek

D id. Thus, �x is well-defined.

The rest of the proof is exactly the same as the proof of Theorem 1.1 beginning with
Lemma 3.1 except in one detail. We must invoke the conjecture above to ensure the
existence of a periodic point.
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