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Desingularization of G2 manifolds
with isolated conical singularities

SPIRO KARIGIANNIS

We present a method to desingularize a compact G2 manifold M with isolated
conical singularities by cutting out a neighbourhood of each singular point xi and
gluing in an asymptotically conical G2 manifold Ni . Controlling the error on
the overlap gluing region enables us to use a result of Joyce to conclude that the
resulting compact smooth 7–manifold �M admits a torsion-free G2 structure, with
full G2 holonomy.

There are topological obstructions for this procedure to work, which arise from the
degree 3 and degree 4 cohomology of the asymptotically conical G2 manifolds Ni

which are glued in at each conical singularity. When a certain necessary topological
condition on the manifold M with isolated conical singularities is satisfied, we can
introduce correction terms to the gluing procedure to ensure that it still works. In the
case of degree 4 obstructions, these correction terms are trivial to construct, but in the
case of degree 3 obstructions we need to solve an elliptic equation on a noncompact
manifold. For this we use the Lockhart–McOwen theory of weighted Sobolev spaces
on manifolds with ends. This theory is also used to obtain a good asymptotic
expansion of the G2 structure on an asymptotically conical G2 manifold N under an
appropriate gauge-fixing condition, which is required to make the gluing procedure
work.

53C29; 58J05

1 Introduction

This is the first of two papers in which we study conical singularities for G2 manifolds.
The present paper deals with the desingularization of G2 manifolds with conical singu-
larities by gluing. The next paper [24] is about the deformation theory (moduli spaces)
of such manifolds and of the closely related asymptotically conical G2 manifolds. We
use the same notation and occasionally mention some results from [24]. However,
this paper is completely self-contained. All the results we use from other sources are
carefully stated.

The main theorem we prove in this paper is the following. The notation and terminology
used in this theorem will all be defined in Sections 2 and 3.
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Main Theorem (Theorem 3.28) Let M be a compact G2 manifold with isolated con-
ical singularities, with singularities x1; : : : ;xn , cones C1; : : : ;Cn and rates �1; : : : ; �n ,
respectively. Suppose that we have asymptotically conical G2 manifolds N1; : : : ;Nn ,
with the same cones C1; : : : ;Cn and rates �1; : : : ; �n , respectively, with each �i � �3.
If the topological conditions (74) and (75) of Theorem 3.10 are satisfied, then there
exists a one-parameter family �Ms of smooth, compact G2 manifolds, for 0< s < � ,
(with holonomy exactly equal to G2 ), which desingularize M .

The study of manifolds with isolated conical singularities (ICS) or of asymptotically
conical (AC) manifolds in the context of special holonomy and calibrated geometry
was initiated by Joyce in his series of papers [20; 21; 22; 23; 19] about special
Lagrangian submanifolds with ICS. Marshall [33] and Pacini [36] studied AC special
Lagrangian submanifolds of Cm , and Lotay [31; 32; 30] studied coassociative AC and
ICS submanifolds of G2 manifolds. The results in the present paper most closely relate
to the work of Chan [11; 10; 12] on AC and ICS Calabi–Yau 3–folds.

For those readers who are familiar with the papers [11; 12], the main differences
between the G2 case of the present paper and the Calabi–Yau 3–fold case studied by
Chan are the following. There are two sources of topological obstructions, coming
from the 3–form ' and the 4–form  of a G2 structure, compared to just the one
source coming from � in the Calabi–Yau case. The solution to 3–form obstructions
is very similar to the approach of Chan [12], except that we can use the full d C d�

operator rather than having to restrict to a subcomplex, but we need to also obtain
excluded ranges for the orders of homogeneity for harmonic 2–forms, in addition to the
0–forms and 1–forms which are needed in the Calabi–Yau 3–fold case. The solution
to 4–form obstructions cannot be obtained in the same way, for technical reasons, but
there turns out to be a much easier way to deal with those. Also, Chan assumes that the
asymptotically conical manifolds used in the gluing already admit a good asymptotic
expansion near infinity (and he shows that this does hold in the examples he discusses.)
We prove that under a natural gauge-fixing condition, a good asymptotic expansion
which allows the gluing construction to succeed always exists.

We now discuss the organization of this paper. Section 1.1 is a review of the main facts
about G2 manifolds which we require. More thorough discussions of G2 structures
can be found in Bryant [7] and Joyce [18].

Section 2 is about G2 manifolds modelled on cones. In Section 2.1 we treat G2 cones,
and in Section 2.2 we present several results about differential forms on G2 cones
which we will need later. Sections 2.3 and 2.4 discuss, respectively, G2 manifolds with
isolated conical singularities (ICS) and asymptotically conical G2 manifolds (AC),
including the known explicit examples in the AC case.
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In Section 3 we present the details of the desingularization procedure as three steps.
Step one in Section 3.1 is concerned with constructing a compact smooth manifold �Ms

for all s sufficiently small. Then in step two in Section 3.2 we construct a family 's of
closed G2 structures on �Ms with small torsion. It is at this stage where we require two
analytic results, which are described here, but whose proof is postponed until later in
the paper. The first result involves the existence of a good asymptotic expansion near
infinity for the G2 structure of an asymptotically conical G2 manifold. The second
result is concerned with topological obstructions to the gluing procedure that can arise
and their resolution. Finally in step three of the desingularization procedure in Section
3.3 we obtain estimates to show that the torsion of 's is small enough to invoke a
theorem of Joyce that gives the existence of a torsion-free G2 structure z's on �Ms for
s sufficiently small.

In Section 4, we briefly review and summarize the relevant results which we will need
from the Fredholm theory on weighted Sobolev spaces for noncompact manifolds with
ends. Section 4.1 is about manifolds with isolated conical singularities, while Section
4.2 is about asymptotically conical manifolds.

In Section 5 we discuss how to overcome the topological obstructions to our gluing
procedure of Section 3.2 when a certain necessary condition is satisfied, by explaining
how to explicitly construct “correction forms” to be able to carry out the construction
in the obstructed case. In Section 5.1 we deal with the case of 3–form obstructions,
and in Section 5.2 we handle the 4–form obstructions.

Finally, in Section 6 we prove that a good asymptotic expansion exists for an asymptot-
ically conical G2 manifold which satisfies a natural gauge-fixing condition.

Conventions There are two sign conventions in G2 geometry. The convention we
choose to use is the one used in Bryant–Salamon [8] and in Harvey–Lawson [16], but
differs from the convention used in Bryant [7] or Joyce [18]. A detailed discussion
of sign conventions and orientations in G2 geometry can be found in the author’s
note [25].

The letter C is used in two ways: to denote a cone or to denote a positive constant. The
use will always be clear from the context. When we are estimating various quantities,
the value of C > 0 will change from step to step in the calculations, but we will
always use the same letter C to denote it, to avoid a proliferation of notation. We use
f DO.r/ to mean that f �C r for some C > 0 as r! 0 (when we are working near
a singularity), or as r !1 (when we are working on an asymptotic end at infinity.)

One fact we will use repeatedly is that for any form ! , the exterior derivative d! is
obtained by the skew-symmetrization of the covariant derivative r! , so there is some
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C > 0 such that

(1) jd!j � C jr!j; jrd!j � C jr2!j:

Also, we have

jd�!j D j � d �!j D jd �!j � C jr�!j D C j �r!j D C jr!j

using the fact that d�D˙�d� and that � is an isometry and commutes with r. Thus
we also have

(2) jd�!j � C jr!j:
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1.1 Review of G2 manifolds

Recall that a G2 structure on a connected smooth 7–manifold M is described by
a smooth 3–form ' satisfying a certain “nondegeneracy” condition. When such a
structure exists, there is an open subbundle �3

C of the bundle �3 of 3–forms consisting
of nondegenerate 3–forms, also called positive or stable 3–forms. A G2 structure '
determines a Riemannian metric g' and an orientation vol' in a nonlinear way. Thus
' determines a Hodge star operator �' , and  D �'' is the dual 4–form which is an
element of the bundle �4

C of positive 4–forms.

Definition 1.1 A G2 manifold is a connected manifold with a G2 structure .M; '/

such that ' is parallel with respect to the Levi-Civita connection r determined by g' .
That is, rg' ' D 0. Such a G2 structure is also called torsion-free. In this case the
Riemannian holonomy Holg.M / of .M;g'/ is contained in the group G2 � SO.7/.
If the fundamental group �1.M / is finite, then the holonomy of g' is exactly G2 .
(See Joyce [18] for more details.)

Remark 1.2 A G2 manifold is always Ricci-flat, and by Fernández–Gray [13], a
G2 structure ' is torsion-free if and only if it is both closed and coclosed: d' D 0 and
d D 0.
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The space �3 of 3–forms on a manifold with G2 structure ' decomposes as

(3) �3
D�3

1˚�
3
7˚�

3
27

into irreducible G2 representations. Similarly we have a decomposition of the space
�2 as

(4) �2
D�2

7˚�
2
14;

as well as isomorphic splittings of ƒ4 and ƒ5 given by the Hodge star of the above
decompositions: ƒk

l
D �'.ƒ

7�k
l

/. When the G2 structure is torsion-free, these
decompositions are preserved by the Hodge Laplacian �D dd�Cd�d . The essential
aspect of this fact that we will need is the following. Suppose f is any function and !
is any 1–form on a G2 manifold M . Then

�.f '/D .�f /'; �.f  /D .�f / ;(5)

�.! ^'/D .�!/^'; �.! ^ /D .�!/^ :(6)

The identities in (5) can be proved using just the fact that ' and  are parallel, while the
identities in (6) also require the fact that G2 manifolds have vanishing Ricci curvature.

Let ‚W ƒ3
C!ƒ4

C be the nonlinear map which associates to any G2 structure ' , the
dual 4–form  D ‚.'/D �'' with respect to the metric g' associated to ' . One
result which will be crucial is the following. This is Proposition 10.3.5 in Joyce [18],
adapted to suit our present purposes.

Lemma 1.3 Suppose that ' is a G2 structure with induced metric g' and dual 4–form
 D�'' . Let � be a 3–form which has sufficiently small pointwise norm with respect
to g' , so that 'C � is still nondegenerate. Then we have

(7) ‚.'C �/D  C�'

�
4

3
�1.�/C�7.�/��27.�/

�
CF'.�/;

where �k is the projection onto the subspace �3
k

with respect to the G2 structure ' .
The nonlinear function F' W �

3!�4 satisfies

(8) F'.0/D 0; jF'.�/j � C j�j2; jrF'.�/j � C
�
j�j2jr'jC j�jjr�j

�
;

for some C > 0, where the norms and the covariant derivatives are taken with respect
to g' .
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Remark 1.4 It is clear that the same sort of result holds for the map ‚�1W �4
C!�3

C .
That is, if � is a 4–form with sufficiently small pointwise norm, then

(9) ‚�1. C �/D 'C�'

�
3

4
�1.�/C�7.�/��27.�/

�
CG'.�/;

where �k is the projection onto �4
k

with respect to ' and G' W �
4!�3 satisfies

(10) G'.0/D 0; jG'.�/j � C j�j2; jrG'.�/j � C
�
j�j2jr'jC j�jjr�j

�
;

for some C > 0.

It will be convenient to define the linear operator J W �4!�3 given by

(11) J'.�/D �'

�
3

4
�1.�/C�7.�/��27.�/

�
:

Then Equation (9) becomes ‚�1. C�/D'CJ'.�/CG'.�/. Given explicit formulas
for �1 and �7 , as can be found for example in [26], it is not difficult to verify that

(12) jJ'.�/j � C j�j; jrJ'.�/j � C .j�jjr'jC jr�j/ ;

which we will need in Section 3.3 to estimate the torsion of the G2 structure we
construct by gluing in Section 3.2.

2 G2 manifolds modeled on cones

In this section we discuss G2 manifolds which are modeled on cones. Specifically
these are: G2 cones, G2 manifolds with isolated conical singularities (ICS) and
asymptotically conical G2 manifolds (AC).

2.1 G2 cones

Let †6 be a compact, connected, smooth 6–manifold. An SU.3/ structure on †
is described by a Riemannian metric g† , an almost complex structure J which is
orthogonal with respect to g† , the associated Kähler form !.u; v/D g†.Ju; v/ which
is real and of type .1; 1/ with respect to J and a nonvanishing complex .3; 0/–form �.
The two forms are related by the normalization condition

(13) vol† D
1

6
!3
D

i

8
�^ x�D

1

4
Re.�/^ Im.�/:

Such a structure exists whenever † admits an almost complex structure and c1.†/D 0,
so that the canonical bundle ƒ3;0 of † is topologically trivial and a nonvanishing
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section � exists. Then we can always scale � by a nonzero complex valued function
to ensure that (13) holds.

Definition 2.1 The manifold †6 with SU.3/ structure .!;�/ is called strictly nearly
Kähler, or a weak SU.3/manifold, if the following equations are satisfied:

(14) d†! D�3 Re.�/; d†Im.�/D 4
!2

2
:

Remark 2.2 All strictly nearly Kähler 6–manifolds can be shown to be Einstein, with
positive scalar curvature. It then follows from the Weitzenböck formula that in the
compact case, the first Betti number vanishes: b1.†/D 0. Some references for strictly
nearly Kähler manifolds are Bär [3], Reyes-Carrión–Salamon [37] and Gray [14; 15].

The following result is proved in Bär [3].

Proposition 2.3 Let †6 be strictly nearly Kähler. Then there exists a torsion-free
G2 structure .'C ;  C ;gC / on C 0 D .0;1/�†. This structure is defined by

'C D r3Re.�/� r2dr ^!;(15)

 C D�r3dr ^ Im.�/� r4!
2

2
;(16)

gC D dr2
C r2g†;(17)

where r is the coordinate on .0;1/. The metric gC in (17) is called a cone metric and
we say C DC 0[f0g is a G2 cone. In fact for any Riemannian cone C D .0;1/�†[f0g
with holonomy contained in G2 , the holonomy is either trivial, in which case † is the
standard round sphere S6 and C is the Euclidean R7 , or else the holonomy is exactly
equal to G2 , in which case the link † is strictly nearly Kähler, but not equal to S6 .

In this paper, a G2 cone will always have holonomy exactly G2 , so we exclude the case
where the link is S6 . The space C D C 0 [ f0g is a G2 cone, C 0 is the smooth part
of C , the point 0 is the singular point of the cone, and † is called the link of the cone.
Notice that 0D limr!0C.r; �/ for any point � in †. Now det.gC /D r12 det.g†/,
and we choose the orientation on C 0 so that

(18) volC D r6dr ^ vol†

is the volume form on C 0 .

For any t > 0, we have a dilation map tW C ! C defined by

(19) t.0/D 0; t.r; �/D .t r; �/:
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If we pull back 'C ,  C , gC and volC with respect to t, we see that

(20)
t�.'C /D t3 'C ; t�. C /D t4  C ;

t�.gC /D t2 gC ; t�.volC /D t7 volC ;

and we say that the conical G2 structure is dilation-equivariant. Similarly any con-
travariant tensor ! of degree k such that t�.!/D tk ! is called dilation-equivariant.
A useful property of dilations which we will use frequently is the following. Since
gCi

.r; �/D t�2gCi
.t r; �/ for vector fields, we see that

(21) jt�.!/.r; �/jgCi
.r;�/ D tk

j!.t r; �/jgCi
.tr;�/

whenever ! is a contravariant tensor of degree k .

Proposition 2.4 The forms 'C and  C on the smooth part C 0 of a G2 cone C are
exact, and hence the cohomology classes Œ'C � and Œ C � are trivial in H 3.C 0;R/ Š
H 3.†;R/ and H 4.C 0;R/ŠH 4.†;R/, respectively.

Proof By using the relations (14) defining a strictly nearly Kähler structure on the
link †, it is easy to check that (15) and (16) can be written as

'C D d

�
�

r3

3
!

�
;  C D d

�
�

r4

4
Im.�/

�
;

which is exactly what we needed to show.

There are three known compact strictly nearly Kähler manifolds (other than the
round S6 ), and hence three known G2 cones, which we now discuss. They are
all obtained by taking the biinvariant metric on a compact Lie group G and descending
this to the normal metric on G=H for an appropriate Lie subgroup H . In particular,
all these examples are homogeneous spaces. See Bär [3] for more details.

Example 2.5 (The complex projective space CP3 ) We can view CP3 (diffeo-
morphically) as the homogeneous space Sp.2/=.Sp.1/ � U.1//. There is a natural
nonintegrable complex structure on this space, different from the standard one, and the
normal metric is not the Fubini–Study metric, so this CP3 is not Kähler. This space is
also the twistor space of the standard round S4 , which is the unit sphere subbundle of
the bundle ƒ2

�.S
4/ of anti-self-dual 2–forms on S4 .

Example 2.6 (The complex flag manifold F1;2 D SU.3/=T 2 ) This is the homoge-
neous space SU.3/=T 2 where T 2 D S.U.1/�U.1/�U.1//� SU.3/ is the maximal
torus. This is the space of pairs .V1;V2/ where V1 and V2 are complex linear subspaces
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of C3 with V1 � V2 . This space is also the twistor space of the standard Fubini–Study
CP2 , which is the unit sphere subbundle of the bundle ƒ2

�.CP2/ of anti-self-dual
2–forms on CP2 .

Example 2.7 (The product of two 3–spheres S3�S3 ) View S3 as the Lie group of
unit quaternions, which is isomorphic to SU.2/. Then let S3�S3D .S3�S3�S3/=S3

where we embed S3 into S3 �S3 �S3 as the diagonal subgroup. This space is also
the unit sphere subbundle of the spinor bundle =S.S3/ of the standard round S3 .

Remark 2.8 We note for later use that Examples 2.5 and 2.6 both have H 3.†;R/D 0

and H 4.†;R/¤ 0 and that Example 2.7 has H 3.†;R/¤ 0 and H 4.†;R/D 0.

Remark 2.9 In Butruille [9] it is proved that the above examples are the only homo-
geneous strictly nearly Kähler compact manifolds. It is expected that there should exist
many nonhomogeneous examples, but as far as the author is aware, none have been
found yet.

2.2 Differential forms on G2 cones

We will denote by �† , r† , d† , d�
†

and �† the Hodge star, Levi-Civita connection,
exterior derivative, coderivative and Hodge Laplacian of †. Similarly �C , rC , dC ,
d�

C
and �C will denote the analogous operators for the smooth part C 0 of the cone C .

We will often abuse notation and say “form on the cone C ” when we really mean
“form on the smooth part C 0 of C .” The following proposition is a simple exercise.

Proposition 2.10 Let ! be a smooth k –form on C . Then we can write

(22) ! D dr ^˛Cˇ

where ˛ is a .k�1/–form and ˇ is a k –form on †, both depending on r as a
parameter. We use 0 to denote differentiation with respect to the parameter r . The
following formulas hold:

dC .dr ^˛Cˇ/D dr ^
�
ˇ0� d†˛

�
C .d†ˇ/;(23)

�C .dr ^˛Cˇ/D dr ^
�
.�1/kr6�2k

�† ˇ
�
C

�
r8�2k

�† ˛
�
;(24)

d�C .dr ^˛Cˇ/D dr ^

�
�

1

r2
d�†˛

�
C

�
�
.8� 2k/

r
˛�˛0C

1

r2
d�†ˇ

�
;(25)
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and finally

(26) �C .dr ^˛Cˇ/D dr ^

�
1

r2
�†˛C

.8�2k/

r2
˛�

.8�2k/

r
˛0�˛00�

2

r3
d�†ˇ

�
C

�
1

r2
�†ˇ�

.6� 2k/

r
ˇ0�ˇ00�

2

r
d†˛

�
:

Suppose now that ˛ is a .k�1/–form on † and ˇ is a k –form on †. Then from (17)
it is easy to see that

(27) jdr ^˛jgC
D r�.k�1/

j˛jg† and jˇjgC
D r�k

jˇjg† ;

from which it follows that

(28) jrk�1dr ^˛C rkˇj2gC
D j˛j2g† Cjˇj

2
g†
:

For this reason, we will always write a k –form on the cone C 0 in the form ! D

rk�1dr ^ ˛ C rkˇ for some ˛ and ˇ , which are forms on † possibly depending
on the parameter r . Note that if ˛ and ˇ were independent of r , then ! would be
dilation-equivariant, as defined above.

The next lemma is an important result about closed differential forms on a cone C

with certain growth rates near 0 or 1.

Lemma 2.11 Let ! be a smooth closed k –form on C 0 D .0;1/�†. Suppose that
either

i) j!jgC
DO.r�/ on .0; "/�†, for � > �k , or

ii) j!jgC
DO.r�/ on .R;1/�†, for � < �k .

for some small " or some large R. Then for each case respectively we have that

i) ! D d� for some .k�1–form � on .0; "/�†, or

ii) ! D d� for some .k�1–form � on .R;1/�†,

where in each case, on its domain of definition, � satisfies j�jgC
D O.r�C1/. If

we suppose further that 0 < � < 1 in case i), then for either case if we also have that
jr

j
C
!jgC

DO.r��j /, then for this � we have jrj
C
�jgC

DO.r�C1�j / for all j � 0.
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Proof Write !.r; �/D dr ^˛.r; �/Cˇ.r; �/, where ˛ and ˇ are a .k�1/–form and
a k –form on †, respectively. Since d! D 0, by Equation (23) we have

(29) d†ˇ D 0; d†˛ D ˇ
0:

For case i) let us define

�.r; �/D

Z r

0

˛.t; �/ dt:

This integral converges since j�.r; �/jg† �
R r

0 j˛.t; �/jg† dt � C
R r

0 tk�1C� dt <1,
where we have used (27) and the facts that j˛.r; �/jgC .r;�/ � C r� and �C k > 0 by
hypothesis. Note that these hypotheses also show that

(30) lim
r!0

ˇ.r; �/D 0:

It is clear (since �¤�k ) that j�jgC
DO.r�C1/, and so in particular also

(31) jd�jgC
DO.r�/:

Now we compute that

d�.r; �/D dr ^˛.r; �/C

Z r

r0

d†˛.t; �/ dt

D dr ^˛.r; �/C

Z r

r0

ˇ0.t; �/ dt D dr ^˛.r; �/Cˇ.r; �/� lim
r!0

ˇ.r; �/

D !.r; �/

using (29) and (30). The fact that jrj
C
�jgC

DO.r�C1�j / if we know that jrj
C
!jgC

D

O.r��j / is a simple exercise. The constraints on � are sufficient to ensure no loga-
rithmic terms arise from having to integrate t�1 . The proof of case ii) is analogous,
defining in this case �.r; �/ D

R r
1
˛.t; �/ dt and using the fact that �C k < 0 to

ensure that the integral converges and that limr!1 ˇ.r; �/D 0.

Definition 2.12 We say that a smooth k form ! on C 0 is homogeneous of order � if

(32) ! D r�.rk�1dr ^˛C rkˇ/

where ˛ and ˇ are forms on †, independent of r . Then we see that

jt�.!/.r; �/jgC .tr;�/ D jt
�Ck!.r; �/jgC .tr;�/ D t�Ck t�k

j!.r; �/jgC .r;�/;

which we can write more concisely as

(33) t�j!jgC
D t�j!jgC

;
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so the function j!jgC
on C 0 is homogeneous of order � in the variable r in the usual

sense.

Remark 2.13 It is easy to see that a homogeneous k –form ! of order � is dilation-
equivariant (t�.!/D tk!/ if �D 0. Similarly it is dilation-invariant (t�.!/D !/ if
�D�k .

Remark 2.14 It follows directly from (24) that if ! is homogeneous of order �, then
�C! is also homogeneous of the same order �.

Using (23), (25) and (26), for a homogenous k –form ! D r�.rk�1dr ^˛C rkˇ/ of
order �, we find that

dC! D r�Ck�1dr ^ ..�C k/ˇ� d†˛/C r�Ckd†ˇ;(34)

d�C! D r�Ck�3dr ^ .�d�†˛/C r�Ck�2.�.�� kC 7/˛C d�†ˇ/;(35)

�C! D r�Ck�3dr ^
�
�†˛� .�C k � 2/.�� kC 7/˛� 2d�†ˇ

�
(36)

C r�Ck�2 .�†ˇ� .�C k/.�� kC 5/ˇ� 2d†˛/ :

In Section 5.1, we will need to consider the possible order � of a homogeneous k –
form !k on a cone C which is in the kernel of �C , or of a mixed degree form
! D

P7
kD0 !k which is in the kernel of dC C d�

C
. The fact that we will need to

use repeatedly in the rest of this section is that the Laplacian �† on the link † has
nonnegative eigenvalues, so whenever we have an expression of the form �† D �

for some � < 0 and  a form on †, we must have  D 0.

Proposition 2.15 Let ! be a homogeneous k –form of order � which is harmonic on
the cone: �C! D 0. Then we have:

For k D 0; 7; ! D 0 if � 2 .�5; 0/;(37)

For k D 1; 6; ! D 0 if � 2 .�4;�1/;(38)

For k D 2; 5; ! D 0 if � 2 .�3;�2/:(39)

This gives an excluded range of orders of homogeneity for harmonic forms on the
cone C .

Proof Since the star operator �C commutes with the Laplacian �C and preserves the
order of homogeneity by Remark 2.14, it suffices to check the cases k D 0; 1; 2. Let
k D 0 in Equation (36), and noting that ˛0 D 0 and d�

†
ˇ0 D 0, we see that �C! D 0

implies
�†ˇ0 D �.�C 5/ˇ0;
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and the result now follows for � 2 .�5; 0/. We need to work a little harder for k D 1

and k D 2.

For k D 1, we get the following system of equations:

(40) �†˛1 D .�� 1/.�C 6/˛1C 2d�†ˇ1; �†ˇ1 D .�C 1/.�C 4/ˇ1C 2d†˛1:

Now suppose that � 2 .�4;�1/. If we take d† of the second equation, since �†
commutes with d† , we get �†.d†ˇ1/D .�C 1/.�C 4/d†ˇ1 and hence d†ˇ1 D 0.
Similarly taking d�

†
of the first equation gives d�

†
˛1 D 0. Also, taking d† of the first

equation gives

�†.d†˛1/D .��1/.�C6/d†˛1C2�†ˇ1D .�
2
C5��2/d†˛1C.2�

2
C10�C8/ˇ1:

Now an easy calculation reveals that

�†.d†˛1C .�C 4/ˇ1/D .�C 1/.�C 6/.d†˛1C .�C 4/ˇ1/;

and hence d†˛1C.�C4/ˇ1D0 for �2 .�4;�1/. This relation can now be substituted
into each equation in (40) to yield

�†˛1 D .�� 1/.�C 4/˛1; �†ˇ1 D .�� 1/.�C 4/ˇ1;

from which it follows that ˛1 D 0 and ˇ1 D 0.

The proof for k D 2 is analogous, but we present it for completeness. We get the
following system of equations:

(41) �†˛2D �.�C5/˛2C2d�†ˇ2; �†ˇ2D .�C2/.�C3/ˇ2C2d†˛2:

Suppose that � 2 .�3;�2/. We get �†.d†ˇ2/D .�C2/.�C3/d†ˇ2 , so d†ˇ2 D 0.
Similarly taking d�

†
of the first equation gives d�

†
˛2 D 0. We also have

�†.d†˛2/D �.�C5/d†˛2C2�†ˇ2D .�
2
C5�C4/d†˛2C .2�

2
C10�C12/ˇ2:

This time one can check that

�†.d†˛2C .�C 3/ˇ2/D .�C 2/.�C 5/.d†˛2C .�C 3/ˇ2/;

and hence d†˛2C.�C3/ˇ2D0 for �2 .�3;�2/. This relation can now be substituted
into each equation in (41) to yield

�†˛2 D �.�C 3/˛2; �†ˇ2 D �.�C 3/ˇ2;

from which it follows that ˛2 D 0 and ˇ2 D 0.

The reason we have gone through all three cases carefully is the following. The reader
may now be tempted to try the same trick to get an excluded range of orders for

Geometry & Topology, Volume 13 (2009)



1596 Spiro Karigiannis

homogeneous harmonic 3–forms. It does not take long to verify that this procedure
breaks down for k D 3. See Corollary 2.17, however, for what we can say about
homogeneous 3–forms.

To study the operator dC C d�
C

on a cone, we begin with the following lemma.

Lemma 2.16 Let ! D
P7

kD0 !k , where !k D r�Ck�1dr ^ ˛k C r�Ckˇk is a ho-
mogeneous k –form of order �. Then if ! is in the kernel of dC C d�

C
, the following

equations hold:

.�C k � 1/ˇk�1 D d†˛k�1C d�†˛kC1;(42)

.�� kC 6/˛kC1 D d†ˇk�1C d�†ˇkC1;(43)

for all k D 0; : : : ; 7.

Proof By (34) and (35), we can compute that

.dCCd�C /!

D

7X
kD0

�
r�Ck�1dr ^ ..�C k/ˇk � d†˛k/C r�Ckd†ˇk

�
C

7X
kD0

�
r�Ck�3dr ^ .�d�†˛k/C r�Ck�2.�.�� kC 7/˛k C d�†ˇk//

�
D

8X
lD1

�
r�Cl�2dr ^ ..�C l � 1/ˇl�1� d†˛l�1/C r�Cl�1d†ˇl�1

�
C

6X
lD�1

�
r�Cl�2dr ^ .�d�†˛lC1/C r�Cl�1.�.�� l C 6/˛lC1C d�†ˇlC1//

�
:

Using the fact that ˛0D 0 and ˇ7D 0, and d†˛7D 0 and d�
†
ˇ0D 0, both these sums

can be taken from l D 0 to 7. Relabelling the l to a k again and combining terms, we
find that

.dC C d�C /! D

7X
kD0

�
r�Ck�2dr ^ ..�C k � 1/ˇk�1� d†˛k�1� d�†˛kC1/

�
C

7X
kD0

�
r�Ck�1.�.�� kC 6/˛kC1C d�†ˇkC1C d†ˇk�1/

�
where it is understood that ˛k and ˇk vanish when k < 0 or k > 7. Setting this
expression equal to zero yields equations (42) and (43).
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Corollary 2.17 Suppose that ! is a homogeneous k –form of order � which is closed
and coclosed: dC! D 0, d�

C
! D 0. Then we have:

For k D 0; 7; ! D 0 if � 2 .�7; 0/;(44)

For k D 1; 6; ! D 0 if � 2 .�6;�1/;(45)

For k D 2; 5; ! D 0 if � 2 .�5;�2/;(46)

For k D 3; 4; ! D 0 if � 2 .�4;�3/:(47)

This gives an excluded range of orders of homogeneity for closed and coclosed forms
on the cone C .

Proof Let ˛l D 0 and ˇl D 0 for all l ¤ k in equations (42) and (43). Thus we have
that dC! D 0 and d�

C
! D 0 together imply the following equations:

(48) d†˛kD .�Ck/ˇk ; d�†ˇkD .��kC7/˛k ; d�†˛kD0; d†ˇkD0:

Since ! is closed and coclosed, it is also harmonic: �C! D 0. Therefore, Equation
(36) shows that

�†˛k D .�C k � 2/.�� kC 7/˛k C 2d�†ˇk ;

�†ˇk D .�C k/.�� kC 5/ˇk C 2d†˛k :

Now substituting in the relations from (48) and simplifying, we obtain

�†˛k D .�C k/.�� kC 7/˛k ; �†ˇk D .�C k/.�� kC 7/ˇk :

Since the Laplacian has nonnegative eigenvalues, we see that both ˛k and ˇk must
vanish (and hence ! D 0) if .�C k/.�� kC 7/ < 0, which occurs exactly when � is
between �k and k � 7.

Remark 2.18 Corollary 2.17 should be compared to Proposition 2.15. Closed and
coclosed forms are harmonic, but not always conversely. The above result says that
when the form is known to be closed and coclosed, we can get a bigger range of excluded
orders of homogeneity. Also, Proposition 2.15 tells us nothing about 3–forms.

Corollary 2.19 Suppose that ! is a homogeneous k –form of order �k which is
closed and coclosed: dC! D 0, d�

C
! D 0. Then ! D ˇ , where ˇ is a harmonic

k –form on the link †: �†ˇ D 0.

Proof We substitute �D�k in the relations (48) to get

d†˛k D 0; d�†ˇk D .7� 2k/˛k ; d�†˛k D 0; d†ˇk D 0:
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Since † is compact and oriented, we can use Hodge theory. The first and third equations
above say that ˛k is harmonic, but since .7� 2k/ is never zero, the second equations
says that ˛k is also coexact. Thus ˛k D 0, and then the second and fourth equations
say that ˇk is harmonic on †.

The next three propositions are needed in Section 5.1 for the solution of the obstruction
problem and also in Section 6 for the asymptotic expansion of the G2 structure on an
asymptotically conical G2 manifold.

Proposition 2.20 Let ! D
P3

kD0 !2k be a mixed even-degree form on the cone
C 0 D .0;1/ � †, which is homogeneous of order � D �3. That is, each !2k D

r2k�4dr ^ ˛2k C r2k�3ˇ2k , where ˛2k and ˇ2k are .2k�1/–forms and 2k –forms
on †, respectively, independent of r . If .dC Cd�

C
/.!/D 0, then ! D dr ^˛4 , where

˛4 is a harmonic 3–form on †.

Proof Substituting �D�3 into Lemma 2.16, we obtain

(49) .k � 4/ˇk�1 D d†˛k�1C d�†˛kC1; .3� k/˛kC1 D d†ˇk�1C d�†ˇkC1:

If we take d† and d�
†

of these equations and relabel indices, we get

d†d�†˛k D .k � 5/d†ˇk�2; d�†d†˛k D .k � 3/d�†ˇk ;

d†d�†ˇk D .4� k/d†˛k ; d�†d†ˇk D .2� k/d�†˛kC2:

These can now be combined to yield

�†˛k D .k�3/d�†ˇkC .k�5/d†ˇk�2; �†ˇk D .2�k/d�†˛kC2C .4�k/d†˛k :

We can now use (49) again to eliminate d�
†
ˇk and d�

†
˛kC2 in the above expressions

to finally obtain

(50) �†˛kD�.k�3/.k�4/˛k�2d†ˇk�2; �†ˇkD�.k�3/.k�2/ˇkC2d†˛k :

Now ˛0 D 0, so the second equation in (50) gives �†ˇ0 D�6ˇ0 , so ˇ0 D 0. Then
the first equation in (50) gives �†˛2 D�2˛2 , so ˛2 D 0. We continue in this way to
alternate between the equations. Next we get �†ˇ2 D 0, but from (49) we see that ˇ2

is also coexact, so ˇ2 D 0. Then �†˛4 D 0, but this time (49) gives no information
about ˛4 so all we can say is that it is a harmonic 3–form on †, hence closed and
coclosed. Then �†ˇ4 D �2ˇ4 , so ˇ4 D 0. Continuing we get �†˛6 D �6˛6 , so
˛6 D 0, and finally �†ˇ6 D�12ˇ6 , so ˇ6 D 0.
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Proposition 2.21 Let ! D
Pm

lD0.log r/l
P3

kD0 !2k;l be an even-degree mixed form
on the cone C 0 D .0;1/ �†, satisfying .dC C d�

C
/.!/ D 0, where each !2k;l is

homogeneous of order �3, and m � 0. Then in fact necessarily mD 0 and ! is as
given in Proposition 2.20.

Proof We prove this by contradiction. Suppose that m> 0. Hence
P3

kD0 !2k;m¤ 0.
Each !2k;l is homogenous of order �3, so it can be written as

(51) !2k;l D r2k�4dr ^˛2k;l C r2k�3ˇ2k;l

where for each l , ˛2k;l and ˇ2k;l are .2k�1/–forms and 2k –forms on †, respectively,
independent of r . It is easy to check that if !k is any k –form on the cone C , then

.dC C d�C /..log r/l!k/

D .log r/l.dC C d�C /.!k/C
l

r
.log r/l�1.dr ^!k/�

l

r
.log r/l�1

�
@

@r
!k

�
:

Using this identity, one can now compute that

.dC C d�C /

� mX
lD0

.log r/l
3X

kD0

!2k;l

�

D .log r/m.dC C d�C /

� 3X
kD0

!2k;m

�

C

m�1X
lD0

.log r/l
3X

kD0

�
dC .!2k;l/C d�C .!2k;l/

C
.lC1/

r
dr ^!2k;lC1�

.lC1/

r

@

@r
!2k;lC1

�
:

The above expression must vanish as a polynomial in log r . Setting the coefficient
of .log r/m equal to zero, we see that

P3
kD0 !2k;m is in the kernel of dC C d�

C
and

homogeneous of order �3, so by Proposition 2.20 we have

(52)
3X

kD0

!2k;m D dr ^˛4;m

where ˛4;m is a nonzero harmonic 3–form on the link †. Now consider the coefficient
of the next highest term, .log r/m�1 . Setting it equal to zero and using (52) gives

3X
kD0

�
dC .!2k;m�1/C d�C .!2k;m�1/

�
�

m

r
˛4;m D 0:
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Using (34) and (35) with �D�3, this becomes

3X
kD0

�
r2k�4dr ^ ..2k � 3/ˇ2k;m�1� d†˛2k;m�1/C r2k�3d†ˇ2k;m�1

�
C

3X
kD0

�
r2k�6dr ^ .�d�†˛2k;m�1/C r2k�5..2k � 4/˛2k;m�1C d�†ˇ2k;m�1/

�
�

m

r
˛4;m D 0:

Taking the 3–form component of the above equation and simplifying gives

r�2dr ^ .�ˇ2;m�1� d†˛2;m�1� d�†˛4;m�1/

C r�1.d†ˇ1;m�1C d�†ˇ4;m�1�m˛4;m/D 0;

which in turn says that

˛4;m D d†

�
1

m
ˇ1;m�1

�
C d�†

�
1

m
ˇ4;m�1

�
:

Since † is compact, Hodge theory says that harmonic forms are orthogonal to the
image of d† and to the image of d�

†
, so we must have ˛4;m D 0, giving us our

contradiction. Therefore mD 0.

Proposition 2.22 Let ! D
Pm

lD0.log r/l!4;l be a pure 4–form on the cone C 0 D

.0;1/�†, satisfying .dCd�
C
/.!/D 0, where each !4;l is homogeneous of order �4,

and m� 0. Then in fact necessarily mD 0 and ! is as given in Corollary 2.19.

Proof The proof of this proposition is exactly analogous to the proof of Proposition
2.21 and is omitted. However, we note here that it is essential that ! be a pure 4–
form for this result to be true. In a general even-degree mixed form in the kernel of
d Cd�

C
which is a polynomial in log.r/ with coefficients being homogeneous forms

of order �4, there can occur log.r/ terms.

The next result is about the type decomposition of 3–forms on a G2 cone, which are
homogeneous of order �3.

Proposition 2.23 Let .C; 'C / be a G2 cone. Let � be a homogeneous 3–form on C

of order �3 which is harmonic. Then � is in ƒ3
27

with respect to 'C .
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Proof Let � D �1 C �7 C �27 be the decomposition of � into components. Now
�1 D f 'C for some function f on C , and since, up to a constant, f D �C .� ^ C /,
we see that f is homogenous of order �3. Similarly, we have �7 D �C .! ^ 'C /

for some 1–form ! on C , and, up to a constant, ! D �C .� ^ 'C /, so ! is also
homogenous of order �3. But � is harmonic, and the Laplacian commutes with the
projections. Therefore �C .�1/D 0 and �C .�7/D 0. By (5) and (6) we then see that
�C .f /D 0 and �C .!/D 0. Finally, Proposition 2.15 says that both f and ! are
zero, since the order �D�3 lies in the excluded range for both functions and 1–forms.
Thus � D �27 as claimed.

We close this section with an observation about representing cohomology classes of
.a; b/�†, where .a; b/ is any open subinterval of .0;1/.

Proposition 2.24 Suppose B is a cohomology class in H k..a; b/ �†;R/. Then
there exists a k –form ˇ on .a; b/�†, harmonic with respect to the cone metric and
homogeneous of order �k such that Œˇ�D B .

Proof The projection � W .a; b/�†!† induces an isomorphism ��W H k.†;R/!
H k..a; b/ � †;R/ on cohomology by pullback. Then .��/�1.B/ is a class in
H k.†;R/. Since † is compact and oriented, by Hodge theory there exists a unique
harmonic k –form ˇ on † such that Œˇ�D .��/�1.B/. Then ��.ˇ/D ˇ , as a form
on .a; b/�† and represents the class B . Now from Equation (26), with ˛ D 0 and
ˇ0D 0, we see that �CˇD .1=r2/�†ˇD 0, so ˇ is a harmonic k –form on .a; b/�†,
homogeneous of order �k .

2.3 Compact G2 manifolds with isolated conical singularities

Let M be a compact connected Hausdorff topological space, and let x1; : : : ;xn be a
finite set of points in M . Assume that M 0DM nfx1; : : : ;xng is a smooth noncompact
7–dimensional manifold which we call the smooth part of M and fx1; : : : ;xng will
be called the singular points of M .

Definition 2.25 The space M is called a G2 manifold with isolated conical singular-
ities, with cones C1; : : : ;Cn at x1; : : : ;xn and rates �1; : : : ; �n , where each �i > 0,
if all of the following holds:

� The smooth part M 0 is a G2 manifold with torsion-free G2 structure 'M and
metric gM .

� There are G2 cones .Ci ; 'Ci
;gCi

/ with links †i for all i D 1; : : : ; n.
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� There is a compact subset K �M 0 such that M 0nK is a union of open sets
S1; : : : ;Sn whose closures xS1; : : : ; xSn in M are all disjoint in M , and there
exists an " 2 .0; 1/ such that for each i D 1; : : : ; n, there is a smooth function
fi W .0; "/�†i!M 0 that is a diffeomorphism of .0; "/�†i onto Si .

� The pullback f �i .'M / is a torsion-free G2 structure on the subset .0; "/�†i

of Ci . We require that this approach the torsion-free G2 structure 'Ci
in a C1

sense, with rate �i > 0. This means that

(53) jr
j
Ci
.f �i .'M /�'Ci

/jgCi
DO.r�i�j / 8j � 0

in .0; "/�†i . Note that all norms and derivatives are computed using the cone
metric gCi

.

It is easy to see that the holonomy necessarily has to be exactly G2 , because the
holonomy of the asymptotic cones is exactly G2 , and the holonomy of M must be at
least as big as the holonomy of its asymptotic cones, but it is contained in G2 since
'M is a torsion-free G2 structure.

Since the metric gM and the 4–form  M are pointwise smooth functions of 'M , by
Taylor’s theorem we also have

(54)
jr

j
Ci
.f �i .gM /�gCi

/jgCi
DO.r�i�j / 8j � 0;

jr
j
Ci
.f �i . M /� Ci

/jgCi
DO.r�i�j / 8j � 0:

A G2 manifold with isolated conical singularities will sometimes be called a G2 mani-
fold with ICS for brevity. Figure 1 shows a compact manifold with isolated conical
singularities.

x1

x2

M

x3

Figure 1: A compact manifold M with isolated conical singularities
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Remark 2.26 It can be shown that if we assume that (53) holds only for j D 0 and
j D 1, then there exists particular diffeomorphisms fi that satisfy (53) for all j � 0.
These special diffeomorphisms satisfy a gauge-fixing condition which forces them to
solve (in some sense) an elliptic equation, and this results in their improved regularity.
This will be discussed in the sequel [24] to this paper. For our present purposes, it
suffices to assume from the outset that (53) holds for all j � 0. See also Remark 3.4.

Next we discuss an important fact about G2 manifolds with ICS.

Proposition 2.27 The closed 3–forms f �i .'M / and 'Ci
on .0; "/�†i represent the

same cohomology class in H 3..0; "/ �†i ;R/ Š H 3.†i ;R/. Similarly the closed
4–forms f �i . M / and  Ci

on .0; "/�†i represent the same cohomology class in
H 4..0; "/ � †i ;R/ Š H 4.†i ;R/. Therefore by Proposition 2.4, the cohomology
classes Œf �i .'M /� in H 3.†i ;R/ and Œf �i . M /� in H 4.†i ;R/ are always trivial.

Proof Using j.f �i .'M /�'Ci
/jgCi

DO.r�i / and j.f �i . M /� Ci
/jgCi

DO.r�i /

and the fact that �i > 0, this follows immediately from Lemma 2.11.

Remark 2.28 As discussed in Proposition 2.37 and before Definition 2.38, the analo-
gous statement will be false for asymptotically conical G2 manifolds.

On several occasions we will need to compare f �i .�M!/ with �Ci
f �i .!/ near xi .

Lemma 2.29 Let ! be a smooth k –form on M 0 , with

jf �i .!/jgCi
DO.r�/

near the i –th singular point xi . Then the .7�k/–forms f �i .�M!/ and �Ci
f �i .!/

satisfy

(55) jf �i .�M!/��Ci
f �i .!/jgCi

DO.r�C�i /:

Proof We begin by computing that

jf �i .�M!/��Ci
f �i .!/jgCi

D j�f �
i
.gM / .f

�
i .!//��Ci

.f �i .!//jgCi

D j.�f �
i
.gM /��Ci

/f �i .!/jgCi
:

But by (54), we have jf �i .gM /�gCi
jgCi
DO.r�i /, and thus

j.�f �
i
.gM /��Ci

/f �i .!/jgCi
� C r�i jf �i .!/jgCi

� C r�C�i ;

and the proof is complete.
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Remark 2.30 There are at present no known examples of compact G2 manifolds with
isolated conical singularities, although they are expected to exist in abundance. Our
main theorem in this paper can be interpreted as further evidence for the likelihood of
their existence and that they should arise as “boundary points” in the moduli space of
smooth compact G2 manifolds. The author is currently working in collaboration with
Dominic Joyce on a new construction of compact G2 manifolds which should also be
able to produce the first examples of compact G2 manifolds with ICS.

2.4 Asymptotically conical G2 manifolds

In this section we define an asymptotically conical G2 manifold and discuss three
explicit examples. Let N be a noncompact, connected smooth 7–dimensional manifold.

Definition 2.31 The manifold N is called an asymptotically conical G2 manifold
with cone C and rate � < 0 if all of the following holds:

� The manifold N is a G2 manifold with torsion-free G2 structure 'N and
metric gN .

� There is a G2 cone .C; 'C ;gC / with link †.

� There is a compact subset L � N , and there exists an R > 1 and a smooth
function hW .R;1/ �†! N that is a diffeomorphism of .R;1/ �† onto
N nL.

� The pullback h�.'N / is a torsion-free G2 structure on the subset .R;1/�†
of C . We require that this approach the torsion-free G2 structure 'C in a C1

sense, with rate � < 0. This means that

(56) jr
j
C
.h�.'N /�'C /jgC

DO.r��j / 8j � 0

in .R;1/�†. Note that all norms and derivatives are computed using the cone
metric gC .

This should be compared to Definition 2.25. An asymptotically conical G2 manifold
also has holonomy exactly equal to G2 , by the same argument as in the ICS case.
Also, an asymptotically conical G2 manifold always has only one asymptotic end.
This follows from the Cheeger–Gromoll splitting theorem, which says that a complete
noncompact Ricci-flat manifold with more than one end isometrically splits into a
Riemannian product, and hence if we had more than one end, the holonomy would be
reducible. Hence the link † of the asymptotic cone of N must be connected. This is
why we defined the link of a G2 cone to be connected in Section 2.1. See Besse [5]
for more details.
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Since the metric gN and the 4–form  N are pointwise smooth functions of 'N , by
Taylor’s theorem we also have

(57)
jr

j
C
.h�.gN /�gC /jgC

DO.r��j / 8j � 0;

jr
j
C
.h�. N /� C /jgC

DO.r��j / 8j � 0:

An asymptotically conical G2 manifold will sometimes be called an AC G2 manifold
for brevity. Figure 2 shows an asymptotically conical manifold.

N

Figure 2: An asymptotically conical manifold N

Remark 2.32 As in Remark 2.26, it can be shown that if we assume that (56) holds
only for j D 0 and j D 1, then there exists a particular diffeomorphism h that
satisfies (56) for all j � 0.

There are three known examples of asymptotically conical G2 manifolds, whose asymp-
totic cones have links given by the strictly nearly Kähler manifolds of Examples 2.5, 2.6
and 2.7, respectively. They are all total spaces of vector bundles over a compact base.
They were discovered by Bryant–Salamon [8] and were the first examples of complete
G2 manifolds.

Example 2.33 (The bundle ƒ2
�.S

4/ of anti-self-dual 2–forms over the 4–sphere)
This is a nontrivial rank 3 vector bundle over the standard round S4 . This AC
G2 manifold is asymptotic to the cone over the non–Kähler CP3 of Example 2.5, with
rate � D�4.

Example 2.34 (The bundle ƒ2
�.CP2/ of anti-self-dual 2–forms over the complex

projective plane) This is a nontrivial rank 3 vector bundle over the standard Fubini–
Study CP2 . This AC G2 manifold is asymptotic to the cone over the complex flag
manifold F1;2 of Example 2.6, also with rate � D�4.

Geometry & Topology, Volume 13 (2009)



1606 Spiro Karigiannis

Example 2.35 (The spinor bundle =S.S3/ of the 3–sphere) This is a trivial rank 4

vector bundle over the standard round S3 , hence is topologically S3�R4 . This AC
G2 manifold is asymptotic to the cone over the nearly Kähler S3 �S3 of Example
2.7, with rate � D�3.

Remark 2.36 Explicit formulas for the asymptotically conical G2 structures of Ex-
amples 2.33, 2.34 and 2.35, as well as the fact that their rates are �4, �4 and �3,
respectively, can be found in Bryant–Salamon [8] and also in Atiyah–Witten [1]. We
will not have need for these explicit formulas.

Next we discuss the AC analogue of Proposition 2.27, which is different in a very
important way which will lead to topological obstructions to our desingularization
procedure.

Proposition 2.37 The two closed 3–forms h�.'N / and 'C on .R;1/�† represent
the same cohomology class in H 3..R;1/�†;R/ŠH 3.†;R/ if the rate � satisfies
� < �3. Similarly the two closed 4–forms h�. N / and  C on .R;1/�† represent
the same cohomology class in H 4..R;1/�†;R/ŠH 4.†;R/ if the rate � satisfies
� < �4.

Proof This follows immediately from j.h�.'M /�'C /jgC
DO.r�/ and j.h�. M /�

 C /jgC
DO.r�/, using Lemma 2.11.

Therefore, in contrast to the case of G2 manifolds with ICS as discussed in Proposition
2.27, we cannot conclude that the cohomology classes Œh�.'N /� and Œh�. N /� are
trivial in H 3.†;R/ and H 4.†;R/, respectively, and indeed in general when the rate
� is not sufficiently negative, they will not be. This will introduce some obstructions
to our gluing procedure, which are discussed in Section 3.2. These observations lead
us to make the following definition.

Definition 2.38 For an AC G2 manifold .N; 'N ;  N ;gN /, we define the cohomo-
logical invariants ˆ.N / 2H 3.†;R/ and ‰.N / 2H 4.†;R/ to be the cohomology
classes Œh�.'N /� and Œh�. N /�, respectively. By Proposition 2.37, ˆ.N /D 0 if the
rate � < �3 and ‰.N /D 0 if � < �4.

Remark 2.39 For the Bryant–Salamon examples of asymptotically conical G2 man-
ifolds described in Examples 2.33, 2.34 and 2.35, only one of these invariants can
be (and is) nonzero in each case, by Remark 2.8 and Definition 2.38. For the spaces
ƒ2
�.S

4/ and ƒ2
�.CP2/, we have ˆ.N /D 0 and ‰.N /¤ 0, whereas for the space

=S.S3/ we have ˆ.N /¤ 0 and ‰.N /D 0.
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3 Desingularization of compact G2 manifolds with ICS

Suppose M is a compact G2 manifold with isolated conical singularities x1; : : : ;xn ,
cones C1; : : : ;Cn and rates �1; : : : ; �n > 0. Assume also that we have asymptoti-
cally conical G2 manifolds N1; : : : ;Nn , with the same cones C1; : : : ;Cn and rates
�1; : : : ; �n � �3. (We will see later why we need to assume that each �i � �3 rather
than just �i<0.) We want to desingularize M to obtain a smooth compact G2 manifold.
The idea is to cut out a neighbourhood of each singularity xi and glue in Ni . In this
way we obtain a smooth compact manifold �M , and then we need to show using analysis
that �M admits a torsion-free G2 structure.

The main tool that we will require is the following theorem of Joyce, which says that
if one can find a closed G2 structure ' on a compact manifold M whose torsion is
sufficiently small, then there exists a torsion-free G2 structure z' on M which is close
to ' in some sense. It was used by Joyce in [17] to construct the first compact examples
of manifolds with G2 holonomy. (Another gluing construction of smooth compact
G2 manifolds is due to Kovalev [27].) The precise statement of Joyce’s theorem is as
follows.

Theorem 3.1 (Joyce [18, Theorem 11.6.1]) Let � , D1 , D2 and D3 be any positive
constants. Then there exists s0 2 .0; 1� and D4 > 0, such that whenever 0 < s � s0 ,
the following holds:

Let M be a smooth compact 7–manifold, with G2 structure ' and associated metric g

satisfying d' D 0. Suppose there is a smooth 3–form � on M satisfying d�g�D d�g'

such that:

i) k�kC 0 �D1s� ; k�kL2 �D1s7=2C� ; kd�g�kL14 �D1s�1=2C� .

ii) The injectivity radius I.g/ satisfies I.g/�D2s .

iii) The Riemann curvature R.g/ satisfies kR.g/kC 0 �D3s�2 .

Then there exists a smooth, torsion-free G2 structure z' with metric zg on M and such
that:

� k' � z'kC 0 �D4s� .

� Œ'�D Œz'� in H 3.M;R/.

Here all norms are computed using the original metric g .
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Remark 3.2 The exponents in i) of Theorem 3.1 are the best possible for the theorem
to be true and are improvements to those presented in Theorem 11.6.1 of Joyce [18].
See the discussion at the bottom of page 296 of Joyce [18] for more details.

In Section 3.1 we construct a one parameter family �Ms of compact, smooth 7–manifolds
for small s> 0. These manifolds will be actually all diffeomorphic to each other, so we
really have just one compact smooth manifold �M up to diffeomorphism. Nevertheless
it will be convenient to consider each �Ms separately. In Section 3.2 we construct a
closed G2 structure 's on �Ms , and in Section 3.3 we show that for s sufficiently small,
there exists a torsion-free G2 structure z's on �Ms close to 's .

3.1 Construction of the smooth compact manifolds Ms

By letting RDmax.R1; : : : ;Rn/, we can assume that the parameter R in Definition
2.31 is the same for all the AC G2 manifolds N1; : : : ;Nn . For now we will consider
only those s > 0 which are small enough so that 2sR< ". Later, in Section 3.2, we
will need to further restrict the values of s .

We first apply a homothety (scaling) to each asymptotically conical G2 manifold
.Ni ; 'Ni

;  Ni
;gNi

/ as follows. We have a diffeomorphism hi W .R;1/! NinLi ,
such that h�i .'Ni

/D 'Ci
CO.r�i / as r !1. For a fixed constant s , we define

(58) Ni;s DNi ; 'Ni;s
D s3'Ni

;  Ni;s
D s4 Ni

; gNi;s
D s2gNi

:

It is clear that .Ni;s; 'Ni;s
;  Ni;s

;gNi;s
/ is again a G2 manifold, as we have simply

scaled the G2 structure by a constant. We claim that .Ni;s; 'Ni;s
;  Ni;s

;gNi;s
/ is still

asymptotically conical with the same asymptotic G2 cone .Ci ; 'Ci
;  Ci

;gCi
/ and

the same rate �i . To see this, define hi;sW .sR;1/ �†i ! NinLi by hi;s.r; �/ D

hi.s
�1r; �/. That is, hi;s D hi ı .s�1/, where s�1 is a dilation as defined in (19). Then

we have

h�i;s.'Ni;s
/�'Ci

D .s�1/� ı h�i .s
3'Ni

/�'Ci

D s3.s�1/�.h�i .'Ni
//� s3.s�1/�.'Ci

/D s3.s�1/�.h�i .'Ni
/�'Ci

/(59)

where we have used the fact that 'Ci
is a dilation-equivariant 3–form. Now using (21),

we see that
j.h�i;s.'Ni;s

/�'Ci
/jgCi

DO.r�i /;

and similarly

jr
j
C
.h�i;s.'Ni;s

/�'Ci
/jgCi

DO.r�i�j / 8j � 0;
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as claimed. Essentially, all we have done here is to rescale each asymptotically conical
G2 manifold Ni so that the value R where NinLi resembles .R;1/�†i is changed
to sR. By taking s small enough so that sR < ", we will be able to identify the
subset .2sR; "/�†i of Ni;s with the subset .2sR; "/�†i of a neighbourhood of the
singularity xi of M in order to be able to glue the two manifolds together. This will
all be made more precise now.

For each asymptotically conical G2 manifold Ni;s , we want to keep the compact part
Li together with a little bit of the part which looks like a cone. Specifically, for each
i D 1; : : : ; n, define

(60) Pi;s DLi [ hi;s

�
.sR0; "/�†i

�
;

where R0 D 2R. The reason for using 2R rather than R will be apparent in Section
3.2. See Figure 3 for a picture of Pi;s . Similarly for the G2 manifold M with isolated

r : s 2s "

‚ …„ ƒPi;s

Li

sR0

for r > sR0 , Ni approaches .Ci ; 'Ci
;gCi

/ with rate �i as r !1

Figure 3: The region Pi;s of the scaled AC manifold Ni;s

conical singularities, we want to keep the compact part K DM 0n
Fn

iD1 Si together
with a little bit of each Si which looks like a cone. Specifically, we define

(61) Qs DK[

nG
iD1

fi

�
.sR0; "/�†i

�
:

See Figure 4 for a picture of the part of Qs near xi . The exponent  in both Figures 3
and 4 will be explained in Section 3.2. Taking the composition hi;s ıf

�1
i of the two

diffeomorphisms gives an identification which allows us to define the i –th overlapping
region Ui;s by

(62) Ui;s D .sR
0; "/�†i Š fi

�
.sR0; 2"/�†i

�
Š hi;s

�
.sR0; 2"/�†i

�
:
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r : s 2s "

for r < " , M approaches .Ci ; 'Ci
;gCi

/ with rate �i as r ! 0

xi

‚ …„ ƒQs

sR0

Figure 4: Part of the region Qs of the manifold M with ICS

We use this identification to perform our gluing, by defining the smooth, compact
7–manifold �Ms to be

(63) �Ms D

� nG
iD1

.Pi;snUi;s/

�
t

�
Qsn

nG
iD1

Ui;s

�
t

� nG
iD1

Ui;s

�
:

This defines �Ms as a smooth manifold. See Figure 5 for a picture of �Ms . It is clear
that for all small s the �Ms ’s are diffeomorphic. Essentially, we have done the topology
of the desingularization, and now we need to do the geometry. The next step is to
construct a closed G2 structure 's on �Ms with small torsion. This is where the rates
�i and �i will be important.

3.2 Construction of the G2 structure 's on Ms

We will now construct a closed G2 structure 's on �Ms , by patching together the
torsion-free G2 structures on M 0 and the Ni ’s. Strictly speaking, we will actually
construct a pair .'s;  s/, which are nondegenerate closed 3–forms and 4–forms on�Ms , respectively, but  s will not equal �g's

's , although it will be “close” in a sense
to be made precise, when s is sufficiently small. It is from this pair that we will be able
to measure the torsion of 's . We will see that sometimes the construction of the pair
.'s;  s/ will only be possible if certain topological conditions are satisfied. Finally in
Section 3.3 we will show that for s sufficiently small, 's has small enough torsion to
apply Theorem 3.1.

Geometry & Topology, Volume 13 (2009)



Desingularization of G2 manifolds with isolated conical singularities 1611

U1;s

U2;s

U3;s

L1

L2

L3

K DM 0n
F3

iD1 Si

Figure 5: The smooth compact manifold �Ms , for a fixed small s

In this section we will require two analytic results, Theorems 3.6 and 3.10, whose
proofs will be postponed until Sections 6 and 5, respectively, as the proofs require
Fredholm theory on weighted Sobolev spaces and are best treated separately.

The basic idea behind the construction of the pair .'s;  s/ on �Ms is that we need to
smoothly interpolate between the pair .'Ni;s

;  Ni;s
/ on Ni;s and the pair .'M ;  M /

for each i D 1; : : : ; n: To be able to do this, we first need a good asymptotic expansion
of the G2 structure near infinity for an asymptotically conical G2 manifold.

Definition 3.3 Let Ni be an AC G2 manifold, with diffeomorphism hi W .R;1/�

†i!NinLi . We say that hi satisfies the gauge-fixing condition if h�i .'Ni
/�'Ci

lies
in �3

27
with respect to 'Ci

.

Remark 3.4 The reason for making this definition is the following. One can show that
if the gauge-fixing condition is satisfied, the forms h�i .'N /�'Ci

and h�i . N /� Ci

satisfy elliptic equations, and as such they possess improved regularity. This will
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become apparent in Section 6. In the sequel [24] we show that one can always find a
diffeomorphism hi for which the gauge-fixing condition is satisfied.

Remark 3.5 For the Bryant–Salamon examples of asymptotically conical G2 mani-
folds, given by Examples 2.33, 2.34 and 2.35, it is trivial to verify that one can always
find a diffeomorphism for which the gauge-fixing condition is satisfied. This is because
these examples are cohomogeneity one, which means the G2 structure is described by
functions of one variable. The gauge-fixing condition is then equivalent to a change
of variables (on the asymptotic end) satisfying a linear ordinary differential equation,
which can be integrated exactly.

For our purposes, the importance of the gauge-fixing condition is the following theorem.

Theorem 3.6 Suppose that Ni is an asymptotically conical G2 manifold with rate
�i ��3 and that hi satisfies the gauge-fixing condition given in Definition 3.3. Then
on the subset .2R;1/�†i of the cone Ci we can write

h�i .'Ni
/D 'Ci

C �i C d�i ;(64)

h�i . Ni
/D  Ci

C �i ��Ci
�i C d�i ;(65)

where �i is a harmonic 3–form, homogeneous of order �3, and in �3
27

with respect
to 'Ci

, �i is a harmonic 4–form, homogeneous of order �4, and �i and �i are 2–forms
and 3–forms on .2R;1/�†i , respectively, satisfying

(66) jr
j
Ci
�i jgCi

DO.r�
0
i
C1�j /; jr

j
Ci
�i jgCi

DO.r�
0
i
C1�j /; 8j � 0;

where �0i D �4. Furthermore, Œ�i � D ˆ.Ni/ and Œ�i � D ‰.Ni/, where ˆ.Ni/ and
‰.Ni/ are the cohomological invariants of the AC G2 manifold Ni from Definition
2.38.

Theorem 3.6 is proved in Section 6. From now on we will assume that all of our AC
G2 manifolds N1; : : : ;Nn have been gauge-fixed, so the asymptotic expansions in (64)
and (65) apply. As noted in Remark 3.5, this can always be done for all the known
examples of asymptotically conical G2 manifolds.

Remark 3.7 It may seem perverse to write �0i instead of its exact value �4, but
we do so for the following reason. We want to emphasize that �0i is a decay rate at
infinity for the left over parts to the asymptotically conical G2 structure .'Ni

;  Ni
/,

after subtracting topological components. In fact our gluing construction will actually
succeed for any �0i <�

7
2

, of which �0i D�4 is just a special case which we can achieve
using Theorem 3.6 when the gauge-fixing condition is satisfied. One may be able to
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avoid the need to satisfy the hypotheses for Theorem 3.6 in certain explicit examples,
if one can show directly that �0i < �

7
2

. See also Remark 3.26.

Remark 3.8 It is because we must use Theorem 3.6 which requires each �i ��3, that
we need to make this restriction on the �i ’s. If some �io

2 .�3; 0/, then the question of
whether or not the gluing construction could be possible would depend on the spectrum
of the Laplacian on the particular link †i0

. Therefore, only if all �i ��3 can we hope
to be able to prove a general result like our Theorem 3.28. See also Remark 6.6.

Using the scaling in (58) and the fact that �i and �i are dilation-invariant (see Remark
2.13), we can now argue just as in Equation (59) to obtain

h�i;s.'Ni;s
/D 'Ci

C s3�i C d�i;s;(67)

h�i;s. Ni;s
/D  Ci

C s4�i � s3
�Ci

�i C d�i;s;(68)

where �i;s.r; �/D s3 �i.s
�1r; �/ and �i;s.r; �/D s4 �i.s

�1r; �/. Now we can compute

jr
j
Ci
�i;s.r; �/jgCi

.r;�/ D s3
jr

j
Ci
�i.s
�1r; �/jgCi

.r;�/

D s3s�2�j
jr

j
Ci
�i.s
�1r; �/jgCi

.s�1r;�/

D s1�j O..s�1r/�
0
i
C1�j /D s��

0
i O.r�

0
i
C1�j /;

where we have used (21) and the fact that rj
Ci
�i 2 .T

�/j ˝ƒ2.T �/. We can compute
similarly for �i;s and find that

(69) jrj
Ci
�i;sjgCi

D s��
0
i O.r�

0
i
C1�j /; jr

j
Ci
�i;sjgCi

D s��
0
i O.r�

0
i
C1�j /; 8j � 0;

on .R0;1/�†i , where R0 D 2R.

Now consider the i –th conical singularity xi of M . By Proposition 2.27, on .0; "/�†i

we can write

f �i .'M /D 'Ci
C d˛i ;(70)

f �i . M /D  Ci
C dˇi ;(71)

where ˛i is a 2–form and ˇi is a 3–form on .0; "/�†i , and by Lemma 2.11 we know
that

(72) jrj
Ci
˛i jgCi

DO.r�iC1�j /; jr
j
Ci
ˇi jgCi

DO.r�iC1�j /; 8j � 0:

In order to be able to patch together the G2 structures on M 0 and the Ni;s ’s smoothly
to obtain a G2 structure 's on �Ms , we will arrange that in the i –th overlap region Ui;s ,
the forms will be in the same cohomology class, and hence differ by an exact piece.
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Comparing equations (67) and (68) with equations (70) and (71), we see that we need
to replace the forms 'M and  M on M 0 with 'M C s3� and  M C s4�� s3 �M �

that are asymptotic, at the appropriate rate, to 'Ci
C s3�i and  Ci

C s4�i � s3 �Ci
�i

near xi , respectively. In fact, for the construction to work, we need � to be closed but �
to be both closed and coclosed. There are topological obstructions that can prevent this
from being possible. To understand this, we need to consider the algebraic topology of
the noncompact smooth part M 0 of a compact G2 manifold M with isolated conical
singularities.

Fix some r0 2 .0; "/. The map �i W †i! .0; "/�†i given by �i.�/D .r0; �/ embeds the
link †i as a submanifold of .0; "/�†i , and the pullback map ��i W H

k..0; "/�†i ;R/!

H k.†i ;R/ is an isomorphism, which is just restriction on the level of forms. We
also have the smooth maps fi W .0; "/�†i !M 0 , and thus for each i we get a map
.fi ı �i/

�W H k.M 0;R/!H k.†i ;R/.

Definition 3.9 For 0� k � 7, define a map ‡k W H k.M 0;R/!
Ln

iD1H k.†i ;R/ by

(73) ‡k.Œ!�/D

nM
iD1

.fi ı �i/
�.Œ!�/

for any cohomology class Œ!� 2H k.M 0;R/. Essentially, at each end we restrict the
k –form ! to the link †i and take its cohomology in H k.†i ;R/.

Theorem 3.10 Let M be a compact G2 manifold with isolated conical singularities.
For each i , let �i and �i be 3–forms and 4–forms, homogeneous of orders �3 and �4,
respectively, and closed and coclosed on each cone Ci , with respect to gCi

. Suppose
that

nM
iD1

Œ�i � 2

nM
iD1

H 3.†i ;R/ lies in the image of ‡3
W H 3.M 0;R/

!

nM
iD1

H 3.†i ;R/;
(74)

nM
iD1

Œ�i � 2

nM
iD1

H 4.†i ;R/ lies in the image of ‡4
W H 4.M 0;R/

!

nM
iD1

H 4.†i ;R/;
(75)
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where the maps ‡k are given in Definition 3.9. Then for ı > 0 sufficiently small, there
exists a smooth 3–form � and a smooth 4–form � on M 0 such that

d� D 0; d�gM
� D 0; d�D 0;

jr
j
Ci
.f �i .�/� �i/jgCi

DO.r�3Cı�j / 8j � 0;(76)

jr
j
Ci
.f �i .�/� �i/jgCi

DO.r�4Cı�j / 8j � 0:(77)

Notice that we do not say that � is coclosed. Furthermore, the 3–form � is in ƒ3
27

with
respect to the G2 structure 'M .

Theorem 3.10 is proved in Section 5. Assuming this result for the moment, we now
continue our construction of the pair .'s;  s/.

Corollary 3.11 Near the i –th singular point xi , the 3–form f �i .�/ and the 4–form
f �i .�/ satisfy

(78) jf �i .�/jgCi
DO.r�3/; jf �i .�/jgCi

DO.r�4/:

Proof By Equation (76) we know that jf �i .�/jgCi
� j�i jgCi

CO.r�3Cı/, and also
j�i jgCi

DO.r�3/, so jf �i .�/jgCi
DO.r�3/. The proof for � is identical using (77).

Corollary 3.12 If ı > 0 is sufficiently small, then near the i –th singular point xi , the
4–form f �i .�M �/ and the 4–form �Ci

�i satisfy

(79) jf �i .�M �/��Ci
�i jgCi

DO.r�3Cı/;

and as a result we can say that

(80) f �i .�M �/D �Ci
�i � dEi ;

for some smooth 3–form Ei on .0; "/�†i , where

(81) jr
j
Ci

Ei jgCi
D O.r�2Cı�j /:

Proof We compute that

jf �i .�M �/��Ci
�i jgCi

� jf �i .�M �/��Ci
.f �i .�//jgCi

Cj�Ci
.f �i .�//��Ci

�i jgCi

D jf �i .�M �/��Ci
.f �i .�//jgCi

Cjf �i .�/� �i jgCi

DO.r�3C�i /CO.r�3Cı/

where we have used (78) and Lemma 2.29 on the first term and (76) and the fact that
�Ci

is an isometry with respect to gCi
on the second term. This gives (79) as long
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as we choose ı less than each �i . Now the 3–form f �i .�M �/��Ci
�i is closed by

Theorem 3.10, and so equations (80) and (81) now follow from Lemma 2.11.

Remark 3.13 The sign on Ei in (80) is chosen for later convenience.

Recall that if each �i < �4, then all the �i ’s and �i ’s vanish, so we can just take �
and � to both be zero. This is the unobstructed case. From now on, we will assume
that the situation is either unobstructed or that the conditions (74) and (75) are satisfied.
By Lemma 2.11 and Equation (76), since ı > 0, we see that for each i there exists a
smooth 2–form Ai on .0; "/�†i such that

(82) f �i .'M C s3�/D 'Ci
C s3�i C d˛i C s3dAi ;

where we have also used Equation (70). Similarly using equations (77), (80) and (71),
we have that for each i there exists a smooth 3–form Bi on .0; "/�†i such that

(83) f �i . M C s4�� s3
�M �/D  Ci

C s4�i � s3
�Ci

�i C dˇi C s4dBi C s3dEi :

Also, by Lemma 2.11 and equations (72), we have

jr
j
Ci
˛i jgCi

DO.r�iC1�j /; jr
j
Ci

Ai jgCi
DO.r�2Cı�j /; 8j � 0;(84)

jr
j
Ci
ˇi jgCi

DO.r�iC1�j /; jr
j
Ci

Bi jgCi
DO.r�3Cı�j /; 8j � 0:(85)

We are now ready to construct a smooth 3–form 's and a smooth 4–form  s on �Ms .
Let us take  2 .0; 1/, which will be chosen later. It will become clear later why we
need to do this. From now on we will consider only those values of s > 0 which are
small enough so that

(86) sR0 < s < 2s < ":

Recall that R0D2R. These inequalities hold for all s<max.."=2/1= ; .1=R0/1=.1�//.
This enables us to split up each overlapping region Ui;s into three disjoint pieces:

Ui;s D .sR
0; s /�†i t Œs

 ; 2s ��†i t .2s ; "/�†i :

The reader should refer again to Figures 3 and 4.

We can write the smooth compact manifold �Ms as the (nondisjoint) union of the inner
piece K[

Fn
iD1 fi ..2s ; "/�†i/ with an outer piece Li [hi;s ..sR

0; s /�†i/ and
an overlapping region Ui;s D .sR

0; "/�†i for each i D 1; : : : ; n. Considering it in this
way, the inner piece intersects each Ui;s in the set fi ..2s ; "/�†i/Š .2s ; "/�†i ,
and each inner piece intersects its associated Ui;s in the set hi;s ..sR

0; s /�†i/ Š

.sR0; s /�†i .
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Let uW .0;1/!R be any smooth increasing function such that

u.r/D

(
0 for 0< r � 1;

1 for 2� r <1:

We will use u.r/ to interpolate between the pair .'M C s3�;  M C s4�� s3 �M �/

on M 0 and the pairs .'Ni;s
;  Ni;s

/ on the Ni;s ’s. Define us.r/ D u.s� r/. Then
clearly

us.r/D

(
0 for 0< r � s ;

1 for 2s � r <1:

Using us , we define a smooth 2–form �i and a smooth 3–form �i on each .sR0; "/�†i

as follows:

�i D .˛i C s3Ai/usC �i;s.1�us/;(87)

�i D .ˇi C s4Bi C s3Ei/usC �i;s.1�us/:(88)

Definition 3.14 We define a smooth 3–form 's on �Ms as follows:

(89) 's D

8̂<̂
:
'M C s3� on K[

Fn
iD1 fi ..2s ; "/�†i/ ;

'Ci
C s3�i C d�i on .sR0; "/�†i ;

'Ni;s
on Li [ hi;s ..sR

0; s /�†i/ ;

and we define a smooth 4–form  s on �Ms as follows:

(90)  s D

8̂<̂
:
 M C s4�� s3 �M � on K[

Fn
iD1 fi ..2s ; "/�†i/ ;

 Ci
C s4�i � s3 �Ci

�i C d�i on .sR0; "/�†i ;

 Ni;s
on Li [ hi;s ..sR

0; s /�†i/ :

We need to check that 's is well defined, in the regions where we have given it two
definitions. When r � s , then �iD �i;s and therefore by (67) we have 'sDh�i;s.'Ni;s

/

on .sR0; s / � †i and 's D 'Ni;s
on hi;s ..sR

0; s /�†i/, and these are indeed
identified with each other under the diffeomorphism hi;s . Whereas when r � 2s , then
�i D ˛i C s3Ai and therefore by (82) we have 's D f

�
i .'M C s3�/ on .2s ; "/�†i

and 's D 'M C s3� on fi ..2s ; "/�†i/, and these are identified with each other
under the diffeomorphism fi . Similarly one checks using (68) and (83) that  s is also
well defined. It is clear that 's and  s are both closed forms, for all s > 0.

It is intuitively clear that as s ! 0, the manifold with G2 structure . �Ms; 's/ “ap-
proaches” the original compact G2 manifold .M; 'M / with isolated conical singulari-
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ties. This can be made precise using the notion of Gromov–Hausdorff convergence,
but we will not have occasion to use this.

3.3 Existence of the torsion-free G2 structure z's on Ms

In this section, we will show that from the pair .'s;  s/ constructed in Section 3.2,
we can satisfy the hypotheses of Joyce’s Theorem 3.1 to conclude that �Ms admits a
torsion-free G2 structure z's .

Since nondegeneracy is an open condition, it will follow from the estimates in Propo-
sition 3.20 that for s sufficiently small, 's and  s are nondegenerate 3–forms and
4–forms, respectively. However,  s is not equal to �gs

's , where gs is the metric
determined by 's , so 's is not coclosed with respect to its induced metric, and hence
not torsion-free. However, for s sufficiently small, we will see that  s is close to
�gs

's in a suitable sense, and this difference, together with its derivative, is a measure
of the torsion of 's .

Definition 3.15 For each s , we define a smooth 3–form �s on �Ms by

(91) �s D 's ��gs
 s:

Remark 3.16 In the notation of Lemma 1.3 and Remark 1.4, we have �s D 's �

‚�1. s/.

Lemma 3.17 The form �s satisfies d�gs
�s D d�gs

�s for all s .

Proof We compute

d�gs
�s D d�gs

.'s ��gs
 s/D d�gs

's ��gs
d �gs

�gs
 s D d�gs

's ��gs
d s D d�gs

's

using the fact that d�gs
D �gs

d�gs
on 4–forms, that �2

gs
D 1 and that d s D 0.

This 3–form �s will play the role of � in Theorem 3.1. To apply this result, we need
to estimate various norms of �s in the different regions of �Ms .

Proposition 3.18 The 3–form �s on �Ms is given by

(92) �s D

8̂̂̂̂
<̂
ˆ̂̂:
�J'M

.s4�/�G'M
.s4�� s3 �M �/ on K[

Fn
iD1 fi ..2s ; "/�†i/ ;"

d�i �J'Ci
.s4�i C d�i/

�G'Ci
.s4�i � s3 �Ci

�i C d�i/

#
on Œs ; 2s ��†i ;

0 on Li [ hi;s ..sR
0; s /�†i/ ;

in the different regions used in Definition 3.14. Here the maps J and G are as defined
in Remark 1.4 and Equation (11).
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Proof On the region Li [hi;s ..sR
0; s /�†i/, we have  s D Ni;s

and 's D 'Ni;s
,

so
�s D 'Ni;s

�‚�1. Ni;s
/D 0:

In other words, the G2 structure 's is already torsion-free on these regions. Now on
the inner region K [

Fn
iD1 fi ..2s ; "/�†i/, we have  s D  M C s4�� s3 �M � ,

and hence by (9) we have

‚�1. s/D 'M CJ'M
.s4�� s3

�M �/CG'M
.s4�� s3

�M �/:

However, since by Theorem 3.10 we know that � is in �3
27

with respect to 'M ,
Equation (11) tells us that J'M

.�M �/D�� . Therefore

‚�1. s/D 'M C s3�CJ'M
.s4�/CG'M

.s4�� s3
�M �/:

Now since 's D 'M C s3� , we obtain the expression for �s in the first line of (92).
Finally, for the overlap regions Œs ; 2s ��†i , the calculation is similar, this time using
the fact that �i is in �3

27
with respect to 'Ci

, which was shown in Proposition 2.23.

Remark 3.19 Notice in (92) we are now writing the overlap regions as Œs ; 2s ��†i

as opposed to .sR0; "/�†i as was used in Definition 3.14, so that now all the regions
are disjoint. This will make is easier to estimate various norms in what follows, so we
will decompose �Ms this way from now on.

Note that in the unobstructed case, we have � D 0 and �D 0. Thus �s also vanishes
on the inner region, so 's only fails to be torsion-free in the annuli Œs ; 2s � �†i

where we have interpolated between two torsion-free G2 structures. However in the
obstructed case, the G2 structure 's also has torsion on the inner region coming from
the corrections � and � to 'M and  M .

We are now ready to begin estimating various norms of �s in order to apply Theorem
3.1. We begin with estimates of d�i and d�i .

Proposition 3.20 Consider the 2–forms �i and the 3–forms �i given by equations (87)
and (88). In the region s � r � 2s , and with respect to the cone metric gCi

, we have
the following estimates:

jd�i jgCi
� C.s�i C s��

0
i
.1�/

C s3.1�/Cı /;(93)

jrCi
d�i jgCi

� C.s�i� C s��
0
i
.1�/�

C s3.1�/Cı� /;(94)

jd�i jgCi
� C.s�i C s��

0
i
.1�/

C s3.1�/Cı /;(95)

jrCi
d�i jgCi

� C.s�i� C s��
0
i
.1�/�

C s3.1�/Cı� /;(96)

where each C denotes some positive constant.
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Proof Notice that d
dr

us.r/D s�u0s.r/. Now from (87), we see that

(97) d�iD s�u0sdr^.˛iCs3Ai/Cus.d˛iCs3dAi/�s�u0sdr^�i:sC.1�us/d�i;s:

Since us and u0s are uniformly bounded functions of r (independent of s ), we have

jd�i jgCi
�C s� j˛iCs3Ai jgCi

CC jd˛iCs3dAi jgCi
CC s� j�i:sjgCi

CC jd�i;sjgCi
:

Using equations (1), (84) and (69), we compute

jd�i jgCi
� C.s� r�iC1

C s3� r�2Cı
C r�i C s3r�3Cı

C s� s��
0
i r�
0
i
C1
C s��

0
i r�
0
i /:

Since s � r � 2s , we have ra�C sa for any a> 0. Therefore the above expression
becomes

jd�i jgCi
� C.s�i C s3.1�/Cı

C s�i C s3.1�/Cı
C s��

0
i
.1�/

C s��
0
i
.1�//;

which is (93). To obtain (94), take the covariant derivative of (97) and proceed as
before.

For the estimates on �i , Equation (88) shows that

(98) d�i D s�u0sdr ^ .ˇi C s4Bi C s3Ei/Cus.dˇi C s4dBi C s3dEi/

� s�u0sdr ^ �i:sC .1�us/d�i;s:

Now we use equations (1), (85), (81) and (69), and get

jd� jgCi
� C.s�i C s4.1�/Cı

C s3.1�/Cı
C s��

0
i
.1�//;

where the O.s4.1�/Cı / terms come from Bi and the O.s3.1�/Cı / terms come
from Ei . But since s < 1, the former terms are smaller than, and can be absorbed by,
the latter terms. This gives (95). The proof of (96) is similar.

Remark 3.21 The estimates in Proposition 3.20 explain why we needed to introduce
the parameter  2 .0; 1/ to construct 's and  s . If, instead of (86), we had divided
the interval .sR0; "/ into sR0 < R1 < R2 < ", which corresponds to  D 0, or into
sR0 < sR1 < sR2 < s", which corresponds to  D 1, then the estimates of various
norms of �s would include terms of size O.1/, and they would not be small enough
for us to apply Theorem 3.1 later.

In Theorem 3.1, all the norms are measured with respect to the metric gs induced by
's . However, it is easier for us to estimate various terms using the metrics gM from
'M or gCi

from 'Ci
. To translate these to estimates using gs , we need the following

observation.
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Lemma 3.22 For s sufficiently small, the metric gs is uniformly close to the metric
gM (in the gM metric) on the inner region K[

Fn
iD1 fi ..2s ; "/�†i/. This means

that on this region

sup jgM �gsjgM
� e; sup jg�1

M �g�1
s jgM

� e;

for some small e < 1
2

. As a result, it follows easily that for any tensor ! defined on the
inner region,

(99) j!jgs
� C j!jgM

for some C > 0, independent of s and ! .

Similarly for s sufficiently small, the metric gs is uniformly close to the metric gCi
(in

the gCi
metric) on the overlap region Œs ; "/�†i , and hence

(100) j!jgs
� C j!jgCi

:

Proof On the inner region K[
Fn

iD1 fi ..2s ; "/�†i/, from Definition 3.14 we have
's �'M D s3� . On the subset K , which is a compact manifold with boundary, j�jgM

is bounded, so s3j�jgM
DO.s3/. Meanwhile on the subset

Fn
iD1 fi ..2s ; "/�†i/,

we claim that s3j�jgM
DO.s3.1�//. To see this, first we note that by (54), we have

jf �i .gM /�gCi
jgCi
DO.r�i /, which is uniformly bounded as r � ". Therefore

j�jgM
D jf �i .�/jf �i .gM / � C jf �i .�/jgCi

for some C > 0. But by (76) we know that

jf �i .�/jgCi
� j�i jgCi

CO.r�3Cı/;

and also j�i jgCi
D O.r�3/, so s3j�jgM

� C s3r�3 � C s3.1�/ as claimed, since
r�1 � s� . Therefore on the inner region we have

sup j's �'M jgM
� C.s3

C s3.1�//

which can be made as small as we want by taking s sufficiently small. Therefore we
can make jgs �gM jgM

< e for some e < 1
2

. The claim now follows.

On the region Œs ; "/�†i , we have from Definition 3.14 that 's �'Ci
D s3�i C d�i .

Now j�i jgCi
DO.r�3/, so s3j�i jgCi

� C s3.1�/ since r�1 � C s� . Using (93), we
have

sup j's �'Ci
jgCi
� C.s3.1�/

C s�i C s��
0
i
.1�/

C s3.1�/Cı /;

and now the claim follows as in the first case.
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We will use (99) and (100) repeatedly in what follows, without explicit mention. We
can now estimate the pointwise norms of �s and rs �s , where rs is the covariant
derivative with respect to the metric gs of 's .

Proposition 3.23 Let �s be as given in Proposition 3.18. Then we have the following
pointwise estimates for j�sjgs

and jrs �sjgs
, on the different regions that were used

in (92). On the subset K of the inner region, we have

(101) j�sjgs
� C s4; jrs �sjgs

� C s4:

On each subset fi ..2s ; "/�†i/ of the inner region, we have

(102) j�sjgs
� C s4r�4; jrs �sjgs

� C s4r�4:

On the overlap regions Œs ; 2s ��†i we have

(103)
j�sjgs

� C.s�i C s��
0
i
.1�/

C s3.1�/Cı /;

jrs �sjgs
� C.s�i� C s��

0
i
.1�/�

C s3.1�/Cı� /;

and finally on the outer regions Li [ hi;s ..sR
0; s /�†i/ we have

(104) j�sjgs
D 0; jrs �sjgs

D 0:

Proof We start with the inner region. Using (92) and (12) and (10), we see that

j�sjgs
� C j�sjgM

� C jJ'M
.s4�/jgM

CC jG'M
.s4�� s3

�M �/jgM

� C s4
j�jgM

CC js4�� s3
�M �j2gM

� C s4
j�jgM

CC .s4
j�jgM

C s3
j�jgM

/
2
;(105)

where we have used the fact that �M is an isometry. A similar computation yields

(106) jrs �sjgs
� C s4

jrM�jgM

CC
�
s4
jrM�jgM

C s3
jrM �jgM

/.s4
j�jgM

C s3
j�jgM

�
:

To obtain the above estimate we need to use the fact that rM commutes with �M

and that 'M is torsion-free, so that the jrM'M jgM
terms in (12) and (10) are zero.

Now the subset K of the inner region is a compact manifold with boundary, so j�jgM
,

j�jgM
, jrM �jgM

and jrM�jgM
are all bounded there. Hence by (105) we have

j�sjgs
� C.s4

C s6
C s7

C s8/� C s4

by absorbing smaller terms into the dominant term. Similarly by (106) we get
jrs �sjgs

� C s4 . This proves (101). Now consider a subset fi..2s ; "/ � †i/ of
the inner region. By (54), we have jf �i .gM /�gCi

jgCi
DO.r�i /, which is uniformly
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bounded as r � ". Therefore

j�jgM
D jf �i .�/jf �i .gM / � C jf �i .�/jgCi

� C j�i jgCi
CO.r�3Cı/� C r�3;

using (76) and the fact that �i is homogenous of order �3. In exactly the same way,
we can show that on fi..2s ; "/�†i/, we have

(107) jrM �jgM
� C r�4; j�jgM

� C r�4; jrM�jgM
� C r�5:

Hence (105) and (106) then give

j�sjgs
� C s4r�4; jrs �sjgs

� C s4r�4;

which is (102). Here we have used the fact that the skr�k terms for k > 4 are
dominated by s4r�4 since sr�1 < C s1� < C , because s < 1 and  2 .0; 1/.

We move on to the overlap regions. Again using (92) and (12) and (10), we get

j�sjgs
� C j�sjgCi

� C jd�i jgCi
CC jJ'Ci

.s4�i C d�i/jgCi
CC jG'Ci

.s4�i � s3
�Ci

�i C d�i/jgCi

� C jd�i jgCi
CC js4�i C d�i jgCi

CC js4�i � s3
�Ci

�i C d�i j
2
gCi
:

Now we use (93) and (95) to obtain

(108) j�sjgs
� C.s�i C s��

0
i
.1�/

C s3.1�/Cı /

CC s4
j�i jgCi

CC.s4
j�i jgCi

C s3
j�i jgCi

Cjd�i jgCi
/2:

We claim that the second and third terms above are smaller than, and can thus be
absorbed by, the first term. To see this, recall that j�i jgCi

D O.r�3/ and j�i jgCi
D

O.r�4/ and that ra � C ra for r 2 Œs ; 2s �, and thus

s4
j�i jgCi

� C s4.1�/; s3
j�i jgCi

� C s3.1�/:

Since ı is close to zero, the O.s4.1�// term can be absorbed in O.s3.1�/Cı /. Now
the final term in (108) is

.O.s3.1�//CO.s�i /CO.s��
0
i
.1�//2:

Since s < 1, and ı is close to zero, every product of two terms in the above expression
can be absorbed by one of the summands in the first term of (108). This proves
the first estimate in (103). The second estimate in (103) is obtained similarly to the
estimate in (106), this time using the fact that rCi

commutes with �Ci
and that 'Ci

is
torsion-free, so the jrCi

'Ci
jgCi

terms in (12) and (10) are zero.

Finally the equations in (104) are immediate from (92).
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We can now use Proposition 3.23 to estimate the norms needed in part i) of Theorem 3.1.

Theorem 3.24 Let �s be as given in Proposition 3.18. Then the following estimates
hold for norms of �s on the smooth compact manifold �Ms .

k�skC 0 � C.s�i C s��
0
i
.1�/

C s3.1�/Cı /;(109)

k�skL2 � C.s�iC
7
2

C s��

0
i
.1�/C 7

2

C s3.1�/CıC 7

2
 /;(110)

kd�gs
�skL14 � C.s�i�

1
2

C s��

0
i
.1�/� 1

2

C s3.1�/Cı� 1

2
 /:(111)

Proof We begin with the C 0 norms of �s and of rgs
�s with respect to gs . Using

the estimates in (101), (102), (103) and (104), we find

k�skC 0 D sup
p2 �Ms

j�s.p/jgs.p/ � C.s�i C s��
0
i
.1�/

C s3.1�/Cı /;(112)

krgs
�skC 0 D sup

p2 �Ms

j.rgs
�s/.p/jgs.p/(113)

� C.s�i� C s��
0
i
.1�/�

C s3.1�/Cı� /;

where in both cases the terms from (101) and (102) are absorbed by the last terms
of (103), using the fact that r�4 � C s�4 in (102). The estimate (112) is (109).

We now move on to the L2 norm of �s . This is

k�skL2 D

�Z
�Ms

j�sj
2
gs

volgs

� 1
2

:

We will consider the contributions to the integral coming from the different regions
in (92). By (104), there is no contribution from the outer regions. By Lemma 3.22
and Equation (18), in the overlap region Œs ; 2s � �†i we have volgs

� C volC D

C r6dr ^ vol† . Now the estimate (103) givesZ
Œs ;2s ��†i

j�sj
2
gs

volgs
� C vol.†i/

Z 2s

s
j�sj

2
gs

r6 dr

� C.s�i C s��
0
i
.1�/

C s3.1�/Cı /2
Z 2s

s
r6 dr

� C.s�i C s��
0
i
.1�/

C s3.1�/Cı /2s7 ;

and hence the contribution to k�skL2 from the overlap region is bounded by

(114) C.s�iC
7
2

C s��

0
i
.1�/C 7

2

C s3.1�/CıC 7

2
 /:
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On a subset fi..2s ; "/ �†i/ of the inner region, by Lemma 3.22 we again have
volgs

� C r6 dr ^ vol† , and so by (102) we seeZ
.2s ;"/�†i

j�sj
2
gs

volgs
� C vol.†i/

Z "

2s
j�sj

2
gs

r6 dr

� C s8

Z "

2s
r�8r6 dr

� C.s8
C s8� /� C s8� ;

and so the contribution to k�skL2 from this region is bounded by

(115) C s4� 1
2

D C s4.1�/C 7

2
 :

Finally the subset K of the inner region is compact, so by (101), the contribution to
k�skL2 on this region is bounded by C s4 , which is smaller than, and hence absorbed
by, (115). Putting (114) and (115) together, we find

k�skL2 � C.s�iC
7
2

C s��

0
i
.1�/C 7

2

C s3.1�/CıC 7

2

C s4.1�/C 7

2
 /:

It is easy to check that the fourth term above is smaller than, and absorbed by, the third
term, exactly when

(116) ı <
1� 


;

so by taking ı smaller if necessary, we ensure that (110) holds.

Lastly we need to consider the L14 norm of d�gs
�s . This is

kd�s
�skL14 D

�Z
�Ms

jd�gs
�sj

14
gs

volgs

� 1
14

:

By Equation (2), we have jd�gs
�sjgs

� C jrgs
�sjgs

. Now we proceed exactly as in
the derivation of the L2 estimates, using the pointwise estimates on jrgs

�sj given
in (101), (102) and (103). We sketch the details. On the overlap regions, one obtains
that the contribution to kd�s

�skL14 is bounded by

(117) C.s�i�C
1
2

C s��

0
i
.1�/�C 1

2

C s3.1�/Cı�C 1

2
 /;

whereas on the inner region the contribution to kd�s
�skL14 is bounded by

C s4� 7
2

D C s4.1�/C 1

2
 :

This term is absorbed by the third term in (117) whenever ı < 1


, which is automatic
from (116). Thus we obtain the estimate (111).
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Corollary 3.25 There exists  2 .0; 1/ and � > 0 such that, for s sufficiently small,
the closed G2 structure 's constructed in Definition 3.14 satisfies part i) of Joyce’s
Theorem 3.1:

k�skC 0 �D1s� ; k�skL2 �D1s
7
2
C� ; kd�gs

�skL14 �D1s�
1
2
C� :

Proof By Theorem 3.24, the three estimates in part i) of Theorem 3.1 will be satisfied
if and only if

�i � �; ��
0
i.1�  /� �; 3.1�  /C ı � �;(118)

�i C
7

2
 �

7

2
C �; ��0i.1�  /C

7

2
 �

7

2
C �;

3.1�  /C ı C
7

2
 �

7

2
C �;

(119)

�i �
1

2
 � �

1

2
C �; ��0i.1�  /�

1

2
 � �

1

2
C �;

3.1�  /C ı �
1

2
 � �

1

2
C �:

(120)

It is trivial to verify that for  < 1, the inequalities in (119) automatically imply the
inequalities in (118) and (120). That is, the L2 estimate implies the C 0 and L14

estimates. The three inequalities in (119) can be rearranged to yield

(121)  �

7
2
C �

7
2
C�i

;  � 1C
�

7
2
C �0i

;  �
1C 2�

1C 2ı
:

We want to ensure that there exists a � > 0 such that if we define  by the three
expressions above, then  will be in .0; 1/. Recall that �i > 0, ı > 0 and �0i D �4

(from Theorem 3.6.) For the first inequality in (121), we see that  > 0 for any � > 0,
and  < 1 if � < �i . For the third inequality in (121), we have  > 0 for any � > 0,
and  < 1 if � < ı . Finally, for the middle inequality in (121), we see that  < 1

for any � > 0, and  > 0 if � < �.7
2
C �0i/ D

1
2

. Therefore it suffices to choose �
satisfying

� < ı; � <
1

2
; and � < �i ; for all i D 1; : : : ; n:

The intersection of the three inequalities in (121) with the regions 0<  < 1 and � > 0

is represented by the shaded region in Figure 6.

Remark 3.26 We can see from (121) that there is a critical rate �c D�
7
2

such that
gluing in an AC G2 manifold with decay rate �0 < �c works, while for rate �0 > �c it
does not work. The determining factor is the size of the L2 norm of the error caused by
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0



1

0 �

 D
7
2
C�

7
2
C�i

 D 1C2�
1C2ı

�iı

1
1C2ı

7
2

7
2
C�i

 D 1C �
7
2
C�0

i

�.7
2
C �0i/

Figure 6: Intersection of the inequalities in the  -� plane

smoothing off the AC decay, which is contained in �s . This shows the importance of
Theorem 3.6, which we were able to use to show that for any initial AC rate ���3, we
can extract cohomological parts, in equations (64) and (65) and the left over parts then
have a faster rate of decay �0D�4, which is less than the critical rate �c D�

7
2

, so that
our gluing construction can actually be made to work for any initial rate � ��3. In
effect, Theorem 3.6 allows us to extend the AC rates which allow the desingularization
to succeed from � < �7

2
to � � �3. The reader should also review again Remark 3.7.

Next we need to estimate the Riemann curvature and the injectivity radius of gs .

Proposition 3.27 For s sufficiently small, the metric gs induced by the closed
G2 structure 's constructed in Definition 3.14 satisfies parts ii) and iii) of Joyce’s
Theorem 3.1:

I.gs/�D2s; kR.gs/kC 0 �D3s�2:

Proof We begin by noting that under a conformal scaling of metric zg D s2g , the
Riemann curvature tensor R and the injectivity radius I change by

kR.zg/kC 0.zg/ D s�2
kR.g/kC 0.g/ and I.zg/D s I.g/:

We will consider the three regions of �Ms as given in Definition 3.14.

On the inner region K[
Fn

iD1 fi ..2s ; "/�†i/, we have jgs�gM jgM
� e , for some

e< 1
2

by Lemma 3.22. Hence by Taylor’s theorem we have jR.gs/�R.gM /jgM
�Ce .
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Therefore

jR.gs/jgs
� C jR.gs/jgM

� C jR.gM /jgM
CC jR.gs/�R.gM /jgM

� C;

using (99) and the fact that R.gM / is smooth and hence bounded on any compact
subset of M containing the inner region. On the overlap regions Œs ; 2s ��†i we
can again use the fact that gs is uniformly close to gCi

by Lemma 3.22, so as above
we can say

jR.gs/jgs
� C jR.gCi

/jgCi
CC jR.gs/�R.gCi

/jgCi
� C jR.gCi

/jgCi
CC:

Since gCi
.t r; �/D t2gCi

.t; �/, we have

jR.gCi
/.t r; �/jgCi

.tr;�/ D t�2
jR.gCi

/.r; �/jgCi
.r;�/

on the cone Ci . Thus since r 2 Œs ; 2s � on these regions, we have

jR.gCi
/jgCi

� C s�2 :

Finally we consider the outer regions Li [ hi;s ..sR; s
 /�†i/. Here we have gs D

s2gNi
exactly, so

jR.gs/jgs
D s�2

jR.gNi
/jgNi
j � C s�2

as R.gNi
/ is smooth and thus bounded on any compact subset of Ni containing that

outer region. Putting all three estimates together gives iii) of Theorem 3.1.

The estimate on the injectivity radius in ii) of Theorem 3.1 is proved in essentially
the same way. On the inner region, we get I.gs/� C , on the overlap regions we get
I.gs/�C s , and on the outer regions we get I.gs/�C s . Thus when s is sufficiently
small, putting these all together gives ii) of Theorem 3.1.

Note that in both cases, the dominant contribution comes from the conformally scaled
metrics gs D s2gNi

on the outer regions which were glued into M to obtain �Ms .

Finally we can prove our main theorem.

Theorem 3.28 Let M be a compact G2 manifold with isolated conical singularities,
with singularities x1; : : : ;xn , cones C1; : : : ;Cn and rates �1; : : : ; �n , respectively.
Suppose that we have asymptotically conical G2 manifolds N1; : : : ;Nn , with the
same cones C1; : : : ;Cn and rates �1; : : : ; �n , respectively, with each �i � �3. If the
conditions (74) and (75) of Theorem 3.10 are satisfied, then there exists a one-parameter
family �Ms of smooth, compact G2 manifolds, for 0< s < � , (with holonomy exactly
equal to G2 ), which desingularize M .
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Proof From Corollary 3.25 and Proposition 3.27, we see that the hypotheses of
Theorem 3.1 are satisfied with ' D 's and �D �s on the smooth compact manifold�Ms . Hence there exists a torsion-free G2 structure z's on �Ms , for 0 < s < � . The
Riemannian holonomy of the metric zgs induced by z's must be exactly G2 , since the
holonomy of M 0 and of the Ni ’s was exactly G2 , and the holonomy of a manifold
obtained by gluing must be at least as large as the holonomy of its constituent pieces.

In fact we can say informally that “lims!0
�Ms DM ”, since as s! 0, the asymptoti-

cally conical G2 manifolds Ni;s shrink to points, corresponding to the original conical
singularities xi , and hence the manifold �Ms approaches the original G2 manifold
M with isolated conical singularities. Therefore compact G2 manifolds with isolated
conical singularities can be thought of as possible “boundary points” in the moduli
spaces of compact smooth G2 manifolds.

4 Analysis on manifolds with ends

In this section we summarize some aspects of analysis on noncompact manifolds with
ends. We will only need parts of the theory for weighted Sobolev spaces. It applies
equally well to weighted Hölder spaces. Analysis on noncompact manifolds with ends
using weighted Banach spaces has been discussed by many authors, including Maz 0 ja–
Plamenevskiĭ [34], Bartnik [4], Biquard [6] and Aubin [2]. We choose to follow
the approach developed in Lockhart–McOwen [29] and Lockhart [28]. A detailed
exposition of this approach can also be found in Marshall [33], and a summary in the
context of manifolds with ICS was first presented in Joyce [20]. Weighted Sobolev
space techniques have also been applied by Nordström [35] to study asymptotically
cylindrical G2 manifolds.

4.1 Analysis on manifolds with isolated conical singularities

Let M be a compact G2 manifold with isolated conical singularities, as in Definition
2.25. In order to be able to define sensible “weighted” Banach spaces on the noncompact
smooth manifold M 0 , we need to introduce the concept of a radius function.

Definition 4.1 A radius function % on M 0 is a smooth function on M 0 that satisfies
the following conditions. On the compact subset KDM 0n

Fn
iD1 Si , we define %� 1.

Let x be a point in the neighbourhood fi..0;
1
2
"/�†i/ of the i –th singularity xi .

Then f �1
i .x/ D .r; �/ for some r 2 .0; 1

2
"/, and we set %.x/ D r for such a point.

Finally, in the regions fi..
1
2
"; "/ �†i/, the function % is defined by interpolating

smoothly in an increasing fashion between these two definitions.
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Let � D .�1; : : : ; �n/ be an n–tuple of real numbers. We can add such n–tuples
and multiply them by real numbers using the vector space structure of Rn . We also
define �C j D .�1C j ; : : : ; �nC j / for any j 2R. Now define %� to equal %�i on
fi..0; "/�†i/ and to equal 1 on K . Then %� is a smooth function on M 0 which
equals r�i on the neighbourhood fi..0;

1
2
"/�†i/ of xi .

Definition 4.2 Let p > 1, l � 0 and � 2Rn . We define the weighted Sobolev space
L

p

l;�
.ƒk.T �M 0// of k –forms on M 0 as follows. Consider the space C1cs .ƒ

k.T �M 0//

of smooth compactly supported k –forms on M 0 . For such forms the quantity

(122) k!kLp

l;�
D

� lX
jD0

Z
M 0
j%��Cj

r
j
M
!j

p

gM
%�7volM

�1=p

is clearly finite and is a norm. We define the Banach space L
p

l;�
.ƒk.T �M 0// to be

the completion of C1cs .ƒ
k.T �M 0// with respect to this norm. As a topological vector

space, L
p

l;�
.ƒk.T �M 0// is independent of the choice of radius function %, and any

two such choices lead to equivalent norms.

Remark 4.3 There are several observations to be made about this definition.

i) It is clear that L
p

l;�
.ƒk.T �M 0// � L

p

l;�0
.ƒk.T �M 0// if �i > �

0
i for all i D

1; : : : ; n.

ii) It is easy to show that if j!jgM
DO.r�i / near xi , then ! 2L

p
0;��e

.ƒk.T �M 0//

for any e > 0.

iii) Because of the factor of %�7 in (122), for l D 0, the space L
p

0;� 7p
.ƒk.T �M 0//

is the usual Lp.ƒk.T �M 0// space, and in particular we have

(123) L2

0;� 7
2

.ƒk.T �M 0//DL2.ƒk.T �M 0//:

Here it is understood that 7
p

denotes the “constant” n–tuple . 7
p
; : : : ; 7

p
/.

iv) The differential operators d and d�
M

, defined on C1cs .ƒ
k.T �M 0//, clearly

extend to bounded linear operators

d W L
p

lC1;�
.ƒk.T �M 0//!L

p

l;��1
.ƒkC1.T �M 0//;

d�M W L
p

lC1;�
.ƒk.T �M 0//!L

p

l;��1
.ƒk�1.T �M 0//:

Proposition 4.4 Let q satisfy 1
p
C

1
q
D 1. There is a Banach space isomorphism�

L
p
0;�
.ƒk.T �M 0//

��
ŠL

q
0;���7

.ƒk.T �M 0//;
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given by the L2 inner product pairing. That is, if ˛ 2 L
p
0;�
.ƒk.T �M 0// and ˇ 2

L
q
0;���7

.ƒk.T �M 0//, then

(124) jh˛; ˇiL2 j � Ck˛kLp

0;�
kˇkLq

0;���7
:

Hence h � ; � iL2
is well-defined and continuous on

L
p
0;�
.ƒk.T �M 0//�L

q
0;���7

.ƒk.T �M 0//:

Corollary 4.5 Suppose ˛ 2L
p
1;�C1

.ƒk.T �M 0// and ˇ 2L
q
1;���7

.ƒkC1.T �M 0//,
where 1

p
C

1
q
D 1. Then we can “integrate by parts” to say that

(125) hd˛; ˇiL2
D h˛; d�MˇiL2

:

This also holds if ˇ 2L
q

1;�0
.ƒkC1.T �M 0// whenever �C�0 > �7.

Proof Equation (125) clearly holds when ˛ and ˇ are both smooth, compactly
supported forms. By item iv) of Remark 4.3, we know that d˛ 2L

p
0;�
.ƒkC1.T �M 0//

and d�
M
ˇ 2L

q
0;���8

.ƒk.T �M 0//. But then by the continuity of the pairing h � ; � iL2

from (124) and the fact that smooth compactly supported forms are dense in the
weighted Sobolev spaces, Equation (125) follows by taking limits. The last part of the
claim follows immediately from item i) of Remark 4.3.

Let ƒ�.T �M 0/D
P7

kD0ƒ
k.T �M 0/. Define

L
p

l;�
.ƒ�.T �M 0//D

7X
kD0

L
p

l;�
.ƒk.T �M 0//:

We will be interested in the following two differential operators:

.d C d�M /
p

lC1;�
W L

p

lC1;�
.ƒ�.T �M 0//!L

p

l;��1
.ƒ�.T �M 0//;(126)

.�M /
p

lC2;�
W L

p

lC2;�
.ƒk.T �M 0//!L

p

l;��2
.ƒk.T �M 0//:(127)

They are defined by extending the operators dCd�
M

and �M from smooth compactly
supported forms to the Sobolev spaces.

Definition 4.6 Let C be a cone. The set DdCd�
C

of critical rates of the operator
d C d�

C
on ƒ�.T �C / is defined as follows:

(128) DdCd�
C
D

(
� 2RI 9 a nonzero ! D

P7
kD0 !k 2ƒ

�.T �C /;

homogeneous of order �, such that .d C d�
C
/.!/D 0

)
:
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Similarly the set D�C
of critical rates of �C on ƒk.T �C / is defined as

(129) D�C
D

�
� 2RI 9 a nonzero ! 2ƒk.T �C /;

homogeneous of order �, such that �C! D 0

�
:

Both DdCd�
C

and D�C
are countable, discrete subsets of R.

Our manifold M with isolated conical singularities has n singular points, with cones
C1; : : : ;Cn . The relevance of the critical rates is that they are related to the rates � for
which the operators .dCd�

M
/
p

lC1;�
and .�M /

p

lC2;�
of (126) and (127) are Fredholm,

by the following theorem, which is taken from Lockhart–McOwen [29, Theorem 1.1].

Theorem 4.7 The map

.d C d�M /
p

lC1;�
W L

p

lC1;�
.ƒ�.T �M 0//!L

p

l;��1
.ƒ�.T �M 0//

is Fredholm if and only if �i …DdCd�
Ci

for all i D 1; : : : ; n. Similarly the map

.�M /
p

lC2;�
W L

p

lC2;�
.ƒk.T �M 0//!L

p

l;��2
.ƒk.T �M 0//

is Fredholm if and only if �i …D�Ci
for all i D 1; : : : ; n.

We have the following elliptic regularity result for the operators d C d�
M

and �M ,
which can be found in Lockhart–McOwen [29, inequality (2.4)].

Theorem 4.8 Suppose that ! and � are locally integrable sections of ƒ�.T �M 0/ and
that ! is a weak solution of the equation .d C d�

M
/.!/D � . If ! 2L

p
0;�
.ƒ�.T �M 0//

and � 2L
p

l;��1
.ƒ�.T �M 0//, then ! 2L

p

lC1;�
.ƒ�.T �M 0//, and ! is a strong solu-

tion of .d C d�
M
/.!/D � . Furthermore, we have

(130) k!kLp

lC1;�
� C

�
k.d C d�M /.!/kLp

l;��1
Ck!kLp

0;�

�
for some constant C > 0 independent of ! . That is, ! has at least one more derivative’s
worth of regularity than � D .d C d�

M
/.!/.

Similarly suppose ! and � are locally integrable sections of ƒk.T �M 0/, and !

is a weak solution of the equation �M! D � . If ! 2 L
p
0;�
.ƒk.T �M 0// and � 2

L
p

l;��2
.ƒk.T �M 0//, then ! 2 L

p

lC2;�
.ƒk.T �M 0//, and ! is a strong solution of

�M! D � . Furthermore, we have

(131) k!kLp

lC2;�
� C

�
k�M!kLp

l;��2
Ck!kLp

0;�

�
for some C > 0 independent of ! .

We also need the following important result from Lockhart–McOwen [29, Lemma 7.3].
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Theorem 4.9 The kernel of .dCd�
M
/
p

lC1;�
is independent of p > 1 and independent

of l . Hence we can denote it unambiguously as ker.d C d�
M
/� . This kernel is also

invariant as we change the rates �, as long as we do not hit any critical rates. That
is, if �D .�1; : : : ; �n/ and �0 D .�0

1
; : : : ; �0n/, with the interval Œ�i ; �

0
i � contained in

RnDdCd�
Ci

for each i , then

ker.d C d�M /�0 D ker.d C d�M /�:

Similarly the kernel of .�M /
p

lC2;�
is independent of p > 1 and independent of l .

Hence we can denote it unambiguously as ker.�M /� . This kernel is also invariant as we
change the rates �, as long as we do not hit any critical rates. That is, if �D .�1; : : : ; �n/

and �0D .�0
1
; : : : ; �0n/, with the interval Œ�i ; �

0
i � contained in RnD�Ci

for each i , then

ker.�M /�0 D ker.�M /�:

Remark 4.10 There is a “Sobolev embedding theorem” in the context of manifolds
with ICS, which (for large enough p and l ) embeds the Sobolev space L

p

l;�
into an

appropriate Hölder space C
k;˛

�0
having k continuous derivatives, where k , ˛ and

�0 depend on p , l and �. It follows from this theorem and the elliptic regularity
of Theorem 4.8 that elements in the kernel of d C d�

M
or �M are smooth, and the

independence of the kernels on l follows from this. In particular, it now follows that

(132)
! 2 ker.d C d�M /� H) jf �i .!/jf �i .gM / � C r�i on

�
0;

1

2
"

�
�†i ;

! 2 ker.�M /� H) jf �i .!/jf �i .gM / � C r�i on
�

0;
1

2
"

�
�†i :

The independence of the kernels on p > 1 is more complicated and can be found
in Lockhart–McOwen [29, Sections 7–8]. We will not need the embedding theorem
explicitly in this paper.

Lemma 4.11 Let p > 1. Suppose that ! 2L
p

lC2;�
.ƒk.T �M 0// and that �M! D 0.

If �i > �
5
2

for all i D 1; : : : ; n, then d�
M
! D 0 and d! D 0.

Proof By Theorem 4.9, if ! 2 ker.�M /
p

lC2;�
, then ! 2 ker.�M /2

lC2;�
. Now the

elliptic regularity of Theorem 4.8 tells us that ! 2 L2
lC2;�

.ƒk.T �M 0//, and hence
d! and d�

M
! are both elements of L2

lC1;��1
.ƒ�.T �M 0//. Because each �i > �

5
2

,
Corollary 4.5 says that the following integration by parts computation is valid:

0D h�M!;!iL2 D hdd�M!;!iL2 Chd
�
M d!;!iL2 D jd

�
M!j

2

L2 Cjd!j
2
L2 ;

and so we have d�
M
! D 0 and d! D 0.
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Corollary 4.12 Suppose that !k 2L2
lC2;�

.ƒk.T �M 0// and that �M!k D 0. Then
we have:

For k D 0; 7; if each �i > �5; then d�M! D 0 and d! D 0:(133)

For k D 1; 6; if each �i > �4; then d�M! D 0 and d! D 0:(134)

For k D 2; 5; if each �i > �3; then d�M! D 0 and d! D 0:(135)

Proof By Proposition 2.15 we see that in all three cases, there are no critical rates until
at least �iD�2. So using Theorem 4.9, in all cases we can say that !k 2ker.�M /� 5

2
Ce

for some small e > 0. The claims now all follow from Lemma 4.11.

The following proposition (in a general setting) originally appeared in Lockhart [28,
Example 0.16] and a version in the setting of manifolds with ICS is stated in Lotay [31,
Theorem 6.5.2].

Proposition 4.13 Let Hk
L2 denote the subspace of L2.ƒk.T �M 0// consisting of

closed and coclosed k –forms. Then for 0� k � 3, the map

Œ � �W Hk
L2 !H k.M 0;R/

! 7! Œ!�

is an isomorphism. Here Œ!� denotes the cohomology class of the closed form ! .

The rest of the results in this section also all have analogues for �M , but we will only
require them for the operator dCd�

M
. First we will need to consider the formal adjoint

of the map

.d C d�M /
p

lC1;�
W L

p

lC1;�
.ƒ�.T �M 0//!L

p

l;��1
.ƒ�.T �M 0//:

By Proposition 4.4, the formal adjoint extends to a map

(136) .d C d�M /
q
mC1;���6

W L
q
mC1;���6

.ƒ�.T �M 0//!L
q
m;���7

.ƒ�.T �M 0//;

where 1
p
C

1
q
D 1, and l;m� 0.

The next result is the version of the “Fredholm Alternative” for manifolds with ICS,
adapted from Lockhart–McOwen [29, Theorem 1.1].

Theorem 4.14 Suppose that �i is not in DdCd�
Ci

for all i D 1; : : : ; n, so that by
Theorem 4.7, the map

.d C d�M /
p

lC1;�
W L

p

lC1;�
.ƒ�.T �M 0//!L

p

l;��1
.ƒ�.T �M 0//
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is Fredholm and also uniformly elliptic. Then the image im.dCd�
M
/
p

lC1;�
of this map

is given by

im.d C d�M /
p

lC1;�

D
˚
� 2L

p

l;��1
.ƒ�.T �M 0// I h�; !iL2 D 0; 8! 2 ker.d C d�M /���6

	
:

That is, the equation .dCd�
M
/.!/D � is solvable for ! 2L

p

lC1;�
.ƒ�.T �M 0// if and

only if the right hand side � is orthogonal (with respect to the L2 inner product) to
every element of ker.d C d�

M
/���6 , the kernel of the formal adjoint map.

We will need to understand how, near each singular point xi , we can asymptotically
expand elements of the kernel of .d C d�

M
/
p

lC1;�
in terms of certain special solutions

of .d C d�
Ci
/.!/D 0.

Definition 4.15 Let C be a cone. For � 2R, we define the space K.�/dCd�
C

to be
(137)

K.�/dCd�
C
WD

(
! D

P7
kD0

Pm
jD0.log.r//j!k;j I such that .d C d�

C
/.!/D 0;

and each !k;j is a homogeneous k–form of order �

)
:

That is, K.�/dCd�
C

is the set mixed-degree forms on C in the kernel of dCd�
C

, which
are polynomials in log.r/ with coefficients being homogeneous forms of order �.

We will use keri.d C d�
M
/� to denote the restriction of the kernel of .d C d�

M
/
p

lC1;�

to the subset fi..0;
1
2
"/ �†i/ of the i –th end of M 0 (recall by Theorem 4.9 this

kernel is independent of p > 1 and l � 0.) The following result appears (in a slightly
disguised form) in Lockhart–McOwen [29, Section 5].

Proposition 4.16 Let ˇ;ˇ 0 be two n–tuples of rates. Fix i and suppose that ˇi and ˇ0i
are in RnDdCd�

Ci
and that ˇi < ˇ

0
i . Let ˛1 < ˛2 < � � �< ˛N be all the critical rates in

DdCd�
Ci

between ˇi and ˇ0i . If ! 2 keri.dCd�
M
/ˇ , then there exist �j 2K. j̨ /dCd�

Ci
,

for j D 1; : : : ;N , and an !0 defined near xi with j!0jgCi
DO.rˇiC�i / such that

! �

NX
jD1

.f �1
i /�.�j /�!

0
2 keri.d C d�M /ˇ 0 :

That is, when restricted to the subset fi..0;
1
2
"/ � †i/ of the i –th end of M 0 , an

element in the kernel of d C d�
M

with noncritical rate ˇi admits an expansion in
terms of elements in K. j̨ /dCd�

Ci
for each critical rate j̨ between ˇi and ˇ0i , plus a

remainder term which is of order O.rˇiC�i / and another term which is in the kernel of
d C d�

M
with noncritical rate ˇ0i > ˇi .
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Remark 4.17 The O.rˇiC�i / term arises from comparing a solution to the equation
.d C d�

M
/.!/D 0 to a solution of .d C d�

Ci
/.!/D 0, using the relation (54) between

the metrics gCi
and gM near xi .

We will use Proposition 4.16 to prove the following.

Corollary 4.18 Let �D .�; : : : ; �/ be a constant n–tuple. Choose ı >0 small enough
so that in the closed interval Œ�� ı; �C ı�, at most only � itself is a critical rate for
each end. That is, Œ�� ı; �C ı�\DdCd�

Ci
� f�g for each i . This is possible since

each Di is a discrete subset of R. Further assume that ı > 0 is small enough so that
ı < 1

2
�i for each i , where �i are the rates of the singularities of the manifold M with

ICS. If ! 2ƒ�.T �M 0/ is in the kernel of .d C d�
M
/
p

lC1;��ı
, then

(138) jf �i .!/� �i jgCi
DO.r�Cı/ on

�
0;

1

2
"

�
�†i ;

for some �i in K.�/dCd�
Ci

, which may be zero (if � …DdCd�
Ci

.)

Proof We apply Proposition 4.16, with ˇi D � � ı and ˇ0i D �C ı . Because of
the hypotheses on ı , for some �i 2 K.�/dCd�

Ci
, on fi..0;

1
2
"/ �†i/ we have that

! � .f �1
i /�.�i/� !

0 lies in keri.d C d�
M
/�Cı , where j!0j D O.r��ıC�i /. Hence

by (132), we have

jf �i .!/� �i jf �
i
.gM / � C r�CıCC r��ıC�i on

�
0;

1

2
"

�
�†i :

Since by hypothesis we have ı < 1
2
�i and r < 1, the second term on the right is smaller

than and can be absorbed by, the first term.

There are many more results that are known in this setting. For example, the index of
dCd�

M
will stay constant (like the kernel) unless we cross a critical rate, and when we

do, the change in the index can be explicitly computed using the dimensions of the
spaces K.�/dCd�

Ci
. We will not need these results here. The interested reader is referred

to Marshall [33] for a comprehensive review.

4.2 Analysis on asymptotically conical manifolds

Let N be an asymptotically conical G2 manifold, as in Definition 2.31. All of the
analytic results about manifolds with ICS also hold for AC manifolds. The only
differences are that there is only one end this time, and since r !1 instead of r ! 0

at the end, all the inequalities involving rates are reversed. In fact these results can
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be shown to follow from those of Section 4.1 because an AC metric (restricted to the
asymptotic end) is actually conformal to an ICS metric. However, for completeness we
prefer to state precisely those results in the AC setting which we will require.

Definition 4.19 A radius function % on N is a smooth function on N that satisfies
the following conditions. On the compact subset L of N , we define %� 1. Let x be
a point in h..2R;1/�†/. Then h�1.x/D .r; �/ for some r 2 .2R;1/, and we set
%.x/ D r for such a point. Finally, in the region h..R; 2R/�†/, the function % is
defined by interpolating smoothly between these two definitions.

Definition 4.20 Let p > 1, l � 0 and � 2R. We define the weighted Sobolev space
L

p

l;�
.ƒk.T �N // of k –forms on N as follows. Consider the space C1cs .ƒ

k.T �N //

of smooth compactly supported k –forms on N . For such forms the quantity

(139) k!kLp

l;�
D

� lX
jD0

Z
N

j%��Cj
r

j
N
!j

p

gN
%�7volN

�1=p

is a norm, and we let L
p

l;�
.ƒk.T �N // be the completion of C1cs .ƒ

k.T �N // with
respect to this norm.

Remark 4.21 Here are the observations analogous to those of Remark 4.3.

i) This time we have L
p

l;�
.ƒk.T �N // � L

p

l;�0
.ƒk.T �N // if � < �0 . (The in-

equality is in the opposite direction to the ICS case.)
ii) It is easy to show that if j!jgN

DO.r�/ near infinity, ! 2L
p

0;�Ce
.ƒk.T �N //

for any e > 0.
iii) The space L

p

0;� 7
p

.ƒk.T �N // is the usual Lp.ƒk.T �N // space, and in partic-
ular we have

(140) L2

0;� 7
2

.ƒk.T �N //DL2.ƒk.T �N //:

iv) The differential operators d and d�
N

, defined on C1cs .ƒ
k.T �N //, clearly extend

to bounded linear operators

d W L
p

lC1;�
.ƒk.T �N //!L

p

l;��1
.ƒkC1.T �N //;

d�N W L
p

lC1;�
.ƒk.T �N //!L

p

l;��1
.ƒk�1.T �N //:

Proposition 4.22 Let q satisfy 1
p
C

1
q
D 1. There is a Banach space isomorphism�

L
p

0;�
.ƒk.T �N //

��
ŠL

q

0;���7
.ƒk.T �N //;

given by the L2 inner product pairing.
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Corollary 4.23 Suppose ˛ 2 L
p

1;�C1
.ƒk.T �N // and ˇ 2 L

q

1;���7
.ƒkC1.T �N //,

where 1
p
C

1
q
D 1. Then we can “integrate by parts” to say that

(141) hd˛; ˇiL2
D h˛; d�MˇiL2

:

This also holds if ˇ 2L
q

1;�0
.ƒkC1.T �N // whenever �C�0 < �7.

For AC manifolds we will only be interested in the operator:

(142) .d C d�N /
p

lC1;�
W L

p

lC1;�
.ƒ�.T �N //!L

p

l;��1
.ƒ�.T �N //:

The AC analogues of Theorems 4.7, 4.8 and 4.9 are the following.

Theorem 4.24 The map .d Cd�
N
/
p

lC1;�
W L

p

lC1;�
.ƒ�.T �N //!L

p

l;��1
.ƒ�.T �N //

is Fredholm if and only if � … DdCd�
C

, where the set of critical rates DdCd�
C

is as
given in Definition 4.6.

Theorem 4.25 Suppose that ! and � are both locally integrable sections of ƒ�.T �N /

and that ! is a weak solution of the equation .dCd�
N
/.!/D� . If !2L

p

0;�
.ƒ�.T �N //

and � 2L
p

l;��1
.ƒ�.T �N //, then ! 2L

p

lC1;�
.ƒ�.T �N //, and ! is a strong solution

of .d C d�
N
/.!/D � . Furthermore, we have

(143) k!kLp

lC1;�
� C

�
k.d C d�N /.!/kLp

l;��1
Ck!kLp

0;�

�
for some constant C > 0 independent of ! .

Theorem 4.26 The kernel of .d C d�
N
/
p

lC1;�
is independent of p>1 and independent

of l . Hence we can denote it unambiguously as ker.d C d�
N
/� . This kernel is also

invariant as we change the rate �, as long as we do not hit any critical rates. That is, if
the interval Œ�; �0� is contained in RnDdCd�

C
, then

ker.d C d�N /�0 D ker.d C d�N /�:

Remark 4.27 As in Remark 4.10, it follows that

(144) ! 2 ker.d C d�N /� H) jh
�.!/jh�.gN / � C r� on .2R;1/�†:

We will need to consider the formal adjoint of the map

.d C d�N /
p

lC1;�
W L

p

lC1;�
.ƒ�.T �N //!L

p

l;��1
.ƒ�.T �N //:

By Proposition 4.22, the formal adjoint extends to a map

(145) .d C d�N /
q

mC1;���6
W L

q

mC1;���6
.ƒ�.T �N //!L

q

m;���7
.ƒ�.T �N //;

where 1
p
C

1
q
D 1 and l;m� 0.
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Next we have the “Fredholm Alternative” for AC manifolds.

Theorem 4.28 Suppose that � is not in DdCd�
C

, so that by Theorem 4.24, the map

.d C d�N /
p

lC1;�
W L

p

lC1;�
.ƒ�.T �N //!L

p

l;��1
.ƒ�.T �N //

is Fredholm and also uniformly elliptic. Then the image im.d C d�
N
/
p

lC1;�
of this map

is given by

im.d C d�N /
p

lC1;�

D
˚
� 2L

p

l;��1
.ƒ�.T �N // I h�; !iL2 D 0; 8! 2 ker.d C d�N /���6

	
:

Let KdCd�
C

be as given in Definition 4.15. We will use ker1.d C d�
N
/� to denote

the restriction of the kernel of .d C d�
N
/
p

lC1;�
to the subset h..2R;1/�†/ of the

asymptotic end of N . The following is the AC analogue of Proposition 4.16.

Proposition 4.29 Suppose that ˇ and ˇ0 are in RnDdCd�
C

and that ˇ > ˇ0 . Let
˛1 < ˛2 < � � � < ˛N be all the critical rates in DdCd�

C
between ˇ and ˇ0 . If ! 2

ker1.d C d�
N
/ˇ , then there exist �j 2 K. j̨ /dCd�

C
, for j D 1; : : : ;N , and an !0

defined near infinity with j!0jgC
DO.rˇC�/ such that

! �

NX
jD1

.h�1/�.�j /�!
0
2 ker1.d C d�N /ˇ0 :

That is, when restricted to the subset h..2R;1/�†/ of the asymptotic end of N , an
element in the kernel of dCd�

N
with noncritical rate ˇ admits an expansion in terms of

elements in K. j̨ /dCd�
C

for each critical rate j̨ between ˇ and ˇ0 , plus a remainder
term which is of order O.rˇC�/ and another term which is in the kernel of d C d�

N

with noncritical rate ˇ0 < ˇ .

Remark 4.30 The O.rˇC�/ term arises from comparing a solution to .dCd�
N
/.!/D

0 to a solution of .d C d�
C
/.!/D 0, using the relation (57) between the metrics gC

and gN near infinity.

From Proposition 4.29 we can prove the following, exactly as in the proof of Corollary
4.18.

Corollary 4.31 Suppose that �1 < �2 . Choose ı > 0 small enough so that in the
closed interval Œ�1� ı; �2C ı�, the only critical rates for the asymptotic end lie in the
closed interval Œ�1; �2�. That is, Œ�1� ı; �2C ı�\DdCd�

C
� Œ�1; �2�. Further assume
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that ı > 0 is small enough so that ı < 1
2
.�1��2� �/, where � is the rate of the AC

manifold N . (This will only be possible when � < �1��2 .) If ! 2ƒ�.T �N / is in
ker1.d C d�

N
/�2Cı , then

(146) jh�.!/�

NX
jD1

�j jgC
DO.r�1�ı/ on .2R;1/�†;

for some �j in K. j̨ /dCd�
C

, where ˛1; : : : ; ˛N are all the critical rates for d C d�
C

in
Œ�1; �2�.

5 Solution of the obstruction problem

In this section we prove Theorem 3.10, which gives the existence of � and � on M 0

with the required properties to perform the desingularization and which was used in
Section 3.2. We restate the theorem here for the convenience of the reader.

Theorem 3.10 Let M be a compact G2 manifold with isolated conical singularities.
For each i , let �i and �i be 3–forms and 4–forms, homogeneous of orders �3 and �4,
respectively, and closed and coclosed on each cone Ci , with respect to gCi

. Suppose
that

nM
iD1

Œ�i � 2

nM
iD1

H 3.†i ;R/ lies in the image of ‡3
W H 3.M 0;R/

!

nM
iD1

H 3.†i ;R/;
(147)

nM
iD1

Œ�i � 2

nM
iD1

H 4.†i ;R/ lies in the image of ‡4
W H 4.M 0;R/

!

nM
iD1

H 4.†i ;R/:
(148)

where the maps ‡k are given in Definition 3.9. Then for ı > 0 sufficiently small, there
exists a smooth 3–form � and a smooth 4–form � on M 0 such that

d� D 0; d�gM
� D 0; d�D 0;

jr
j
Ci
.f �i .�/� �i/jgCi

DO.r�3Cı�j / 8j � 0;(149)

jr
j
Ci
.f �i .�/� �i/jgCi

DO.r�4Cı�j / 8j � 0:(150)
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Notice that we do not say that � is coclosed. Furthermore, the 3–form � is in ƒ3
27

with
respect to the G2 structure 'M .

Notice that if (149) and (150) hold for j D 0, then since � , �, �i , and �i are all
closed and ı > 0, Lemma 2.11 shows that the cohomology classes Œf �i .�/� �i � and
Œf �i .�/� �i � vanish in H 3.†i ;R/ and H 4.†i ;R/, respectively. But by the definition
of the maps ‡k in Definition 3.9, this precisely says that ‡3.Œ��/ D

Ln
iD1Œ�i � and

‡4.Œ��/D
Ln

iD1Œ�i �. Hence the conditions in (147) and (148) are necessary for closed
forms � and � to exist satisfying (149) and (150). These are therefore global topological
conditions for the desingularization to be possible, which relate the different singular
points. We will see in Sections 5.1 and 5.2 that the conditions in (147) and (148) are
also sufficient to construct a � and � satisfying all the conclusions of Theorem 3.10.

5.1 Construction of the 3–form correction �

Let � 0 be any smooth 3–form on M 0 satisfying

(151) jr
j
Ci
.f �i .�

0/� �i/jgCi
DO.r�3Cı�j / 8j � 0:

This can clearly be done by defining f �i .�
0/ to be equal to �i in a neighbourhood

.0; 1
2
"/ � †i of xi , defining � 0 to be zero in the compact core K of M 0 , and by

smoothly interpolating between these definitions on the annuli Œ1
2
"; "��†i . The goal

of this section is to modify � 0 to produce a 3–form � with the properties given in
Theorem 3.10.

Let ƒodd.T �M 0// and ƒeven.T �M 0// denote the space of odd and even degree forms
on M 0 , respectively. Since the operator d Cd�

M
interchanges the odd and even forms,

all the results about d C d�
M

from Section 4.1 remain true when we consider d C d�
M

as mapping just from odd to even forms or conversely. We need to consider the map

(152) P WD .d C d�M /
odd;p
lC1;�3Cı

W L
p

lC1;�3Cı
.ƒodd.T �M 0//

!L
p

l;�4Cı
.ƒeven.T �M 0//:

By (136), the formal adjoint P� of P extends to a map

(153) P� WD .d C d�M /
even;q
mC1;�3�ı

W L
q

mC1;�3�ı
.ƒeven.T �M 0//

!L
q

m;�4�ı
.ƒodd.T �M 0//:

First, we have to describe the kernel of P� explicitly.
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Proposition 5.1 If �D
P3

kD0 �2k 2L
q

mC1;�3�ı
.ƒeven.T �M 0// satisfies P�.�/D0,

then on the neighbourhood .0; 1
2
"/�†i of xi , we have

(154) f �i .�/D dr ^˛4;i CO.r�3Cı/;

where each ˛4;i is a harmonic 3–form on the link †i , respectively. Furthermore, each
component �2k of � is closed and coclosed with respect to the metric gM on M 0 .

Proof The fact that f �i .�/ takes the form shown in (154) follows from Corollary
4.18 (with �D�3) and Proposition 2.21. It remains to show that each �2k is closed
and coclosed. The equation .d C d�

M
/.�/D 0 breaks up into

(155) d�0Cd�M�2D0; d�2Cd�M�4D0; d�4Cd�M�6D0; d�6D0:

Also, .dCd�
M
/.�/D 0 implies that �M�2k D 0 for all kD 0; : : : ; 3. Since �3�ı >

�4, we see that �0 and �6 are both closed and coclosed, from (133) and (134),
respectively. Therefore (155) simplifies to

(156) d�M�2 D 0; d�2C d�M�4 D 0; d�4 D 0:

Thus we will be done if we can show that d�2 D 0. But d�2 is a closed 3–form, and
by the middle equation in (156), it is also coclosed. Now by Proposition 4.13 for kD 3,
the map d�2 7! Œd�2� 2H 3.M 0;R/ is injective. But Œd�2�D 0, so d�2 D 0 and the
proof is complete.

Theorem 5.2 Let � 0 be a smooth 3–form on M 0 , satisfying (151), and further sup-
pose that the condition (147) is satisfied. Then there exists ! D

P3
kD0 !2kC1 2

L
p

lC1;�3Cı
.ƒodd.T �M 0// satisfying the equation

(157) .d C d�M /.!/D�d�M � 0� d� 0:

Moreover, using this solution, if we define z� D � 0C!3 , then z� 2L
p

lC1;�3
.ƒ3.T �M 0//

and satisfies dz� D 0 and d�
M
z� D 0.

Proof By Theorem 4.14, we need to check that the right hand side of the equation is
orthogonal (with respect to the L2 inner product) to the kernel of the formal adjoint
map. Let � D

P3
kD0 �2k be in the kernel of P� . Then

(158) h�d�M � 0� d� 0; �iL2 D

Z
M 0
h�d�M � 0; �2igM

volM C

Z
M 0
h�d� 0; �4igM

volM :

On 3–forms we have d�
M
D��M d�M , and �M is an isometry with respect to gM , so

therefore we can write h�d�
M
� 0; �2igM

Dhd �M � 0;�M�2igM
. Hence Equation (158)
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simplifies to

(159)
h�d�M � 0� d� 0; �iL2 D

Z
M 0
.d �M � 0 ^ �2/�

Z
M 0
.d� 0 ^�M�4/

D

Z
M 0

d.�M � 0 ^ �2/�

Z
M 0

d.� 0 ^�M�4/;

where we have used the fact that d�2 D 0 and d �M �4 D 0 from Proposition 5.1.
Let us define M 0

r D fx 2M 0I %.x/� rg, where % is the radius function on M 0 from
Definition 4.1. Then M 0

r is a manifold with boundary, and @M 0
r D

Fn
iD1 fi.frg�†i/.

Then using Stokes’ Theorem, Equation (159) becomes

(160) h�d�M � 0� d� 0; �iL2 D lim
r!0

nX
iD1

Z
frg�†i

f �i .�M � 0/^f �i .�2/

� lim
r!0

nX
iD1

Z
frg�†i

f �i .�
0/^f �i .�M�4/:

By (151) and the fact that j�i jgCi
DO.r�3/, we have jf �i .�

0/jgCi
DO.r�3/. The proof

of (79) also works for � 0 , since only the property (151) is used. Therefore we also have
jf �i .�M � 0/jgCi

D O.r�3/. Proposition 5.1 tells us that jf �i .�2/jgCi
D O.r�3Cı/,

and jf �i .�4/ � dr ^ ˛4;i jgCi
D O.r�3Cı/ on frg �†i , where ˛4;i is a harmonic

3–form on †i . Now we can mimic the proof of (79) using �4 and dr^˛4;i in place of
� and �i , respectively, to obtain that jf �i .�M�4/��Ci

.dr ^˛4;i/jgCi
DO.r�3Cı/.

Using (24) we see that �Ci
.dr ^˛4;i/D �†i

˛4;i . In summary, we have:

(161)

jf �i .�M � 0/jgCi
DO.r�3/; jf �i .�2/jgCi

DO.r�3Cı/;

jf �i .�
0/� �i jgCi

DO.r�3Cı/; jf �i .�M�4/��†i
˛4;i jgCi

DO.r�3Cı/;

jf �i .�
0/jgCi

DO.r�3/; j �†i
˛4;i jgCi

DO.r�3/:

Writingf �i .�
0/D�iC.f

�
i .�
0/��i/ and f �i .�M�4/D�†i

˛4;iC.f
�

i .�M�4/��†i
˛4;i/,

we can then apply the estimates in (161) to Equation (160), to obtain

jh�d�M � 0� d� 0; �iL2 j � lim
r!0

nX
iD1

Z
frg�†i

C r�6Cıvolfrg�†i

C

ˇ̌̌̌
lim
r!0

nX
iD1

Z
frg�†i

�i ^�†i
˛4;i

ˇ̌̌̌
:

� lim
r!0

C r ıC

ˇ̌̌̌
lim
r!0

nX
iD1

Z
frg�†i

�i ^�†i
˛4;i

ˇ̌̌̌
:(162)
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using the fact that the volume of frg�†i is equal to C r6 , where C is the volume of
f1g �†i . The first limit in (162) is zero, so to conclude the solvability of Equation
(157) it remains to prove that

(163) lim
r!0

nX
iD1

Z
frg�†i

�i ^�†i
˛4;i D 0:

This is where we will need to use the hypothesis that the condition (147) is satisfied.
This condition says that there exists a smooth closed 3–form � 00 on M 0 such that
f �i .�

00/ differs from �i on .0; "/�†i by an exact piece. That is,

(164) �i D f
�

i .�
00/C dVi on .0; "/�†i

for some smooth 2–forms Vi defined on .0; "/�†i . We also know that �†i
˛4;i is

closed (since ˛4;i is harmonic on †i ) and also that f �i .�4/ is closed by Proposition 5.1.
Therefore the fourth equation in (161) and Lemma 2.11 together imply that f �i .�M�4/

differs from �†i
˛4;i on .0; "/�†i by an exact piece. That is,

(165) �†i
˛4;i D f

�
i .�M�4/C dWi on .0; "/�†i

for some smooth 2–forms Wi defined on .0; "/�†i . Using (164) and (165), the left
hand side of Equation (163) now becomes

lim
r!0

 
nX

iD1

Z
frg�†i

f �i .�
00/^f �i .�M�4/

!

C lim
r!0

 
nX

iD1

Z
frg�†i

.dVi ^�†i
˛4;i C �i ^ dWi C dVi ^ dWi/

!
:

Since �i and �†i
˛4;i are closed, the integrands in the second sum of integrals above

are all exact, and hence these integrals all vanish by Stokes’ Theorem, because frg�†i

is compact and without boundary. Therefore the left hand side of Equation (163) has
been simplified to

lim
r!0

nX
iD1

Z
fi .frg�†i /

� 00^�M�4D lim
r!0

Z
@M 0r

� 00^�M�4D lim
r!0

Z
M 0r

d.� 00^�M�4/

D

Z
M 0

d.� 00^�M�4/;

(166)

using Stokes’ Theorem again. But this integral vanishes since both � 00 and �M�4

are closed, by Proposition 5.1 and the hypothesis (147) which ensures the existence
of such a closed � 00 . Hence the right hand side of (157) is L2 –orthogonal to the
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kernel of P� , and therefore there exists a solution ! D
P3

kD0 !2kC1 to Equation
(157). It still remains to show that z� D � 0C!3 is closed and coclosed. The equation
.d C d�

M
/.!/D�d�

M
� 0� d� 0 breaks up into

(167)
d�M!1 D 0; d!1C d�M!3 D�d�M � 0;

d!3C d�M!5 D�d� 0; d!5C d�M!7 D 0:

Now (167) implies that �M!2kC1D 0 for kD 0; 2; 3. Since �3Cı >�3, we see that
!1 , !5 , and !7 are all closed and coclosed, from (134), (135) and (133), respectively.
Therefore (167) simplifies to

d�M .!3C �
0/D 0; d.!3C �

0/D 0:

Also, f �i .�
0/D �i near xi , and j�i jgCi

DO.r�3/. Therefore we have

(168) jr
j
Ci
.f �i .
z�/� �i/jgCi

DO.r�3Cı�j / 8j � 0;

and hence z� D !3C �
0 is in L

p

lC1;�3
.ƒ3.T �M 0// and is closed and coclosed.

We have constructed a smooth 3–form z� on M 0 which is closed and coclosed and
satisfies (149). The final step is to modify z� to a 3–form � which lies in �3

27
with

respect to 'M .

Proposition 5.3 Let z� be as given in Theorem 5.2. Denote by z� D z�1Cz�7Cz�27 the
decomposition of z� into components of the subspaces �3D�3

1
˚�3

7
˚�3

27
determined

by 'M . Then the 3–form � D z�27 is closed and coclosed and satisfies (149).

Proof The decomposition of �3 is orthogonal with respect to gM and preserved
by the covariant derivative (since 'M is torsion-free), so each z�1 , z�7 and z�27 is in
L

p

lC2;�3Cı.ƒ
3.T �M 0//. Since dz� D 0 and d�

M
z� D 0, we have �M

z� D 0. Again
because 'M is torsion-free, the Laplacian commutes with the projections onto the
G2 invariant subspaces, so �M

z�1 D 0. But z�1 D f 'M for some function f in
L

p

lC2;�3Cı.ƒ
0.T �M 0//, and the first equation in (5) says that �Mf D 0. Hence

by (133) we see that f is closed (hence constant), and therefore z�1 D f 'M is closed
and coclosed. Similarly �M

z�7 D 0, and since z�7 D�M .˛^'M / for some 1–form ˛

in L
p

lC2;�3Cı.ƒ
1.T �M 0//, the first equation in (6) says that �M˛ D 0. Proposition

2.15 says there are no critical rates for the Laplacian on 1–forms in the interval
.�4;�1/, so by Theorem 4.9, we can say ˛ is in ker.�M /�1�e for some small e > 0,
and then Theorem 4.8 tells us ˛ 2 L

p

lC2;�1�e
.ƒ1.T �M 0//. Therefore rM˛ lies

in L
p

lC1;�2�e
.T �M 0˝T �M 0/, which is in L2 because �2 � e > �7

2
. (Here we

are using an L
p

l;�
norm on sections of the tensor bundle T �M 0 ˝ T �M 0 , and the
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analogous statement to iii) from Remark 4.3.) On a manifold with vanishing Ricci
curvature, the usual Bochner–Weitzenböck formula reduces to �Dr�r on 1–forms.
Therefore (using an obvious analogue of Corollary 4.5) we can compute that

0D h�M˛; ˛iL2 D hrM
�
rM˛; ˛iL2 D jrM˛j2

L2 ;

and thus we see that rM˛ D 0. But a manifold with holonomy exactly equal to G2

has no nonzero parallel 1–forms [8, Theorem 2], so ˛ D 0, and hence z�7 D 0.

Thus we have z�27 D
z� � z�1 , and since z� and z�1 are both closed and coclosed, we see

that � D z�27 is also closed and coclosed. We still need to show that � satisfies (149).
Let �M

27
denote the projection onto the �3

27
subspace of �3.T �M 0/ with respect to

'M and �Ci

27
denote the projection onto the �3

27
subspace of �3.T �Ci/ with respect

to 'Ci
. Because of (53), the G2 structures f �i .'M / and 'Ci

on .0; "/�†i agree up
to order O.r�i /, and thus we have

jf �i .�
M
27 !/��

Ci

27
f �i .!/jgCi

D jf �i .!/jgCi
O.r�i /

for any 3–form ! on M 0 . Since � D �M
27
z� , the above equation becomes

jf �i .�/��
Ci

27
f �i .
z�/jgCi

D jf �i .
z�/jgCi

O.r�i /DO.r�3C�i /:

But then we have

jf �i .�/� �i jgCi
� jf �i .�/��

Ci

27
f �i .
z�/jgCi

Cj�
Ci

27
f �i .
z�/� �i jgCi

DO.r�3C�i /Cj�
Ci

27
.f �i .
z�/� �i/jgCi

� O.r�3C�i /CO.r�3Cı/DO.r�3Cı/;

where we have used the fact that �Ci

27
�i D �i from Proposition 2.23, Equation (168)

and the fact that ı < �i . Similarly we can show that

jr
j
Ci
.f �i .�/� �i/jgCi

DO.r�3Cı�j / 8j � 0;

and the proof is complete.

We have succeeded in constructing the 3–form � of Theorem 3.10 needed to correct
both 'M and  M for the gluing of Section 3.3 to work. We still need to construct the
4–form correction �.

5.2 Construction of the 4–form correction �

We can try to follow the same procedure as in Section 5.1 to construct the 4–form
correction �: However, in this case one encounters some difficulties. The main problem
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is that the analogue of Proposition 2.21 fails. The relevant rate in this case is �2, and
it turns out that there can be log.r/ terms in the kernel of d C dC with order �2 on
odd forms. In fact it turns out that the log terms arise only for the 3–form components
of the kernel. Because of this, the proof of an exact 4–form analogue to Theorem 5.2
would break down, but one can carry out this procedure partially to produce a 4–form �

which is merely closed, but not coclosed. The arguments become much more involved,
however. And then the analogous argument to Proposition 5.3 for projection onto the
�4

27
component would also break down.

However, we saw in Section 3.3 that it was unnecessary for � to be coclosed or to be in
�4

27
, just that it be closed. Since that and condition (150) are our only requirements on �,

there is a much simpler argument that avoids all the technical analysis of Section 5.1.

Proposition 5.4 Suppose that condition (148) is satisfied. Then there exists a smooth
closed 4–form � on M 0 satisfying

jr
j
Ci
.f �i .�/� �i/jgCi

DO.r�4Cı�j / 8j � 0;

on .0; "/�†i , for any ı > 0.

Proof As in the discussion before Equation (164), the fact that condition (148) is
satisfied says that there exists a smooth closed 4–form �00 on M 0 such that f �i .�

00/

differs from �i on .0; "/�†i by an exact piece. That is,

(169) �i D f
�

i .�
00/C dUi on .0; "/�†i

for some smooth 3–forms Ui defined on .0; "/ �†i . Let wW .0;1/! R be any
smooth decreasing function such that

w.r/D

(
1 for 0< r � 4

6
";

0 for 5
6
"� r <1:

Now we define the smooth 4–form � on M 0 as follows:

(170) �D

8̂<̂
:
�00 on the compact core K of M 0;

�00C .f �1
i /�.d.wUi// on fi.Œ

1
2
"; "��†i/;

.f �1
i /�.�i/ on fi..0;

1
2
"��†i/:

It is clear that � is closed, and by Equation (169) and the definition of w it is also
smooth and well-defined. Also, on fi..0;

1
2
"/�†i/, we have f �i .�/D �i , so

jr
j
Ci
.f �i .�/� �i/jgCi

DO.r�4Cı�j / 8j � 0;

for any ı > 0, since it is identically equal to zero for r < 1
2
".
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We have succeeded in constructing the 4–form � of Theorem 3.10 needed to correct
 M for the gluing of Section 3.3 to work. Thus the proof of Theorem 3.10 is now
complete.

6 Asymptotic expansion of G2 structures on AC G2 mani-
folds

In this section we prove Theorem 3.6, which says that under an appropriate gauge-fixing
condition we can obtain a nice asymptotic expansion of the G2 structure .'N ;  N /

on an AC G2 manifold N . This theorem was used in Section 3.2 for the gluing
construction. We restate the theorem here for the convenience of the reader and drop
the i subscripts to simplify notation.

Theorem 3.6 Suppose that N is an asymptotically conical G2 manifold with rate
� ��3 and that h satisfies the gauge-fixing condition given in Definition 3.3. Then on
the subset .2R;1/�† of the cone C we can write

h�.'N /D 'C C �C d�;(171)

h�. N /D  C C ���C �C d�:(172)

where � is a harmonic 3–form, homogeneous of order �3, and in �3
27

with respect
to 'C , � is a harmonic 4–form, homogeneous of order �4, and � and � are 2–forms
and 3–forms on .2R;1/�†, respectively, satisfying

(173) jr
j
C
�jgC

DO.r�
0C1�j /; jr

j
C
� jgC

DO.r�
0C1�j /; 8j � 0;

where �0 D�4. Furthermore, Œ��Dˆ.N / and Œ��D‰.N /, where ˆ.N / and ‰.N /

are the cohomological invariants of the AC G2 manifold N from Definition 2.38.

We will begin by showing that the gauge-fixing condition leads to an elliptic equation.
Let N be an asymptotically conical G2 manifold with rate � ��3. Then we have that

jh�.'N /�'C jgC
DO.r�/;

by Equation (56). Since � can equal �3, the invariant ˆ.N / in H 3.†;R/ of Definition
2.38 can be nonzero. By Proposition 2.24, we can represent the class ˆ.N / by a 3–
form � on .R;1/�† which is homogeneous of order �3 and harmonic with respect
to the cone metric. Furthermore, Proposition 2.23 says that � is in ƒ3

27
with respect to

'C . Now h�.'N /�'C � � is exact, so we can write

h�.'N /�'C D �C d�

for some 2–form � on .R;1/�†, with jd�jgC
DO.r�3/.
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Lemma 6.1 Suppose that N is an AC G2 manifold with rate � � �3 and that h

satisfies the gauge-fixing condition of Definition 3.3. Then we have

(174) j.d C d�C /.h
�. N /� C /jgC

DO.r�7/ on .R;1/�†:

Proof We have h�.'N / D 'C C � C d� , where by hypothesis � C d� 2 �3
27

with
respect to 'C . By Lemma 1.3, we see that

h�. N /D‚.h
�.'N //D  C ��C .�C d�/CF'C

.�C d�/

D  C ��C � � d�C .�C �/CF'C
.�C d�/;

where we have used the fact that �C d D d�
C
�C on 2–forms. From Equation (25),

we know that � is coclosed, since � is a closed and coclosed form on the link †.
Therefore if we take d�

C
of both sides of the above equation, we get d�

C
.h�. N //D

d�
C
.F'C

.�C d�//, and from (8) and the fact that j�C d�jgC
DO.r�3/, we see that

jd�C .h
�. N //jgC

D jd�C .F'C
.�C d�//jgC

� C r�7:

Equation (174) now follows since .d C d�
C
/.h�. N /� C /D d�

C
.h�. N //.

Corollary 6.2 Suppose that N is an AC G2 manifold with rate � � �3 and that h

satisfies the gauge-fixing condition. Then  N � .h
�1/�. C / satisfies the equation

(175) .d C d�N /. N � .h
�1/�. C //D d�N � on h..R;1/�†/;

for some exact 4–form � defined on the subset h..R;1/�†/ of N , with jd�
N
�jgN

D

O.r�7/.

Proof We begin by observing that

j.d C d�N /. N � .h
�1/�. C //jgN

D j.d C d�h�.N //.h
�. N /� C /jh�.gN /

where d�
h�.N /

is the coderivative with respect to the metric h�.gN / on .R;1/�†.
Now by (57), the tensor h�.gN /�gC is uniformly bounded with respect to the gC

metric, on .R;1/�†. Thus j!jh�.gN / � C j!jgC
for any tensor ! , and therefore

j.d C d�N /. N � .h
�1/�. C //jgN

� C j.d C d�h�.N //.h
�. N /� C /jgC

:

But we also have

j.d C d�h�.N //.h
�. N /� C /jgC

� j.d C d�C /.h
�. N /� C /jgC

Cj.d�h�.N /� d�C /.h
�. N /� C /jgC

:
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The first term on the right hand side is O.r�7/ by Lemma 6.1. For the second term,
we use (57) again to see that

j.d�h�.N /� d�C /.h
�. N /� C /jgC

� C r��1
jh�. N /� C jgC

DO.r�7/;

since jh�. N /� C jgC
DO.r�3/ and � � �3. Putting these all together gives

j.d C d�N /. N � .h
�1/�. C //jgN

� C r�7:

It is clear that .d C d�
N
/. N � .h

�1/�. C //D d�
N
� with � D .h�1/�. C /, and we

know that � is exact since  C is exact by Proposition 2.4.

In order to obtain a nice asymptotic expansion of h�.'N / and h�. N /, we will use
Corollary 4.31, but first we require one more preliminary result.

Lemma 6.3 There exists a closed 4–form !4 in L
p
1;�5

.ƒ4.T �N // such that

(176) .d C d�N /. N � .h
�1/�. C /�!4/D 0

on the subset h..2R;1/�†/ of N .

Proof Let # be a smooth bounded function on N such that

(177) #.x/D

(
0 for x 2L;

1 for x 2 h..2R;1/�†/:

By Corollary 6.2, we know that � D d˛ for some 3–form ˛ on h..R;1/�†/. Now
the form d�

N
d.#˛/ is a well defined 3–form on all of N which is coexact. It is

identically equal to zero on the compact subset L of N and equals d�
N
� D d�

N
d˛ on

the subset h..2R;1/�†/ of N . By item ii) of Remark 4.21, we know that d�
N
.#�/

is in L
p
0;�7Ce

.ƒodd.T �N // for any e > 0. Consider the operator

(178) .d C d�N /
even;p
1;�

W L
p

1;�
.ƒeven.T �N //!L

p

0;��1
.ƒodd.T �N //:

We claim that for any �>�6Ce which is not a critical rate, we can solve the equation

(179) .d C d�N /
p

1;�
.!/D d�N d.#˛/;

where ! D
P3

kD0 !2k is an even-degree mixed form. Note that this makes sense
because since d�

N
d.#˛/ is in L

p
0;�7Ce

.ƒodd.T �N //, it follows from item i) of Remark
4.21 that d�

N
d.#˛/ is in L

p

0;��1
.ƒodd.T �N // for any �>�6Ce . To know that (179)

is solvable for such �, we need to use Theorem 4.28. If � is not critical then it will be
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solvable if and only if d�
N

d.#˛/ is L2 –orthogonal to the kernel of the formal adjoint
of (178), which by (145) and Theorem 4.26 is the kernel of the map

.d C d�N /
odd;q
mC1;���6

W L
q

mC1;���6
.ƒodd.T �N //!L

q

m;���7
.ƒeven.T �N //:

Suppose ˇ D
P3

kD0 ˇ2kC1 is in the kernel of .d Cd�
N
/
q

mC1;���6
. Then in particular

dˇ3C d�
N
ˇ5 D 0. Then using Corollary 4.23 twice, we see that

hˇ; d�N d.#˛/iL2 D hˇ3; d
�
N d.#˛/iL2 D hdˇ3; d.#˛/iL2

D�hd�Nˇ5; d.#˛/iL2 D�hˇ5; dd.#˛/iL2 D 0;

and thus Equation (179) has a solution ! D
P3

kD0 !2k in L
p

1;�
.ƒeven.T �N //. This

! satisfies

(180) d!0Cd�N!2D0; d!2Cd�N!4Dd�N d.#˛/; d!4Cd�N!6D0; d!6D0:

Every term in (180) lies in L
p

0;��1
.ƒodd.T �N //. Therefore if �� 1 < �7

2
, we can

use Corollary 4.23 again to integrate by parts and conclude that

d!0D d�N!2D 0; d!2D d�N!4�d�N d.#˛/D 0; d!4D d�N!6D 0; d!6D 0:

Hence in particular !4 is closed and .dCd�
N
/.!4/D d�

N
d.#˛/ if �2 .�6Ce; 1� 7

2
/.

If we choose � to be any noncritical rate less than �5, we have !42L
p
1;�5

.ƒ4.T �N //.
Then by (175) and (177) we see that

.d C d�N /. N � .h
�1/�. C /�!4/D 0

on the region h..2R;1/�†/.

Remark 6.4 The elliptic regularity result in Theorem 4.25, combined with the smooth-
ness of  C and  N , now tell us that !4 is smooth. Therefore we have that

(181) jr
j
N
!4jgN

DO.r�5�j / for all j � 0.

We can finally prove Theorem 3.6.

Proof of Theorem 3.6. From Lemma 6.3 we know that . N � .h
�1/�. C /�!4/ is

in ker1.d C d�
N
/�3Cı for any ı > 0. Let �1 D�4 and �2 D�3. Since � � �3, we

have � < �1��2 D�1, and thus we can apply Corollary 4.31 to obtain

(182) h�. N /� C � h�.!4/D

NX
jD1

�j C �
0;
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where �j is in K. j̨ /dCd�
C

for j̨ a critical rate in the interval Œ�4;�3�, and j� 0jgC
D

O.r�4�ı/. Now a priori, the �j ’s are even-degree mixed forms. However, since the
left hand side of (182) consists of only 4–forms, we know that the �j ’s and � 0 are also
pure 4–forms. Thus each �j is of the form �j D

Pm
iD1.log.r//i�j ;i where �j ;i is a

homogeneous 4–form of order j̨ on the cone. From the calculation in the proof of
Proposition 2.21, it follows that the leading coefficient �j ;m is a 4–form, homogeneous
of order �4, and closed and coclosed. But then Corollary 2.17 says that �j ;m D 0

(and hence �j D 0) for any j̨ 2 .�4;�3/. So the only critical rates which can occur
in (182) are ˛1 D�4 and ˛2 D�3. Proposition 2.22 and Corollary 2.19 tell us that
˛1D �, a homogeneous 4–form of order �4, harmonic with respect to the cone metric.
Also, Propositions 2.21 and 2.20 tell us that ˛2 D dr ^ .�†�/ for some homogeneous
3–form �†� of order �3, harmonic with respect to the cone metric. (We choose to
write is at �†� for convenience.) Equation (24) says we can write dr^.�†�/D��C � .
Now � is homogeneous of order �3 and harmonic, so � lies in �3

27
with respect to

'C , by Proposition 2.23. Therefore we have shown that (182) becomes

h�. N /D  C C ���C �C �
0
C h�.!4/;

where � 0Ch�.!4/ is closed. We also know that jrj
C
.� 0C h�.!4//jgC

DO.r�4�ı�j /

as r !1, since jrj
C
� 0jgC

DO.r�4�ı�j / and jrj
C

h�.!4/jgC
DO.r�5�j /, which

follows immediately from (181) and (57). Hence we can apply Lemma 2.11 to say
that � 0C h�.!4/D d� , for some 3–form � on .2R;1/�† satisfying jrj

C
� jgC

D

O.r�
0C1�j /, for any �0 � �4� ı . This proves Equation (172) and half of (173).

Now we apply the operator ‚�1 to Equation (172). We obtain

h�.'N /D‚
�1.h�. N //D‚

�1. C ��C �C �C d�/

D 'C C �CJ'C
.�C d�/CG'C

.�C d�/

using equations (9) and (11) and the fact that � is in �3
27

with respect to 'C . Now the
remainder term J'C

.�C d�/CG'C
.�C d�/D h�.'N /� 'C � � is clearly smooth

and closed. Hence (12) and (10), along with the estimates on � and d� above tell us
that

jr
j
C
.J'C

.�C d�/CG'C
.�C d�//jgC

D O.r�4�j / 8j � 0;

and therefore we can again apply Lemma 2.11 to conclude that h�.'N /�'C �� D d�

for some 2–form � on .2R;1/ � † satisfying jrj
C
�jgC

D O.r�
0C1�j /, for any

�0 � �4. This proves Equation (171) and the other half of (173). It is clear that
Œ�� D Œh�.'N /� D ˆ.N /, and Œ�� D Œh�. N /� D ‰.N / follows from the fact that
��C � D dr ^�†� D d.r �† �/ is exact.
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Remark 6.5 To prove Theorem 3.6, which is really just a result about G2 cones, we
transferred the problem to an analytic question on the AC manifold to use the machinery
of Section 4.2, and then transferred back to the cone. In principle, we could have
avoided that by working directly on the cone itself, but then we would have needed
to introduce analytic results for noncompact manifolds which had asymptotic ends as
well as isolated conical singularities (which can be done), but we preferred to avoid
doing so.

Remark 6.6 If we did not impose the gauge-fixing condition, the O.r�7/ expression
in (174) would only be O.r�4/. Then the 4–form !4 from Lemma 6.3 would be at
best O.r�3Ce/, which would be too large to ignore and the proof of Theorem 3.6
would break down. Therefore the gauge-fixing condition is necessary to be able to
prove results like (171) and (172).
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