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A simply connected surface of general type
with p, =0 and K* =4

HEESANG PARK
JONGIL PARK
DONGSOO SHIN

As a continuation of the recent results of Y Lee and the second author [5] and the
authors [6], we construct a simply connected minimal complex surface of general type
with py =0 and K 2 = 4 by using a rational blow-down surgery and Q—Gorenstein
smoothing theory.

14J29; 14110, 14J17, 53D05

1 Introduction

A rational surface satisfies pg = ¢ = 0 and it has Kodaira dimension k = —00. Around
1894 Castelnuovo conjectured that a surface with pg = ¢ = 0 is rational. However the
conjecture was soon shown to be false by the examples of Enriques. Castelnuovo also
found another counterexample. Enriques’ example has Kodaira dimension 0 while
Castelnuovo’s example has Kodaira dimension 1. Hence smooth surfaces of general
type (ie Kodaira dimension 2) with pg = ¢ = 0 are very interesting from the point of
view of the history of surfaces with pg =¢ = 0.

Nowadays a large number of examples of surfaces of general type with pg = ¢ =0
are known due to Godeaux, Campedelli and so on; cf Barth et al [3]. However it was
only in 1983 that the first example of a simply connected surface of general type with
pg = 0 appeared, the so-called Barlow surface [2]. The Barlow surface has K 2=1.
The second examples were discovered just recently. Motivated by a result of the second
author [7], Y Lee and the second author [5] constructed a family of simply connected
minimal complex surfaces of general type with pg =0 and K 2 =1, 2 by using rational
blow-down surgery and Q—Gorenstein smoothing theory. After this construction, the
authors [6] constructed a family of simply connected minimal complex surfaces of
general type with pg; =0 and K 2 = 3 by similar methods.

In this paper we extend the results of Lee and Park [5] and Park—Park—Shin [6] to the
case of K2 = 4. That is, we construct a new simply connected minimal surface of
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general type with py = 0 and K2 = 4 by using a rational blow-down surgery and
Q-Gorenstein smoothing theory. This is the first example of such complex surfaces.

The key ingredient of this paper is to find an elliptic surface Y equipped with a special
bisection, ie an irreducible curve on an elliptic surface whose intersection number
with a fiber is 2. Blowing up Y several times appropriately, we get a rational surface
Z which makes it possible to get such a complex surface. Once we have the right
candidate Z with K2 =4, the remaining argument is similar to that of the K 2-1,2,3
cases appearing in Lee and Park [5] and Park—Park—Shin [6]. That is, by applying a
rational blow-down surgery and Q—-Gorenstein smoothing theory developed in Lee
and Park [5] to Z, we obtain a minimal complex surface of general type with pg =0
and K2 = 4. Then we show that the surface is simply connected. Since almost all the
proofs are parallel to the case of the main construction in Park—Park—Shin [6, Section 3],
we only explain how to construct such a minimal complex surface and we prove that
the surface is simply connected. The main result of this paper is the following theorem.

Theorem 1.1 There exists a simply connected minimal complex surface of general
type with pg =0 and K* = 4.

Remark Risdeaconu and Suvaina [9] proved that the complex surfaces constructed
in Lee and Park [5] and Park—Park—Shin [6] admit Kihler—Einstein metrics of negative
scalar curvature. By applying their method to the complex surface constructed in this
paper, one may prove that it also admits a Kéhler—Einstein metric of negative scalar
curvature; see Section 4.

2 Main construction

We start with a special elliptic fibration ¥ := P2 #9P2 which is used in the main
construction of this paper. Let L;, Ly, L3 and A be lines in P2 and let B be a
smooth conic in P2 intersecting as in Figure 1(a). We consider a pencil of cubics
(ML 4+ Ly +L3)+u(A+B)|[A: ] €P!} in P? generated by two cubic curves
L{+ L+ L3 and A + B, which has 4 base points, say, p, g, r and s. In order
to obtain an elliptic fibration over P! from the pencil, we blow up three times at p
and r, respectively, and twice at s, including infinitely near base-points at each point.
We perform one further blow-up at the base point ¢. By blowing up nine times in total,
we resolve all base points (including infinitely near base-points) of the pencil and we
then get an elliptic fibration Y = P2 9P2 over P! (Figure 2).

There are four sections of the elliptic fibration Y corresponding to the four base points
P, q, r and 5. Among these sections we use only two sections corresponding to p
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(a) Two generators (b) A bisection

Figure 1: A pencil of cubics

and ¢, say S and S, respectively, for the main construction. Furthermore, the elliptic
fibration Y has an Ig—singular fiber consisting of the proper transforms f,; of L;
(i =1,2,3). Also Y has an [,—singular fiber consisting of the proper transforms A
and B of A and B, respectively. According to the list of Persson [8], we may assume
that Y has only two more nodal singular fibers F; and F, by choosing generally the
L;’s, A and B (Figure 2). For example the pencil used in Park—Park—Shin [6] works:

@2-1) Ay —V3x)(y +V3x) 2y —32) + px (X2 + (p —22)> =z | [L: ] € P13,

This pencil has singular fibers at [A : u] = [1:0], [0: 1], [2:3+/3] and [2 : =34/3].
Furthermore, setting

Fy = {2y = V30)(r + V3x) 2y = 32) + 3V3x (0 + (= 22)* =) = 0},
Fy = {20y = V30)(r + VA0 2y =32) =3v3x( 4 (y 22" =) = 0},

one can easily check that F; and F, are nodal cubic curves with one node at [ﬁ :0:—1]
and [v/3: 0 : 1], respectively.

Let M be the line in P2 passing through the point ¢ and the node of the nodal cubic
curve F;. The node of F iy does not lie on any_ L;’s, A or B. Hence it satisfies that
M # Ly, M # A and M -M =0, where M is the proper transform of M in Y
(Figure 1(b)). We may assume further that M does not pass through the node of the
other nodal cubic curve F, by choosing generally the L;’s, A and B. For example,
the pencil in (2-1) works: We have ¢ = [0 : 3 : 2]. Hence the line M passing through
g and the node of Fy is {s[0:3:2]+¢[/3:0:—1]|[s:¢] € P'}. It is obvious that
the node [+/3 : 0 : 1] does not lie on the line M . Since M meets every member in the
pencil at three points, M is a bisection of the elliptic fibration ¥ — P'!. Furthermore,
since ¢ € M, the section S, meets M at one point (Figure 2).
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Figure 2: An elliptic fibration Y

Next, by blowing up nine times on Y, we construct a rational surface Z which contains
a special configuration of linear chains of P! ’s. At first we blow up twice at the marked
point (-) on F;. We then blow up seven times in total at the six marked points e on
each fiber and at the intersection point e of M and S5 . We then get a rational surface
Z =Y #9P2. We also denote by F; (i =1, 2) the proper transforms of F;. Then
there exists a linear chain of P!’sin Z,
Crspias= 60— 60— 606—6—-—0-0—-—06-0—6-—o0—o6—-0-0,
uiz U2 Uil uio ug us uz Uep us Ug us [75) up

which contains 4, S,, F>, Sy, F1, M, E;, Z and l:, where u; represents an
embedded rational curve (Figure 3).

Figure 3: A rational surface Z = Y # 9P?
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Finally, by applying Q—Gorenstein smoothing theory to Z as in Lee and Park [5]
and Park—Park—Shin [6], we construct a minimal complex surface with pg = 0 and
K? = 4. That is, we first contract the chain Ca52,145 of P!’s from Z so that it
produces a normal projective surface X with one permissible singular point. It then
follows by a similar technique to one in Lee and Park [5] and Park—Park—Shin [6] that
X has a Q—Gorenstein smoothing. Let X; be a general fiber of the (Q—Gorenstein
smoothing of X '. Since X is a (singular) surface with pg =0 and K 2 = 4, by applying
general results of complex surface theory and Q—Gorenstein smoothing theory, one
may conclude that a general fiber X, is a complex surface of general type with py =0
and K2 =4.

The minimality of X; follows from the nefness of the canonical divisor Ky of X . Let
/' Z — X be the contraction of the chain Cys53 145 of P1’s from Z to the singular
surface X. By using a similar technique to one in Lee and Park [5] and Park—Park—
Shin [6], it follows that the pullback f* Ky of the canonical divisor Kx of X is
effective and nef, hence Ky is also nef, which shows the minimality of X;.

It remains to prove that X; is simply connected.
Proposition 2.1 X; is simply connected.

Proof Let Z,5, be arational blow-down 4—manifold obtained from Z by replacing
the configuration C;s53, 145 with the corresponding rational ball Bjs; 145. Since a
general fiber X; of a Q—Gorenstein smoothing of X is diffeomorphic to the rational
blow-down 4-manifold Z,s,, it suffices to show that Z,5, is simply connected.
We decompose the surface Z into Z = Zy U Cy52,145. Then we have Zjs5, =
Zo U Bys3 145. Furthermore, since 71(0B252,145) — m1(B252,145) is surjective, by
van Kampen’s theorem, it suffices to show that 7;(Zg) = 1.

Let o; be a normal circle of u; . First, note that Z and the configuration Cys5 145 are
all simply connected. Hence, applying van Kampen’s theorem on Z, we get

(2-2) 1 =m1(Zo)/{Ni, @)
where iy is the induced homomorphism by the inclusion 7: 9C352,145 — Zy.

We write a ~ b if a and b are conjugate to each other in 71 (Zy). From Figure 4, one
can easily show that 1 = iy (0g) ~ ix(e1)?8, ie is(1)?® =1 and ix(ar;)> ~ ix(atz) ~
ix(0q2) ~ix(01)®?7*. Since 9574 = 6 (mod 26), we have i (1) ~ ix(cr;)®. Hence
ix(c1)>13 ~iy(a)?® = 1, which implies that i, (e;)>13 = 1. Since af'” is also a
generator of 71(0C252,145), we have ix(a;) = 1. Therefore 7;(Zy) =1 by (2-2). O
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Figure 4: Normal circles

3 More examples

In this section we describe another rational surface Z which makes it possible to get a
simply connected surface of general type with py = 0 and K2 = 4.

Construction

Let C be a smooth cubic curve in P2 and p its inflection point. Let L; be a line
passing through p which intersects C at two more different points ¢ and r. Let L, be
the tangent line to C at p and L3 the tangent line to C at one of the intersection points
of L; and C, say ¢. Let s be the other intersection point of L3 and C (Figure 5(a)).
We consider a pencil of cubics {A(L+ Lo+ L3)+uC |[A:pu]€P!}in P? generated
by two cubic curves L + L, + L3 and C. According to Persson [8], if we choose
a general C', we may assume that the pencil of cubics contains four nodal singular
curves. Let 7" be a line joining p and s and M a line through r and the node of a
nodal singular member of the pencil of cubics. We may assume that M does not pass
through the other nodes (Figure 5(b)).

In order to obtain an elliptic fibration over P! from the pencil above, we blow up
9 times in total at the base points of the pencil of cubics including infinitely near
base-points at each base point. We then get an elliptic fibration ¥ = P2 9P2 over P!
(Figure 6). Note that the proper transform T of T is a section of ¥ and the proper
transform M of M is a bisection of Y (Figure 6). Here the section S in Y is an
exceptional curve induced by the blow-up at the point s.

We blow up 7 times at the marked points e on Y and blow up two more times at
the marked point () on Y. We finally obtain a rational surface Z = Y #9P? which
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q L
/P\ L,

(a) Two generators (b) Two lines 7" and M

Figure 5: A pencil of cubics
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Figure 6: An elliptic fibration Y

contains the following linear chain of P!’s (Figure 7):

-5 -6 -2 -6 -2 -4 -2 -2 -2 -3 -2 -2 =2
Cig338= 6 — 0 —0—0—-—0—-—0—-0—-0—-0—-0—06—0—20,
Uiz U2 Uyl Ul U9 U U7  Ue U5 U4 U3 U2 U

Finally, by applying Q—Gorenstein smoothing theory to Z as in Lee and Park [5] and
Park—Park—Shin [6], we are able to construct a minimal complex surface with pg =0
and K? =4, say X;, which is a general fiber of a Q—Gorenstein smoothing of X .

Proposition 3.1 The complex surface X; is simply connected.

Proof Let us decompose the surface Z =Y #9P? into Z = ZoUC 183,38 - Then, as
in the proof of Proposition 2.1, it is enough to show that 71 (Zp) = 1.

Let E be an exceptional curve 1ntersect1ng F2 at two points. The intersection of a
boundary of a tubular neighborhood of F2 and E consists of two normal circles of Fz,
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Figure 7: A rational surface Z =Y 9P

say o and 8, which are contained in Zy. We choose a point xy € @ as a base point
for the homotopy group of Z,. Let x; € B be any point.

Since 172 and E intersect positively at each intersection point, & and S have the same
orientation induced by the orientation of the exceptional curve E. Therefore, as circles
on the punctured sphere £\ Cy3g3 33, they are the boundaries of the cylinder £\ Cg3 33
and, furthermore, they have the opposite orientation in the cylinder E \ Cjg3,33. Let
i+ be the induced homomorphism by the inclusion i: 9Cjg3,38 — Zo. Then we have

(3-1) [ix(@]=[A-ix(B)~" -A7"] in m1(Zo. xo0).
where A is a path connecting xo and x; which lies on E.

On the other hand, since @ and B are normal circles of F; we also have

(3-2) [ix(@)] = [ ix(B)- 1" in 71(Zo. Xo)

where p is a path connecting xo and x; which is contained in the boundary of a tubular
neighborhood of F,. Note that we may choose A and p so that they are homotopically
equivalent. Therefore it follows by (3-1) and (3-2) that

(3-3) [ix(@)?1=1 inm(Zo,x0).
It is not difficult to show that i, (c)? is conjugate to i (cc;)>°>2, where o) is a generator
of 1(0Z = L(1832,-6953), x0) = Zg32. Since 2552 =8-11-29 is relatively prime
to 1832 = (3-61)2, it implies that a? is also a generator of 7;(0Z¢). By applying
van Kampen’s theorem on Z, we get

1 =m1(Zo, x0)/{Ni, ()2)-

Therefore 1(Zg, xo) = 1 by (3-3). ad
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Remark (1) One can find more examples of simply connected surfaces of general

type with pg; = 0 and K 2 = 4 using different configurations. For example,
using an elliptic fibration on E (1) with one /;7-singular fiber, one I,-singular
fiber and two nodal fibers, we can find the following linear chain of Pl’s in
E(1)#9P2:

-2 —4 —6 —2 -6 -2 —4 -2 -2 —2 -3 -2 -3

C252’145:O—O—O—O—O—O—O—O—O—O—O—O—O,

2)

It is a very intriguing question whether all these configurations above produce
the same deformation equivalent type of simply connected surfaces with py =0
and K? = 4. We leave this problem for future research.

It is also a natural question whether one can find an appropriate configuration in a
rational surface which produces a surface of general type with py =0 and K 2>5,
Note that the basic scheme used in this paper as well as in Lee and Park [5]
and Park—Park—Shin [6] is the following: We chose a delicate configuration in
a certain rational surface Z so that its induced singular surface X obtained
by contracting linear chains of curves in Z satisfies the cohomology condition
H 2(T)(()) = 0, which guarantees automatically the existence of a Q—Gorenstein
smoothing of X . In this respect, it seems impossible to find a configuration
satisfying H2(Ty) =0 for K? > 5. But, without the hypothesis H*(T) =0,
there might still be a chance to find a configuration for K2 > 5. Of course, if
such a configuration exists, it will be another problem to determine whether the
induced singular surface X admits a Q—Gorenstein smoothing or not.

4 Einstein metrics on CP2 ¢ 5CP?

In this section we show that the complex surface X; constructed in the main construc-
tion admits a Kidhler—Einstein metric of negative scalar curvature, which implies the
following theorem.

Theorem 4.1 The topological 4—manifold CIP2 ff SCIP? has a smooth structure which
admits an Einstein metric with negative scalar curvature.

Recently Rdsdeaconu and Suvaina [9] proved the existence of a smooth structure on
each of the topological 4—manifolds CP2 ff kCP2, for k = 6, 7, which has an Einstein
metric of negative scalar curvature. By applying their method on the surface X;
constructed in Section 2, we can easily prove the existence of a Kihler—Einstein metric
on X; with negative scalar curvature. We explain it in a detail in the rest of this section.
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First, note that there is a criterion for the existence of a Kidhler—Einstein metric on a
compact complex 4-manifold with ¢; (M) < 0, which was found independently by
Aubin [1] and Yau [10]:

Theorem 4.2 (Aubin—Yau) A compact complex 4—manifold (M, J) admits a com-
patible Kihler—Einstein metric with negative scalar curvature if and only if its canonical
line bundle Kjs is ample. When such a metric exists, it is unique, up to an overall
multiplicative constant.

Proof of Theorem 4.1 Based on the idea Résdeaconu and Suvaina [9], we show
that the surface X; has an ample canonical bundle. Then it follows from Theorem
4.2 of Aubin—Yau that there exists a Kéhler—Einstein metric on X; of negative scalar
curvature.

As we showed in the main construction, the pullback f™* Ky of the canonical divisor X
onto the rational surface Z is effective and nef; hence Ky is also nef. Let Eq,..., Eg
be the (—1)-curves on the rational surface Z and set

-2 -4 -6 -2 -6 -2 -4 -2 =2 -2 -3 -2 -3
C252’145= o — o0 —0 —00 —0O0-—0—0—60—90—0—0—0— o0,
Gi3 G2 Guu Gio Go Gs G7 Gs Gs Ga Gz G2 Gy
Then one may write
8 13
[*Kx =Q ZaiEi + ijGj
i=1 j=1
for some rational numbers a;, b; > 0.
We first show that Kx is ample. Suppose on the contrary that Ky is not ample. Since
Ky is already nef and K )2( =4 > 0, according to the Nakai—-Moishezon criterion, there

exists an irreducible curve C C X such that (Ky -C) =0. Let C C Z be the proper
transform of C'. Then we have

8 13
(Kx-C)=(/*Kx - [*C)=(*Kx-C) =Y _ai(E;-C)+ Y _b;(G;-C)=0.
i=1 j=1

Since G;’s are irreducible components of the exceptional divisors of f, it is obvious
that (G;-C) >0 (j =1,...,13) with equality if and only if C does not pass through
the singular point of X . Hence it follows that

8
Zai(E,' (_j) <0.

i=1
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Then either (E,-O-C_') <0 forsome ig, or (E;-C)=0foralli=1,...,8 and (Gj'é) =0
forall j =1,...,13. In the first case C must coincide with E;,. However, by using
a similar technique to one in Lee and Park [5] and Park—Park—Shin [6], one may show
that (f*Kyx - E;j) >0 forall i =1,...,8, which is a contradiction to our assumption
(Kx -C) = 0. Therefore we have (E;-C) =0 forall i =1,...,8 and (Gj .C)=0
forall j =1,...,13. On the other hand, note that the Poincaré duals of the irreducible
components G; and of the (—1)-curves E; generate H>(Z,Q); hence C must be
numerically trivial on Z. Then, for any ample divisor H on X, we have

0=(C-f*"H)=(f*C-f*H)=(C-H),
which is again a contradiction. Therefore Ky is ample.

Note that ampleness is an open property; cf Kollar and Mori [4]. So the canonical
divisor Ky, of a general fiber X; of Q—Gorenstein smoothing is automatically ample.
Therefore, by Aubin and Yau’s criterion, X; has a Kéhler—Einstein metric of negative
scalar curvature. O
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