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Distortion in transformation groups

DANNY CALEGARI

MICHAEL H FREEDMAN

APPENDIX BY YVES DE CORNULIER

We exhibit rigid rotations of spheres as distortion elements in groups of diffeomor-
phisms, thereby answering a question of J Franks and M Handel. We also show that
every homeomorphism of a sphere is, in a suitable sense, as distorted as possible in
the group Homeo.Sn/ , thought of as a discrete group.

An appendix by Y de Cornulier shows that Homeo.Sn/ has the strong boundedness
property, recently introduced by G Bergman. This means that every action of the
discrete group Homeo.Sn/ on a metric space by isometries has bounded orbits.

37C85; 37C05, 22F05, 57S25, 57M60

1 Introduction

The study of abstract groups as geometric objects has a long history, but has been
pursued especially vigorously since the work of Gromov [7; 8]. Typically the focus is
on finitely presented groups; however, interesting results have also been obtained from
this perspective in the theory of transformation groups — ie groups of homeomorphisms
of manifolds.

The topic of this paper is distortion in transformation groups, especially groups of
homeomorphisms of spheres. Informally, an element h in a finitely generated group
G is distorted if the word length of hn grows sublinearly in n. One also sometimes
says that the translation length of h vanishes. Geometrically, this corresponds to the
condition that the homomorphism from Z to G sending n to hn is not a quasi-isometric
embedding.

One can also make sense of the concept of distortion in infinitely generated groups.
An element h in a (not necessarily finitely generated) group G is distorted if there
is a finitely generated subgroup H of G containing h such that h is distorted in H

as above. To show that an element is undistorted, one typically tries to define an
appropriate real-valued function on G which is (almost) subadditive, and which grows
linearly on hn . For example, quasi-morphisms are useful in this respect, and highlight
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one point of contact between distortion and the theory of bounded cohomology. On the
other hand, exhibiting distortion is typically done ad hoc, and there do not seem to be
many very general or flexible constructions known.

In this paper, we study distortion in groups of homeomorphisms of spheres, especially
groups consisting of transformations with a definite amount of analytic regularity (ie
C 1 or C1 ). By contrast with Polterovich [19], Franks–Handel [4] or Ghys–Gambaudo
[6], we do not insist that our groups preserve a probability measure; the considerable
additional flexibility this affords has the consequence that our results have more of an
existential character than those of the papers cited above, exhibiting distortion rather
than ruling it out.

1.1 Statement of results

Notation 1.1 The letters G;H will denote groups of some sort, and S a (symmetric)
generating set, although Sn denotes the n–sphere. If G is a group, and H is a subgroup,
we write H <G . The group G will often be a transformation group on some manifold,
and a typical element h will be a homeomorphism or diffeomorphism of some analytic
quality. The letters i; j ; n will denote integers, r will denote a degree of smoothness,
and g will denote a growth function (ie a function gW N!N). c and k will usually
denote (implicit) constants in some inequality. We let RC denote the non-negative real
numbers. Other notation will be introduced as needed.

In Section 2 and Section 3 we summarize some basic definitions and study examples
of distorted and undistorted elements in various groups.

In Section 4 we exhibit rigid rotations of S2 as distortion elements in the group of C1

diffeomorphisms of the sphere.

Our main result in this section is:

Theorem A For any angle � 2 Œ0; 2�/ the rigid rotation R� of S2 is a distortion
element in a finitely generated subgroup of Diff1.S2/. Moreover, the distortion
function of R� can be chosen to grow faster than any given function.

Here R� is a clockwise rotation about a fixed axis through angle � . To say that the
distortion function grows faster than any given function means that for any gW N!N

we can find a finitely generated group G < Diff1.S2/ for which there are words
of length � ni in the generating set which express powers R

f .ni /

�
of R� for some

sequence ni !1, where f .n/ > g.n/ for all sufficiently large n 2 N. In this case
we say that the distortion function grows faster than g .
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This answers a question of John Franks and Michael Handel, motivated by results in
their paper [4].

In Section 5 we go down a dimension, and study rigid rotations of S1 . Our main result
here is:

Theorem B For any angle � 2 Œ0; 2�/ the rigid rotation R� of S1 is a distortion
element in a finitely generated subgroup of Diff1.S1/. Moreover, the distortion function
of R� can be chosen to grow faster than any given function.

The proof of Theorem B makes use of Pixton’s results from [17], and the arguments
should be familiar to people working in the theory of foliations. It should be remarked
that our construction cannot be made C 2 , and it appears to be unknown whether a
rigid rotation of S1 is distorted in Diff1.S1/ (or even in Diff2.S1/).

Remark 1.2 The possibility of proving Theorem B was pointed out to the first author
by Franks and Handel, after reading an early version of this paper.

In Section 6 we relax our analytic conditions completely, and study distortion in the
full group of homeomorphisms of Sn . Here our main result is quite general:

Theorem C Fix n� 1. Let h1; h2; : : : be any countable subset of Homeo.Sn/, and
g1;g2; : : : W N ! N any countable collection of growth functions. Then there is a
finitely generated subgroup H of Homeo.Sn/ (depending on fhig and fgig) such that
every hi is simultaneously distorted in H . Moreover, the distortion function of hi

grows faster than gi .

The proof of Theorem C uses the full power of the Kirby–Siebenmann theory of
homeomorphisms of manifolds for a key factorization step. It is an interesting question
whether one can exhibit distortion in an arbitrary homeomorphism of the sphere without
recourse to such sophisticated technology.

Finally, in an appendix, Yves de Cornulier uses the proof of Theorem C to show that
the group Homeo.Sn/ is strongly bounded. Here an abstract group G is said to be
strongly bounded if every symmetric subadditive non-negative real-valued function on
G is bounded. A countable group has this property if and only if it is finite.

1.2 Acknowledgements

The first author would like to thank Michael Handel for suggesting the problem which
motivated Theorem A, and to thank him and John Franks for reading preliminary
versions of this paper, and for making clarifications and corrections. He would also
like to thank Daniel Allcock for some useful comments.
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2 Distortion elements

2.1 Conjugation notation

Notation 2.1 For a group G and elements a; b 2 G , we abbreviate the conjugate
b�1ab by

ab
WD b�1ab:

Notice with this convention that

.ab/c D abc :

2.2 Basic definitions

Definition 2.2 Let G be a finitely generated group, and let S be a finite generating
set. By convention, we assume S D S�1 . Given h 2G , the length of h with respect
to S is the minimum integer n such that h can be expressed as a product

hD s1s2 � � � sn

where each si 2 S . We write
`S .h/D n:

By convention, we take `S .1/D 0.

Note that `S is a subadditive function; that is, for all h1; h2 2G ,

`S .h1h2/� `S .h1/C `S .h2/:

Moreover, it is non-negative and symmetric; ie `.h/ D `.h�1/. This motivates the
definition of a length function on a group G .

Definition 2.3 Let G be a group. A length function on G is a function LW G! RC

satisfying L.1/D 0 which is symmetric and subadditive.

The function `S depends on the choice of generating set S , but only up to a multi-
plicative constant:

Lemma 2.4 If S1;S2 are two finite generating sets for G , then there is a constant
c � 1 such that

1

c
`S2

.h/� `S1
.h/� c`S2

.h/

for all h 2G .
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Proof Each s 2 S1 can be expressed as a word of length n.s/ in the elements of S2 ,
and vice versa. Then take c to be the maximum of the n.s/ over all s 2 S1[S2 .

Definition 2.5 Let G be a finitely generated group, and let S be a symmetric finite
generating set as above. The translation length of an element h 2G , denoted khkS , is
the limit

khkS WD lim
n!1

`S .h
n/

n
:

An element h 2G is a distortion element if the translation length is 0.

Remark 2.6 Note that by the subadditivity property of `S , the limit exists. Moreover,
by Lemma 2.4, the property of being a distortion element is independent of the choice
of generating set S .

Remark 2.7 With this definition, torsion elements are distortion elements. Some
authors (including Franks and Handel [4]) explicitly require distortion elements to be
nontorsion.

Sometimes, we shall pay attention to the growth rate of `S .h
n/ as a function of n to

make qualitative distinctions between different kinds of distortion elements. If h is not
torsion, we define the distortion function to be the function

DS;hW N! N

defined by the property

DS;h.n/Dmaxfi j `S .h
i/� ng:

We can remove the dependence of this function on S as follows. For two functions

f;gW N! N

we write f - g if there is a constant k � 1 such that

f .n/� kg.knC k/C k for all n 2 N

and then write f � g if f - g and g - f . It is straightforward to see that - is
transitive, and that � is an equivalence relation. In case f � g , we say that f;g
are quasi-equivalent. With this definition, the quasi-equivalence class of DS;h is
independent of S , and may be denoted Dh .

We are also interested in comparing growth rates in a cofinal sense:
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Definition 2.8 Given gW N! N we say that the distortion function of h 2 G (with
respect to a generating set S ) grows faster than g if there is a sequence ni !1 and
a function f W N!N such that f .n/ > g.n/ for all sufficiently large n, and such that

`S .h
f .ni //� ni :

We say for example that h has quadratic distortion if g.n/ D n2 or exponential
distortion if g.n/D en as above.

Finally, we may define a distortion element in an arbitrary group:

Definition 2.9 Let G be a group. An element h 2G is a distortion element if there is
a finitely generated subgroup H <G with h 2H such that h is a distortion element
in H .

Note that for such an element h, the quasi-equivalence class of the distortion function
may certainly depend on H .

2.3 Examples

Example 2.10 In Z only the identity element is distorted.

Example 2.11 If �W G ! H is a homomorphism, and �.h/ is not distorted in H ,
then h is not distorted in G .

Example 2.12 If LW G! RC is a length function, and

lim
n!1

L.hn/

n
> 0

then h is not distorted. More generally, a length function gives a lower bound for
word length with respect to any finite generating set, and therefore an upper bound
on distortion. For example, if L.hn/ grows like log.n/ then h is no more than
exponentially distorted.

The next few examples treat distortion in linear groups.

Example 2.13 Let G D GL.n;C/ and define LW G! RC by

L.A/D log of the max of the operator norms of A and A�1 :

Then L is a length function. It follows that if A has an eigenvalue with absolute value
¤ 1 then A is not distorted.
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Example 2.14 Let � 2 Gal.C=Q/ be a Galois automorphism of C. Then A is
distorted in GL.n;C/ if and only if �.A/ is. It follows that if A is distorted, then
every eigenvalue must be algebraic, with all conjugates on the unit circle.

Example 2.15 Let G < GL.n;C/ be a finitely generated subgroup with entries in
a number field K . We may construct length functions from valuations associated to
finite primes in the ring of integers of K . If x 2 K then v.x/ D 0 for all discrete
valuations v on K if and only if x is a unit. A unit in a number field with absolute
value 1 is a root of unity; cf Lang [13]. Combined with Example 2.13 and Example
2.14, one can show that an arbitrary element A 2 GL.n;C/ is distorted if and only
if every eigenvalue of A is a root of unity. Note that the distortion of a non-torsion
element is at most exponential. See Lubotzky–Mozes–Raghunathan [14] for details.

Example 2.16 In the Baumslag–Solitar group ha; b j aba�1 D b2i the element b has
exponential distortion. Similarly, in the group

ha; b; c j aba�1
D b2; bcb�1

D c2
i

the element c has doubly-exponential distortion. Note that as a corollary, we deduce
that this second group is not linear. This example and others are mentioned by Gromov
[8, Chapter 3].

Example 2.17 Let G be a group. A quasi-morphism is a map �W G! R such that
there is a constant c > 0 for which

j�.h1/C�.h2/��.h1h2/j � c

for all h1; h2 2G . If j�.h/j> c then h is not distorted.

Quasi-morphisms are intimately related to (second) bounded cohomology. See eg
Ghys–Gambaudo [6] for a salient discussion.

3 Distortion in transformation groups

3.1 Transformation groups

Notation 3.1 For a compact C1 manifold M , we denote the group of homeomor-
phisms of M by Homeo.M /, and the group of C r diffeomorphisms by Diffr .M /,
where r D1 is possible. Here a homeomorphism h is in Diffr .M / if both it and
its inverse are C r . Note that this implies dh has full rank everywhere. If we wish to
restrict to orientation-preserving subgroups, we denote this by a C superscript.
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3.2 Distortion in Diff1

Suppose M is a smooth compact Riemannian manifold, and h2Diff1.M /. We define
the following norm:

kdhk WD log sup
v2U TM

jdh.v/j

where jdh.v/j denotes the length of dh.v/, and the supremum is taken over all vectors
v in the unit tangent bundle of M .

Note that since h is a diffeomorphism and M is compact, dh cannot be strictly
contracting at every point, and therefore kdhk � 0. If we define

kdhkC Dmax.kdhk; kd.h�1/k/

then it is clear that kd � kC is a length function on Diff1.M /. In general, therefore,
the growth rate of kdhnkC as a function of n puts an upper bound on the distortion
function of h in any finitely generated subgroup of Diff1.M /.

Note if we choose two distinct Riemannian metrics on M , the length functions kd � kC

they define will be quasi-equivalent, by compactness. On the other hand, if M is
non-compact, different quasi-isometry classes of Riemannian metrics may give rise to
qualitatively different length functions.

Example 3.2 Suppose h has a fixed point p and dhjTpM has an eigenvalue with
absolute value ¤ 1. Then h is not distorted in Diff1.M /.

Example 3.3 Oseledec’s theorem (see Pollicott [18, Chapter 2]) says that for h 2

Diff1.M / where M is a compact manifold, and for � an ergodic h–invariant proba-
bility measure on M , there are real numbers �1 > � � �>�k called Lyapunov exponents,
and a �–measurable dh–invariant splitting TM D˚k

iD1
Ei such that

lim
n!1

1

n
log jdhn.v/j D �l

for almost every v 2˚k
iDl

Ei but not in ˚k
iDlC1

Ei . In particular, if �1 > 0, then h is
undistorted in Diff1.M /.

Example 3.4 Let M be a compact manifold, and suppose h 2Diff1.M / has positive
topological entropy. Then there is an ergodic h–invariant probability measure � for
which h has positive �–entropy. The Pesin–Ruelle inequality (see [18, Chapter 3])
says X

�i>0

�i � �-entropy of h
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where the �i are the Lyapunov exponents for h with respect to the measure �. It
follows that some Lyapunov exponent �1 for � is positive, and therefore, as in Example
3.3, h is undistorted in Diff1.M /.

By contrast, if kdhnkC is bounded independently of n, then the group hhi is equicon-
tinuous, and is precompact in the group of Lipschitz homeomorphisms of M , by
the Arzela–Ascoli theorem. By Repovs̆–S̆c̆epin [21] (ie the Hilbert–Smith conjecture
for Lipschitz actions), a compact group of Lipschitz homeomorphisms of a smooth
manifold M is a Lie group. In our case, this group is abelian, since it contains a dense
abelian subgroup hhi, and is therefore (up to finite index) a finite dimensional torus.
Thus the uniformly equicontinuous case reduces to that of torus actions.

A key case to understand in this context is when the torus in question is S1 , and the
simplest example is that of a rigid rotation of a sphere. It is this example which we
study in the next few sections.

4 Rotations of S2

4.1 The group G

We describe a particular explicit group G < Diff1.S2/ which will be important in the
sequel. By stereographic projection, we may identify S2 conformally with C[1.

Let T be the similarity
T W z! 2z:

Then hT i acts discretely and properly discontinuously on C� with quotient a (topolog-
ical) torus. A fundamental domain for the action is the annulus A defined by

AD fz 2 C j 1� jzj � 2g:

We let @AC and @A� denote the components jzj D 2 and jzj D 1 of @A respectively.
We define a disk D by

D D fz 2 C j jz� 3=2j � 1=4g:

We let F be a C1 diffeomorphism with the following properties:

� F is the identity outside the annulus 0:99� jzj � 2:01

� F restricted to the annulus 1:01� jzj � 1:99 agrees with the rotation z!�z
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We define G D hT;Fi, and think of it as a subgroup of Diff1.S2/ fixing 0 and 1.
Notice that for every h 2 G either h.D/ is disjoint from D , or else hjD D IdjD . If
GD denotes the stabilizer of D in G , then we may identify the orbit GD with the
product D�S where S is the set of (right) cosets of the subgroup GD in G . Note that
S is a set with a (left) G –action. This action determines the action of G on D �S .

An explicit set of coset representatives for S is the set of elements of the form T n and
F T n for all n 2 Z.

4.2 Wreath products

Let G;S and D � S2 be as in Section 4.1. Let �t ; t 2 R be a 1–parameter subgroup
of diffeomorphisms of the unit disk with support contained in the interior. After conju-
gating by a diffeomorphism, we think of �t as a 1–parameter subgroup of Diff1.S2/

with support contained in the interior of D .

Definition 4.1 Let RS denote the set of functions from S to R , which can be thought
of as an abelian group with respect to addition. The wreath product G oS R is the
semi-direct product

0! RS
!G oS R!G! 0

where G acts on RS by

f h.s/D f .hs/

for h 2G; s 2 S .

The choice of 1–parameter group �t determines a faithful homomorphism

�W G oS R! Homeo.S2/

as follows. For f 2 RS , define

�.f /D
Y
s2S

�s
f .s/

where s 2G is a coset representative of s 2 S . Together with the action of G on S2

(in its capacity as a transformation group) this defines a faithful homomorphism � .
For the sake of brevity, in the sequel we will omit � , and think of G oS R itself as a
subgroup of Homeo.S2/.
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4.3 Analytic quality

Given f 2 RS , thought of as an element of Homeo.S2/ as in Section 4.2, the analytic
quality of f is a priori only C 0 . However, if we can estimate the C r norm of
f .T n/; f .F T n/ as jnj !1, we can improve this a priori estimate.

Notice that any f 2 RS is C1 away from 0;1. In particular, any f with finite
support is C1 on all of S2 . Furthermore, conjugation by T preserves the C 1 norm,
and blows up the C r norm by 2r�1 , whereas conjugation by F preserves the C r

norm for every r . It follows that if we have an estimate

jf .T n/j; jf .F T n/j D o.2�jnj.r�1//

as jnj!1, then f is C r at 0 (here our notation jf .s/j just means the absolute value
of f .s/ for s 2 S , where we think of f as a function from S to R). By the change
of co-ordinates z! 1=z one sees that f is also C r at 1 under the same hypothesis,
and is therefore C r on all of S2 .

We summarize this as a lemma:

Lemma 4.2 Let f 2 RS be thought of as an element of Homeo.S2/ as in Section 4.2.
Then we have the following estimates:

� If jf .s/j is bounded independently of s 2 S then f is Lipschitz

� If lims!1 jf .s/j D 0 then f is C 1

� If jf .T n/j; jf .F T n/j! 0 faster than any exponential (as a function of n), then
f is C1

4.4 Rotations of S2

For each � 2 Œ0; 2�/ we let R� denote the rigid rotation of S2 with fixed points equal
to 0 and 1. In stereographic co-ordinates,

R� W z! ei�z

where z 2 C[1. Notice that R� is just multiplication by �1.

For � 2 �Q the element R� is torsion in Diff1.S2/. We will show in this section
that R� is a distortion element in Diff1.S2/ for arbitrary � . Moreover, the distortion
function can be taken to grow faster than any given function.
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4.5 Factorizing rotations

We can factorize R� in a natural way as a product of two diffeomorphisms whose
support is contained in closed subdisks of S2 . This will be important for some later
applications.

Let B (for bump) be a smooth function BW RC! Œ0; 1� which satisfies the following
properties:
� B.t/D 0 for t < 1=2 and B.t/D 1 for t > 2

� B.t/CB.1=t/D 1

� B is monotone decreasing and strictly positive on .1=2; 2/
� B is infinitely tangent to the constant function 1 at 2 and to the constant function

0 at 1=2

For � 2 R, define RC
�

by
RC
�
W z! eiB.jzj/�z

and define R�
�

by the identity
RC
�

R�� DR� :

Notice that as � varies over R, the set of transformations R�
�

and RC
�

form smooth
subgroups of DiffC.S2/. Moreover, the support of the group fR�

�
j � 2 Rg is equal to

the disk
E� D fz j jzj � 2g

Similarly, the support of RC
�

is the disk (in S2 )

EC D fz j jzj � 1=2g:

Notice the important fact that z! 1=z conjugates RC
��

to R�
�

for any � . The reason
for the sign change is that a 1–parameter family of rotations which has a clockwise
sense at one fixed point has an anticlockwise sense at the other fixed point.

4.6 Construction of the group

Throughout the remainder of this section we assume that � has been fixed.

We define a diffeomorphism Z which takes care of some bookkeeping for us. Basically,
the diffeomorphism Z lets us move back and forth between the 1–parameter groups
R˙t with support in E˙ and a 1–parameter group �t with support in D , as in Section
4.1 and Section 4.2. The exact details of how this is done are irrelevant, but we must
make an explicit choice, which accounts for the (annoying) notational complexity
below.

Let Z 2 Diff1.S2/ satisfy the following properties:
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� Z takes D to E� and conjugates R�t to a 1–parameter subgroup �t :

�t WD .R
�
t /

Z

� Z takes FD to T 3EC (ie the image of the disk EC under the similarity
z! 8z ) and conjugates .RCt /

T�3

to �F
�t :

�F
�t D .R

C
t /

T�3Z

The existence of such a diffeomorphism Z follows from the disjointness of the disks
E�;T 3EC and the fact that the subgroups R�t and RC�t are abstractly conjugate, by
z! 1=z , as pointed out in Section 4.5.

Now form the group RS as in Section 4.2 by means of the subgroup �t D .R
�
t /

Z .

Let ti 2R be chosen for all non-negative integers i subject to the following constraints:

� ti D ni� mod 2� where ni!1 grow as fast as desired (ie faster than some
growth function gW N! N we are given in advance)

� ti! 0 faster than any exponential function

Define the element f 2 RS by

f .T i/D ti if i � 0; f .T i/D 0 if i < 0; f .F T i/D 0 for all i:

By Lemma 4.2 the function f is in Diff1.S2/ with respect to the identification of RS

with a subgroup of Homeo.S2/.

Now, for any i , the element

fi WD f
T i

.f T i F /�1

is contained in RS , and satisfies

fi.s/D

8̂<̂
:

ti if s D Id

�ti if s D F

0 otherwise.

We conjugate the fi back by Z�1 , and define

hi WD f
Z�1

i :

Then hi agrees with R�ti
on E� and agrees with .RCti

/T
�3

on T 3EC .

Notice that hi preserves the foliation of S2nf0;1g by circles of equal latitude, and
acts on each of these circles by a rotation. Let LAT< Diff1.S2/ denote the group of
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diffeomorphisms with this property; ie informally, LAT preserves latitude, and acts as
a rotation on each circle with a fixed latitude. An element of LAT can be thought of as
a C1 function

latitude ! rotation angle

up to constant functions with values in 2�Z, and any element of LAT can be recovered
pictorially from the graph of this function. Notice that hi 2 LAT. In this way, we can
abbreviate hi by a picture:

rotation angle

latitude

Figure 1: The element hi 2 LAT represented pictorially by the graph of a function

Let LONG< Diff1.S2/ denote the group of diffeomorphisms of the form

z! z �u.jzj/

where uW RC ! RC is infinitely tangent to the identity at 0 and at 1. Informally,
LONG is the group of diffeomorphisms which reparameterizes the set of latitudes,
without changing longitudes. Then LONG is contained in the normalizer of the group
LAT. The conjugation action of LONG on LAT is given pictorially by reparameterizing
the base of the graph.

We claim that there are elements M1;M2;M3 2 LONG such that for any hi we have
an identity

hi.hi/
M1.hi/

M2..hi/
M3/�1

DR2ti
:

The proof is given graphically by Figure 2:

C C

� D

Figure 2: These figures denote the conjugates of hi , and demonstrate how an
appropriate algebraic product of these conjugates is equal to R2ti

Now, R2ti
DR

2ni

�
. Since the ni have been chosen to grow faster than any function

given in advance, we have proved the following theorem:

Theorem A For any angle � 2 Œ0; 2�/ the rigid rotation R� of S2 is a distortion
element in a finitely generated subgroup of Diff1.S2/. Moreover, the distortion
function of R� can be chosen to grow faster than any given function.
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5 Rotations of S1

In this section we show how to modify the construction of Section 4 to exhibit a rigid
rotation as a distortion element in the group Diff1.S1/. But first, we exhibit a rotation
as a distortion element in the group of Lipschitz homeomorphisms of S1 .

5.1 Rotations of S1

As in the previous section, we denote by R� the rotation of S1 through angle � 2
Œ0; 2�/.

The first difference with Section 4 is that we cannot factorize a 1–parameter group
of rotations as the product of two 1–parameter groups with support contained in an
interval. (One way to see this is to use Poincaré’s rotation number; see eg Sinai [24]
for a definition and basic properties.)

Let � be fixed, and we choose ti! 0; ni!1 as i 2 Z goes from 0 to 1, with

ti D ni� mod 2�

as in Section 4.6.

Let I˙ be two intervals which form an open cover of S1 . Then for ti sufficiently close
to 0, we can factorize Rti

as a product of two diffeomorphisms �i ; �i with support
contained in IC; I� respectively. It is clear that we may choose �i ; �i so that their
support is exactly equal to an interval, and they are both conjugate to translations on
these intervals.

Let J be an open interval in S1 which we parameterize by arclength as Œ�1; 1�. We
let T be a diffeomorphism of S1 with support equal to J , and with no fixed points in
J . Then the restriction of T to J is conjugate to a translation, and we let Ji for i 2 Z

be a tiling of J by fundamental domains for t .

Fix one such interval J0 � J and let F be a diffeomorphism of S1 with support equal
to J0 , and with no fixed points in J0 . We let J0i for i 2 Z be a tiling of J0 by
fundamental domains for F .

The group G D hT;Fi acts as before on the set of translates of J00 , and for all h 2G ,
either h.J00/ is disjoint from J00 , or else hjJ00

D IdjJ00
. The interval J00 is the

analogue of the disk D from Section 4, and the elements T;F are the analogues of
the diffeomorphisms of the same names in that section. The difference is that if GJ00

denotes the set of translates of J00 by G , then F jGJ00
has infinite order, rather than

order 2.
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Now let Z˙ be diffeomorphisms of S1 taking I˙ respectively to the interval J00 . The
diffeomorphisms Z˙ are the analogue of the diffeomorphism Z from Section 4; the
reason we need two such diffeomorphisms rather than just one is that the factorization
of Rti

into �i�i is no longer canonical.

We let f C 2 Homeo.S1/ have support contained in J , and define it to be the product

f C D

1Y
iD0

1Y
jD0

�
.ZC/�1F�j T�i

i

and similarly, define

f � D

1Y
iD0

1Y
jD0

�
.Z�/�1F�j T�i

i :

Notice by Lemma 4.2 that f ˙ are Lipschitz (though not C 1 ).

Then for each i , �
.f C/T

i

..f C/T
i F�1

/�1
�ZC

D �i

and �
.f �/T

i

..f C/T
i F�1

/�1
�Z�

D �i

and therefore Rni� can be expressed as a word of length � 8i in the group

hf C; f �;F;T;ZC;Z�i:

Notice that there is no analogue of the groups LAT and LONG, and consequently no
analogue of the elements M1;M2;M3 .

5.2 A C 1 example

By a slight modification, using a trick of Pixton we can actually improve the Lipschitz
example of Section 5.1 to a C 1 example.

We note that by suitable choice of factorization of Rti
we can assume the following:

� The support of �i ; �i is exactly equal to IC; I� respectively

� On IC , each �i is conjugate to a translation, and similarly for I�

Now, the elements �i for distinct i will not be contained in a fixed 1–parameter
subgroup of Diff1.IC/, but they are all conjugate into a fixed 1–parameter subgroup,
and similarly for the �i . The final condition we insist on is:
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� The conjugating maps can be taken to be C 1 and converge in the C 1 topology
to the identity.

To see that this is possible, observe that for two C1 diffeomorphisms �–close to the
identity in the C 1 norm, the commutator is �2 –close to the identity, also in the C 1

norm. So for diffeomorphisms �g defined by the property

�gW � ! � Cg.�/

for gW S1! R, we have that

�g1
�g2
� �g1Cg2

with error which is comparable in size in the C 1 norm to the products of the C 1 norms
of g1;g2 . Using this fact, one can readily produce a suitable factorization.

5.3 Pixton actions

Consider an interval I on which a diffeomorphism Y W I! I acts in a manner smoothly
conjugate to a translation, with fundamental domains Ii . Given another diffeomorphism
�W I0! I0 we form the suspension ˆW I ! I by

ˆD
Y

i

�Y i

:

Note that hY; ˆi Š Z˚Z. If � restricted to I0 is smoothly conjugate to a translation,
then a priori the action of hY; ˆi on I is Lipschitz. However, Pixton showed that it is
topologically conjugate (ie by a homeomorphism) to a C 1 action.

For the convenience of the reader, we give an outline of the construction of a Pixton
action. One chooses co-ordinates on I so that the ratio jIi j=jIiC1j converges to 1 as
ji j !1. For instance, near I , the endpoints of the In could be the harmonic series
1=2; 1=3; : : : so that the ratio of successive lengths is i=.i C 1/! 1. Then we require
Y W Ii! IiC1 to expand the linear structure near the endpoints and contract it in the
middle, so that the norm of the first derivative of ˆjIiC1

is smaller than that of ˆjIi
by

a definite amount. Then both Y and ˆ are C 1 tangent to the identity at the endpoints
of I , and are therefore C 1 on the entire interval. See Pixton [17] for rigorous details
of this construction. One should remark that a lemma of Kopell [12] implies that one
cannot make the action C 2 .

This construction has the following virtue: if � is contained in a smooth 1–parameter
subgroup �t , and we form the associated 1–parameter subgroup ˆt so that

hY; ˆt i Š Z˚R

then we can form a Pixton action of this larger group which is C 1 .
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5.4 T and X

Naively, one sees that by careful choice of F , one can arrange for the action of f CjJ0

to be C 1 . However, to make f C C 1 on all of J requires us to modify the definition
slightly.

We will construct X , a diffeomorphism of S1 with support equal to J , conjugate to a
translation on J , and with fundamental domains Ji , just like T .

We let �t be a 1–parameter subgroup containing �0 . For each i , we require that

�
.ZC/�1T�i X i

i 2 .�t /
.ZC/�1

which is possible, by the discussion at the end of Section 5.2. By choosing co-ordinates
on J suitably as above, we can insist that both X and T are C 1 .

Now we choose co-ordinates on J0 so that F and .�t /
.ZC/�1

form a Pixton action of
Z˚R there, as in Section 5.3.

We define

f C D

1Y
iD0

1Y
jD0

�
.ZC/�1T�i X i F�j X�i

i :

Note that f C is actually C 1 .

Moreover, we have the following formula��
.f C/X

i

..f C/X
i F�1

/�1
�X�i T i

�ZC

D �i :

Relabelling X as XC and defining X� similarly in terms of the �i , one can define
f � analogously. Putting this together, we have shown

Theorem B For any angle � 2 Œ0; 2�/ the rigid rotation R� of S1 is a distortion
element in a finitely generated subgroup of Diff1.S1/. Moreover, the distortion function
of R� can be chosen to grow faster than any given function.

One should remark that for a rigid rotation R of Sn where n is arbitrary, either R has
fixed points, in which case the construction of Section 4 shows that R is a distortion
element in Diff1.Sn/, or else the construction of this section can be generalized to
show that R is a distortion element in Diff1.Sn/, in either case with distortion growing
faster than any given function.
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Remark 5.1 Tsuboi showed in [25] that one can construct Pixton actions which are
C 1C˛ for every ˛ < 1. It is therefore likely that the construction above exhibits a rigid
rotation as an arbitrarily badly distorted element in Diff1C˛.S1/.

By our discussion in Section 3.2, we make the following conjecture:

Conjecture 5.2 Let M be a compact smooth manifold, and let h 2 Diff1.M /. Then
h is a distortion element in Diff1.M / whose distortion function can be chosen to grow
faster than any given function if and only if some finite power of h is contained in a
Lipschitz action of a finite dimensional torus on M .

Note that the “only if” direction follows from Section 3.2.

6 Distortion in Homeo.Sn/

The group Homeo.M / for an arbitrary manifold M is considerably more complicated
than Diff1.M / or even Diff1.M /. In this section, we first make a couple of com-
ments about distortion in Homeo.M / in general, and then specialize to the case of
Homeo.Sn/.

6.1 Mapping class groups

For an arbitrary compact manifold M , there is a natural homomorphism

Homeo.M /! Homeo.M /=Homeo0.M /DWMCG.M /

where Homeo0.M / is the normal subgroup consisting of homeomorphisms isotopic
to the identity, and MCG.M / is the mapping class group of M . For reasonable
M , this group is finitely presented, and quite amenable to computation. Clearly for
h 2 Homeo.M / to be a distortion element, it is necessary for the image Œh� of h in
MCG.M / to be a distortion element.

Example 6.1 A pseudo-Anosov homeomorphism of a closed surface † of genus � 2

is not a distortion element in Homeo.†/.

6.2 Distortion in Homeo0.M /

For suitable manifolds M , it is easy to find undistorted elements in Homeo0.M /.
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Example 6.2 Let T 2 denote the 2–torus. Let hW T 2 ! T 2 preserve the foliation
of T 2 by meridians, and act as a rigid rotation on each meridian, where the angle of
rotation is not constant. This angle of rotation defines a map � W S1! S1 , where the
first factor labels the meridian, and the second factor is the amount of rotation. If � is
homotopically trivial, h is in Homeo0.T

2/. In this case, we claim h is undistorted in
Homeo0.T

2/. To see this, suppose to the contrary that h is distorted in some finitely
generated subgroup H . Without loss of generality, we may expand H to a larger
finitely generated group, where each generator hi has support contained in a closed
disk in T 2 . If �hi denotes a lift of hi to the universal cover R2 , then there is a constant
c such that

jdR2.�hi.p/; �hi.q//� dR2.p; q/j � c

for any p; q 2R2 . Without loss of generality, we may assume that the same constant c

works for all i .

Now, if I is a small transversal to the foliation of T 2 by meridians, intersecting
meridians where the function � is nonconstant, it follows that if we denote In WDhn.I/,
then a lift �In of In has the property that the endpoints are distance � kn apart for
some positive constant k . By the discussion above, this implies that any expression
of hn in the generators hi and their inverses has word length at least � nk=c . This
shows that h is undistorted, as claimed.

Example 6.3 Let M be a closed hyperbolic 3–manifold. Let  �M be a simple
closed geodesic, and let N be an embedded tubular neighborhood. Let hW M !M

rotate  some distance, and be fixed outside N . Then the argument of Example 6.2
shows that h is undistorted in Homeo0.M /. Since M is hyperbolic of dimension
at least 3, Mostow rigidity [15] implies that MCG.M / is finite. It follows that h is
undistorted in the full group Homeo.M /.

Question 6.4 Is h as in Example 6.2 undistorted in Homeo.T 2/?

The method of construction in Example 6.2 produces an undistorted element of
Homeo0.M / when �1.M / contains an undistorted element. Moreover, if MCG.M /

is finite, the element is undistorted in Homeo.M /. This begs the following obvious
question:

Question 6.5 Is there an infinite, finitely presented group G in which every element
is distorted?

Remark 6.6 A finitely presented infinite torsion group would answer Question 6.5
affirmatively.
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Remark 6.7 It is worth observing that Ol’shanskii [16] has shown the existence of
a torsion-free finitely generated group in which all elements are distorted, thereby
answering a question of Gromov.

The following construction gets around Question 6.5, at a mild cost.

Example 6.8 Let M be a closed manifold with �1.M / infinite. Then �M inherits
a path metric pulled back from M with respect to which the diameter is infinite. It
follows that �M contains a ray r — that is, an isometrically embedded copy of RC

which realizes the minimal distance between any two points which it contains. The
ray r projects to M where it might intersect itself. By abuse of notation, we refer to
the projection as r . If the dimension of M is at least 3, then we can perturb r an
arbitrarily small amount so that it is embedded in M (though of course not properly
embedded). In fact, we can even ensure that there is an embedded tubular neighborhood
N of r whose width tapers off to zero as one escapes to infinity in r in its intrinsic
path metric. Let h be a homeomorphism of M , fixed outside N , which translates the
core (ie r ) by some function

r.t/! r.t Cf .t//

where f .t/ is positive, and goes to 0 as t !1. Such a homeomorphism may be
constructed for instance by coning this translation of r out to @N with respect to
some radial co-ordinates. Then h might be distorted, but the distortion function can
be taken to increase as slowly as desired, by making f go to 0 as slowly as desired.
For example, we could ensure that the distortion function grows slower than n˛ for all
˛ > 1.

6.3 Homeomorphisms of spheres

We now specialize to Sn . We make use of the following seemingly innocuous lemma:

Lemma 6.9 (Kirby–Siebenmann, Quinn) Let h 2 HomeoC.Sn/. Then h can be
factorized as a product

hD h1h2

where the support of h1 avoids the south pole, and the support of h2 avoids the north
pole.

For h sufficiently close to the identity in the compact-open topology, this can be proved
by the geometric torus trick. For an arbitrary homeomorphism, it requires the full
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power of topological surgery theory. See Kirby–Siebenmann [11] for details in the case
n¤ 4 and Quinn [20] for the case nD 4.

Using this lemma, we can produce another factorization:

Lemma 6.10 Let E1;E2 be two closed disks in Sn whose interiors cover Sn . Then
any h 2 HomeoC.Sn/ can be factorized as a product of at most 6 homeomorphisms,
each of which has support contained in either E1 or E2 .

Proof Without loss of generality, we can assume that E1 and E2 contain collar
neighborhoods of the northern and southern hemisphere respectively.

Given h 2 HomeoC.Sn/, we factorize h as h1h2 as in Lemma 6.9. Let e2 be a
radial expansion centered at the south pole, with support contained in E2 , which takes
supp.h1/\E2 into E2\E1 . Then e2h1e�1

2
has support contained in E1 . Similarly,

we can find e1 with support contained in E1 such that e1h2e�1
1

has support contained
in E2 . Then

hD e�1
2 .e2h1e�1

2 /e2e�1
1 .e1h2e�1

1 /e1

expresses h as the product of 6 homeomorphisms, each with support in either E1 or
E2 .

Remark 6.11 Notice in the factorization in Lemma 6.10 that the homeomorphisms
e1; e2 definitely depend on h.

Theorem C Fix n� 1. Let h1; h2; : : : be any countable subset of Homeo.Sn/, and
g1;g2; : : : W N ! N any countable collection of growth functions. Then there is a
finitely generated subgroup H of Homeo.Sn/ (depending on fhig and fgig) such that
every hi is simultaneously distorted in H . Moreover, the distortion function of hi

grows faster than gi .

Proof The subgroup HomeoC.Sn/ of Homeo.Sn/ has index 2, so after replacing
each hi by h2

i if necessary, we can assume each hi 2 HomeoC.Sn/.

Fix a cover of Sn by disks E1;E2 as in Lemma 6.10. Let ni!1 grow sufficiently
quickly, and relabel the sequence

h
n1

1
; h

n2

1
; h

n2

2
; h

n3

1
; h

n3

2
; h

n3

3
; h

n4

1
; : : : ; h

ni

1
; : : : ; h

ni

i ; h
niC1

1
: : :

as H0;H1;H2; : : : .

Applying Lemma 6.10, we write each Hi as a product

Hi DHi;1Hi;2 : : :Hi;6
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where each Hi;j has support contained in either E1 or E2 .

From now on, the construction proceeds as in Section 4 and Section 5, with the added
simplification that we do not need to worry about the analytic quality of the construction.

We let Di;j be a family of disjoint balls in Sn for i; j 2 Z such that there are homeo-
morphisms T;F for which T takes Di;j to DiC1;j for all i; j , and F takes D0;j to
D0;jC1 , and is the identity on Di;j when i ¤ 0.

Let Z1;Z2 be homeomorphisms taking D0;0 to E1 and E2 respectively.

For each `2 f1; : : : ; 6g we define f` with support contained in the closure of the union
of the Di;j by the formula

f` D

1Y
iD0

1Y
jD0

H
ZkF�j T�i

i;`

where k D 1 if Hi;` has support in E1 , and k D 2 if Hi;` has support in E2 .

Then as before, we can write Hi;` as a word of length �4i in f1; : : : ; f6;T;F;Z1;Z2

and their inverses. In detail:
Hi;` DZkyi;`Z

�1
k

where
yi;` D wi;`Fw

�1
i;` F�1

and
wi;` D T �if`T

i :

Since we can do this for each i; `, we can exhibit each hi as a distortion element,
whose distortion function grows as fast as desired. Note that by choosing the ni to all
be mutually coprime, we can ensure that the hi are all actually contained in the group
in question.
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Appendix A Strong boundedness of Homeo.S n/

YVES DE CORNULIER

Definition A.1 A group G is strongly bounded1 if it satisfies one of the following
equivalent conditions:

(i) Every length function on G , ie function LW G ! RC satisfying L.1/ D 0,
L.g�1/DL.g/ and L.gh/�L.g/CL.h/ for all g; h 2G , is bounded.

(ii) Every action of G by isometries on a metric space has bounded orbits.

(iii) � G is Cayley bounded: for every symmetric generating subset S of G , there
exists n such that G � Sn D fs1 : : : sn j s1; : : : ; sn 2 Sg, and

� G has uncountable cofinality, ie G cannot be expressed as the union of an
increasing sequence of proper subgroups.

The definition of groups with uncountable cofinality appeared in the characterization
by Serre [23, Section 6.1] of groups with Property (FA), meaning that every isometric
action on a simplicial tree has a fixed point. For instance, a countable group has
uncountable cofinality if and only if it is finitely generated.

Much later, the concept of strong boundedness was introduced by Bergman [1], where
it is proved that the permutation group of any set is strongly bounded. Subsequently,
intensive research on the subject has been carried on (see, among others, de Cornulier[2],
Droste–Holland [3], Kechris–Rosendal [9] and Khelif [10], and the references in
Bergman [1]). It is worth noting that a countable group is strongly bounded if and
only if it is finite, so that the definition is of interest only for uncountable groups. In
Definition A.1, the equivalence between (i) and (ii) is easy and standard; the equivalence
between Conditions (i) and (iii) is established in [2] but already apparent in [1].

Fix an integer n � 1. The purpose of this appendix is to point out the following
consequence of the proof of Theorem C in the paper above.

Theorem A.2 The group Homeo.Sn/ is strongly bounded.

A weaker version of Theorem A.2 was recently proved by Rosendal [22, Theorem
1.7]; namely, Homeo.Sn/ is strongly bounded as a topological group (for the uniform
convergence); this means that every continuous length function is bounded. In [22,

1The following terminologies for the same concept also exist in the literature: G has the Bergman
Property; G has the strong Bergman Property; G has uncountable strong cofinality.
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Theorem 5.4], it was also proved that Homeo.S1/ is strongly bounded. In contrast, if
M is any compact non-discrete manifold, then for every r � 1, the groups Diffr .M /

and their connected components are not strongly bounded. Indeed, the length function
h 7! kdhkC defined in Section 3.2 is unbounded.

Proof Clearly, it suffices to show that the subgroup of index two HomeoC.Sn/ is
strongly bounded. By contradiction, we suppose the existence of an unbounded length
function L on G . Let us pick a sequence .hi/ in G satisfying L.hi/� i2 for all i .

Using the notation in the proof of Theorem C, set S D ff1; : : : ; f6;T;F;Z1;Z2g.
Then each hi can be expressed by a word of length � 24i in S˙ . But, on the subgroup
of HomeoC.Sn/ generated by the finite set S , the length function L must be dominated
by the word length with respect to S . This contradicts the assumption L.hi/� i2 for
all i .

Remark A.3 A similar argument to that of the proof of Theorem A.2 was used in [2] to
prove that !1 –existentially closed groups are strongly bounded. This reasoning is made
systematic by Khelif [10]. Let us say that a group is strongly distorted (introduced as
“Property P” in [10]) if there exists an integer m and an integer-valued sequence .wn/

with the following property: for every sequence .hn/ in G , there exist g1; : : : ;gm 2G

such that, for every n, one can express hn as an element of length wn in the gi ’s.
Following the proof of Theorem A.2, we get that a strongly distorted group is strongly
bounded, and that Homeo.Sn/ is strongly distorted.

The symmetric group on any set is strongly distorted: a proof can be found in Galvin
[5], although a weaker result is stated there. In [10], it is claimed that the automorphism
group of any 2–transitive chain is strongly distorted; strong boundedness was previously
proved by Droste and Holland [3]. On the other hand, if F is a nontrivial finite perfect
group, then the infinite (unrestricted) direct product FN is strongly bounded [2];
however it is clearly not strongly distorted since it is infinite and locally finite.

Remark A.4 It follows from Theorem A.2 that Homeo.Sn/ is Cayley bounded (see
Definition A.1); that is, the Cayley graph with respect to any generating subset has
bounded diameter. It is natural to ask whether there is a uniform bound on those
diameters: the answer is negative. Indeed, endow Sn with its Euclidean metric, and,
for r > 0, set

Wr D fg 2 Homeo.Sn/ j 8x 2 Sn; d.x;g.x// < rg

and
W Cr DWr \HomeoC.Sn/:
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Then W Cr is open in HomeoC.Sn/. The group HomeoC.Sn/, endowed with the
topology of uniform convergence, is connected: this is well-known, and can be deduced,
for instance, from Lemma 6.9 above. It follows that W Cr generates HomeoC.Sn/.
Clearly, for every k � 1, we have .W Cr /

k �W C
kr

. It follows that if we have chosen
r � 2=k , then .W Cr /

k ¤ HomeoC.Sn/. Thus HomeoC.Sn/ has Cayley graphs of
arbitrary large diameter. A similar argument works for Homeo.Sn/ as follows: fix a
reflection T 2 O.nC 1/ of Sn , and take W 0r DWr [T Wr . Then it is easy to check
that .W 0r /

k � W 0
kr

for all k � 1, so that .W 0r /
k ¤ Homeo.Sn/ if we have chosen

r � 2=k .
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