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A random tunnel number one 3–manifold
does not fiber over the circle

NATHAN M DUNFIELD

DYLAN P THURSTON

We address the question: how common is it for a 3–manifold to fiber over the circle?
One motivation for considering this is to give insight into the fairly inscrutable Virtual
Fibration Conjecture. For the special class of 3–manifolds with tunnel number one,
we provide compelling theoretical and experimental evidence that fibering is a very
rare property. Indeed, in various precise senses it happens with probability 0. Our
main theorem is that this is true for a measured lamination model of random tunnel
number one 3–manifolds.

The first ingredient is an algorithm of K Brown which can decide if a given tunnel
number one 3–manifold fibers over the circle. Following the lead of Agol, Hass and
W Thurston, we implement Brown’s algorithm very efficiently by working in the
context of train tracks/interval exchanges. To analyze the resulting algorithm, we
generalize work of Kerckhoff to understand the dynamics of splitting sequences of
complete genus 2 interval exchanges. Combining all of this with a “magic splitting
sequence” and work of Mirzakhani proves the main theorem.

The 3–manifold situation contrasts markedly with random 2–generator 1–relator
groups; in particular, we show that such groups “fiber” with probability strictly
between 0 and 1.

57R22; 57N10, 20F05

We dedicate this paper to the memory of Raoul Bott (1923–2005), a wise teacher and
warm friend, always searching for the simplicity at the heart of mathematics.

1 Introduction

In this paper we are interested in compact orientable 3–manifolds whose boundary,
if any, is a union of tori. A nice class of such manifolds are those that fiber over the
circle, that is, are fiber bundles over the circle with fiber a surface F :

F !M ! S1
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Equivalently, M can be constructed by taking F � Œ0; 1� and gluing F �f0g to F �f1g

by a homeomorphism  of F . Manifolds which fiber over the circle are usually easier
to understand than 3–manifolds in general, because many questions can be reduced to
purely 2–dimensional questions about the gluing map  .

When M fibers over the circle, the group H 1.M IZ/ŠH2.M; @M IZ/ is nonzero; a
nontrivial element is the fibering map to S1 , or dually, the fiber surface F . Our main
question is:

1.1 Question If we suppose H 1.M IZ/¤ 0, how common is it for M to fiber over
the circle?

We will give several reasons for entertaining this question below, but for now one
motivation (beyond its inherent interest) is to try to estimate how much harder the
Virtual Fibration Conjecture is than other variants of the Virtual Haken Conjecture. In
this paper we provide evidence, both theoretical and experimental, that the answer to
Question 1.1 is: not very common at all. In fact, for the limited category of 3–manifolds
that we study here, the probability of fibering is 0.

The type of 3–manifold we focus on here are those with tunnel number one, which
we now define. Let H be an orientable handlebody of genus 2, and pick an essential
simple closed curve  on @H . Now build a 3–manifold M by gluing a 2–handle to
@H along  ; that is, M D H [ .D2 � I/ where @D2 � I is glued to @H along a
regular neighborhood of  . Such a manifold is said to have tunnel number one. There
are two kinds of these manifolds, depending on whether the curve  is separating or
not. For concreteness, let us focus on those where  is non-separating. In this case,
M has one boundary component, which is a torus. A simple example of a 3–manifold
with tunnel number one is the exterior of a 2–bridge knot in S3 .

The boundary of a tunnel number one manifold M forces H 1.M IZ/ ¤ 0, and so
it makes sense to consider Question 1.1 for all manifolds in this class. To make this
question more precise, we will need a notion of a “random” tunnel number one manifold,
so that we can talk about probabilities. In fact, there are several reasonable notions for
this; here, we focus on two which involve selecting the attaching curve  � @H from
the point of view of either measured laminations or the mapping class group.

For measured laminations, the setup is roughly this. We fix Dehn–Thurston coordinates
on the set of multicurves (equivalently integral measured laminations) on the surface @H .
Let T .r/ consist of the tunnel number one 3–manifolds whose attaching curve  � @H
has all coordinates of size less than r . As T .r/ is finite, it makes sense to formulate a
precise version of Question 1.1 as: what is the proportion of M 2 T .r/ which fiber
over the circle when r is large? The main theorem of this paper is:
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Theorem 2.4 The probability that M 2 T .r/ fibers over the circle goes to 0 as
r !1.

Thus with this notion of a random tunnel number one 3–manifold, being fibered is very
rare indeed. There is one technical caveat here: the set T .r/ we consider does not cover
all multicurves on @H , although we can always change coordinates, preserving H , to
put any curve in T .r/. See the discussion in Section 2.2.

Another natural model for random tunnel number one 3–manifolds is to create them
using the mapping class group of the surface @H . More precisely, fix a finite generating
set S D f 1;  2; : : : ;  ng of the mapping class group MCG.@H /; for instance, take
S to be the standard five Dehn twists. Fix also a non-separating simple closed curve 0

on @H . Now given r , create a sequence �1; �2; : : : ; �r by picking each �i at random
from among the elements of S and their inverses. Then set

 D �r ı�r�1 ı � � � ı�1.0/;

and consider the corresponding tunnel number one manifold M . That is, we start with
0 and successively mess it up r times by randomly chosen generators. Equivalently,
we go for a random walk in the Caley graph of MCG.@H /, and then apply the endpoint
of that walk to 0 to get  . Question 1.1 now becomes: what is the probability that
M fibers over the circle if r is large? A priori, the answer could be different from
the one given in Theorem 2.4. Because the number of such manifolds is countably
infinite, there is no canonical probability measure on this set, so our choice of model
for a random manifold is important. One might hope that all “reasonable” models
give the same answer, but it should be emphasized that in some ways our two notions
are fundamentally different. In any event, we will provide compelling experimental
evidence for the following conjecture.

1.2 Conjecture Let M be a tunnel number one 3–manifold created by a random
walk in MCG.@H / of length r . Then the probability that M fibers over the circle
goes to 0 as r !1.

Thus from this alternate point of view as well, it seems that nearly all tunnel number
one 3–manifolds do not fiber over the circle.

1.3 Random groups

One of the fundamental tasks of 3–dimensional topology is to understand the special
properties of their fundamental groups, as compared to finitely presented groups in
general. From the point of view of this paper there is a surprising contrast between
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these two classes of groups. While the question of whether a 3–manifold M fibers
over the circle might seem fundamentally geometric, Stallings showed that it can be
reduced to an algebraic question about �1.M / (see Section 4). For a group G , let us
say that G fibers if there is an automorphism � of a free group B so that G is the
algebraic mapping torus:˝

t;B
ˇ̌

tbt�1 D �.b/ for all b 2 B
˛

If M has tunnel number one, then it fibers over the circle if and only if �1.M / fibers
in this sense (Corollary 4.3). When M has tunnel number one, its fundamental group
is constructed from the free group �1.H / by killing the attaching curve  of the
2–handle. Thus the fundamental group is just

�1.M /D h�1.H / j  D 1i D ha; b j RD 1i;

that is, a 2–generator, 1–relator group.

In the spirit suggested above, we would like to compare Theorem 2.4 with the situation
for a random group G of the form ha; b j RD 1i. A natural meaning for the latter
concept would be to consider the set G.r/ of all such groups where the length of the
relator R is less than r . This notion is in fact almost precisely analogous to the setup
of T .r/ for manifolds; in particular if M 2 T .r/, then the natural presentation of
�1.M / is in G.r/. Yet the remarkable thing is that the probability that G 2 G.r/ fibers
experimentally tends to about 0:94 as r !1. While we can’t prove this, we can at
least show:

Theorem 6.1 Let pr be the probability that G 2 G.r/ fibers. Then for all large r one
has

0:0006� pr � 0:975:

In particular, pr does not limit to 0 as r !1, in marked contrast to Theorem 2.4.

As we will explain later, whether or not G D ha; b j RD 1i fibers depends on the
combinatorics of the relator R in a certain geometric sense. The different behavior for
3–manifold groups comes down to the fact that the curve  is an embedded curve on
the genus 2 surface @H , and this gives the relator R a recursive structure where certain
“syllables” appear repeatedly at varying scales. Compare Figure 1 with Figure 2.

1.4 Algorithms and experiment

The original motivation for Theorem 2.4, as well as the basis of Conjecture 1.2, was
the results of computer experiments. While there is an algorithm which decides if a
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Figure 1: Two random words in the free group F D ha; bi . Here a word
is plotted as a walk in the plane, where a corresponds to a unit step in the
positive x–direction, and b a unit step in the positive y –direction. Thicker
lines indicate points transversed multiple times. The relevance of these
pictures will be made clear in Section 5.

general 3–manifold fibers using normal surface theory (see Schleimer [32, Section
6], Tollefson and Wang [35] or Jaco and Tollefson [16]), this is not practical for all
but the smallest examples. However, special features allow one to rapidly decide if a
tunnel number one 3–manifold fibers over the circle. In particular, we will show that it
is possible to decide if M 2 T .r/ fibers in time which is polynomial in log.r/. Our
algorithm is important not just for the experimental side of this paper, but also the
theoretical; it forms the basis for Theorem 2.4. Indeed, the basic approach of the proof
is to analyze the algorithm and show that it reports “does not fiber” with probability
tending to 1 as r !1.

Because the fundamental group of a tunnel number one manifold is so simple, one
can use a criterion of Ken Brown to determine if �1.M /D ha; b j RD 1i fibers in
the above algebraic sense. Brown’s criterion is remarkably elegant and simple to use,
and is in terms of the combinatorics of the relator R. If R is not in the commutator
subgroup and has length r , it takes time O.r log r log log r/. While that may seem
quite fast, some of the manifolds we examined had r D 103000 . It’s not even possible
to store the relator R in this case; after all, the number of elementary particles in the
observable universe is well less than 10100 !
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Figure 2: Relators of tunnel number one 3–manifolds, plotted in the style of
Figure 1. To conserve space, they are not all drawn to the same scale.
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However, in the 3–manifold situation it is possible to specify R by giving the attaching
curve  , and  can be described with only log.r/ bits using either Dehn–Thurston
coordinates or weights on a train track. Agol, Hass and W Thurston described [1] how
to use splittings of train tracks to compute certain things about  rapidly, eg, checking
whether  is connected, or computing its homology class. Motivated by their work, we
were able to adapt Brown’s algorithm to work in this setting. The resulting algorithm
uses train tracks which are labeled by “boxes” that remember a small amount of
information about a segment of R. As mentioned, it can decide if M 2 T .r/ fibers in
time polynomial in log.r/.

1.5 The tyranny of small examples

Detailed results of our experiments are given in Section 3, and we will just highlight
one aspect here. With both notions of a random tunnel number one manifold, it appears
that the probability of fibering goes to 0 as the complexity increases; however, the rate
at which it converges to 0 is actually quite slow, excruciatingly so in the MCG context.
In particular, most “small” manifolds fiber for pretty generous definitions of “small”.

Starting with the measured lamination notion, the first r for which M 2 T .r/ is less
likely to fiber than not is about r D 100;000 (recall here that r is essentially the length
of the relator R in the presentation of �1.M /). The probability of fibering does not
drop below 10% until about r D 1014 .

For the mapping class group version, we used the standard 5 Dehn twists as generators
for MCG.@H / (Birman [4, Theorem 4.8]). Recall that the notion here is that given N ,
we apply a random sequence of N of these Dehn twists to a fixed base curve 0 to get
the attaching curve  . To get the probability of fibering to be less than 50%, you need
to do N � 10;000 Dehn twists; to get it below 10% you need to take N � 40;000. It’s
important to emphasize here how the MCG notion relates to the measured lamination
one, as it’s the later that is related to the size of the presentation for �1.M /. For
the MCG notion, the length r of the relator experimentally increases exponentially
in N . In particular, doing N D 10;000 Dehn twists gives manifolds in T .10500/, and
N D 40;000 gives manifold in T .101750/!

The moral here is that typically the manifolds that one can work with computationally
(eg with SnapPea [37]) are so small that it is not possible to discern the generic behavior
from experiments on that scale alone. For instance, about 90% of the cusped manifolds
in the census of Callahan, Hildebrand and Weeks [8] are fibered (Button [7]), and most
of these manifolds have tunnel number one. Without the naive version of Brown’s
criterion, one would not be able to examine enough manifolds to suggest Theorem
2.4; without our improved train track version, we would not have come to the correct
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version of Conjecture 1.2. Indeed, initially we did experiments in the MCG case using
just the naive version of Brown’s algorithm, and it was clear that the probability of
fibering was converging to 1, not 0; this provoked much consternation as to why the
“answer” differed from the measured lamination case. Thus one must always keep an
open mind as to the possible generic behavior when examining the data at hand.

1.6 More general 3–manifolds

An obvious question that all of this presents is: What about Question 1.1 for 3–manifolds
which do not have tunnel number one? While there are certainly analogous notions of
random manifolds for larger Heegaard genus, closed manifolds, etc., we don’t see the
way to any results in that direction. Unfortunately, the method we use here is based
fundamentally on Brown’s criterion, which is very specific to this case. Without this
tool, it seems daunting to even try to gather enough experimental evidence to overcome
the skepticism bar set by the discussion in Section 1.5. However, our intuition is that for
any Heegaard splitting based notion of random, the answer would remain unchanged:
3–manifolds should fiber with probability 0. For other types of models, such as random
triangulations, the situation is murkier.

However, there is one generalization of Theorem 2.4 that we can do. Recall that
we chose to discuss tunnel number one 3–manifolds where the attaching curve  is
non-separating. If instead we look at those where  is separating, we get manifolds M

with two torus boundary components. In this case H 1.M IZ/D Z2 , and this gives us
infinitely many homotopically distinct maps M ! S1 , any one of which could be a
fibration. Thus it is perhaps surprising that the behavior here is no different than the
other case:

Theorem 2.5 Let T s be the set of tunnel number one manifolds with two boundary
components. Then the probability that M 2 T s.r/ fibers over the circle goes to 0 as
r !1.

If we again compare this result to random 1–relator groups, the behavior is likely even
more divergent than in the non-separating case. In particular, we conjecture that for
groups ha; b j RD 1i where R is in the commutator subgroup, the probability of
algebraically fibering is 1.

1.7 The Virtual Fibration Conjecture

As we said at the beginning, one motivation for Question 1.1 is to provide insight into:
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1.8 Virtual Fibration Conjecture (W Thurston) Let M be an irreducible, atoroidal
3–manifold with infinite fundamental group. Then M has a finite cover which fibers
over the circle.

Unlike the basic Virtual Haken Conjecture, which just posits the existence of a cover
containing an incompressible surface, there is much less evidence for this conjecture. It
has proven quite difficult to find interesting examples of non-fibered manifolds which
can be shown to virtually fiber, though some infinite classes of tunnel number one
3–manifolds are known to have this property (Leininger [20], Walsh [36]). Our work
here certainly suggests that the Virtual Fibration Conjecture is likely to be much more
difficult than the Virtual Haken Conjecture. One pattern observed above suggests
that the following approach is worth pondering. As discussed in Section 1.5, “small”
examples are still quite likely to fiber despite Theorem 2.4. Presuming that this pattern
persists for higher Heegaard genus, one strategy would be to try to find covers which
were “smaller” than the initial manifold in some sense. For example, one measure
of smallness might be the maximum length of a relator in a minimal genus Heegaard
splitting.

1.9 Dynamical ingredients to the proof Theorem 2.4

In this introduction, we will not say much about the proof of Theorem 2.4. However,
let us at least mention the two other main ingredients besides our adaptation of Brown’s
algorithm in the context of splittings of train tracks. The first is a theorem of Mirza-
khani [23] which says, in particular, that non-separating simple closed curves have
positive density among all multicurves (see Theorem 11.1 below). This lets us sample
simple closed curves by sampling multicurves. The other concerns splitting sequences
of genus 2 interval exchanges. For technical reasons, we actually work with interval
exchanges rather than train tracks, as we indicated above. Given a measured lamination
carried by an interval exchange � , we can split it to get a sequence of exchanges
carrying the same lamination. We prove that genus 2 interval exchanges are normal,
that is, any splitting sequence that can occur does occur for almost all choices of initial
measured lamination (Theorem 10.4). Our proof is a direct application of a normality
criterion of Kerckhoff [19].

1.10 Outline of contents

Section 2 contains a detailed discussion of the various notions of random tunnel number
one 3–manifolds, and gives the precise setup for Theorems 2.4 and 2.5. Section 3
gives the experimental data, which in particular justifies Conjecture 1.2. Section 4
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just covers Stallings’ theorem, which turns fibering into an algebraic question. Then
Section 5 discusses Brown’s algorithm in its original form. Section 6 is about random
2–generator 1–relator groups as mentioned in Section 1.3 above. Section 7 is about
train tracks, interval exchanges, and our efficient version of Brown’s algorithm in that
setting. The rest of the paper is devoted to the proof of Theorems 2.4 and 2.5. It starts
with an outline of the main idea in Section 8, where a proof is given for a indicative
toy problem. Section 9 is devoted to a certain “magic splitting sequence”, which is one
of the key tools needed. We then prove normality for genus 2 interval exchanges in
Section 10. Finally, Section 11 completes the proof by a straightforward assembly of
the various elements.
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2 Random tunnel number one 3–manifolds

2.1 Random 3–manifolds

What is a “random 3–manifold”? Since the set of homeomorphism classes of compact
3–manifolds is countably infinite, it has no uniform, countably-additive, probability
measure. However, suppose we filter the set of 3–manifolds by some notion of com-
plexity where manifolds of bounded complexity are finite in number. Then we can
consider limiting probabilities as the complexity goes to infinity. For instance, we could
look at all 3–manifolds which are triangulated with less than n tetrahedra, and consider
the proportion pn which are hyperbolic. If the limit of pn exists as n!1, then it is
a reasonable thing to call the limit the probability that a 3–manifold is hyperbolic. Of
course, unless the property in question is true for only finitely many, or all but finitely
many, 3–manifolds, the answer depends on the complexity that we choose. In other
words, it depends on the model of random 3–manifolds. Nonetheless, if we just pick
one of several natural models to look at, it seems worthwhile to consider these types of
questions to get a better global picture of the topology of 3–manifolds. For more on
different possible models, and random 3–manifolds in general, see the work of the first
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author and W Thurston in [10]. Here, we focus on the special class of tunnel number
one 3–manifolds because it is easy to determine whether they fiber over the circle. In
the next subsection, we discuss this class of manifolds, and then give some natural
notions of probability on it.

2.2 Tunnel number one 3–manifolds

Look at an orientable handlebody H of genus 2. Consider an essential simple closed
curve  on @H . Now one can build a 3–manifold M consisting of H and a 2–handle
attached along  ; that is, M DH [ .D2 � I/ where @D2 � I is glued to @H along a
regular neighborhood of  . A 3–manifold which can be constructed in this way is said
to have tunnel number one. There are two kinds of tunnel number one 3–manifolds,
depending on whether the attaching curve  separates the surface @H . If  is non-
separating, then @M is a single torus; if it is separating, then @M is the union of
two tori. When we want to emphasize the dependence of M on  , we will denote it
by M .

There is a dual description of being tunnel number one, which makes the origin of
the name clear. Consider a compact orientable 3–manifold M whose boundary is a
union of tori. The manifold M has tunnel number one if and only if there exists an
arc ˛ embedded in M , with endpoints on @M , such that the complement of an open
regular neighborhood of ˛ is a handlebody. While there are clearly many 3–manifolds
with tunnel number one, it’s worth mentioning one class with which the reader may
already be familiar: the exterior of a 2–bridge knot or link in S3 . In this case, the
arc in question joins the top of the two bridges. In general, 3–manifolds with tunnel
number one are a very tractable class to deal with, and much is known about them.

2.3 Measured laminations

Next, we describe our precise parameterization of the tunnel number one 3–manifolds
from the measured laminations point of view. As above, let H be a genus 2 handlebody.
Fix a pair of pants decomposition of @H combinatorially equivalent to the curves
.˛; ı; ˇ/ shown in Figure 3, so that each of the curves defining this decomposition
bound discs in H .

We will use Dehn–Thurston coordinates to parameterize the possible attaching curves 
for the 2–handle. A multicurve is a disjoint collection of simple closed curves. Up
to isotopy, any multicurve  on @H is given by weights w˛ , wı , wˇ 2 Z�0 and
twist parameters �˛ , �ı , �ˇ 2 Z. Here, the weights record the (minimal) number of
intersections of  with the curves .˛; ı; ˇ/, and the twists describe how the strands
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H


˛ ı

ˇ

Figure 3: The curve  has weights .1; 2; 2/ and twists .0; 1;�1/ with
respect to the Dehn–Thurston coordinates given by the curves .˛; ı; ˇ/ .

of  meet up across the across these curves (with respect to a certain dual marking).
These coordinates are analogous to Fenchel–Nielsen coordinates on Teichmüller space;
see Figure 3 for an example, and Penner and Harer [26, Section 1] or Luo and Stong
[21, Section 2] for details. When one of the weights is 0, say w˛ , then the twist �˛ is
the number of parallel copies of ˛ in  ; thus in this case �˛ � 0. With this convention,
Dehn–Thurston coordinates bijectively parameterize all multicurves, up to isotopy.

Now we let T be the set of tunnel number one presentations defined by curves  with
the following restrictions with respect to our choice of Dehn–Thurston coordinates:

(1)  is a non-separating simple closed curve.

(2) The weights w˛; wı; wˇ are > 0.

(3) Each twist �i satisfies 0� �i <wi .

(4) wı �min.2w˛; 2wˇ/.

We now explain why we’re making these requirements. The second restriction removes
some special cases, which are all unknots in lens spaces and S2 �S1 ; these could be
left in without changing the final theorem as they have asymptotic probability 0. The
third restriction simply accounts for the fact that Dehn twists along .˛; ı; ˇ/ extend
over H ; thus any  is equivalent to one satisfying (3).

The final restriction serves the following purpose. If we use the basis of �1.H / dual
to the discs ˛; ˇ , then condition (4) ensures that the word  represents in �1.H / is
cyclically reduced. This is because (4) is the same as saying that each time  crosses ı
it then intersects either ˛ or ˇ before intersecting ı again. It is not immediate that
any  is equivalent, under a homeomorphism of H , to one satisfying (4); this is the
content of Lemma 2.11 below. The reason that we need to require (4) is to make the
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core machinery of the proof work correctly; as such it is admittedly a tad artificial, and
we strongly expect it is not actually needed. See Conjecture 2.7 below.

Now, let T .r/ be all elements of T where w˛Cwˇ < r ; equivalently, the ones whose
corresponding word in �1.H / has length < r . As there are only finitely many elements
of T .r/, it makes sense to talk about the probability that they fiber over the circle. One
form of our main result is:

2.4 Theorem Let T be the set of tunnel number one manifolds described above.
Then the probability that M 2 T .r/ fibers over the circle goes to 0 as r !1.

We can also consider the case of tunnel number one 3–manifolds with two torus
boundary components; these correspond to choosing  � @H to be a separating
simple closed curve, replacing condition (1). We will denote the corresponding set of
manifolds T s . Each M 2 T s has H 1.M IR/ D R2 , so they have many chances to
fiber over the circle. Perhaps surprisingly, the behavior here is no different than the
other case:

2.5 Theorem Let T s be the set of tunnel number one manifolds with two boundary
components. Then the probability that M 2 T s.r/ fibers over the circle goes to 0 as
r !1.

2.6 Mapping class group

The MCG model of a random tunnel number one 3–manifold was completely defined
in the introduction. In this subsection, we discuss how it differs from the measured
lamination version, and what one would need to leverage Theorem 2.4 into a proof
of Conjecture 1.2. You can skip this section at first reading, as it’s a little technical,
and may not make much sense if you haven’t read the proof of Theorem 2.4. The two
models for the choice of the attaching curve  can basically be thought of as different
choices of measure on PML.@H /, the space of projectivized measured laminations.
In the measured lamination model, this measure is just Lebesgue measure on the sphere
PML.@H /, whereas for the MCG model it is a certain harmonic measure that we
describe below.

In proving Theorem 2.4, we show that there is a certain open set U � PML.@H /

so that T \U consists solely of  so that M is not fibered. The proof then hinges
on showing that U has full Lebesgue measure in the part of PML.@H / defined by
requirement (4) above. The first thing that one needs to generalize to the MCG model
is to prove a version of Theorem 2.4 where we drop (4). In particular, for this it suffices
to show:
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2.7 Conjecture There exists an open set V � PML.@H / of full Lebesgue measure,
such that for every non-separating curve  2 V the manifold M is not fibered.

We are very confident of this conjecture; the proof should be quite similar to Theorem
2.4 provided certain technical issues can be overcome.

Assuming this conjecture is true, what one needs to do to prove Conjecture 1.2 is
show that V has measure 1 with respect to the following measure. Fix generators for
MCG.@H / and a base curve 0 . Let Wn be the set of all words in these generators
of length n. Let �n be the probability measure on PML.@H / which is the average
of the point masses supported at �.0/ for � 2 Wn . Then we are interested in the
weak limit � of these measures, which is called the harmonic measure (Masur and
Kaimanovich [18]). The question, then, is whether �.V /¤1. The relationship between
� and Lebesgue messure is not well-understood, and we don’t know how to show that
Conjecture 1.2 follows from Conjecture 2.7. In fact, we suspect that � is mutually
discontinuous with Lebesgue measure based in part on Section 3, even though they do
agree on V .

2.8 Other models

There are other ways we could choose  than just the two detailed above. For instance,
we could start with a one vertex triangulation of @H , and then flip edges in a quadri-
lateral to obtain a sequence of such triangulations. At the end of such a sequence of
moves, select a edge in the final triangulation which is a non-separating loop and take
that to be  . Another approach would be to start with a pair of pants decomposition
of @H , and then move along a sequence of edges in the pants complex. Then we
would take one of the curves in the final decomposition as  . We did some haphazard
experiments for both these notations as well, enough to convince us that they also
result in a probability of fibering of 0 and behave generally like the mapping class
group experiments reported above. For moves in the pair of pants decomposition,
there is a choice of how many Dehn twists to perform on average before changing
the decomposition; as you increase the number of Dehn twists, the rate at which the
manifolds fiber tends to increase.

Strictly speaking, we do not choose our manifolds at random from among all such
manifolds with a given bound on complexity, but rather we chose from the collection of
descriptions of bounded complexity. These are different as a manifold can have more
than one such description. Focusing on the measured lamination point of view, there are
two separate issues: first, a manifold can have more than one unknotting tunnel; second,
having fixed an unknotting tunnel, there may be more than one  2 T .r/ describing it,
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due to the action of the mapping class group of the handlebody. While we do not prove
this here, we believe that, in the measured lamination case, choosing from descriptions
is essentially equivalent to choosing from among manifolds, as follows. For the first
issue, we strongly believe that a generic manifold in T .r/ has a unique unknotting
tunnel; in particular, we expect that the distance of the Heegaard splitting should be very
large as r !1. (Another reason why the number of unknotting tunnels is not a big
concern is that this would only affect our answer if fibered manifolds had many fewer
unknotting tunnels than non-fibered ones.) About the second issue, namely multiple
descriptions of the same unknotting tunnel, we could further restrict the conditions
(1–4) above on elements of T .r/ to generically eliminate such multiple descriptions.
As described by Berge [2], there are simple inequalities in the weights and twists which
ensure that w˛Cwˇ is minimal among all curves equivalent under the action of the
mapping class group of the handlebody. This minimal form is typically unique (up to
obvious symmetries, the number of which is independent of the particular curve at hand).
The exception is when there are what [2] calls “level T-transformations”; because the
presence of such transformations is determined by a family of equalities, these occur
only in an asymptotically negligible portion of T .r/. Thus by supplementing (1–4) we
could precisely parameterize pairs .M; unknotting tunnel/. This change would make
no difference in the proof of Theorem 2.4.

In the case of the mapping class group setup, there is a third issue which is that there
are many random walks in MCG that end at the same element. One could instead
work by choosing the elements in MCG from larger and larger balls in the Caley
graph. This has two disadvantages. The first is that in the context of non-amenable
groups such as this one, the study of random walks is probably more natural than the
study of balls; eg, consider the rich and well-developed theory of the Poisson boundary
(Kaimanovich [17]). The second is that it is no longer possible to generate large
elements with this alternate distribution, making experiment impossible (particularly
important since experiment is all we have in this case). Of course, different elements
of MCG may also result in the same manifold for the two reasons discussed in the
measured lamination case. We expect that multiple representatives of the same curve
should be quite rare since the subgroup of MCG which extends over the handlebody
is very small; in particular, it is of infinite index. Indeed, it is easy to show that the
probability that a random walk lies in this subgroup goes to 0 as the length of the
random walk goes to infinity.

2.9 Curve normal form

In this subsection, we justify the claim made in Section 2.3 that given a simple closed
curve  � @H , there is a homeomorphism � of the whole handlebody H so that �. /
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satisfies condition (4) of Section 2.3. Equivalently, we want to find curves .˛; ı; ˇ/,
arranged as in Figure 3, which satisfy

(2.10) Any subarc of  with endpoints in ı\  intersects ˛[ˇ .

The rest of this section is devoted to:

2.11 Lemma Let  be a simple closed curve on the boundary of a genus 2 handlebody
H . Then we can choose .˛; ı; ˇ/� @H bounding discs in H as above so that (2.10)
holds.

This lemma is due to Masur [22], and was also described in a much more general form
by Berge [2]. The proof of the lemma is used in the algorithm for the MCG case, so as
the lemma is not explicitly set out in [22], and [2] is unpublished, we include a proof
for completeness. You can certainly skip it at first reading.

Proof We focus on choosing ˛ and ˇ to make the picture as standard as possible;
the right choice for ı will then be obvious. First, choose ˛ and ˇ to be essential
non-separating, non-parallel curves that minimize the size of  \.˛[ˇ/. Split H open
along the discs bounded by ˛ and ˇ to get a planar diagram as shown in Figure 4(a).
Here the labeled circles, called vertices, correspond to the discs we cut along, and the
arcs are the pieces of  . Note vertices with the same label are the endpoints of an
equal number of arcs, since these endpoints match up when we reglue to get H .

We will show that the picture can be made very similar to the one shown in Figure 4(a);
then the ı shown in Figure 4(b) works to complete the proof. In particular, it is enough
to show:

(1) No arc joins a vertex to itself.

(2) All arcs joining a pair of vertices are isotopic to each other in the complement
of the other vertices.

˛ ˛

ˇ ˇ
(a)

˛ ˛

ˇ ˇ

ı

(b)

Figure 4
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˛ ˛ ˛ ˇ

�

(a) (b)

Figure 5

First, suppose we do not have (1), with V0 being the vertex with the bad arc 0 .
Consider V0[ 0 , which separates S2 into two regions. Both of these regions must
contain a vertex, or we could isotope  to remove an intersection with ˛[ˇ . Focus
on the component which contains only one vertex V1 . If V0 and V1 have the same
label as shown in Figure 5(a), we have a contradiction as the Vi must be the endpoints
of the same number of arcs. So we have the situation shown in Figure 5(b). Replacing
˛ with the non-separating curve � indicated reduces  \ .˛[ˇ/, contradicting our
initial choice of ˛ and ˇ .

For (2), there are two basic configurations, depending on whether the non-parallel arcs
join vertices with the same or opposite labels:

˛ ˛ ˇ

ˇ

w

z

x y

u v

˛ ˇ ˛

ˇ

w

z

x y

u v

Here, parallel arcs have been drawn as one arc; the label on that arc refers to the number
of parallel copies (which may be 0). In the case at left, the gluing requirement forces

uCwCxC z D xCy and vCwCyC z D uC v;

which easily leads to a contradiction.

In the case at right, we must have x D y and uD v or else we can replace ˛ or ˇ by
a handle slide in the spirit of Figure 5(b) to reduce  \ .˛ [ ˇ/. Now reglue the ˛
discs to get a solid torus. Looking at one of the ˇ vertices, it is joined to ˛ by two
families of parallel arcs as shown in Figure 6(a).

Thinking of this vertex as a bead, slide it along the set of parallel  strands past the
curve ˛ . Keep sliding past ˛ in the same direction if possible. Either:

Geometry & Topology, Volume 10 (2006)



2448 Nathan M Dunfield and Dylan P Thurston

˛ ˇ

(a) (b)

Figure 6

� This eventually results in an arc joining the pair of ˇ vertices. In this case, there
will also be an arc joining the pair of ˛ vertices left over from the final bead slide.
Because of these two arcs, we can’t have non-parallel  arcs joining vertices of
the same type, which ensures (2).

� The bead returns to where it started, so we have something like Figure 6(b). The
other ˇ vertex must be in the same situation, running along a parallel curve on
the solid torus. As  is connected, there are no arcs not involved in the ˇ vertex
tracks. Thus after further sliding, we can make the picture completely standard,
with the two ˇ vertices next to each other. This situation satisfies (2) as well.

Since we have shown ˛ and ˇ can be chosen so that (1) and (2) hold, we are done.

3 Experimental results

In this section, we give the results of our computer experiments using the algorithm of
Section 7. We begin with the measured lamination notion of random. For each fixed r ,
we sampled about 100;000 manifolds M 2 T .r/, and used the algorithm to decide if
each one fibers. Below in Figure 7 are the results for various r � 1020 .

While these results are superseded by Theorem 2.4, there are still interesting things to
notice about the plots. For instance, look at the rate at which the probability of fibering
approaches 0; as we already discussed in Section 1.5, it is quite leisurely. Moreover,
the convergence has a very specific form — as the log-log plot in the bottommost part
of Figure 7 makes clear, it converges to 0 like c1e�c2r for some positive constants ci .
In the proof of Theorem 2.4, we will see why this should be the case.

Before moving on to the MCG case, let us make one quick comment on why we can
easily sample M 2 T .r/ uniformly at random. While it is easy to pick a random
multicurve with w˛Cwˇ � r , a priori there is no way to ensure that we sample only
connected non-separating curves. Fortunately, Mirzakhani has shown that there is a
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Figure 7: Data for the probability of fibering from the measured lamination
point of view. The horizontal axis is the size r of the curve  in Dehn–
Thurston coordinates, or equivalently the length of the relator in the resulting
presentation of �1 . Each point represents a sample of about 100,000 mani-
folds.
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Figure 8: Data for the MCG case. All the points represent samples of at
least 1000 manifolds. The first half or so of the data represent 10,000 mani-
folds.
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definite probability, roughly 1/5, that a randomly chosen multicurve is of this form (see
Theorem 11.1 below). Thus one simply samples multicurves at random, ignoring all of
those which are not of the desired form.

We turn now to the MCG case. For this, we choose the standard five Dehn twists as
our generating set for MCG.@H /. The results are shown in Figure 8. There are two
horizontal scales on each of the upper two plots. Along the top is the number of Dehn
twists done to create the manifold, ie, the length of the walk in MCG.@H /. To give a
scale at which to compare it to the previous figure, along the bottom is the size of the
resulting attaching curve  in terms of the standard Dehn–Thurston coordinates. As
the plot at the bottom shows, the Dehn–Thurston size grows exponentially in length of
the walk, which justifies the use of the two scales on the upper graphs.

One thing to notice here is just how slowly the probability goes to zero in terms of the
Dehn–Thurston size; in the earlier Figure 7, the probability of fibering was less than
0.3% for r D 1035 , but here the probability is still greater than 40% at r D 10500 . This
reinforces the point made in Section 2.6 that the  resulting from the MCG process
are not generic with respect to Lebesgue measure on PML.@H /.

Because of how large some of these curves are, we had to use much smaller samples
than in the earlier case; this is why the graph looks so jumpy. However, if we look at
the middle plot, we again see near perfect exponential decay, just as in the measure
lamination case. Thus we are quite confident that Conjecture 1.2 is correct.

3.1 Fibering in slices of PML.@H /

The parameter space T of tunnel number one 3–manifolds is a subset of ML.@H IZ/.
Let us projectivize, and so view T as a subset of PML.@H IR/, which is just the
5–sphere. If we take a two dimensional projectively linear slice of PML.@H IR/, we
can plot the fibered points of T in the following sense. Fix some positive number r .
Divide the slice into little boxes, and in each box pick a random  2 T .r/ and plot
whether or not M fibers. Of course, as r !1 the probability of fibering goes to
zero, so it is much more informative to plot how many steps the algorithm takes before
it reports “not fibered”. Figure 9 shows the results for one such slice, where we fixed
w˛ � wˇ � .2=3/wı � 2�ı , and took r � 1011 . The horizontal and vertical axes
are �˛ and �ˇ ; since they are well defined modulo wa and wb , the figure should be
interpreted as living on the torus.

3.2 Knots in S 3

As mentioned in the introduction, we suspect that the pattern exhibited above should
persist for any Heegaard splitting based model of random manifold, regardless of genus.
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Figure 9: A slice of PML.@H IR/ , with curves where M is fibered plotted
in white, and where M is non-fibered plotted in shades of gray; darker grays
indicate that the program reported “non-fibered” in fewer steps.

It is less clear what would happen for, say, random triangulations. We did a little
experiment for knots in S3 , where one filters (isomorphism classes of) prime knots by
the number of crossings. Rather than address the difficult question of whether they fiber,
we looked instead at whether the lead coefficient of the Alexander polynomial is ˙1,
ie, the polynomial is monic. A monic Alexander polynomial is necessary for fibering,
but not sufficient. For alternating knots, however, it is sufficient (Murasugi [24]), and
for non-alternating knots with few crossings there are probably not many non-fibered
knots with monic Alexander polynomials. The results are shown in Figure 10. We used
the program Knotscape [13] with knot data from Hoste, Thistlethwaite and Weeks [14]
and Rankin, Flint and Schermann [28; 29]. In light of Section 1.5, we do not wish to
draw any conclusions from this data. Really, what needs to be done is to figure out how
to generate a random prime knot with, say, 100 crossings with close to the uniform
distribution. It would be quite interesting to do so even for alternating knots; for this
case, a place to start might be Poulalhon, Schaeffer and Zinn-Justin [27; 30].

3.3 Implementation notes

The algorithm used in the experiments is the one described in Section 7, though some
corners were cut in the implementation of the Dehn twist move; so our resulting
program is not completely efficient in the sense of that section. In the MCG case,
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Figure 10: Proportion of prime knots whose complements fiber. The lower
line plots alternating knots, and the upper one non-alternating knots. The
vertical axis is really the proportion with non-monic Alexander polynomial;
as such it is an upper bound on the proportion that fiber.

we had to deal with the fact that the resulting attaching curve  might not be in T ;
that is, it fails to satisfy conditions (2–4) of Section 2.3. To rectify this, we used the
method of the proof of Lemma 2.11 to get an equivalent curve in T . The complete
source code for our program can downloaded from the front page for this paper:
DOI:10.2140/gt.2006.10.2431

4 Algebraic criterion for fibering

In the next two sections, we describe how to determine if a tunnel number one 3–
manifold fibers over the circle. There is an exponential-time algorithm from normal
surface theory for deciding such questions in general [32], but that is impractical for our
purposes. The criterion we give below is purely combinatorial in terms of the word in
the fundamental group of the handlebody given by the attaching curve of the 2–handle.
In this section, we give a theorem of Stallings which reduces this geometric question
to an algebraic one about the fundamental group. In the next section, we describe an
algorithm of K. Brown which then completely solves the algebraic question for the
special type of groups coming from tunnel number one 3–manifolds.
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4.1 Stallings’ Theorem

Suppose a 3–manifold M fibers over the circle:

F �!M
�
�! S1

The map �W M ! S1 represents an element of H 1.M IZ/, which is Poincaré dual
to the element of H2.M IZ/ represented by the fiber F . Now, take M to be any
compact 3–manifold. Continuing to think of a Œ�� 2H 1.M IZ/ as a homotopy class of
maps M ! S1 , it makes sense to ask if Œ�� can be represented by a fibration over S1 .
Associated to Œ��2H 1.M IZ/ is the infinite cyclic cover zM of M whose fundamental
group is the kernel of ��W �1.M /! �1.S

1/ D Z. If Œ�� can be represented by a
fibration, then zM is just .fiber/�R. In particular, the kernel of �� is �1.fiber/, and
hence finitely generated. The converse to this is also true:

4.2 Theorem (Stallings [33]) Let M be a compact, orientable, irreducible 3–
manifold. Consider a Œ�� ¤ 0 in H 1.M IZ/. Then Œ�� can be represented by a
fibration if and only if the kernel of ��W �1.M /! Z is finitely generated.

The irreducibility hypothesis here is just to avoid the Poincaré Conjecture; it rules out
the possibility that M is the connect sum of a fibered 3–manifold and a nontrivial
homotopy sphere. When M has tunnel number one, the irreducibility hypothesis can
be easily dropped without presuming the Poincaré Conjecture, as follows. Consider
M as a genus 2 handlebody H with a 2–handle attached along  � @H . By Jaco’s
Handle Addition Lemma (Jaco [15], Scharlemann [31]), M is irreducible if @H n  is
incompressible in H . If instead @H n  compresses, then it is not hard to see that M

is the connected sum of a lens space with the exterior of the unknot in the 3–ball. As
lens spaces trivially satisfy the Poincaré Conjecture, we have:

4.3 Corollary Let M 3 have tunnel number one. Then M fibers over the circle if
and only if there exists a Œ��¤ 0 in H 1.M;Z/ such that the kernel of ��W M ! Z is
finitely generated.

In general, if G is a finitely presented group and G! Z an epimorphism, deciding if
the kernel is finitely generated is a very difficult question. Note that if H is a finitely
presented group, then H is trivial if and only if the obvious epimorphism H �Z! Z

has finitely generated kernel. Thus our question subsumes the problem of deciding if a
given H is trivial, and hence is algorithmically undecidable. Thus, it is not at all clear
that Stallings’ Theorem can be leveraged to an algorithm to decide if a 3–manifold
fibers. However, as we’ll see in the next section, the algebraic problem is solvable in
the case of a presentation with two generators and one relation, giving us a practical
algorithm to decide if a tunnel number one 3–manifold fibers over the circle.
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5 Brown’s Algorithm

Consider a two-generator, one-relator group G D ha; b j RD 1i. Given an epimor-
phism �W G ! Z, Kenneth Brown gave an elegant algorithm which decides if the
kernel of � is finitely generated [6]. Brown was interested in computing the Bieri–
Neumann–Strebel (BNS) invariant of G , which is closely related to this question. We
will first discuss Brown’s algorithm for a fixed � , and then move to the BNS context
to understand what happens for all � at once.

Let us explain Brown’s criterion with a geometric picture. Regard the group G D

ha; b j RD 1i as the quotient of the free group F on fa; bg. Think of F as the
fundamental group of a graph � with one vertex and two loops. The cover z� of �
corresponding to the abelianization map F ! Z2 can be identified with the integer
grid in R2 ; the vertices of z� form the integer lattice Z2 � R2 and correspond to
the abelianization of F . A homomorphism �W F ! Z can be thought of as a linear
functional R2 ! R. Now consider our relator R, which we take to be a cyclically
reduced word in F . Let zR be the lift of the word R to z� , starting at the origin (see
Figure 11). An epimorphism �W F ! Z descends to G if and only if �.R/ D 1.
Geometrically, this means that the kernel of � is a line in R2 joining the terminal point
of zR to the origin. Turing this around, suppose R is not in the commutator subgroup
of F so that the endpoints of zR are distinct; in this case there is essentially only one � ,
namely projection orthogonal to the line joining the endpoints. (To be precise, one
should scale this projection so that � takes values in Z rather than R , and is surjective.)

Now fix a � which extends to G , and think of � as a function on the lifted path zR.
Brown’s criterion is in terms of the number of global mins and maxes of � along zR.
Roughly, ker.�/ � G is finitely generated if and only if � has the fewest extrema

�

a b

z�

zR

za

zb

Figure 11: The lift of the word RD b2abab�1ab�1a�2 to the cover z� .
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�
�0

Figure 12: At left is the lift of RD b2abab�1ab�1a�2 to z� . The essentially
unique homomorphism � from G D ha; b j RD 1 i to Z is indicated by
the three diagonal lines which are among its level sets. In this case, � has
two global maxes and one global min. Hence the kernel of � is not finitely
generated. At right is another example with R0DRa . While the words differ
only slightly, in this case, the kernel of �0W ha; b j R0 D 1 i ! Z is finitely
generated as the global extrema of � on zR0 are unique.

possible on zR; that is, it has only one global min and one global max. Figure 12
illustrates the two possibilities.

To be precise about Brown’s criterion, one needs some additional conventions. First,
extrema are counted with multiplicities: if zR passes through the same point of z� twice
and �W zR!R is maximal there, then this counts as two maxes. Also, the endpoints of
z� can be extrema, and we include only one of them in our count. Finally, if the kernel
of � is horizontal or vertical, then there will be infinitely many global extrema; in this
case we count unit length segments of extrema. To ensure that there is no ambiguity,
we state Brown’s theorem a little more combinatorially. For our relator word R 2 F ,
let Ri denote the initial subword consisting of the first i letters of R. The value that
� takes on the i th vertex of zR is then �.Ri/.

5.1 Theorem [6, Theorem 4.3] Let G D ha; b j RD 1i, where R is a nontrivial
cyclically reduced word in the free group on fa; bg. Let R1; : : : ;Rn be initial subwords
of R, where Rn DR. Consider an epimorphism �W G! Z.

If �.a/ and �.b/ are both nonzero, then ker.�/ is finitely generated if and only if the
sequence �.R1/; : : : ; �.Rn/ has a unique minimum and maximum. If one of �.a/
and �.b/ is zero, then the condition is that there are exactly 2 mins and maxes in the
sequence and that R is not a2 or b2 .

The statement above is equivalent to our earlier geometric one; in the generic case,
extrema of � on zR must occur at vertices.
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We’ll now briefly outline the proof of Brown’s theorem in a way which elucidates its
connections to the classical Alexander polynomial test for non-fibering of a 3–manifold.
Given a two-generator, one-relator group G and an epimorphism �W G! Z, we can
always change generators in the free group to express G as ht;u j RD 1i where
�.t/D 1 and �.u/D 0. The kernel of � as a map from the free group ht;ui is (freely)
generated by uk D tkut�k for k 2 Z; this is because the cover of � corresponding to
the kernel of � is just a line with a loop added at each integer point. As �.R/D 0, we
have

(5.2) RD u
�1

k1
u
�2

k2
� � �u

�n

kn
where each �i D˙1.

The geometric condition of Theorem 5.1 implies that the kernel of �W G!Z is finitely
generated if and only if the sequence k1; k2; : : : ; kn has exactly one max and min. The
“if” part is elementary. For instance, suppose there is a unique minimum ki , which we
can take to be 0 by replacing R with tmRt�m . For any uj , the relation tj Rt�j now
implies that uj can be expressed as a product of ul ’s with l > j . Similarly, a unique
maxima allows us to express uj as a product of ul ’s with strictly smaller indices. Thus
the kernel of � is generated by umin.ki /; : : : ;umax.ki / . The “only if” direction is more
subtle, and uses the fact that the relator in a one-relator group is in a certain sense
unique.

We can now explain the promised connection to the Alexander polynomial. Let �.t/
denote the Alexander polynomial associated to the cyclic cover corresponding to � .
Recall the classic test in the 3–manifold context is that if the lead coefficient of �.t/
is not ˙1 (that is, �.t/ is not monic), then � cannot be represented by a fibration.
Let us see why this is true for groups of the form we are looking at here. First notice
that �.t/ is just what you get via the formal substitution uk 7! tk in (5.2), where
multiplication is turned into addition (eg u2u�2

1
u�1

2
u0 7! 1�2t ). Thus in the “fibered”

case where the kernel of � is finitely generated, we have that the lead coefficient of
�.t/ is indeed monic, as expected. Of course, �.t/ can be monic and G still not be
fibered. Essentially this is because �.t/ is only detecting homological information;
geometrically, if we look at the lift of R to the cover corresponding to the kernel of
�W hu; ti ! Z, the issue is that the Alexander polynomial only sees the homology
class of the lift of R, whereas Brown’s criterion sees the whole lift. Thus you can
regard Brown’s test as a variant of the Alexander polynomial test that looks at absolute
geometric information instead of homological information, and thereby gives an exact
criterion for fibering instead of only a necessary one.

5.3 Remark One thing that is interesting to note about the proof sketch above is that
when the kernel of � is finitely generated, then in fact the group G is the mapping
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torus (or HNN extension, if you prefer) of an automorphism of a free group. The
free group in question here is just umin.ki /; : : : ;umax.ki /�1 (see [6, Section 4] for the
details). When G is the fundamental group of a tunnel number one 3–manifold M ,
this makes sense as the fiber will be a surface with boundary, whose fundamental group
is free.

5.4 BNS invariants

Let G D ha; b j RD 1i be a two-generator one-relator group. To apply Stallings’
Theorem 4.2, we need to be able to answer this broader version of our preceding
question: does there exist an epimorphism �W G! Z with finitely generated kernel?
So far, we just know how to answer this for a particular such � . If the relator R is not
in the commutator subgroup of the free group F D ha; bi then there is, up to sign, a
unique such � . So we only need to consider the case where R 2 ŒF;F �; equivalently,
the relator R lifts to z� as a closed loop. Now there are infinitely many � to consider,
as every �W F ! Z extends to G . Fortunately, the geometric nature of Theorem
5.1 allows for a clean statement. It is natural to give the answer in term of Brown’s
original context, namely the Bieri–Neumann–Strebel (BNS) invariant of a group. This
subsection is devoted to the BNS invariant and giving Brown’s full criterion. The reader
may want to skip ahead to Section 5.9 at first reading; the current subsection will only
be referred to in Section 6.6 on random groups of this form. In particular, the main
theorems about tunnel number one 3–manifolds are independent of it.

Let G be a finitely-generated group. Broadening our point of view to get a continuous
object, consider nontrivial homomorphisms �W G! R. For reasons that will become
apparent later, we will consider such � up to positive scaling. Let S.G/ denote the set
of all such equivalence classes; S.G/ is the sphere

S.G/D
�
H 1.G;R/ n 0

�ı
RC:

The BNS invariant of G is a subset † of S.G/, which captures information about the
kernels of the � . Rather than start with the definition, let us give its key property (see
[3; 6] for details).

5.5 Proposition Let � be an epimorphism from G ! Z. Then the kernel of � is
finitely generated if and only if � and �� are both in †.

To define †, first some notation. For Œ��2S.G/, let G�Dfg 2G j �.g/� 0g, which
is a submonoid, but not subgroup, of G . Let G0 denote the commutator subgroup
of G , which G� acts on by conjugation. If H is a submonoid of G , we say that G0 is
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finitely generated over H if there is a finite set K �G0 such that H �K generates G0 .
Then the BNS invariant of G is

†D fŒ�� 2 S.G/ j G0 is finitely generated over some

finitely generated submonoid of G�
	
:

The BNS invariant has some remarkable properties—for instance, it is always an open
subset of S.G/. When G is the fundamental group of a 3–manifold, † is symmetric
about the origin and has the following natural description:

5.6 Theorem [3, Theorem E] Let M be a compact, orientable, irreducible 3–
manifold. Then † is exactly the projection to S.G/ of the interiors of the fibered faces
of the Thurston norm ball in H 1.M IR/.

In the BNS context, Brown’s Theorem 5.1 has the following reformulation:

5.7 Theorem [6, Theorem 4.3] Let G D ha; b j RD 1i, where R is nontrivial and
cyclically reduced. Let Ri be initial subwords of R and let Œ�� 2 S.G/. If �.a/ and
�.b/ are non-zero, then � is in † if and only if the sequence �.R1/; : : : ; �.Rn/ has a
unique maximum. If one of �.a/ or �.b/D 0 vanishes, the condition is that there are
exactly 2 maxes.

Now consider the case when R is in the commutator subgroup so that S.G/ is a circle.
To describe †, begin by letting zR be the lift of the relator to z� thought of as a subset
of R2 D H1.GIR/. The focus will be on the convex hull C of zR. For a vertex v
of C , let Fv be the open interval in S.G/ consisting of � so that the unique max of �
on C occurs at v . Geometrically, if we pick an inner product on H1.GIR/ so we can
identify it with its dual H 1.GIR/, then Fv is the interval of vectors lying between
the external perpendiculars to the sides adjoining v . (Equivalently, we can think of
the dual polytope D � H 1.GIR/ to C . Then Fv is projectivization into S.G/ of
the interior of the edge of D dual to v .) We call a vertex of C marked if zR passes
through it more than once. Theorem 5.7 easily gives

5.8 Theorem [6, Theorem 4.4] Let G D ha; b j RD 1i, where R is a nontrivial
cyclically reduced word which is in the commutator subgroup. Then the BNS invariant
† of G is [

fFv j v is an unmarked vertex of C g

together with those � whose kernels are horizontal or vertical if the edge of C where
their maxima occur has length 1 and two unmarked vertices.
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0

b

a

b�

a�

S.G/
†

†

Figure 13: Here R D b�1a2ba�1b�1aba�1b2a�1b�1a�1b�1aba�1b�1a .
At left is the convex hull C of zR; at right is BNS invariant † , shown as
subset of the unit circle S.G/ in H 1.GIR/ with respect to the dual basis
fa�; b�g .

A simple example is shown in Figure 13. The BNS picture can also be connected to
the Alexander polynomial, in particular to the coefficients which occur at the vertices
of the Newton polygon [9].

5.9 Boxes and Brown’s Criterion

In this subsection, we show how to apply Brown’s criterion by breaking up the relator R

into several subwords, examining each subword individually, and then combining the
information. This works by assigning what we call boxes to the subwords, together with
rules for multiplying boxes. This is crucial for adapting Brown’s criterion to efficiently
incorporate the topological constraints when R is the relator for a tunnel number one
3–manifold. That said, the contents of this subsection apply indiscriminantly to any
relator.

Let F D ha; bi be the free group on two generators. Let R 2F be a cyclically reduced
word, and 1 D R0;R1;R2; : : : ;Rn D R be the initial subwords. (Note that we are
including R0D 1, which differs from our conventions earlier.) Suppose that �W F!Z

is an epimorphism with �.R/D 0. To apply Brown’s criterion, we are interested in
the sequence f�.Ri/g, and, in particular, in the number of (global) extreme values. We
can think of f�.Ri/g as a walk in Z. Thus, we are lead to consider the set of finite
walks W on Z which start at 0, where steps of any size are allowed, including pausing;
that is, an element of W is simply a finite sequence of integers whose first term is 0.

We now introduce boxes to record certain basic features of a walk w 2W . In particular,
we want to remember:

� The final position of w , which we call the shift and denote by s .
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� The maximum value of w , called the top and denoted t .

� The minimum value of w , called the bottom and denoted b .

� The number of times the top is visited, denoted nt . We count in a funny way:
each time the top is visited counts twice, and we subtract one if the first integer
is the top, and subtract one if the last integer is the top. Unless the walk is just
f0g, this amounts to counting a visit at the beginning or end with a weight of
1 and all others with a weight of 2. We count in this way to make boxes well
behaved under operations discussed below.

� The number of times the bottom is visited, counted in the same way, denoted
nb .

Abstractly, a box is simply 5 integers .s; t; b; nt ; nb/ satisfying t � 0, b � 0, b � s � t ,
and nt ; nb � 0. Graphically, we denote boxes as

2

4

1

2

3

1

6

4

and the set of all boxes is denoted B . We have a natural map BoxW W! B implicit in
our description above.

Given two walks w1; w2 2 W we can concatenate them into a walk w1 � w2 by
translating all of w2 so that its initial point matches the terminal point of w1 , dropping
the first element of the translated w2 , and joining the two lists. For example

� Df0;�1; 0; 1g � f0; 1; 0; 1g D f0;�1; 0; 1; 2; 1; 2g

where the picture at right is in terms of the graphs of the walks (see Figure 14 if this is
unclear). This operation makes W into a monoid, with identity element the 1–element
walk f0g. The set B of boxes also has a monoid structure for which BoxW W! B is a
morphism. Pictorially, the box multiplication is given by

2

4

�

1

6

D

2

6

2

4

�

2

6

D

4

6
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or algebraically by the following rule. For i D 1; 2, let Bi be the box .si ; ti ; bi ; n
t
i ; n

b
i /.

Then B1 �B2 is, by definition, the box which has

� Shift s D s1C s2 .

� Top t Dmax.t1; s1C t2/.

� Number of top visits

nt
D

8̂<̂
:

nt
1

if t1 > s1C t2,

nt
2

if t1 < s1C t2,

nt
1
C nt

2
if t1 D s1C t2.

and the corresponding rules for the bottom and nb . The identity element for this
monoid is the box

.0; 0; 0; 0; 0/:

We can also reverse a walk w into another walk rev.w/ of the same length by translating
by the negative of its last element and reversing the list. For example

rev
revf0; 1; 2; 1; 2g D f0;�1; 0;�1;�2g

This is an anti-automorphism of the monoid structure on W . There is a corresponding
anti-automorphism of the monoid structure on B which is compatible with the map
Box, given pictorially by

2

4

rev
2

4

Algebraically, rev.s; t; b; nt ; nb/ is the box with:

� Shift s0 D�s .

� Top t 0 D t � s .

� Number of top visits nt 0 D nt .

and similarly for the bottom and number of bottom visits.

Let us now return to the setting of words in the free group F . Suppose w is a reduced
word in F ; here w need not be cyclically reduced. Let 1D w0; w1; : : : ; wn D w be
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the initial subwords of w . Let � be any epimorphism from F to Z so that �.a/ and
�.b/ are non-zero. (We will deal with the case when �.a/ or �.b/ is zero below.) We
set

Box�.w/D Box.f�.wi/g/

Now suppose that v is a reduced word in F so that the concatenation of w and v is
also reduced. Then we have

Box�.wv/D Box�.w/�Box�.v/(5.10)

Box�.w
�1/D rev.Box�.w//:(5.11)

The fact that there is no cancellation when we multiply w with v is important here;
Box� W F ! B is not a morphism. If we want to think of it as a morphism, we would
need to take the domain to be the monoid of strings in fa˙1; b˙1g.

An alternate way to describe Box� is to give the values on the generators. If we assume
that s1 D �.a/ > 0 and s2 D �.b/ > 0, then

Box.a/D .s1; s1; 0; 1; 1/ Box.a�1/D .�s1; 0;�s1; 1; 1/

Box.b/D .s2; s2; 0; 1; 1/ Box.b�1/D .�s2; 0;�s2; 1; 1/

and Box is multiplicative on reduced words.

In the case when �.a/ is 0, we instead set

Box.a/D .0; 0; 0; 2; 2/ Box.a�1/D .0; 0; 0; 2; 2/

Box.b/D .1; 1; 0; 0; 0/ Box.b�1/D .�1; 0;�1; 0; 0/

and extend by multiplicativity on reduced words. In this case nt and nb are twice the
number of segments of extrema.

Now, let’s restate Brown’s criterion in terms of boxes. We say that the top (resp. bottom)
of a Box�.w/ is marked if nt > 2 (resp. nb > 2). Then Theorem 5.1 can be restated
as:

5.12 Theorem [6, Theorem 4.3] Let G D ha; b j RD 1i, where R is a cyclically
reduced word in the free group ha; bi. Consider an epimorphism �W G ! Z. Then
ker.�/ is finitely generated if and only if neither the top nor the bottom of Box�.R/
are marked.

Now we relate this to our original question of how to apply Brown’s criterion by
breaking R up into pieces. Suppose

RD w1w2w3 � � �wk
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where each wi is reduced and the above product involves no cancellation to get R in
reduced form. Then we have

(5.13) Box�.R/D Box�.w1/�Box�.w2/� � � � �Box�.wk/:

Notice that if B1 and B2 are two boxes with marked tops, then B1 �B2 also has a
marked top. Hence, if it happens that each Box�.wi/ has a marked top, it follows that
Box�.R/ does as well without working out the product (5.13). This yields

5.14 Lemma Let G D ha; b j RD 1i, where R is a cyclically reduced word, and
consider an epimorphism �W G! Z. Suppose RD w1w2w3 � � �wk where each wi is
a reduced word, and the product has no cancellations. If each Box�.wi/ has a marked
top, then the kernel of � is infinitely generated.

In light of the above lemma, it will be useful to have criteria for when a word has
a marked top. The one we will need is based on the following simple observation:
suppose B is a box with shift s D 0 and nt � 2. Then B �B has a marked top. To
apply this, suppose w 2 F is a nontrivial cyclically reduced word with �.w/ D 0;
taking B D Box�.w/, we claim that our observation implies that Box�.w2/D B �B

has a marked top. If neither �.a/ or �.b/ is 0, then it is easy to see that B has nt � 2.
If �.a/ vanishes, then there are words where B has nt D 0, eg w D b�1ab ; however,
any such word is not cyclically reduced. When w is cyclically reduced, nt must be
at least 2. This proves the claim that Box�.w2/ D B �B has a marked top. More
generally

5.15 Lemma Let F and �W F ! Z be as above. Suppose w 2 F is a nontrivial
cyclically reduced word such that �.w/D 0. If w0 is any subword of wn of length at
least twice that of w , then Box�.w0/ has a marked top.

Proof By conjugating w , we can assume that w0Dw2r where r is an initial subword
of wn for some n� 0. We have Box�.w2/D Box�.w/2 , and since �.w/D 0 and w
is nontrivial, this implies that Box�.w2/ has a marked top. As r is a subword of wn

and �.w/D 0, the top of �.w2/ forms part of the top of �.w0/; hence Box�.w0/ has
a marked top as well.

6 Random 1–relator groups

In this section, we consider the following natural notion of a random 2–generator 1–
relator group. Let G.r/ be the set of presentations ha; b j RD 1i where the relator R

Geometry & Topology, Volume 10 (2006)



A random tunnel number one 3–manifold does not fiber over the circle 2465

is a cyclically reduced word of length r . While properly the elements of G.r/ are
presentations, we will usually refer to them as groups. A random 2–generator 1–relator
group of complexity r is then just an element of the finite set G.r/ chosen uniformly at
random. Now given any property of groups, consider the probability pr that G 2 G.r/
has this property; we are interested in the behavior of pr as r !1. When pr has
a limit p , it is reasonable to say that “a random 2–generator 1–relator group has this
property with probability p”; of course, p is really an asymptotic quantity dependent on
our choice of filtration of these groups, namely word length of the relator. An example
theorem is that a 2–generator 1–relator group is word-hyperbolic with probability 1
(Gromov [12], Ol’shanskii [25]).

In analogy with the 3–manifold situation, we say that a group G fibers if it has an
epimorphism to Z with finitely generated kernel. As we noted in Remark 5.3, for these
types of groups fibering is equivalent to being the mapping torus of an automorphism
of a free group, which was the definition of fibered discussed in Section 1.3. This
section is devoted to showing that for 2–generator 1–relator groups the probability of
fibering is strictly between 0 and 1. In particular:

6.1 Theorem Let pr be the probability that G 2 G.r/ fibers. Then for all large r one
has

0:0006< pr < 0:975:

Experimentally, pr seems to limit to 0:94. It seems quite remarkable to us that
the probability a 2–generator 1–relator group fibers is neither 0 nor 1. In slightly
different language, that most one relator groups fiber was independently discovered
experimentally by Kapovich, Sapir, and Schupp [5, Section 1]; in that context, the
proof of Theorem 6.1 shows that [5, Theorem 1.2] does not suffice to show that G 2 G
group is residually finite with probability 1.

Theorem 6.1 is strikingly different than the corresponding result (Theorem 2.4) for
tunnel number one 3–manifolds; these fiber with probability 0. The setups of the two
theorems are strictly analogous. Indeed, the parameter space T .r/ of tunnel number one
3–manifolds is essentially just those G 2 G.r/ which are geometric presentations of the
fundamental group of a tunnel number one 3–manifold. The differing results can happen
because T .r/ is a vanishingly small proportion of G.r/ as r !1; looking at Dehn–
Thurston coordinates, it is clear that #T .r/ grows polynomially in r , whereas #G.r/
grows exponentially. Another example of differing behavior is word-hyperbolicity —
because of the boundary torus, the groups in T are almost never hyperbolic, whereas
those in G almost always are. Still, the different behavior with respect to fibering is
surprising. As the proof of Theorem 2.4 will eventually make clear, the difference
stems from the highly recursive nature of the relators of G 2 T .r/.
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For tunnel number one manifolds with two boundary components, Theorem 2.5 says
that the probability of fibering is still 0, despite the fact that there are now many
epimorphisms to Z. In contrast, let G0.r/ be those groups in G.r/ whose defining
relation is a commutator; then it seems very likely that:

6.2 Conjecture Let pr be the probability that G 2 G0.r/ fibers. Then pr ! 1 as
r !1.

We will explain our motivation for this conjecture in Section 6.6.

6.3 A random walk problem

Let us first reformulate the question answered by Theorem 6.1 in terms of random
walks. This will suggest a simplified toy problem whose solution will make it intuitively
clear why Theorem 6.1 is true. We take the point of view of Section 5.9, which runs
as follows. Start with the free group F D ha; bi and an epimorphism �W F ! Z. A
word R 2 F gives 1–dimensional random walk w D f�.Ri/g on Z, where the Ri are
the initial subwords of R. Assuming neither �.a/ or �.b/ is 0, Brown’s Criterion
is then that ha; b j RD 1i fibers if and only if w visits its minimum and maximum
value only once.

Unfortunately, from the point of view of the 1–dimensional walk w , things are a little
complicated:

(1) The walk w has two different step sizes, namely �.a/ and �.b/. Moreover,
the condition that R is reduced means, for instance, that you aren’t allowed to
follow a �.a/ step by a ��.a/ step.

(2) The walk must end at 0.

(3) Worst of all, the step sizes themselves are determined by the relator, as it is the
endpoint of R in the plane that determines � in the first place. Thus one can’t
really remove the 2–dimensional nature of the problem.

To get a more tractable setup, let us consider instead walks on Z where at each step we
move one unit to the left or right with equal probability. Let W .r/ denote the set of
such walks which both start and end at 0 (thus r must be even). For simplicity, let’s
just focus on the maxima. Then:

6.4 Proposition [11] A walk w 2W .r/ visits its maximum value more than once
with probability 1=2.
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position

0

time

Figure 14

So the toy problem at least exhibits the neither 0 or 1 behavior of Theorem 6.1. While
the proposition is well known, we include a proof which, for our limited purposes, is
more direct than those in the literature. The argument is also similar to what we will
use for Theorem 6.1 itself.

Proof We focus on the graph of a walk w 2W .r/, which we think of as a sequence of
up and down segments (see Figure 14). Let U be those walks with a unique maximum.
To compute the size of U , we relate it to the set D of walks which end on a down
segment. Given w 2 U take the down segment immediately after the unique maxima,
and shift it to the end to produce an element in D . This is a bijection; the inverse
D! U is to move the final down to immediately after the leftmost maximum. Thus
#U D #D D .1=2/#W .r/, completing the proof.

If the toy problem was an exact model for Theorem 6.1, we would expect the much
lower value of .1=2/2 D 1=4 for the probability of fibering, rather than the 0:94 that
was experimentally observed. Next, we consider a slightly more accurate model, where
the probability of a unique maxima rises. Consider the case where �.a/D �.b/D 1.
Then condition (1) above becomes a momentum condition — at each step there is a
2=3 chance of continuing in the same direction and a 1=3 chance of turning and going
the other way. Intuitively, this increases the chance of a unique max since it is less
likely that a repeat max is created by a simple up-down-up-down segment. In this case
we have:

6.5 Proposition Consider random walks on Z with momentum as described above.
As the length of the walk tends to infinity, the probability of a unique maximum limits
to 2=3.

Proof We will just sketch the argument, ignoring certain corner cases which are why
the probability 2=3 occurs only in the limit. The set of walks of length r is still
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W .r/, unchanged from the previous proposition. What has changed is the probability
measure P on W .r/ — it is no longer uniform. While we still have a bijection
f W U ! D as above, it is no longer measure preserving. Let Ud denote the set of
walks with a unique max which end with a down, and Uu those that end with a up.
Then P .Ud /D P .f .Ud // whereas P .Uu/D 2P .f .Uu//. Also f .Ud / consists of
walks in D which end in two downs; thus f .Ud / contributes 2=3 of the measure of D ,
whereas f .Uu/ contributes only 1=3. Combining gives P .U /D 4=3P .D/D 2=3 as
desired.

Unfortunately, our approach seems to fail when we allow differing step sizes as in (1),
even ignoring the momentum issue. The problem is that while the maps between U and
D are still defined, they are no longer bijective. We turn now to the proof of Theorem
6.1 which uses similar but cruder methods which have no hope of being sharp.

Proof As above, let G.r/ be our set of 1–relator groups, which we will always think
of as the set of cyclically reduced words R in F D ha; bi of length r . As a first step,
we compute #G.r/. Counting reduced words, as opposed to cyclically reduced words,
is easy: there are 4 choices for the first letter and 3 choices for each successive one,
for a total of 4 � 3r�1 . What we need to find #G.r/ is the probability that a reduced
word is cyclically reduced. Thinking of a reduced word w as chosen at random, the
relationship between the final letter and the initial one is governed by a Markov chain
whose distribution converges rapidly to the uniform one. Thus the distribution of the
final letter is (nearly) independent of the first letter, and so the odds that w is cyclically
reduced is 3=4. Thus #G.r/ is asymptotic to 3r . A more detailed analysis, not needed
for what we do here, shows that #G.r/D 3r C1 when r is odd, and 3r C3 when r is
even.

Let G0.r/ denote those R which are not in the commutator subgroup, and so that the
unique epimorphism �W ha; b j RD 1i ! Z does not vanish on either a or b . It is
not hard to see that the density of G0.r/ in G.r/ goes to 1 as r !1. Thus in the
remainder of the proof, we work to estimate the probability p0r that ha; b j RD 1i

fibers for R2 G0.r/. To bound it from above, we construct an injection from G0.r�4/

into the non-fibered subset of G0.r/. In particular, given R 2 G0.r � 4/, go to the first
global maximum and insert a commutator as shown in Figure 15(a). As we inserted
a commutator, � is unchanged, but we now have enough maxima to see that it is
non-fibered. To see that this map is injective, observe that there is an inverse process:
go to the first global maximum and delete the next 4 letters. Thus

1�p0r �
#G0.r � 4/

#G0.r/
� 3�4 and hence p0r < 0:988 for large r :
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� �

(a)

� �

(b)

Figure 15

To improve this, note that we can also insert a commutator at the global minimum;
the images of these two injections of G0.r � 4/ into the non-fibered words have some
overlap coming from G0.r � 8/. Thus, pretending for convenience that #G0.n/D 3n ,
we have

1�p0r � 2 � 3�4
� 3�8 and hence p0r < 0:975 for large r ;

as desired.

To estimate the number of fibered words in G0.r/, we inject G0.r � 8/ into them by
inserting a commutator at both the first global min and the first global max as shown in
Figure 15(b). In fact, there are four distinct ways of doing this, depending on which
way we orient the two commutators. Thus

p0r � 4
#G0.r � 8/

#G0.r/
� 4 � 3�8 > 0:0006 for large r ,

completing the proof.

6.6 The case of G0

We end this section by giving the motivation for Conjecture 6.2. Consider G 2 G0.r/.
Every �W F ! Z extends to G . If we fix � , the proof of Theorem 6.1 shows that the
probability that ker.�/ is finitely generated is at least 0:0006. The intuition is that
if we fix two such epimorphisms � and �0 , then as r !1 the event that ker.�/ is
finitely generated becomes independent from the corresponding event for �0 . This
should extend to any finite collection of �i , and as each event has probability at least
0:006, independence means that at least one of the �i will have finitely generated
kernel with very high probability. Increasing the number of �i would allow one to
show that the probability is at least 1� � for any � , and hence the probability limits
to 1. The different �i should have independent behavior for the following reason. As
described in Section 5.4, whether G fibers depends on the convex hull of the relator R.
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Figure 16: Train tracks on a 4–punctured S2 and on a torus.

In particular, at the vertices of the convex hull we care about whether R passes through
them multiple times. Any given � picks up its global extrema from some pair of these
vertices. As long as the extreme vertices associated to � and �0 are distinct, then
whether they are repeated vertices should be independent. Thus the key issue is simply
that the number of vertices on the convex hull of R should grow as r !1. In the
related questions that have been studied, the number of vertices grows like log.r/, and
we don’t expect the situation here to be any different. See Steele [34] and the references
therein for details.

7 Efficient implementation of Brown’s algorithm

In this section, we discuss how to efficiently decide whether a given curve in our
parameter space gives a fibered tunnel number one manifold. Here, “efficiently” means
in time which is polynomial in the log of the Dehn–Thurston coordinates. The method
we present is also crucial to the proof of Theorem 2.4.

7.1 Train tracks

3
2

1

Our main combinatorial tools for studying curves on surfaces are train
tracks and their generalizations. Roughly, a train track in a surface †
is a 1–dimensional CW complex � embedded in †, which is made
up of 1–dimensional branches joined by trivalent switches. Here,
each switch has one incoming branch and two outgoing branches.
See Figure 16 for examples, and [26] for details. Associated to a train
track � is a space of weights (or transverse measures). This consists
of assignments of weights we 2 R�0 to each branch e of � , which
satisfy the switch condition: at each switch the sum of the weights on
the two outgoing edges is equal to the weight on the incoming one. The space of weights
is denoted ML.�;R/, and ML.�;Z/ denotes those where each we 2 Z. As shown
at right, an integral measure w 2ML.�;Z/ naturally specifies a multicurve which
lies in a small neighborhood of � , that is, is carried by � . More generally, ML.�;R/
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Figure 17: At left is an interval exchange � on a 5–punctured S2 . At right is
a regular neighborhood of � .

parameterizes measured laminations carried by � . For suitable train tracks, called
complete train tracks, ML.�;R/ gives a chart on the space of measured lamination on
the underlying surface †.

7.2 Interval exchanges

A more generalized notion of train tracks is to allow switches where there are an
arbitrary number of incoming and outgoing branches. Here, we will focus on the class
where there is just one switch. These are called interval exchanges for reasons we
will see shortly. An example on a 5–punctured S2 is shown in Figure 17. As you
can see from that figure, a regular neighborhood of such an interval exchange can be
decomposed into a thickened interval (shaded) whose top and bottom are partitioned
into subintervals which are exchanged by means of bands (the thickened branches).
A w 2ML.�;R/ can be thought of as assigning widths to the bands so that the total
length of the top and bottom intervals agree.

There are two kinds of bands. Those that go from the top to the bottom are termed
orientation preserving since that is how they act on their subintervals. Those joining
a side to itself are called orientation reversing. An interval exchange gives rise to a
natural dynamical system which we describe in the next subsection. In that context,
they have been studied extensively since the 1970s. However, generally only orientation
preserving bands are allowed in that literature; we will refer to such exchanges as
classical interval exchanges.

For the rest of this section, one could easily work with train tracks instead of interval
exchanges. However, the use of interval exchanges has important technical advantages
in the proof of Theorem 2.4.
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t

b

.�; w/

b0 t 0

.� 0; w0/

Figure 18: Splitting an interval exchange.

7.3 Rauzy induction and determining connectivity

Suppose � is an interval exchange in a surface †, and w 2ML.�;Z/. We will now
describe how to determine the number of components of the associated multicurve.
This method is also the basis for our efficient form of Brown’s algorithm. The basic
operation is called Rauzy induction in the context of interval exchanges, and splitting
or sliding in the context of train tracks. Starting with � and w 2ML.�;R/, we
will construct a new pair .� 0; w0/ realizing the same measured lamination in †. To
begin, consider the rightmost bands, t and b , on the top and bottom respectively. First
suppose that wt >wb . Then we slice as shown in Figure 18 to construct .� 0; w0/. The
new band t 0 has weight w0t 0 D wt �wb , and the other modified band b0 has weight
w0

b0 Dwb . The other weights are of course unchanged. If instead wb <wt one does
the analogous operation, flipping the picture about the horizontal axis.

If wt D wb , then one simply cuts through the middle interval and amalgamates the
bands b and t together. If t and b happen to be the same band, this splits off an
annular loop. Hence we enlarge our notion of an interval exchange by allowing the
addition of a finite number of such loops. We will denote Rauzy induction, which we
usually call splitting, by .�; w/& .� 0; w0/.

Now suppose we start with an integral measure w 2ML.�;Z/ and want to determine
the number of components of the associated multicurve. We can split repeatedly to get
a sequence .�i ; wi/ carrying the same multicurve. Here, there is no reason to remember
the (increasingly complicated) embeddings of the �i into †. That is, you should think
of the �i as abstract interval exchanges, not embedded in any particular surface. At
each stage, either some weight of wi is strictly reduced, or we split off a loop and
reduce the number of bands in play. In the end, we are reduced to a finite collection of
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loops labeled by elements of Z�0 ; the sum of these labels is the number of components
in the multicurve.

The procedure just described is not always more efficient than the most naive algorithm;
in particular the number of steps can be equal to jwj Dmaxfwbg. For instance, take �
to be the exchange on the torus shown in Figure 16 and set the weights on the bands
to be 1 and n. However, Agol, Hass, and W. Thurston have shown that if one adds a
“Dehn twist” operation, then the number of steps becomes polynomial in log jwj [1].

7.4 Computing other information

As pointed out in [1], one can adapt this framework to compute additional invariants
of the multicurve  given by w 2ML.�;Z/. The cases of interest for us are derived
from the following setup. Suppose we know that  is connected, and fix generators
for �1.†/. Let’s see how to find a word in �1.†/ representing  in terms of splitting.
We can take the basepoint for �1.†/ to lie in the base interval for � , which we think
of as very small. An oriented band of � thus gives rise to an element of �1.†/. We
think of each band as being labeled with this element. Now suppose we do a splitting
.�; w/& .� 0; w0/. Resuming the notation of Figure 18, we presume wt > wb . Orient
the bands t and b so that both orientations point vertically at the right-hand side of the
base interval. The new bands b0 and t 0 of � 0 now inherit orientations as well. If we
use L to denote our �1.†/ labels, then these transform via

(7.5) L.b0/DL.b/ �L.t/ and L.t 0/DL.t/;

with all the other labels remaining unchanged. Since we are presuming that  is
connected, if we continue splitting in this manner we eventually arrive at a single loop
with weight 1. The label on that loop is then a word representing  in �1.†/.

Since in the end we recover a full word representing  , this splitting algorithm takes
time at least proportional to the size of that word; this can certainly be as large as jwj.
The real payoff is when we want to compute something derived from this word which
carries much less information. For instance, suppose we want to know the class of 
in H1.†/. Then we can use labels which are the images of the �1.†/ labels under
the quotient �1.†/!H1.†/. In this way, we can compute the class of  in H1.†/

in time polynomial in log jwj [1].

7.6 The algorithm: boxes on interval exchanges

We now turn to the main question at hand. Suppose H is our genus 2 handlebody,
and  2 T a non-separating simple closed curve. We want to (efficiently) decide
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if the associated tunnel number one manifold M fibers. Suppose that  is given
to us in terms of weights w on a train track �0 . Using the technique of the last
subsection, we can quickly compute the element  represents in H1.H /. Let us further
suppose that this is not 0; we now have determined the essentially unique epimorphism
�W �1.M /!Z. In light of Corollary 4.3, to decide if M fibers we just need to apply
Brown’s Criterion to decide if the kernel of � is finitely generated. In Section 5.9, we
described how to implement Brown’s Criterion by breaking the defining relation R up
into subwords and using boxes to capture the needed information about these subwords.
Roughly, we initially label � by corresponding words of F D �1.H /D ha; bi, and
then immediately replace each word v with Box�.v/. Then at each split, we will
combine the boxes via box multiplication following the rule (7.5). At the end we will
be left with a single loop labeled by Box�.R/ to which we can apply Theorem 5.12.
However, in order for the final box to really be Box�.R/, we must restrict the initial
train track � : Box� is not a morphism unless we take the domain to be the monoid of
words in fa˙1; b˙1g, rather than the free group F itself. In particular, we must ensure
that each time we split the interval exchange there is no cancellation in the F labels.

While one way of thinking about the final label on  is via the splitting process, it
can be also thought of less dynamically. Focus on a neighborhood of � , and think of
each band as having a vertical dividing line in the middle of its length. Fix a transverse
orientation for the divider. Suppose we label each band by a word in the generators and
their inverses. The label for each band should be thought of as affixed to its dividing line.
A connected curve  carried by � has a sequence of intersections with the dividers;
reading off the labels as we go around  (inverting the label if the direction of travel
does not match the transverse orientation of the divider) and taking the product gives
the final word. The final word is well-defined up to the choice of starting point and
choice of orientation of  . We say that  is tight if the final word is cyclically reduced.

7.7 Definition Let � be an interval exchange with bands labeled by elements of F .
We say that � is tightly labeled if every  carried by � is tight.

An example of a tightly labeled interval exchange is given in Figure 19; the point is
that as we run along  , if we cross a label which is a power of a, then the next label
other than 1 that we encounter is a power of b . Concluding the above discussion, we
have:

7.8 Lemma Let � be an interval exchange tightly labeled by F . Suppose �W F ! Z

is an epimorphism, and let  be a connected simple closed curve carried by  . Split �
until we get a single loop labeled by R. Now start back at the beginning and replace
the labels on � by L 7! Box�.L/, and again split until we get a single loop labeled
with a box B . Then B D Box�.R/.
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1

a a3 a2

b b3 b2

Figure 19: A tightly labeled interval exchange.

As at the beginning of this subsection, suppose we are given  2 T , our parameter
space of tunnel number one 3–manifolds. We assume that  is given to us in terms of
Dehn–Thurston coordinates as in Section 2.3. As we next describe, the constraints (2–4)
in Section 2.3 on the Dehn–Thurston coordinates of  2 T allow us to put  on a tight
interval exchange closely related to the one given in Figure 19. In terms of Figure 3,
consider the punctured torus T bounded by ı containing ˛ . The intersection of  with
T consists of at most 3 parallel families of arcs. Thinking homologically, it is easy to
see that we can orient things so that the labels on these families are ai , aj and aiCj

where i; j 2 Z. Condition (4) of Section 2.3 means that none of fi; j ; i C j g are zero.
(If there are fewer than 3 families of arcs, we add in empty families to increase the
number to 3, making the discussion uniform. This can be done fairly arbitrarily, and we
can thus ensure that fi; j ; i C j g are all nonzero.) Each family of arcs will contribute
one band to our final � . The same picture is true for the other punctured torus. We
can now make an interval exchange � by taking these bands in the punctured tori and
adding one additional band to allow us to effect the twist around ı . The result is shown

1

ai aiCj aj

bk bkCl bl

Figure 20: A standard starting interval exchange. Here the elements ai , aj ,
aiCj , bk , bl , and bkCl of F are not the identity.

in Figure 20. (If you are worried here about whether the final band is consistent with
the orientation of the twisting about ı , note that since a full Dehn twist about ı extends
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over H , we can make this twisting have any sign we like without changing M .) We
will call interval exchanges of this form standard starting interval exchanges. The same
reasoning used above shows that � is tightly labeled. For future reference we record:

7.9 Lemma Every  2 T is carried by one of countably many standard starting
interval exchanges, each of which is tightly labeled by F .

To summarize, here is the procedure to efficiently decide if M fibers over S1 , provided
that  is nonzero in H1.H /. (If  is zero in H1.H /, there is not a unique � to test.
While Brown’s algorithm adapts to work very elegantly to this situation (see Section
5.4), it is unclear if it can be implemented efficiently in this case. You may have to
remember too much in the appropriate labels.) First, it is straightforward in terms of the
Dehn–Thurston coordinates to put  on a standard initial exchange �0 . Then run the
splitting once using H1.H / labels to determine � . Once � is known, we go back the
beginning and relabel �0 with Box� labels. Now run the splitting to the bottom again.
In light of Lemma 7.8 and Theorem 5.12, the label on the final loop determines if the
kernel of � is finitely generated, and hence if M fibers over the circle. Since there
isn’t much to a box, really just 5 numbers bounded by the square of the initial weights,
the running time will still be polynomial in the log of initial weights, or equivalently in
the size of the Dehn–Thurston coordinates.

8 The idea of the proof of the main theorems

In this section, we explain the outline of the common proof of the main results of this
paper, Theorems 2.4 and 2.5. For concreteness, let us focus attention on Theorem 2.4.
The basic idea is to analyze the algorithm given in the last section, and prove that it
will report “non-fibered” with probability tending to 1 as the input curve  becomes
more and more complicated. Recall the setup is that we are given a connected curve 
on @H carried by a tightly labeled copy of �0 . Let G D �1.M /D ha; b j RD 1i,
and let us assume we are in the generic case where there is a unique epimorphism
�W G! Z. In the algorithm of Section 7.6, we start with Box� labels on �0 , and then
split .�0;  / repeatedly, at each stage replacing one of the box labels by its product
with another box. After many splittings, we are left with a single loop. What we want
to show is that the top of the remaining box is very likely to be marked, and thus ker.�/
is infinitely generated by Theorem 5.12.

Suppose at some point in the splitting sequence we get to a state where every box label
has a marked top. As Lemma 5.14 shows, this property will persist as we continue to
split, and so this state alone implies that ker.�/ is infinitely generated. Thus we can
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stop at this stage, even though we may still have a million splits to go before we get
down to a loop. This is in fact what happens when you implement the algorithm of
Section 7.6 — typically, you end up with marked boxes on all the bands long before
you have completed splitting. The strategy for the proof is therefore to show that having
all boxes marked becomes increasing likely as you do more splits.

We begin by discussing a much simpler problem, whose solution follows the same
strategy, and then explain how the approach must be modified to account for the
constraints in the actual topological situation.

8.1 A toy problem

Our toy problem is the following. Suppose we start with a finite set of boxes; for
concreteness, let us say there are 7 of them to match the number of bands in one of the
standard starting interval exchanges shown in Figure 20. At each “split” we pick two
distinct boxes A and B at random, and replace A with a random selection from

A�B; A�B�1; B �A; or B�1
�A;

where here B�1 D rev.B/ is the reverse or “inverse” box described in Section 5.9.
The simplification here is that any pair of boxes can interact at any stage, whereas for
interval exchanges the pair is fixed by the topology. However, for interval exchanges
one expects that over time all pairs of labels will interact, and so it is reasonable to
hope that the behavior of the toy problem will tell us something about the real case of
interest.

For any choice of the initial 7 boxes where at least one is non-trivial, we’ll show:

8.2 Theorem The probability that all boxes have marked tops after n splits goes to 1

as n!1.

This result is an easy consequence of the following lemma.

8.3 Lemma Let B1;B2; : : : ;B7 be boxes where at least one is nontrivial. Then there
is a sequence of 14 splits so that the resulting boxes all have marked tops.

Assuming the lemma, here’s the proof of the theorem. Start with our initial boxes, split
14 times, then 14 more times, etc. While we don’t know anything about the state of
the boxes at the start of each chunk of 14 splits, the lemma tells us that there is at
least a 28�14 chance that the next 14 splittings result in all boxes marked. Since the
splittings in distinct chunks are chosen independently, the probability that some box is
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not marked after 14k splits is at most .1� 28�14/k . Hence the probability that all of
the boxes are marked converges to 1 as the number of splits goes to infinity. To see
that we are on the right track, notice that this exponential decay of the probability of
fibering is consistent with the experimental data in Section 3.

We now head toward the proof of Lemma 8.3; before continuing, the reader may want
to review the notation of Section 5.9. First, if X is a nontrivial box with shift 0, and
then X 2 has a marked top. Moreover, we can create a box with shift 0 from any pair
of boxes A;B by taking the commutator X DA�B �A�1 �B�1 . Now, given our 7
boxes, it is not easy to create a commutator by the splitting moves; however, one thing
we can do is that if A;B;C are three of the boxes, then we can replace C with

(8.4) C 0 D C � .A�B �A�1
�B�1/2

by doing 8 splits. Roughly, if the box C is shorter than X DA�B �A�1 �B�1 then
the top of C 0 should come from the X 2 term, and hence C 0 will have a marked top as
well. We turn now to the details.

Proof of Lemma 8.3 Let B1;B2; : : : ;B7 be our initial boxes. Given the way split-
tings work, we can replace Bi with B�1

i without really changing anything, so let’s
normalize things so that the shifts satisfy si � 0. We will denote the top of Bi by ti .
Let A be the nontrivial Bi with largest top, which we denote ta . Pick two of the
remaining Bi , and denote them B and C . The splitting sequence we will use is: first
do the sequence of 8 splits replacing C by C 0 in (8.4); then for each Bi which is not
C 0 , do a split to replace Bi with Bi �C 0 .

To see that all boxes are marked at the end of this, first consider X DA�B�A�1�B�1 .
By choice of A, the top of X satisfies tx � ta � ti for all i . Then C 0 above has a
marked top coming from X 2 at height txC sc , where sc is the shift of C . Thus for
any Bi we have that Bi �C 0 has a marked top at height si C sc C tx since tx � ti .
Thus we can make all the boxes marked in only 14 splits.

8.5 Outline of the proof of the main theorems

With Theorem 8.2 in hand, we now explain how the approach generalizes to Theorem
2.4. As mentioned above, the difficulty we need to incorporate is that with interval
exchanges, we have much less freedom in how the boxes are changed at each step.
Despite this, the analog of Lemma 8.3 is still true. In Section 9, we prove that there is
a single “magic” splitting sequence which always gives marked boxes. Interestingly,
unlike Lemma 8.3, some assumptions must be made on the starting boxes for this
to be true; however, these always hold for those boxes arising in the algorithm of
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Section 7.6 (see Remark 9.8 for more). In the toy problem, going from Lemma 8.3
to Theorem 8.2 was essentially immediate. The key features were that each block
of 14 splits is independent of the others, and the desired splitting sequence always
has a definite probability of occurring. For interval exchanges, these things are more
subtle; essentially, what we need is that splitting complete genus 2 interval exchanges
is “normal”. This is shown in Section 10, relying on work of Kerckhoff [19]. Finally,
in Section 11 we assemble the pieces just discussed with work of Mirzakhani [23] to
complete the proof of Theorem 2.4.

9 The magic splitting sequence

This section is devoted to a lemma which is one of the central ingredients in the proof
of the main theorems. Suppose  is a connected curve on the boundary of our genus 2
handlebody H . Suppose  is carried by some interval exchange �0 . Roughly, we
show that if the splitting sequence of .�0;  / has a certain topological form, then the
tunnel number one 3–manifold M does not fiber over the circle. Before stating the
lemma, we discuss its precise context.

9.1 Complete interval exchanges

We will work with interval exchanges � in a surface † for which ML.�;R/ gives a
chart for ML.†/; in particular, we work with complete interval exchanges, which we
now define. Let † be a closed surface of genus at least 2. An interval exchange �
in † is called recurrent if there is a w 2ML.�;R/ where every band has positive
weight. For an interval exchange, the switch condition is that the sum of the weights of
the orientation reversing bands on the top is equal to the corresponding quantity for
the bottom. Thus, � is recurrent if and only if there are orientation reversing bands on
both sides, or no such bands at all. The exchange � is complete if it is recurrent, and
every complementary region is an ideal triangle. When � is complete, the natural map
ML.�;R/!ML.†/ is a homeomorphism onto its image; if we restrict the domain
to w which are nowhere zero, then we get a homeomorphism onto an open subset of
ML.†/. (When working with train tracks, one also requires transverse recurrence in
the definition of completeness. However, an easy application of [26, Corollary 1.3.5]
shows that any interval exchange is transversely recurrent.)

In what follows, the embedding of � into † is not really relevant. Thus, we will tend to
think of interval exchanges abstractly, that is, as not embedded in any particular surface.
If one presumes that the complementary regions of � are ideal polygons, then one can
reconstruct † from the combinatorics of � alone. Thus, it makes sense to speak of an
abstract interval exchange as being a complete interval exchange on a genus 2 surface.
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9.2 Statement of the lemma

Now let’s give the setup for the main result of this section. We are interested in
splitting sequences of interval exchanges. Suppose � is an interval exchange. Given
w 2ML.�;R/, as described in Section 7.3 we can split .�; w/ to .� 0; w0/, which is
denoted by .�; w/& .� 0; w0/. Independent of the choice for w , there are (at most) 3
distinct possibilities for � 0 ; in the notation of Figure 18, the 3 possibilities correspond
to wt >wb , wt <wb , and wt Dwb . We will use the notation �& � 0 to indicate that
.�; w/ splits to .� 0; w0/ for some w 2ML.�;R/.

From now on we will look at complete interval exchanges on a genus 2 surface. Of
special importance is the exchange shown in Figure 20, which we will call �0 . Suppose
we have a splitting sequence

S W �0& �1& �2& � � � & �n

where the �i are also complete genus 2 interval exchanges. For a multicurve  2
ML.�0;Z/, we say that  exhibits S if the initial part of the splitting sequence of
.�0;  / is

�0& �1& �3& � � � & �m

where the tail �m�n& �m�n& � � � & �m is abstractly isomorphic to S . The point of
this section is to prove:

9.3 Lemma There exists a splitting sequence of complete genus 2 interval exchanges

S W �0& �1& �2& � � � & �n

such that the following holds. Suppose  is a connected simple closed curve on @H
carried by a tightly labeled copy of �0 . If the splitting sequence for .�0;  / exhibits S ,
then the manifold M does not fiber over the circle.

Note that in the lemma  is allowed to be either separating or non-separating. The
splitting sequence S will be referred to as the magic splitting sequence. It is quite
complicated, and so even to describe it, we must first give another point of view on
splitting interval exchanges.

9.4 Flexible splitting of interval exchanges

Let � be an interval exchange with some initial measured lamination w 2ML.�;R/.
Let I D Œ0;L� be the base interval of the exchange. In the notation of Section 7.3,
during each splitting we reduce the length of I by min.wb; wt /. We now describe a
way of seeing the result of several splittings at once. Consider a subinterval J D Œ0;L0�
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for some L0 < L. Now take a knife to .�; w/ and begin to slice it starting at some
notch between bands, following the lamination as you go. Here J should be viewed
as indestructible, and when the knife collides with J you stop. Repeat for each of
the other notches until no more progress can be made. Thus we have created a new
pair .� 0; w0/ which describes the same lamination. Moreover .� 0; w0/ is a stage of the
splitting sequence for .�; w/, in particular the one right before the base interval shrinks
to a proper subinterval of J . In describing this cutting process, there is no need to cut
each notch down to J in one go — we can start somewhere, cut for a bit, and work
somewhere else before coming back to finish the job.

9.5 The magic sequence

We now describe the first part of the magic sequence, using the setup just given. In
Figure 21, we start in the upper left with �0 drawn as a train track; in this picture of
�0 the top and the bottom of the vertical segment are identified and this convention
persists throughout the figure. Also marked on �0 is the base interval I and the smaller
initial subinterval J . Figure 21 describes a splitting sequence S1 where we split
�0 down to J . The final train track is again the interval exchange �0 . A choice of
w 2ML.�0;R/ which induces this splitting is not indicated; it can be determined a
posteriori by choosing nowhere zero weights w0 on the final copy of �0 , and working
backwards up the sequence to determine w . In proving Lemma 9.3, it will be very
important to know what the labels (in the sense of Section 7.6) are on the final copy
of �0 . The initial �0 is labeled by fx; a; b; c; d; e; f g in �1.H /. When following
through what happens in Figure 21, you should view each label as sitting precisely
at the indicated arrow. The final labels are as follows, where AD a�1 , etc. and the
vertical bars should simply be ignored for now.

x0 DXCFBEADcf bead

a0 DDAEBFCdaebf jbead

b0 DDAEBFCdaejad

c0 DDAEBFCd j(9.6)

d 0 DXCFBEADjcx

e0 DXCFBEADcf jbfcx

f 0 DXCFBEADcf bejaebfcx

The second part of the magic splitting sequence is much easier to describe. Suppose
w 2ML.�0;R/ has larger weight on the x band than the c band. Then splitting one
step gives us �0 again. We refer to this as the stable splitting of �0 . Let S2 consist
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Figure 21: The first part S1 of the magic splitting sequence, which starts in
the top right with �0 , and ends in the bottom left with another copy of �0 .
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of repeating the stable splitting 6 times. The key properties of S2 that we will use
are as follows. The sequence S2 affects the labels by replacing a with Xax and the
same for b and c . Suppose the initial splitting sequence of some w 2ML.�0;R/

is S2 , what does that tell us about w? Let wx be the width of the x–band, and
wr D 2.waCwbCwc/ be the difference between the length of the base interval of �0

and the x–band. It is not hard to see that the splitting sequence for .�0; w/ starts off
with S2 if and only if wx � wr . More generally, the splitting sequence starts off with
n copies of S2 if and only if wx � nwr .

Finally, the magic sequence itself is

S D S1& S2& S2& S2& S2& S2& S2:

9.7 Proof of the lemma

We first outline the approach to proving Lemma 9.3. Recall the setup is that we are
given a connected curve  on @H carried by a tightly labeled copy of �0 . Supposing
the splitting sequence for .�0;  / exhibits S , then we need to show that M does
not fiber over the circle. If G D �1.M / D ha; b j RD 1i, for each epimorphism
�W G! Z we need to show that ker.�/ is infinitely generated. From now on, we view
� as fixed. Roughly, the strategy of the proof is we start with Box� labels on �0 as
in Section 7.6, and then split until the sequence S occurs. At that point, all the box
labels will have their tops marked in the sense of Section 5.9. Thus the relation R for
G coming from  is a product where each factor has Box� with a marked top. By
Lemma 5.14, the subgroup ker.�/ is then infinitely generated. For technical reasons,
the proof of the lemma deviates slightly from the above sketch, though we suspect it
could be made to work on the nose by (further) complicating S . We turn now to the
details.

Proof of Lemma 9.3 Continuing with the notation above, we can assume that the
initial splitting sequence of .�0;  / is S . Beyond the tightness restraint, the only thing
we need to show about the initial labels on �0 is that �.x/D 0, as follows. Consider
the curve � carried by �0 where the only nonzero weight is wx D 1. From the way �
divides up �0 , we see that � is a separating curve in @H . Thus the word x 2 �1.H /

associated to � lies in the commutator subgroup, and so �.x/D 0.

Now split .�0;  / along S1 , getting back to �0 with the labels as in (9.6). Next do the
S2 splitting twice, so that the we have new labels

a00 D .X 0/2a0.x0/2 b00 D .X 0/2b0.x0/2 c00 D .X 0/2c0.x0/2
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with the others unchanged. Changing tacks, rather than implement the 4 remaining S2

splits, we just use the fact noted above that this means that the x0 band is much wider
than all the other bands put together. In particular, we now split starting from the left
side of the base interval rather than the right, and do two analogs of the S2 splittings
there. This has the effect of changing the labels by

c00 D .x0/2c0.X 0/2 e00 D .x0/2e0.X 0/2 f 00 D .x0/2f 0.X 0/2

We claim that the boxes of a00; b00; c00; d 00; e00; f 00 all have marked tops. Consider for
instance

a00 D .DAEBFCdaebfcx/2 �DAEBFCdaebf jbead � .XCFBEADcf bead/2:

Now we have �.x0/D �.X 0/D 0, by the same argument that shows �.x/D 0. If we
look at the part of a00 lying to the left of the vertical line, we see a subword of .X 0/3

that is long enough so Lemma 5.15 implies that its box has a marked top. Similarly,
the right half of a00 also has a box with a marked top, and thus Box�.a00/ has a marked
top. The same argument works for all the other labels except x0 , where the division of
the word into two parts is indicated in (9.6).

To conclude the proof, it would be enough to know that Box�.x0/ has a marked top.
Rather than show this, first note that Box�..x0/n/ has a marked top for any n � 2.
We still have two S2 splits “left” that we haven’t used. This means the weight on the
x0 band is large enough that the places where the x0 band is attached on the top and
bottom have considerable overlap. As a result, anytime the curve  enters the x0 band
it goes around it at least twice before moving to a different band. Thus the defining
relation R for G is a (non-canceling) product of the words

a00; b00; c00; d 00; e00; f 00; .x0/n for n� 2

and their inverses. Since all of these have marked boxes, the subgroup ker.�/ is not
finitely generated by Lemma 5.14, completing the proof.

9.8 Remark The subtle issue in the proof is not that marked boxes tend to persist,
but why any marked boxes must be created in the first place. For the latter, the fact
that �.x/D 0 is crucial, as otherwise the box of a power like .x0/2 need not have a
marked top. We found situations where you start with a train track and put random box
labels on it so that no sequence of splitting operations can produce marked boxes on
all the bands.
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10 Ubiquity of splitting sequences

In this section, we study splitting sequences of complete genus 2 interval exchanges.
We show that certain finite splitting sequences (including the magic one) are ubiquitous
— in a suitable sense, they occur in the splitting sequence of almost every multicurve.
Before giving the precise statement, it is worth considering the analogous fact for
continued fractions. Let s1; s2; : : : ; sn be a sequence of positive integers. Given a
rational number p=q 2 Œ0; 1�, we can look at the partial quotients in its continued
fraction expansion. We can ask if the sequence fsig occurs as successive terms in these
partial quotients. In fact, the probability that this occurs goes to 1 as max.p; q/!1.
The point of this section is to prove the corresponding result, Theorem 10.1, for genus 2
interval exchanges.

Among complete interval exchanges on a genus 2 surface, we focus on the exchange �0

shown in Figure 20. Suppose we have a splitting sequence

S W �0& �1& �2& � � � & �n

where the �i are also complete genus 2 interval exchanges. As in the last section, for a
multicurve  2ML.�0;Z/, we say that  exhibits S if its splitting sequence contains
a copy of S . We will show that, asymptotically, the set of  in ML.�0;Z/ which
exhibit S has density 1. More precisely:

10.1 Theorem Let �0 be the complete genus 2 interval exchange specified above, and
S a splitting sequence of �0 consisting of complete interval exchanges. Set

S D f 2ML.�0;Z/ j  exhibits S g:

If U is a bounded open set in ML.�0;R/, then

# .S \ tU /

# .ML.�0;Z/\ tU /
! 1 as t !1:

This theorem may strike the reader as excessively narrow: what is so special about
genus 2 and this particular choice of �0 ? The choice of �0 can be broadened, but not
to the point where every complete genus 2 exchange can play its role. The restriction
to genus 2 is necessary for the proof as given; it is unclear to us if it is actually needed.
Both of these issues are discussed at length below. The proof of Theorem 10.1 is based
on applying a criterion of Steve Kerckhoff [19], which we discuss in the next two
subsections.
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10.2 Splitting interval exchanges as a dynamical system

The bulk of the proof of Theorem 10.1 will be carried out in a slightly different setting.
This subsection is devoted to describing this setting, and stating the analog therein of
Theorem 10.1. Let I be the set of complete genus 2 interval exchanges up to (abstract)
isomorphism. It is easy to see that any � 2 I has 7 bands, so I is finite. Consider the
set

X D
a
�2I

ML.�;R/:

with the measure coming from Lebesgue measure on each ML.�;R/. We can construct
a transformation of X by sending .�; w/ to its splitting .� 0; w0/. This is well-defined
provided � 0 is also complete; equivalently, we are not in the corner case where the
weights on the rightmost bands are equal, ie, wt D wb in the notation of Figure 18.
As this only concerns a measure 0 subset of X , we simply delete all .�; w/ in X

which pass through the corner case somewhere in their splitting sequence. (Although
we have just removed all the integral points which are the focus of Theorem 10.1,
this will not inconvenience us greatly.) Thus given a .�; w/ in X , we get an infinite
sequence � D �1& �2& � � � of elements of I . We are interested in the behavior of
this sequence for generic choices of the initial .�; w/, where here generic means except
for a measure 0 subset of X . The goal is to show that X with this transformation is
normal; that is, a finite splitting sequence

S W �1& �2& � � � & �n

which can happen must happen infinitely often for almost every .�; w/. Here, the
phrase “can happen” must be interpreted correctly, as we next discuss.

Make I into a directed graph by putting an edge from � to � 0 if � & � 0 . The splitting
sequence of some .�; w/ now corresponds to an infinite directed path in this graph. A
complication is that I is not directedly connected; that is, there are � and � 0 so that no
directed path starting at � ends at � 0 . In terms of our dynamical system X , this gives
rise to transient states which generically appear only finitely many times in a splitting
sequence. If � can be joined to � 0 by a directed path starting at � , we write � && � 0 .
Let

IS D f� 2 I j � && � for every � 2 I g;
which we refer to as the sink of I . A priori, I could be empty; for instance, this is the
case if I is not connected.

We now restrict attention to the subset of X sitting over the sink

XS D

a
�2IS

ML.�;R/

Geometry & Topology, Volume 10 (2006)



A random tunnel number one 3–manifold does not fiber over the circle 2487

which is closed under the splitting transformation. Our precise definition of normality
is:

10.3 Definition Suppose the sink IS is non-empty. Then the transformation on XS

is normal if every finite splitting sequence

�1& �2& � � � & �n which is contained in IS

occurs infinitely often in the splitting sequence of almost all .�; w/ 2XS .

We will show the following, which will easily imply Theorem 10.1:

10.4 Theorem As above, let XS be the set of weights on complete genus 2 interval
exchanges lying in the sink IS . Then the splitting transformation on XS is normal.
Moreover, �0 lies in the sink IS .

Our proof of Theorem 10.4 is a direct application of a normality criterion of Steve
Kerckhoff [19], which he used to prove the analogous result for classical interval
exchanges, namely those without orientation reversing bands. Readers familiar with
[19] may wonder why we are working with non-classical interval exchanges rather
than just using train tracks, as [19] states the analog of Theorem 10.1 for complete
train tracks in any genus. There are two reasons for this. The first is that using interval
exchanges makes it much easier to understand I explicitly. The other reason is that the
proof given in [19] for the train track case is incomplete. The proof there involves two
steps, the first is to establish that a certain combinatorial criterion implies normality,
and the second to check that this criterion holds for train tracks. The criterion, which
is the one we use here, is certainly strong enough to ensure normality; the problem
occurs in the second step, as the criterion is violated for certain explicit train tracks.
Kerckhoff informs us that he noticed this problem as well, and that there should be
a weaker combinatorial condition which still ensures normality but also holds in the
train track setting. Kerckhoff is planning on publishing a correction along these lines.

We turn now to the combinatorics of I and its sink. It turns out that there are 201 genus
2 interval exchanges in I , and 190 in the sink IS . Also, as mentioned above, �0 2 IS .
We checked this by brute force computer enumeration, and will not further justify these
facts here. This is not a difficult calculation, requiring only 100 lines of code and a few
minutes of computer time. The part that’s actually used in Theorem 10.1, namely that
�0 is in the sink of its connected component of I , is particularly straightforward: First,
start with �0 and keeps splitting until you don’t generate any new exchanges. Then for
each of the 190 exchanges so generated, check that you can split them all back to �0 .
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Enumerating all of I , in particular to see that it is connected, requires a little more
thought to set up. One approach is to think of a complete genus 2 interval exchange �
as constructed by starting with a disc and adding 7 bands. The boundary of the disc is
divided into 28 segments, alternating between a place where we attach a band, and a
gap between bands. Further, two of the gaps are distinguished because they form the
vertical sides of the thickened interval that is the base of the exchange; we call these
special gaps smoothed. If we ignore the smoothings, the complementary regions of �
are ideal polygons of valence either f3; 3; 3; 5g or f3; 3; 4; 4g. Conversely, provided
the complementary regions are of this form, choosing smoothings of gaps in the larger
complementary regions gives a genus 2 interval exchange. As there are only 135;135

possible gluings for the bands, one can simply try them all and thus calculate I .

For train tracks, the structure of I and its sink can also be quite complicated. For a
4–punctured sphere, for instance, the vast majority of the complete train tracks do not
lie in the sink. It would be quite interesting to answer the following question.

10.5 Question Find a type of train track like object where the elements of the sink
can be characterized topologically, and for which the corresponding dynamical system
is normal.

10.6 Normality after Kerckhoff

This subsection is devoted to the proof of Theorem 10.4. We begin by describing
Kerckhoff’s normality criterion. First, we will need to work with labeled interval
exchanges, that is, interval exchanges where the bands are labeled by integers from 1

to the number of bands. If � is a labeled exchange, and we split � to � 0 , the convention
for the labels on � 0 is as follows. The bands of � 0 that come unchanged from � retain
their labels; in the notation of Figure 18, the two modified bands t 0 and b0 get the
labels of t and b respectively.

The set of labeled complete genus 2 exchanges is of course finite, and we focus on
the subset I 0 where the underlying unlabeled exchange lies in the sink IS . Again, I 0
has structure of a directed graph with edges given by splittings. The forgetful map
I 0! IS is a covering map. Fix a connected component I 0

0
of I 0 ; the covering map

I 0
0
! IS is also surjective. (It appears that I 0 consists of two components.) We claim

that I 0
0

is its own sink. Call a directed graph strongly connected if for all vertices v1

and v2 , there is a directed path from v1 to v2 . What we need is equivalent to:

10.7 Lemma Let G be a finite strongly connected directed graph, and H ! G a
finite covering map. If H is connected then it is strongly connected.
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Proof A cycle in a directed graph is a union of edges which form a directed closed
loop, where no vertex is visited more than once. Observe that a connected directed
graph is strongly connected if and only if every edge is part of a cycle — the point
here is that going almost all the way around a cycle effectively allows us go backwards
along a directed edge. The result now follows by noting that the preimage of a cycle in
G is a disjoint union of cycles in H .

From now on, we work to show that

Z D
a
�2I0

0

ML.�;R/

with its splitting transformation is normal; this suffices to prove Theorem 10.4. We
now set up the terminology needed to state Kerckhoff’s normality criterion. Let � be a
labeled interval exchange. The rightmost places where the bands are glued on the top
and bottom are called the critical positions. The bands in those positions are called
the critical bands, and are denoted t and b respectively. During a splitting move, the
band whose width is reduced is said to be split by the other. For example, in Figure 18
where wt > wb , we say that t is split by b , or equivalently b splits t . A block is a
cycle in I 0

0
, that is, a splitting sequence

�1& �2& � � � & �n& �1

starting and ending at the same point. The key definition is as follows:

10.8 Definition A block is said to be isolating if we can partition the labels into
non-empty subsets V D fvig and W D fwj g such that:

(1) Every vi splits some vj and is split by some vk .

(2) No w splits a v .

Then we have:

10.9 Theorem (Kerckhoff) If there are no isolating blocks, then the splitting trans-
formation on Z is normal.

The way we have stated things differs slightly from [19], so we now say how to directly
connect our presentation to his work there (readers unfamiliar with [19] will want to
skip ahead to the proof of Theorem 10.4). First, the notion of an isolated block is
defined at the bottom of page 262 of [19]. It is given there in terms of a partition
of vertices of a simplex †. We have that ML.�;R/ is a convex cone which is the
intersection of R7

�0
with a hyperplane. Here the coordinates of R7

�0
correspond to the
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labeled bands. Kerckhoff’s simplex † is just the convex hull of the positive unit vectors
along each of the coordinate axes. Splitting the interval exchange corresponds to adding
vertices of †, as detailed in the proof of Prop. 1.4 of [19]. Theorem 10.9 above is
essentially just Theorem 2.1 of [19], with a slight modification because ML.�;R/
is not all of R7

�0
. This modification is justified in the 2nd paragraph of page 268 of

[19]. (The problem mentioned above with the proof of normality for train tracks occurs
later, namely in the proof of Proposition 2.2 of [19].) Finally, the notion of normality
is not precisely defined in [19], as it is a standard concept in dynamical systems. In
particular, there is no mention there of the graph structure of I or the need to focus on
splitting sequences lying in the sink. However, these notions are implicit in [19], see
in particular the second sentence of the proof of Corollary 1.9. We return now to the
matter at hand.

Proof of Theorem 10.4 The proof of this theorem is a little involved, but is purely
combinatorial, and essentially self-contained. By Theorem 10.9, we just need to show
that the splitting transformation on Z has no isolating blocks. Suppose to the contrary
we have a block

�1& �2& � � � & �n& �1

isolating band subsets V D fvig and W D fwj g as above. Throughout, we will think
of a �i as being specified by two lists of band labels, one each for the top and bottom
interval of the exchange. For instance, the standard exchange �0 is given by

�0 D
1234234

5675671
:

A statement like “vi lies to the right of wj ” means that one occurrence of vi lies to the
right of wj in its list. For �0 , both the statements “2 lies to the right of 3” and “3 lies
to the right of 2” are correct; they simply refer to different occurrences of the labels.
We begin with:

10.10 Lemma No w ever enters the critical position. Moreover, on both the top and
the bottom interval, every v lies to the right of every w .

Proof First, we argue as in Proposition 1.4 of [19] that no w ever enters one of the
critical positions. By axiom (1) of isolation, at some stage along the block both of the
critical positions are occupied by V bands. Reindexing, we can assume that this is the
case for �1 . Consider the largest k so that �k has a band wj in the critical position.
As a single splitting only changes one of the labels in the critical positions, the other
critical band for �k is some vi . As the next stage �kC1 has only V bands in the critical
positions, for �k & �kC1 we must have wj splitting vi , violating axiom (2). So no
wj ever enters a critical position.
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The rest of the proof of the lemma is based on considering the following quantity:

C D #
�
vi to the right of all wj on top

�
C #

�
vi to the right of all wj on bottom

�
:

How does C change as we split �k to �kC1 ? For notation, suppose vi splits vj . Then
the critical end of vi is removed, decreasing C by 1. On the other hand, the non-critical
end of vj is divided into two, and so overall either:

(a) The non-critical end of vj lies to the right of all wk , in which case C is
unchanged.

(b) The non-critical end of vj lies to left of some wk , and C decreases by 1.

Axiom (2) of isolation forces each vi to be split, and hence case (b) does occur
somewhere along the block. But as C is non-increasing, this gives a contradiction as
the block starts and ends at the same interval exchange, and so C must be unchanged
after running all the way through the block.

The above lemma says that �k splits up, in a certain sense, into two distinct interval
exchanges which have been stuck next to each other. Here one exchange consists of the
W bands, and the other of the V bands; we denote them by W and Vk respectively
(W is unchanging and so needs no subscript). For example, we might have:

(10.11)
w1w2w3w1jv1v2v3v1

w3w2jv4v3v2v4

:

Note that W and Vk may be quite degenerate as interval exchanges, in particular they
need not be recurrent. Moreover, this decomposition is purely at the combinatorial level;
a measure � 2ML.�k ;R/ is typically not the result of taking �w 2ML.W;R/ and
�v 2ML.Vk ;R/ and amalgamating them. We now work to acquire more information
about W and the Vk , eventually deriving a contradiction.

10.12 Lemma Both W and Vk have orientation reversing bands. Moreover, Vk has
such bands on both top and bottom.

Proof Suppose W has only orientation preserving bands. Then for all measure
laminations � 2ML.�k ;R/ the gaps on the top and bottom between the W bands
and the V bands line up exactly. Thus we can slice through �k at that point to
get a (generalized) train track carrying � which is the disjoint union of W and V .
Since the complementary regions to �k are ideal triangles, it follows that one of the
complementary regions to � is not an ideal triangle. But as this is true for every �, the
exchange �k cannot be complete as laminations with triangle complementary regions
are dense in ML.†/. So W has an orientation reversing band.

Geometry & Topology, Volume 10 (2006)



2492 Nathan M Dunfield and Dylan P Thurston

T

W

Vk

Figure 22: Splitting apart W and Vk results in amalgamating two vertices
of the triangle T into a punctured monogon.

The same argument shows that Vk must have an orientation reversing band. Suppose it
has such a band only on one side, say the top. As it is not possible to create a reversing
band without a reversing band on the same side, it follows that none of the Vk have a
reversing band on the bottom. Since there are no reversing bands on the bottom, we
cannot ever decrease the number of such bands on the top. As the block starts and
ends at the same exchange, it follows that the number of reversing bands is constant
throughout. However, by axiom (1), at some point one of the reversing bands is split,
necessarily by an orientation preserving band; as this increases the number of reversing
bands, we have a contradiction. So each Vk must have orientation reversing bands on
both sides.

What are the complementary regions of W and Vk , thought of as abstract interval
exchange? If we slice across to separate �k into W and Vk , we amalgamate two ideal
triangles at a pair of vertices. As this cutting separates �k into two pieces, in fact
we must be amalgamating two ideal vertices of the same ideal triangle, as shown in
Figure 22. Thus the complementary regions to W or Vk are all ideal triangles with
one exceptional region, which we call the outside region. One of the outside regions is
an ideal monogon, and the other is smooth. Next, we use this to show:

10.13 Lemma The exchange W has at least 3 bands, and Vk has at least 4 bands.

Proof Let’s begin with W , which we know has an orientation reversing band. If
W has only that one band, then the outside complementary region is smooth, but
the interior complementary region is an ideal monogon. So we must add a second
band with one end glued inside the monogon to “break” it. There are two possibilities
depending on whether the second band reverses or preserves orientation, but these have
outside regions a triangle and digon respectively. So W must have at least three bands.
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Turning to VK , we know it has orientation reversing bands on both sides. The only
way to get rid of the associated interior monogons by adding a single additional band is

v1v2v1

v3v2v3

which has a digon complementary region. So Vk needs at least 4 bands.

Now, a complete genus 2 exchange has 7 bands, so it follows from the lemma that
Vk consists of exactly 4 bands. We still have work to do, as the example of (10.11) is
consistent with what we know so far. To conclude the proof, we consider the possible
choices for the number r of reversing bands of Vk .

r D 4: To avoid interior monogons, we must have two bands on each side, interlocking
to form

v1v2v1v2

v3v4v3v4

:

But then the only complementary region is a hexagon. So no Vk has r D 4.

r D 3: Since we have reversing bands on both sides, we can assume we have two
such bands on the top and one on the bottom. The top reversing bands must
interlock since we have only a single additional orientation preserving band to
break any interior monogons and digons. Thus we must have

v1v2v1v2

v3v4v3

where the top end of v4 has not yet been attached. There are 5 possibilities
for the placement of v4 , and an easy check shows that all of them have the
wrong complementary regions. Thus no Vk has r D 3:

r D 2: As the example of (10.11) shows, this is possible as a stand-alone exchange;
we argue instead that such an exchange cannot lie in a isolating block — that
is, to return to where we start in a block we must involve some of the W

bands. By Lemma 10.12 and the above cases, we must have that every Vk

has exactly two reversing bands, one on each side. But by axiom (1) at some
point a reversing band is split, which either creates or destroys an orientation
reversing band, a contradiction.

Thus we have ruled out all possibilities for an isolating block, proving the theorem.

10.14 Remark For surfaces of higher genus, it seems very likely that there are
isolating blocks. Indeed, in genus 3 take

W D
w1w2w3w1

w4w3w2w4
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and let V1 be a complete exchange for a once punctured genus 2 surface. If the monogon
complementary region is in the right place, then �1 DW [V1 is a complete genus 3
exchange. If V1 is in some closed strongly connected subgraph of such exchanges,
then completeness will allow us to construct a splitting sequence of V1 back to itself
which satisfies axiom (1). What is not entirely clear is whether this isolating block is
in the sink for genus 3 exchanges.

10.15 Proof of Theorem 10.1

We end this section by deriving Theorem 10.1 from Theorem 10.4.

Proof of Theorem 10.1 As in the statement of the theorem, let �0 be our particular
complete genus 2 exchange, and S some splitting sequence of �0 consisting of complete
exchanges. Set

S D f 2ML.�0;Z/ j  exhibits S g:

Let U be a bounded open set in ML.�0;R/. We need to show

# .S \ tU /

# .ML.�0;Z/\ tU /
! 1 as t !1:

Let Vm be the set of � 2ML.�0;R/ such that the splitting sequence of � passes
through S ending at the mth stage. The set Vm is defined by a sequence of strict
inequalities in the weights of the bands in the successive critical positions; in particular,
it is open. If we set V D

S
Vm , then by Theorem 10.4, the complement of V has

measure 0 in ML.�0;R/. Moreover, as S DML.�0;Z/\V and V is invariant under
positive scaling

S \ tU DML.�0;Z/\V \ tU DML.�0;Z/\ t.V \U /:

# .S \ tU /

# .ML.�0;Z/\ tU /
D

#
�
.V \U /\ t�1ML.�0;Z/

�
#
�
U \ t�1ML.�0;Z/

�Therefore

D
t�6 � #

�
.V \U /\ t�1ML.�0;Z/

�
t�6 � #

�
U \ t�1ML.�0;Z/

�
As t !1, the top and bottom of the right-hand fraction converge to the Lebesgue
measures of V \U and U respectively, since these sets are open. As the complement
of V has measure 0, the sets V \U and U have the same measure. Hence the fraction
limits to 1 as t !1, completing the proof.
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11 Proof of the main theorems

Here, we complete the proofs of Theorems 2.4 and 2.5. In addition to the results of
Sections 9 and 10, we need one additional ingredient, which says that specific types of
multicurves, eg, connected non-separating curves, have positive density in the set of all
multicurves:

11.1 Theorem (Mirzakhani) Let † be a closed surface of genus g � 2. Fix a
multicurve  2ML.†;Z/. Consider the set C DMCG.†/ �  of all multicurves in †
of the same topological type. Then for every bounded open subset U of ML.†;R/
we have:

# .C \ tU /

# .ML.†;Z/\ tU /
! d 2

1

�6g�6
Q;

where d is positive and independent of U .

For us, the exact value of d will not be important, merely the fact that it is positive;
however, Mirzakhani does provide a recursive procedure for computing it. The above
theorem is a slight restatement of Theorem 6.4 of [23] where we have set d D c=bg;0

in the notation there, and rewritten the measure �t; in terms of # .ML.†;Z/\ tU /

rather than t6g�6 via the proof of Theorem 3.1 of [23].

Let us now recall the statement of Theorem 2.4 and the notation of Section 2.3. Let H

be our genus 2 handlebody, and fix Dehn–Thurston coordinates

.w˛; wˇ; wı; �˛; �ˇ; �ı/

for @H compatible with H as discussed in Section 2.3 and shown in Figure 3. We are
interested in the set T of attaching curves  � @H parameterizing tunnel number one
3–manifolds with one boundary component, where  satisfies the restrictions:

(1)  is a non-separating simple closed curve.

(2) The weights w˛; wı; wˇ are > 0.

(3) Each twist satisfies 0� � < w .

(4) wı �min.2w˛; 2wˇ/.

We then consider the finite set T .r/ of  2 T where w˛Cwˇ < r . Theorem 2.4 is
that the probability that M 2 T .r/ fibers over S1 goes to 0 as r !1.

To prove this, we first reinterpret the setup in the context of ML.@H;R/. The Dehn–
Thurston coordinates on ML.@H;Z/ have natural extensions to coordinates on all
of ML.@H;R/ [26, Theorem 3.11], which we denote in the same way. Let W �
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ML.@H;R/ consist of measured laminations satisfying conditions (2–4) above. The
subset W is a polyhedral cone in ML.@H;R/Š R6 with some faces removed. Set

G D f 2ML.†;Z/ j  is connected and non-separating g:

We have T DW \G , and if we let U be the open subset of ML.@H;R/ defined by
w˛Cwˇ < r then

T .r/D T \ rU DW \G \ rU:

A slightly more general result immediately implying Theorem 2.4 is:

11.2 Theorem Let U �ML.@H;R/ be an open set such that W \U is bounded.
Then the probability that M fibers over the circle for  2 T \rU goes to 0 as r!1 .

The rest of this section is devoted to the proof of Theorem 11.2. The proof of Theorem
2.5 which concerns tunnel number one 3–manifolds with two boundary components is
identical if one simply replaces all occurrences of “non-separating” with “separating”.

Proof of Theorem 11.2 Let S be the magic splitting sequence of Lemma 9.3. Let S
consist of those laminations � 2ML.@H;R/ which can be carried by some tightly
labeled interval exchange � where the splitting sequence of .�; �/ exhibits S . By
Lemma 9.3, for  2 S \ T the manifold M does not fiber. So if Sc denotes the
complement of S , it suffices to show

(11.3)
# .Sc \ T \ rU /

# .T \ rU /
! 0 as r !1:

We next show that Theorem 11.1 allows us to replace T with ML.@H;Z/\V in the
above limit, where V DW \U . In particular

# .Sc \ T \ rU /

# .T \ rU /
�

# .Sc \ML.†;Z/\ rV /

# .G \ rV /

D
# .Sc \ML.†;Z/\ rV /

# .ML.†;Z/\ rV /
�

# .ML.†;Z/\ rV /

# .G \ rV /

By Theorem 11.1, the second factor in the final expression converges to a positive
number as r !1. Thus to show (11.3) it suffices to prove

(11.4)
# .Sc \ML.@H;Z/\ rV /

# .ML.@H;Z/\ rV /
! 0 as r !1:

Now by Lemma 7.9, W is covered by a countable collection of charts ML.�;R/
where � is one of the standard tightly labeled interval exchanges. In each chart,
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the proof of Theorem 10.1 shows that Theorem 10.4 gives a homogeneous open set
Y� �ML.�;R/\S whose complement in ML.�;R/ has measure 0. Then

Y D
[
�

int.Y� /� S

is an open subset of W whose complement has measure 0. As in the proof of Theorem
10.1, it is easy to show that

(11.5)
# .Y c \ML.@H;Z/\ rV /

# .ML.@H;Z/\ rV /
! 0 as r !1;

since the top and bottom converge to the Lebesgue measure of Y c \V and V respec-
tively. This implies (11.4) and hence the theorem.
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