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STABILITY FOR STRONGLY COUPLED CRITICAL ELLIPTIC SYSTEMS
IN A FULLY INHOMOGENEOUS MEDIUM

OLIVIER DRUET AND EMMANUEL HEBEY

We investigate and prove analytic stability for strongly coupled critical elliptic systems in the inhomo-
geneous context of a compact Riemannian manifold.

Coupled systems of nonlinear Schrödinger equations are now a part of several important branches of
mathematical physics. They appear in the Hartree–Fock theory for Bose–Einstein double condensates,
in fiber-optic theory, in the theory of Langmuir waves in plasma physics, and in the behavior of deep
water waves and freak waves in the ocean. A general reference book on such systems and their role in
physics has been written by Ablowitz et al. [2004]. We focus here on coupled Gross–Pitaevskii type
equations. These systems of equations are strongly related to two branches of mathematical physics.
They arise [Burke et al. 1997] in the Hartree–Fock theory for double condensates, which are binary
mixtures of Bose–Einstein condensates in two different hyperfine states. They also arise in the study of
incoherent solitons in nonlinear optics, as describe in [Akhmediev and Ankiewicz 1998; Christodoulides
et al. 1997; Hioe 1999; Hioe and Salter 2002; Kanna and Lakshmanan 2001]. Looking for standing
wave solutions for these time evolution systems gives rise to their elliptic analogues that we investigate
here. We consider these elliptic systems of equations in arbitrary dimensions n≥ 3, in the critical energy
regime, and in a fully inhomogeneous medium that we model by an arbitrary compact Riemannian
manifold, thus breaking the various symmetries that these systems enjoy in the Euclidean setting.

In what follows we let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. For
p ≥ 1 an integer, we let M s

p(R) denote the vector space of symmetrical p× p real matrices, and A be
a C1 map from M to M s

p(R). We can write A = (Ai j )i, j , where the Ai j ’s are C1 real valued functions
in M . Let1g =− divg ∇ be the Laplace–Beltrami operator on M . Let also H 1(M) be the Sobolev space
of functions in L2(M) with one derivative in L2(M). A p-map U= (u1, . . . , u p) from M to Rp is said
to be nonnegative if ui ≥ 0 for all i . The coupled system of nonlinear Schrödinger equations we consider
here is written as

1gui +

p∑
j=1

Ai j (x)u j = |U|
2?−2ui (0-1)

in M for all i , where |U|2 =
∑p

i=1 u2
i , and 2? = 2n/(n − 2) is the critical Sobolev exponent for the

embeddings of the Sobolev space H 1(M) into Lebesgue’s spaces. The systems (0-1) are weakly coupled
by the linear matrix A, and strongly coupled by the Gross–Pitaevskii type nonlinearity in the right hand
side of (0-1). Besides, (0-1) is critical for Sobolev embeddings. From the viewpoint of conformal
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geometry, our systems are pure extensions of Yamabe type equations in the strongly coupled regime. As
a by-product (0-1) inherits a conformal structure.

Our aim in this paper is to discuss stability for systems like (0-1). Contrary to time evolution equations,
where perturbations of the initial data together with perturbations of the equations are used to measure
stability, stability for elliptic equations has to do solely with perturbations of the equations. In the
framework of systems such as (0-1), stability is naturally measured with respect to perturbations of the
map A. In what follows, a system like (0-1) is said to be analytically stable if for any sequence (Aα)α of
maps from M to M s

p(R), α ∈N, and for any bounded sequence in H 1 of nonnegative nontrivial solutions
Uα of the associated systems (0-1), if Aα→ A in C1 as α→+∞, then, up to a subsequence, Uα→U

in C2 as α→+∞ for some nonnegative nontrivial solution U of (0-1). When the strong convergence
in C2 is replaced by a weak convergence Uα ⇀ U in H 1, the system (0-1) is said to be weakly stable.
We refer to Section 1 for more precise definitions.

Before stating our theorem we need to introduce two assumptions. Let 1g be the Laplace–Beltrami
operator acting on p-maps by acting on each of the components of the map, and let Vect+(Rp) be the
set of vectors in Rp with nonnegative components. The first assumption we may impose is

Ker(1g + A) ∩ L2(M,Vect+(Rp))= {0}, (H)

where Ker(1g+ A) is the kernel of 1g+ A, and L2(M,Vect+(Rp)) stands for the set of L2 maps from
M to Vect+(Rp). In order to introduce our second assumption we let An = An(A) be given by

An = A− n−2
4(n−1)

Sg Idp, (0-2)

where Sg is the scalar curvature of g, and Idp is the identity p× p matrix. For x ∈ M , let also IsAn(x) be
the set consisting of the isotropic vectors for An(x), namely of the vectors X ∈ Rp which are such that
〈An(x).X, X〉Rp = 0, where 〈·, ·〉Rp is the Euclidean scalar product in Rp. The second assumption we
introduce is that for any x ∈ M , An(x) should not possess stable subspaces with an orthonormal basis
consisting of isotropic nonnegative vectors. More precisely, it is this:

For any x ∈ M and any k ∈ {1, . . . , p}, there does not exist an orthonormal family
(e1, . . . , ek) of vectors in IsAn(x) ∩Vect+(Rp) such that An(x)V ⊂ V , where V is
the k-dimensional subspace of Rp with basis (e1, . . . , ek).

(H′)

The case k = 1 in (H′) reduces to the nonexistence of a nontrivial vector in Vect+(Rp)∩Ker An(x),
where Ker An(x) is the kernel of An(x). An assumption like (H′) is automatically satisfied in several
simple situations. This is the case if we prevent the existence of isotropic vectors for An . In particular,
(H′) holds true if An(x) > 0 or An(x) < 0 for all x in the sense of bilinear forms. Clearly there are
other cases where (H′) holds true. Assumption (H) is analytic in nature. Assumption (H′) is algebraic
in nature and related to the underlying geometric conformal structure of the equations. Our main result,
establishing analytic stability for (0-1), is stated as follows.

Theorem 0.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n≥4 and p≥1 be an
integer. For any C1-map A : M→ M s

p(R) satisfying (H) and (H′), the system (0-1) is analytically stable
when n 6= 6, and weakly stable when n = 6. Besides, there are examples of six-dimensional manifolds
and C1-maps A satisfying (H) and (H′) for which (0-1) is analytically unstable.
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A closely related notion to stability is that of compactness. A system like (0-1) is said to be compact
if bounded sequences in H 1 of nonnegative solutions of (0-1) converge, up to a subsequence, in the C2-
topology. As is easily seen, analytic stability implies compactness. In particular, as a direct consequence
of the analytic stability part in our theorem, we get that systems like (0-1) are compact when n 6= 6 as
soon as (H) and (H′) are satisfied. Assumptions (H) and (H′) in Theorem 0.1 are sharp, as discussed in
Section 1 below.

Most of the asymptotic analysis developed in this paper carries over to the n = 3 case. However,
the concluding argument needs to be changed when n = 3. In this dimension the mass of the Green’s
expansion of the Schrödinger operator1g+A leads over An . We can conclude when the mass is positive.
The analysis is developed in [Druet et al. 2009].

The paper is organized as follows. We discuss general properties of stability and compactness in
Section 1. We prove the n = 6 part of Theorem 0.1 in Section 2. We provide a complete classification
of H 1-nonnegative solutions of the strongly coupled critical limit Euclidean system 1ui = |U|

2?−2ui ,
i = 1, . . . , p, in Section 3. We prove Theorem 0.1 in its n 6= 6 part in Sections 4 to 10. In the process we
establish in Sections 5, 6, and 8 the full C0-theory for the blow-up of arbitrary sequences of solutions of
strongly coupled systems like (0-1).

1. General considerations on stability and compactness

We start with the precise definition of elliptic stability we use for our systems (0-1). As already mentioned
stability is here measured with respect to perturbations of the parameter A in (0-1). In doing so we
preserve the conformal structure of the equation. Historically speaking such type of perturbations were
first considered in the early work of Aubin [1976] on the Yamabe equation. Given (Aα)α a sequence of
C1 maps from M to M s

p(R), with Aα = (Aαi j )i, j for all α integer, we consider the systems

1gui +

p∑
j=1

Aαi j (x)u j = |U|
2?−2ui . (1-1)

A sequence (Uα)α of C2 maps from M to Rp is said to be a sequence of nonnegative solutions of (1-1) if
for any α ∈N, Uα = (uα1 , . . . , uαp) solves (0-1) and uαi ≥ 0 for all i . The sequence is said to be bounded
in H 1(M), or to have finite energy, if its components ui

α are all bounded in H 1(M) with respect to α.
Given 3 > 0, we define the slice S3A to be the set of p-maps U ∈ H 1 such that U solves (0-1), U is
nonnegative and the H 1-norm of U is less than or equal to 3. By standard regularity, adapting classical
arguments from Trudinger [1968], weak solutions in H 1 of systems like (0-1) are always of class C2. In
particular, S3A ⊂ C2 for all 3> 0. For X, Y ⊂ C2 we let d ↪→C2 (X; Y ) be the C2-pointed distance from X
to Y defined by

d ↪→C2 (X; Y )= sup
U∈X

inf
V∈Y
‖V−U‖C2, (1-2)

where ‖V−U‖C2 =
∑

i ‖vi − ui‖C2 and the ui ’s and vi ’s are the components of U and V. Stability in
the elliptic regime is defined in Definition 1.1 below. The C1 convergence Aα → A in Definition 1.1
refers to the C1 convergence of the components Aαi j of Aα to the components Ai j of A. Similarly, the C2

convergences, and the weak convergences in H 1, of the Uα’s in Definition 1.1 refer to the convergences
of the components of the maps.
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Definition 1.1. Let (M, g) be a smooth compact Riemannian manifold, let p ≥ 1 be an integer, and let
A : M→ M s

p(R) be a C1 map. The system (0-1) is said to be

(i) analytically stable if for any sequence (Aα)α of C1 maps from M to M s
p(R) such that Aα → A

in C1(M) as α→+∞, and for any bounded sequence (Uα)α in H 1(M) of nonnegative nontriv-
ial solutions of (1-1), there exists a nonnegative nontrivial solution U of (0-1) such that, up to a
subsequence, the Uα’s converge strongly to U in C2(M) as α→+∞, and

(ii) weakly stable if for any sequence (Aα)α of C1 maps from M to M s
p(R) such that Aα→ A in C1(M)

as α→+∞ and for any bounded sequence (Uα)α in H 1(M) of nonnegative nontrivial solutions of
(1-1), there exists a nonnegative nontrivial solution U of (0-1) such that, up to a subsequence, the
Uα’s converge weakly to U in H 1(M) as α→+∞.

The system is said to be geometrically stable, if the slices S3A are stable for all 3> 0, where S3A is said
to be stable, if for any ε > 0, there exists δ > 0 such that for any C1 map A′ from M to M s

p(R), we have
d ↪→C2 (S

3
A′;S

3
A) < ε when ‖A′− A‖C1 < δ.

As already mentioned, a classical notion in the study of critical elliptic equations is that of compact-
ness. A system like (0-1) is said to be compact if any bounded sequence (Uα)α in H 1(M) of nonnegative
nontrivial solutions of (0-1) converges in C2(M) as α→+∞ to a nonnegative nontrivial solution U of
(0-1). This corresponds to the particular situation where Aα = A for all α in (i). Analytic stability as
defined in (i) implies weak stability, geometric stability, and compactness. More precisely:

Proposition 1.2. Assume (H). If the system (0-1) is analytically stable, it is weakly stable, geometrically
stable, and compact. A compact system is analytically stable if and only if it is geometrically stable.

Proof. It is obvious that analytic stability implies weak stability, geometric stability, and compactness.
The only assertion, which deserves to be proved, is that a compact geometrically stable system like (0-1)
is analytically stable. Let (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in
C1(M) as α→+∞, and let (Uα)α be a bounded sequence in H 1 of nonnegative nontrivial solutions of
(1-1). Since (0-1) is geometrically stable there exists (Vα)α, a bounded sequence in H 1 of nonnegative
solutions of (0-1), such that, up to a subsequence, Uα−Vα converges to zero in C2 as α→+∞. Since
(0-1) is compact, up to a subsequence, Vα→ V in C2 as α→+∞, where V is a nonnegative solution
of (0-1). In particular, up to a subsequence, Uα→ V in C2 as α→+∞. It remains to prove that V is
nontrivial, and this is given by Lemma 1.3 below. Proposition 1.2 is proved. �

The following lemma, which we derive as a direct consequence of (H), was used in the proof of
Proposition 1.2. By standard elliptic theory, moreover, when A satisfies (H), we have Uα 6→ 0 in H 1 as
α→+∞.

Lemma 1.3. Let (M, g) be a smooth compact Riemannian manifold, let p ≥ 1 be an integer, and let
A : M→ M s

p(R) be a C1 map satisfying (H). Let (Aα)α be a sequence of C1 maps from M to M s
p(R)

such that Aα→ A in C1(M) as α→+∞, and let (Uα)α be a bounded sequence in H 1 of nonnegative
nontrivial solutions of (1-1). Then Uα 6→ 0 in L∞(M) as α→+∞.

Proof. By contradiction we assume that there exists (Uα)α, a bounded sequence in H 1 of nonnegative
nontrivial solutions of (1-1), such that maxM |Uα|6→ 0 as α→+∞, where |Uα|6 =

∑
i ui,α is the sum

of the components of the Uα’s. Let εα = |Uα|6 and define vi,α by vi,α = ε
−1
α ui,α for all i and α. Then
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1gvi,α +

p∑
j=1

Aαi j (x)v j,α = ε
4/(n−2)
α |Vα|

2?−2vi,α (1-3)

for all i and α, where Vα is the p-map whose components are the vi,α’s for i = 1, . . . , p. By construction
the vi,α’s are bounded in L∞(M). By standard elliptic theory it follows that, up to a subsequence, they
converge in C2(M) to vi ’s as α→+∞. Let V be the p-map with components vi for i = 1, . . . , p. By
construction V is nonnegative and nontrivial, since there is one point, where |V|6 equals one. Letting
α→+∞ in (1-3) it follows that V ∈ Ker(1g + A), and we get a contradiction with (H). �

Proposition 1.2 leaves open the question of whether or not there exist geometrically stable noncompact
systems like (0-1). However, we can have noncompact systems with geometrically stable specific slices
as discussed below. The most well-known example of a noncompact critical system like (0-1) is given by
the Yamabe equation on the sphere. The Yamabe equation on the n-sphere possesses a (n+1)-parameter
noncompact family of solutions and it turns out that it is also geometrically unstable. This is a direct
consequence of the constructions in [Druet and Hebey 2005a], where arbitrarily high energy solutions
of approximated equations are constructed, together with the property that all nonnegative nontrivial
solutions of the Yamabe equation on the sphere have the same energy. On the other hand, the first blow-
up slice for this equation is geometrically H 1-stable in the sense of Definition 1.1 when we replace the
C2-pointed distance and the C2-norm in (1-2) by a H 1-pointed distance and a H 1-norm, where the first
blow-up slice is given by 3 = K 2

n , and Kn is as in (3-8). This geometric H 1-stability of the first blow-
up slice follows from H 1-decompositions as in Proposition 4.2. As a direct consequence, noncompact
equations may have stable slices.

In the subcritical regime, compactness goes back to [Gidas and Spruck 1981]. In the more involved
critical regime, it goes back to Schoen’s conjecture [Schoen 1989; 1991] that compactness holds true
for the geometric Yamabe equation as soon as the background manifold is distinct from the sphere. His
conjecture has been a source of motivations for several years. The conjecture was proved to be true for
conformally flat manifolds by Schoen [1989; 1991]. The nonconformally flat case turned out to be more
intricate. The case of low-dimensional manifolds was recently addressed in [Druet 2004; Marques 2005;
Li and Zhu 1999; Li and Zhang 2004; 2005], and compactness up to dimension 24 was finally proved
recently [Khuri et al. 2009]. On the other hand, Brendle [2008a] and Brendle and Marques [2009]
exhibited counterexamples to the conjecture in dimensions n ≥ 25. For any n ≥ 25 they constructed
examples of nonconformally flat n-manifolds with the striking property that their associated Yamabe
equations possess sequences of solutions with minimal type energy and unbounded L∞-norms. In par-
ticular, they proved the very surprising result that the compactness conjecture is false for nonconformally
flat manifolds in any dimension n ≥ 25. A very interesting survey on the subject is [Brendle 2008b]. We
refer also to [Druet and Hebey 2005b].

An easy remark is that if u is a solution of a scalar Yamabe type equation with linear term h, that is,
an equation of the form

1gu+ h(x)u = u2?−1, (1-4)

then U =
( 1
√

p u, . . . , 1
√

p u
)

is a solution of (0-1) when Ai j = hai j for all i, j , and
∑p

j=1 ai j = 1 for
all i . In what follows we let (ai j )i, j be a symmetrical matrix of C1 functions ai j : M → R such that∑p

j=1 ai j (x)= 1 for all i = 1, . . . , p and all x ∈ M . A possible choice is ai j = δi j for all i, j . Then we
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define A(g) and A′(g) to be the C1 maps from M to M s
p(R) given by

A(g)i j =
n−2

4(n−1)
Sgai j and A′(g)i j =

n−2
4(n−1)

(max
M

Sg)ai j

for all i, j = 1, . . . , p, where Sg is the scalar curvature of g. By combining results in [Brendle 2008a;
Brendle and Marques 2009], where noncompactness of the Yamabe equation in the nonconformally flat
case is investigated, and those in [Druet and Hebey 2005a; Hebey and Vaugon 2001], where unstability
of Yamabe type equations in the conformally flat case is investigated, we obtain the following theorem,
in view of the remark above.

Theorem 1.4. The system (0-1) associated with A(g) is analytically unstable when posed on spherical
spaces forms in any dimension n ≥ 6, and even noncompact when posed on the sphere in any dimension
n ≥ 3. For any conformally flat manifold (M, g) of dimension n ≥ 4 there exists a conformal metric
g̃ to g of nonconstant scalar curvature having one and only one maximum point such that the system
(0-1) associated with A′(g̃) is analytically unstable. In any dimension n ≥ 25 there are examples of
nonconformally flat manifolds such that the system (0-1) associated with A(g) is noncompact, and thus
also analytically unstable.

The examples in Theorem 1.4 do not satisfy (H′). This can be checked by noting that (1, . . . , 1) ∈
Ker An(x) for all x , where An is as in (0-2). Theorem 0.1 and Theorem 1.4 complement each other. As a
remark, the Yamabe equation on quotients of the sphere is obviously compact since it possesses a unique
solution. In particular, there are compact equations which are neither analytically nor geometrically
stable. Compactness does not imply stability. We concentrate in the rest of this section on the subcritical
regime for systems like (0-1) and prove that analytic stability holds true in the subcritical regime without
assuming (H′). Let q ∈ (2, 2?) and let us consider the subcritical system

1gui +

p∑
j=1

Ai j (x)u j = |U|
q−2ui (1-5)

in M for all i , where A = (Ai j )i, j is a C1 map from M to M s
p(R). We define the notions of analytic

stability, weak stability, and geometric stability for (1-5) as in Definition 1.1.

Proposition 1.5. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and A : M→ M s

p(R) be a C1 map satisfying (H). For any q ∈ (2, 2?) the subcritical system
(1-5) is analytically stable.

Proof. Let (Aα)α be a sequence of C1 maps from M to M s
p(R) such that Aα→ A in C1(M) as α→+∞,

and let (Uα)α be an arbitrary bounded sequence in H 1 of nonnegative nontrivial solutions of

1gui,α +

p∑
j=1

Aαi j (x)u j,α = |Uα|
q−2ui,α (1-6)

for all i and all α. We aim in proving that a subsequence of (Uα)α converges in C2 to a nonnegative
nontrivial solution of (1-6). The nontriviality of any strong limit follows from (H) mimicking the proof
of Lemma 1.3. Then, as is easily checked, it suffices to prove that the Uα’s are L∞-bounded in M .
By contradiction we assume that there exists a sequence (xα)α of points, where the |Uα|’s are maximum
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such that, up to a subsequence, |Uα(xα)|→+∞ as α→+∞. Let µα = |Uα(xα)|−(q−2)/2. Then µα→ 0
as α→+∞. Let Ũα be given for x ∈ Rn by

Ũα(x)= µ2/(q−2)
α Uα

(
expxα (µαx)

)
and let gα be the metric given by gα(x) = (exp?xα g)(µαx). We have gα→ ξ in C2

loc(R
n) as α→+∞,

where ξ is the Euclidean metric. Noting that

1gα ũi,α +µ
2
α

p∑
j=1

Aαi j
(
expxα (µαx)

)
ũ j,α = |Ũα|

q−2ũi,α

for all i and α, since |Ũα| ≤ 1 for all α by construction, it follows from standard elliptic theory that there
exists Ũ ∈ C2(Rn) such that, up to a subsequence, Ũα→ Ũ in C2

loc(R
n). We have |Ũα(0)| = 1 for all α.

Hence, |Ũ(0)| = 1. Moreover, for any R > 0, and for α sufficiently large,∫
B0(R)
|Ũ|qdx ≤ C

∫
B0(R)
|Ũα|

qdvgα

≤ C
∫

B0(1/µα)
|Ũα|

qdvgα = Cµ2q/(q−2)−n
α

∫
Bxα (1)

|Uα|
qdvg ≤ Cµ2q/(q−2)−n

α ,

since the Uα’s have bounded energy. Noting that 2q/(q−2)>n as soon as q<2? and letting α→+∞ in
the inequality above, we get

∫
B0(R)
|Ũ|qdx = 0. This is in contradiction with |Ũ(0)| = 1. The proposition

is proved. �

Analytic stability for critical equations like (1-4) has been investigated in [Druet 2003]. The case
p = 1 in Theorem 0.1, in its n 6= 6 part and when considering C2,θ -perturbations of h, was proved in
the same paper. The proof we propose here extends to the case of systems, allows us to consider C0,η-
perturbations of h, see the remark at the end of Section 10, and is more direct. At the time of [Druet
2003], analytic stability was still referred to as compactness. The confusion in the terminology has been
the source of several misunderstandings.

2. The six-dimensional case

We discuss and prove the six-dimensional last assertion in Theorem 0.1 concerning the existence of
systems like (0-1) in dimension n = 6, which satisfy (H) and (H′), but which, contrary to what happens
when n 6= 6, are not analytically stable. We restrict ourselves to a very explicit construction in the case
of the unit sphere (S6, g0). A more general discussion could have been developed. We let (ai j )i, j be a
symmetrical matrix of C1 functions ai j : S6

→ R such that
∑p

j=1 ai j (x) = 1 for all i = 1, . . . , p and
all x ∈ S6. If h : S6

→ R is of class C1, we define A(h) to be the C1 map from S6 to M s
p(R) with

components A(h)i j given by A(h)i j = hai j for all i, j = 1, . . . , p. When n = 6, we have 2? = 3. For the
unit sphere (S6, g0), we also have

n−2
4(n−1)

Sg0 = 6.

Proposition 2.1. Let (S6, g0) be the unit six-dimensional sphere in R7. There exists h : S6
→ R, h > 6

everywhere and of class C1, such that the system (0-1) associated with A= A(h) is analytically unstable.
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Proof. We fix x0 ∈ S6 and let r be the distance to x0. We let also θ be given by θ = cos r . First we claim
that there exist smooth positive functions h and u in S6, which we write into the form h(x)= ĥ(θ) and
u(x)= û(θ), such that

1g0u+ hu = u2 and h > 6 (2-1)

in S6, and such that
ĥ(1)= 3û(1), û(1)= 6 and ĥ′(1)= 2û′(1). (2-2)

To prove the claim we let û be given by

û(θ)= 6
(
1− 2(θ−1)+ 3(θ−1)2

)
. (2-3)

Clearly, û(1)= 6 and û′(1)=−12. Since 1g0θ = 6θ and |∇θ |2 = 1− θ2, we get
1
61g0u = 6(7θ2

− 8θ − 1).

In particular, the first equation in (2-1) is satisfied if we let ĥ be given by

1
6 ĥ(θ)= 3θ2

− 8θ + 6− 7θ2
−8θ−1

3θ2−8θ+6
. (2-4)

As is easily checked from (2-4), ĥ(1)= 3û(1) and ĥ′(1)= 2û′(1). In particular, (2-2) holds true. Noting
that ĥ > 6 for all θ ∈ [−1,+1], we get two explicit smooth positive functions h and u in S6, given by
(2-3) and (2-4), such that (2-1) and (2-2) hold true. This proves the above claim. Now, for β > 1, we
define Bβ by Bβ(x)= B̂β(θ), where

B̂β(θ)= 6(β2
− 1)(β − θ)−2.

We have 1g0 Bβ + 6Bβ = B2
β in S6. Let

uβ = u+ Bβ (2-5)

and ûβ = û + B̂β , where u and û are as in (2-1) and (2-2). As is easily checked from (2-1) and the
equation satisfied by Bβ , we have

1g0uβ + hβuβ = u2
β (2-6)

in S6 for all β > 1, where hβ = ĥβ(θ) is given by

ĥβ = ĥ−
(12û+6−ĥ)B̂β

û+ B̂β
. (2-7)

Noting, thanks to (2-2), that hβ→ h in C0
loc(S

6) as β→ 1, while ĥ′β→ ĥ′ in L∞
(
[−1,+1]

)
as β→ 1,

we conclude that hβ → h in C1(S6). Now we let (βα)α be a sequence of positive real numbers such
that βα > 1 for all α and βα → 1 as α→+∞. We let Uα = p−1/2(uβα , . . . , uβα ), Aα = A(hβα ), and
A = A(h) where uβ is given by (2-5), hβ = ĥβ(θ) is given by (2-7), and h = ĥ(θ) is given by (2-4).
The Uα’s solve (1-1), they have bounded energy, and Aα → A in C1. Noting that ‖Uα‖∞→+∞ as
α→+∞, this proves the proposition. �

It is easily checked that A = A(h) satisfies (H). If U ∈ L2(M,Vect+(Rp)) is in the kernel of the
vector Schrödinger operator associated with A(h), we conclude by summing over the components that
|U|6 =

∑p
i=1 ui belongs to Ker(1g0 + h). This is impossible unless U≡ 0 since h > 0. It is also easily

seen that, at least for small perturbations ai j of δi j , the map A = A(h) satisfies (H′).
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3. The limit system

Of importance in blow-up theory, when discussing critical equations, is the classification of the solutions
of the critical limit Euclidean system we get by blowing up the original equations. In our case, we need
to classify the Ḣ 1-nonnegative solutions of the limit system

1ui = |U|
2?−2ui , (3-1)

where |U|2 =
∑p

i=1 u2
i , and 1=−

∑n
i=1 ∂

2/∂x2
i is the Euclidean Laplace–Beltrami operator . Depend-

ing on the context, we let Ḣ 1(Rn) be the homogeneous Sobolev space defined as the completion of
functions with compact supports, or of p-maps with compact supports, with respect to the L2-norm of
their gradient. The classification result we prove here is stated as follows.

Proposition 3.1. Let p≥ 1 and U∈ Ḣ 1(Rn) be a nonnegative solution of (3-1). Then there exist a ∈Rn ,
λ > 0, and 3 ∈ S p−1

+ , such that

U(x)=

(
λ

λ2+
|x−a|2

n(n−2)

)(n−2)/2

3 (3-2)

for all x ∈ Rn , where S p−1
+ consists of those elements (31, . . . , 3p) in the unit sphere S p−1 (in Rp) that

satisfy 3i ≥ 0 for all i .

We prove Proposition 3.1 in several steps. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1).
Regularity theory and the maximum principle apply to (3-1). In particular, U is necessarily smooth with
the property that for any i , either ui ≡ 0 or ui > 0 in Rn . We may therefore assume that there exists
p′ ≤ p such that ui > 0 in Rn for all i = 1, . . . , p′. A first step in the proof of Proposition 3.1 is as
follows.

Step 1. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for all i = 1, . . . , p′,
p′ ≤ p. Then, for any R > 0,

min
∂B0(R)

ui

u j
≤

ui

u j
≤ max
∂B0(R)

ui

u j
(3-3)

in B0(R) for all i, j ∈ {1, . . . , p′}.

Proof of Step 1. By (3-1),

1
( ui

u j

)
= 2

(
∇

( ui
u j

)
,∇u j

)
u−1

j .

Applying the maximum principle we get (3-3). �

The main objective now is to prove that

min
∂B0(R)

ui
u j
→ λi, j and max

∂B0(R)

ui
u j
→ λi, j (3-4)

as R → +∞ for some λi, j > 0 so that, together with Step 1, we obtain ui = λi, j u j in Rn for all
i, j = 1, . . . p′. To prove (3-4) we first observe that

|x |(n−2)/2ui (x)→ 0 (3-5)
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as |x |→+∞ for all i ∈{1, . . . , p′}. Indeed, let r>0, and Vr =r (n−2)/2U (r x). We have1Vr =|Vr |
2?−2Vr

and ∫
B0(2)\B0(1/2)

|Vr |
2? dx→ 0 as r→+∞,

since ui ∈ L2?(R) for all i . Then vi
r→ 0 in C0

loc

(
B0
( 3

2

)
\ B0

( 3
4

))
as r→+∞ for all i , where the vi

r ’s are
the components of Vr . This proves (3-5). Now, in order to prove (3-4), we prove that the following step
holds true.

Step 2. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for all i = 1, . . . , p′,
p′ ≤ p. For any 0< ε < 1

2 , there exists Cε > 0 such that

ui (x)≤ Cε|x |(2−n)(1−ε)

for all x ∈ Rn and all i ∈ {1, . . . , p′}.

Proof of Step 2. Let 0< ε < 1
2 and Rε > 0 be such that

sup
x∈Rn\B0(Rε)

|x |2|U (x)|2
?
−2
≤
(n− 2)2

2
ε(1− ε).

It is always possible to find such a Rε thanks to (3-5). For R ≥ Rε, we let

η(R)= max
i=1,...,p′

max
∂B0(R)

ui

and

Gε(x)= η(Rε)
(
|x |
Rε

)(2−n)(1−ε)
+ η(R)

(
|x |
R

)(2−n)ε
.

It is clear that ui ≤ Gε on ∂B0(Rε)
⋃
∂B0(R). Let us assume that ui

Gε
possesses a local maximum at

x ∈ B0(R) \ B0(Rε). Then
1ui (x)
ui (x)

≥
1Gε(x)
Gε(x))

.

Since
1Gε(x)
Gε(x)

= ε(1− ε)(n− 2)2|x |−2,

we get
|x |2|U (x)|2

?
−2
≥ ε(1− ε)(n− 2)2.

But this is absurd by the choice of Rε we made. Thus we can write, for any R> Rε and any i ∈{1, . . . , p′},

ui (x)≤ η(Rε)
(
|x |
Rε

)(2−n)(1−ε)
+ η(R)

(
|x |
R

)(2−n)ε
(3-6)

in B0(R) \ B0(Rε). Fix x ∈ Rn
\ B0(Rε). Passing to the limit as R → +∞ in (3-6), since, by (3-5),

R(n−2)/2η(R)→ 0 as R→+∞, we get

ui (x)≤ η(Rε)
(
|x |
Rε

)(2−n)(1−ε)
.

This ends the proof of Step 2. �
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Step 3. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for all i = 1, . . . , p′,
p′ ≤ p. Then ui ∈ L2?−1(Rn) and

lim
|x |→+∞

|x |n−2ui (x)=
1

(n− 2)ωn−1

∫
Rn
|U |2

?
−2ui dx

for all i ∈ {1, . . . , p′}.

Proof of Step 3. We apply Green’s representation formula in Bx(R) and get

ui (x)=
1

(n− 2)ωn−1

∫
Bx (R)

(
|x − y|2−n

− R2−n)
|U (y)|2

?
−2ui (y) dy+

1
ωn−1 Rn−1

∫
∂Bx (R)

ui dσ.

Thanks to the estimate of Step 2 with 0 < ε < 2/(n+ 2), we have ui ∈ L2?−1(Rn) for all i . Passing to
the limit as R→+∞ we obtain

ui (x)=
1

(n− 2)ωn−1

∫
Rn
|x − y|2−n

|U (y)|2
?
−2ui (y) dy.

Thus

|x |n−2ui (x)

=
1

(n− 2)ωn−1

∫
Rn

|x |n−2

|x−y|n−2 |U (y)|
2?−2ui (y) dy

=
1

(n− 2)ωn−1

(∫
B0(R)
|U (y)|2

?
−2ui (y) dy+ oR(1)+

∫
Rn\B0(R)

|x |n−2

|x−y|n−2 |U (y)|
2?−2ui (y) dy

)
,

where oR(1)→ 0 as |x | → +∞. Now, using Step 2, we write∫
Rn\B0(R)

|x |n−2

|x − y|n−2 |U (y)|
2?−2ui (y) dy

≤ N (2?−2)/2C2?−1
ε

∫
Bx (|x |/2)

|x |n−2

|x − y|n−2 dy
(
|x |
2

)−(n+2)(1−ε)
+ 2n−2

∫
Rn\B0(R)

|U (y)|2
?
−2ui (y) dy

≤ N (2?−2)/2C2?−1
ε 2(n+2)(1−ε)−2ωn−1|x |n−(n+2)(1−ε)

+ 2n−2
∫

Rn\B0(R)
|U (y)|2

?
−2ui (y) dy.

Choosing 0< ε < 2
n+2

, we thus obtain that

lim
R→+∞

lim sup
|x |→+∞

∫
Rn\B0(R)

|x |n−2

|x − y|n−2 |U (y)|
2?−2ui (y) dy = 0.

This ends the proof of Step 3. �

Using Steps 1 and 3 we are now in a position to prove (3-4), and then Proposition 3.1.

Proof of Proposition 3.1. Let U ∈ Ḣ 1(Rn) be a nonnegative solution of (3-1) such that ui > 0 in Rn for
all i = 1, . . . , p′, p′ ≤ p. Since the ui ’s are all positive for i = 1, . . . , p′, we get from Step 3 that

min
∂B0(R)

ui

u j
, max
∂B0(R)

ui

u j
→ λi, j
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as R→+∞, where λi, j > 0 is given by

λi, j =

∫
Rn |U |2

?
−2ui dx∫

Rn |U |2
?−2u j dx

.

In particular, (3-4) holds true. Thanks to Step 1, we thus get

ui = λi u1

for all i ∈ {1, . . . , p′} where λi = λi,1. By (3-1) we then get

1u1 = |3
′
|
2?−2u2?−1

1

in Rn where 3′ = (λi )i=1,...,p′ . By [Caffarelli et al. 1989] we can write

u1(x)= |3′|−1

( µ

µ2+
|x−x0|

2

n(n−2)

)(n−2)/2

(3-7)

for some x0 ∈ Rn and some µ> 0. In particular, since ui = λi u1, we get with (3-7) that (3-2) holds true
with 3 = (3i )i , where 3i = |3

′
|
−1λi for all i = 1, . . . , p′, and λi = 0 for all i > p′. Clearly, |3| = 1.

This ends the proof of Proposition 3.1. �

Let Kn be the sharp constant for the Sobolev inequality ‖u‖2? ≤ K‖∇u‖2 corresponding to the em-
bedding Ḣ 1(Rn)⊂ L2?(Rn). Then, as is well known,

Kn =

√
4

n(n− 2)ω2/n
n
, (3-8)

where ωn is the volume of the unit sphere. The multipliers in (3-2), which we get by taking the Euclidean
norm |U| of U in (3-2), turn out to be extremal functions for the sharp Euclidean Sobolev inequality
‖u‖2? ≤ Kn‖∇u‖2. As a direct consequence of Proposition 3.1 we then get∫

Rn
|U|2

?

dx = K−n
n (3-9)

for all nonnegative solutions U ∈ Ḣ 1(Rn) of (3-1), where Kn is as in (3-8). Proposition 3.1, combined
with the moving sphere approach, gives the full classification of nonnegative solutions of (3-1), namely
without the requirement that U ∈ Ḣ 1. This is carried out in [Druet et al. 2009].

4. Weak pointwise estimates

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be an integer, and
(xα)α be a converging sequence of points in M . Let also (λα)α be a sequence of positive real numbers.
For U : M→ Rp and V : Rn

→ Rp, we define the direct R̂λαxα -rescalings and the inverse Řλαxα -rescalings
by (

R̂λαxα U
)
(x)= λ(n−2)/2

α U(expxα (λαx)) and
(
Řλαxα V

)
(x)= λ(n−2)/2

α V(λα exp−1
xα (x)), (4-1)

where x in the first equation is a variable in Rn , x in the second equation is a variable in M , localized
around the limit of the xα’s, and expxα is the exponential map at xα.
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Definition 4.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3 and p ≥ 1
be an integer. A p-vector bubble is a sequence (Bα)α of p-maps from M to Rp given by

Bα(x)=

( µα

µ2
α +

dg(xα, x)2

n(n−2)

)(n−2)/2

3 (4-2)

for all x ∈ M and all α, where (xα)α is a converging sequence of points in M , (µα)α is a sequence of
positive real numbers converging to 0, and 3 ∈ S p−1

+ . The xα’s are the centers of the bubble, the µα’s
are the weights of the bubble, and 3 is the S p−1-projection of the bubble.

The right-hand side in (4-2) can be seen as the Riemannian extension of the right-hand side in (3-2).
At last we let u0 : R

n
→ R be the function given by

u0(x)=
(

1+
|x |2

n(n− 2)

)−(n−2)/2

(4-3)

for all x ∈Rn . Another possible definition of u0 is that it is the unique nonnegative solution of1u=u2?−1

which achieves its maximum at 0 and which is such that u0(0) = 1. The result we prove in this section
provides a complete description of the blow-up in Sobolev spaces and very useful pointwise estimates.

Proposition 4.2. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in C1(M) as
α → +∞ for some C1 map A from M to M s

p(R). Let also (Uα)α be an arbitrary bounded sequence
in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. Then there exist
N ∈N?, a nonnegative solution U∞ of (0-1), and vector bubbles (Bi

α)α as in (4-2) for i = 1, . . . , N , such
that, up to a subsequence,

Uα =U∞+

N∑
i=1

Bi
α +Rα for all α,∫

M
|Uα|

2?dvg =

∫
M
|U∞|

2?dvg + N K−n
n + o(1) for all α, and

D(n−2)/2
α

∣∣∣∣Uα −U∞−

N∑
i=1

Bi
α

∣∣∣∣→ 0 in L∞(M) as α→+∞,

(4-4)

where Rα→ 0 in H 1(M) as α→+∞, o(1)→ 0 as α→+∞, Kn is as in (3-8), Dα : M→ R+ is given
by

Dα(x)= min
i=1,...,N

(
dg(xi,α, x)+µi,α

)
,

and the xi,α’s andµi,α’s are the centers and weights of the vector bubbles (Bi
α)α. Moreover, as α→+∞,

dg(xi,α, x j,α)
2

µi,αµ j,α
+
µi,α

µ j,α
+
µ j,α

µi,α
→+∞ for all i 6= j and

R̂µi,α
xi,α Uα→ u03i in C2

loc(R
n
\Si ) for all i,

(4-5)
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where the R̂µαxα -rescaling procedure is defined in (4-1), u0 is as in (4-3), the3i ’s are the S p−1-projections
of the (Bi

α)α’s,

Si =

{
lim

α→+∞
µ−1

i,α exp−1
xi,α
(x j,α), j ∈ Ii

}
,

the limits in the definition of Si are as α → +∞, and Ii consists of the j’s such that dg(xi,α, x j,α) =

O(µi,α) and µ j,α = o(µi,α) for all α.

Proof. Let Iα be the free functionals associated with (0-1). They are defined for U ∈ H 1(M) by

Iα(U)=
1
2

∫
M

(
|∇U|2+ Aα(U,U)

)
dvg −

1
2?

∫
M
|U|2

?

dvg.

The Uα’s in Proposition 4.2 solve (0-1) and are bounded in H 1. In particular, (Uα)α is a Palais–Smale
sequence for the Iα’s in the sense that the sequence (Iα(Uα))α is bounded and DIα(Uα)→ 0 in H 1(M)′

as α→+∞. Let η be a smooth cutoff function in Rn with small support around 0. Mimicking the proof
in [Struwe 1984] (see also [Druet et al. 2004] for its Riemannian analogue), we get that there exist N ∈N?,
a nonnegative solution U∞ of (0-1), converging sequences (xi,α)α in M , sequences (µi,α)α of positive
real numbers converging to 0, and nonnegative solutions Ui ∈ Ḣ 1(Rn) of (3-1) in Rn , i = 1, . . . , N , such
that, up to a subsequence, the first equation in (4-5) holds true, such that

Uα =U∞+

N∑
i=1

ηi
α Ř1/µi,α

xi,α Ui +Rα (4-6)

for all α, and such that∫
M
|Uα|

2?dvg =

∫
M
|U∞|

2?dvg +

N∑
i=1

∫
Rn
|Ui |

2?dx + o(1) (4-7)

for all α, where ηi
α(x)= η(exp−1

xi,α
(x)), the Ř1/µi,α

xi,α -rescalings are defined in (4-1), Rα→ 0 in H 1(M) as
α→+∞, and o(1)→ 0 as α→+∞. By Proposition 3.1,

Ui (x)=

(
λi

λ2
i +
|x−ai |

n(n−2)

)(n−2)/2

3i (4-8)

for some ai ∈ Rn , λi > 0, 3i ∈ S p−1
+ , and all x ∈ Rn . Up to changing the xi,α’s and µi,α’s, letting

x̃i,α = expxi,α
(µi,αai ) and µ̃i,α = λiµi,α, we can write, as in [Druet and Hebey 2005b], that

ηi
α Ř1/µi,α

xi,α Ui =Bi
α +Rα (4-9)

for all α, where Ui is as in (4-8), Rα→ 0 in H 1(M) as α→+∞, and (Bi
α)α is the vector bubble with

center x̃i,α, weight µ̃i,α, and S p−1-projection 3i . Noting that the changes xi,α→ x̃i,α and µi,α→ µ̃i,α

do not affect the first equation in (4-5), it follows from the above discussion, from (3-9), and from (4-6),
(4-7), and (4-9), that the two first equations in (4-4) and the first equation in (4-5) hold true. Now we
forget about the tilde notation for the centers and weights of the bubbles and, for i = 1, . . . , N , we let
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Si be as in Proposition 4.2. As one can check from the first equations in (4-4) and (4-5), for any i ,

R̂µi,α
xi,α

N∑
j=1

B j
α→ u03i in L∞loc(R

n
\Si ) and R̂µi,α

xi,α Uα − R̂µi,α
xi,α

N∑
j=1

B j
α→ 0 in L2?

loc(R
n) (4-10)

as α→+∞, where the R̂µi,α
xi,α -rescalings are defined in (4-1), 3i is the S p−1-projection of (Bi

α)α, and u0

is as in (4-3). Moreover, in any compact subset of Rn , and for α sufficiently large,

1gα ũi,α +µ
2
i,α

p∑
j=1

Ãαi j (x)ũ j,α = |Ũα|
2?−2ũi,α (4-11)

for all α and all i , where the ũi,α’s are the components of Ũα = R̂µi,α
xi,α Uα,

Ãαi j (x)= Aαi j (expxi,α
(µi,αx)),

and gα is the Riemannian metric in Rn given by gα(x)= (exp?xi,α
g)(µi,αx). Since µi,α→ 0 as α→+∞,

we get that gα → ξ in C2
loc(R

n) as α → +∞, where ξ is the Euclidean metric. By (4-10), for any
x ∈ Rn

\Si ,

lim
δ→0

lim sup
α→+∞

∫
Bx (δ)

|R̂µi,α
xi,α Uα|

2?dx = 0. (4-12)

In particular, the L2?-norm of R̂µi,α
xi,α Uα can be made uniformly arbitrarily small in small regions of

Rn
\Si , and by adapting and transposing the classical regularity argument [Trudinger 1968] to the present

situation (see also [Struwe 1990]) we get from (4-11) and (4-12) that the Ũα’s are uniformly bounded
in C2,θ

loc (R
n
\Si ). It easily follows that, up to a subsequence, the second equation in (4-5) also holds true.

Now it remains to prove that the third equation in (4-4) holds true. We proceed by contradiction and
assume that there exists ε0 > 0 and a sequence (xα)α in M such that, up to a subsequence,

Dα(xα)2
∣∣∣∣Uα(xα)−U∞(xα)−

N∑
i=1

Bi
α(xα)

∣∣∣∣2?−2

=max
M

D2
α

∣∣∣∣Uα −U∞−

N∑
i=1

Bi
α

∣∣∣∣2?−2

≥ 4ε0 (4-13)

for all α. First we claim that
Dα(xα)2|Bi

α(xα)|
2?−2
→ 0 (4-14)

as α→+∞, for all i = 1, . . . , N . In order to prove (4-14) we proceed by contradiction and assume that
there exists i = 1, . . . , N and ε1 > 0 such that, up to a subsequence,

Dα(xα)2|Bi
α(xα)|

2?−2
≥ ε1 (4-15)

for all α. Up to passing to another subsequence we may then assume that there is λ∈ [0,+∞) such that

dg(xi,α, xα)
µi,α

→ λ as α→+∞, and
µ j,α

µi,α
+

dg(x j,α, xα)
µi,α

≥
√
ε1 for all α and j. (4-16)

Then, letting yα =µ−1
i,α exp−1

xi,α
(xα), we get from the second equation in (4-16) that there exists ε > 0 such

that d(yα,Si )≥ ε for all α, and it follows from the second equation in (4-5) that

Dα(xα)2
∣∣Uα(xα)−U∞(xα)−Bi

α(xα)
∣∣2?−2
→ 0 as α→+∞. (4-17)
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By the first equation in (4-5), and by (4-16), we can also write

Dα(xα)2
∣∣B j

α(xα)
∣∣2?−2
→ 0 (4-18)

as α→+∞, for all j 6= i . Combining (4-17) and (4-18) we get a contradiction with (4-13). It follows
that (4-14) holds true. Next we claim that

|Uα(xα)| → +∞ as α→+∞. (4-19)

By (4-13) and (4-14), we see that (4-19) holds if Dα(xα)→ 0 as α→ +∞. Suppose on the contrary
that, up to a subsequence, Dα(xα)→ δ as α→+∞ for some δ > 0. Then, by (4-13) and (4-14),∣∣Uα(x)−U∞(x)

∣∣2?−2
+ o(1)≤ 8

∣∣Uα(xα)−U∞(xα)
∣∣2?−2
+ o(1) (4-20)

for all x ∈ Bxα (δ/2) and all α sufficiently large. Now, if we assume that (4-19) is false, then we get from
(4-20) that the Uα’s are bounded in a neighbourhood of the xα’s, and it follows from standard elliptic
theory that Uα(xα)−U∞(xα)→ 0 as α→+∞. Noting that this convergence of the (Uα −U∞)(xα)’s
is in contradiction with (4-13) and (4-14), we obtain (4-19).

Now let the µα’s be given by µ1−(n/2)
α = |Uα(xα)| for all α, and define the Vα’s by Vα = R̂µαxα Uα,

where the R̂µαxα -rescalings are defined in (4-1). Then,

1gαvi,α +µ
2
α

p∑
j=1

Âαi j (x)v j,α = |Vα|
2?−2vi,α (4-21)

in B0(δ/µα) for all α, where the vi,α’s are the components of Vα, the Âαi j ’s are given by Âαi j (x) =
Aαi j (expxα (µαx)), and gα is given by gα(x)= (exp?xα g)(µαx). From (4-19) we have µα→0 as α→+∞.
In particular, gα→ ξ in C2

loc(R
n) as α→+∞. We also have |Vα(0)| = 1 for all α. Noting that the Vα’s

are bounded in Ḣ 1(Rn), we may assume that, up to a subsequence, Vα ⇀ V∞ weakly in H 1
loc(R

n) as
α→+∞ for some V∞ ∈ H 1(Rn) that solves (3-1). Let S̃ be given by

S̃=

{
lim

α→+∞

1
µα

exp−1
xα (xi,α) : i ∈ J

}
,

where J consists of the i = 1, . . . , N which are such that dg(xi,α, xα)= O(µα) and µi,α = o(µα) for all
α. In what follows we let K bRn

\S̃ be a compact subset of Rn
\S̃, and let x ∈ K . By (4-13) and (4-14)

we have∣∣∣∣Vα(x)−µ(n−2)/2
α U∞(yα)−µ(n−2)/2

α

N∑
i=1

3i Bi,α(yα)
∣∣∣∣2?−2

≤

(
Dα(xα)
Dα(yα)

)2

(1+ o(1))+ o(1), (4-22)

where yα = expxα (µαx) for all α, 3i is the S p−1-projection of (Bi
α)α for all i , and Bi,α = |B

i
α| for all α

and i . Now we claim that
µ(n−2)/2
α |Bi,α(yα)| → 0 (4-23)

as α→+∞, for all i = 1, . . . , N . Equation (4-23) is obvious if µα = o(µi,α). On the other hand, if we
assume that µi,α = o(µα), then, since dξ (x, S̃) > 0, we get µα = O(dg(xi,α, yα)). Here again, (4-23)
holds true. At last we may assume that there exists C > 0 such that C−1µα ≤ µi,α ≤ Cµα for all α.
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Then (4-23) holds true unless dg(xi,α, yα)= O(µi,α). In this case we have dg(xi,α, xα)= O(µi,α), and it
follows that |Bi,α(xα)|/|Uα(xα)| 6→ 0 as α→+∞. Combining (4-13) and (4-14) we get a contradiction,
and it follows that (4-23) holds true. In particular, by (4-19), (4-22), and (4-23), we can write

|Vα(x)|2
?
−2
≤

(
Dα(xα)
Dα(yα)

)2

(1+ o(1))+ o(1). (4-24)

At this point we claim that
Dα(xα)= O(Dα(yα)). (4-25)

We prove (4-25) by contradiction and assume that

dg(xi,α, yα)+µi,α = o(Dα(xα)). (4-26)

If dg(xi,α, xα)/µα→+∞ as α→+∞, then

dg(xi,α, yα)+µi,α ≥ (1+ o(1))dg(xi,α, xα)+µi,α ≥ (1+ o(1))Dα(xα),

and this contradicts (4-26). Hence, dg(xi,α, xα)= O(µα). Then, by (4-26),

dg(xi,α, yα)+µi,α = o(µα)+ o(µi,α). (4-27)

In particular, dg(xi,α, yα)= o(µα). Since x ∈ K , this implies in turn that µα = O(µi,α), and we get with
(4-27) that µi,α + o(µi,α)= 0, another contradiction. This proves (4-25). By (4-24) and (4-25), for any
compact subset K b Rn

\S̃, there exists CK > 0 such that |Vα| ≤ CK in K . In particular, by standard
elliptic theory and (4-21), we get

Vα→ V∞ in C2
loc(R

n
\S̃) as α→+∞. (4-28)

Clearly 0 6∈ S̃ since, if not the case, Dα(xα)= o(µα) and we get a contradiction with (4-13). Thus, since
|Vα(0)| = 1 for all α, we see that |V∞(0)| = 1 and V∞ 6≡ 0 is not identically zero. By Proposition 3.1 it
follows that there exists a ∈ Rn , λ > 0, and 3 ∈ S p−1

+ , such that

V∞(x)=

(
λ

λ2+
|x−a|

n(n−2)

)(n−2)/2

3 (4-29)

for all x ∈Rn . Let K bRn
\S̃ be a nonempty compact subset of Rn

\S̃. By the first equation in (4-4) and
by (4-23), we can write Vα→ 0 in L2?(K ) as α→+∞. Then, by (4-28), we get

∫
K |V∞|

2?dx = 0, a
contradiction with (4-29). Proposition 4.2 is proved. �

5. A first strong pointwise estimate

We prove pointwise estimates on the Uα’s which we use as the initial step in the induction argument we
develop in the next section. First we fix some notations. We let (Uα)α be an arbitrary bounded sequence
in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. Proposition 4.2
applies to the Uα’s. We let S be the set of the geometrical points of the Uα’s. Then,

S=
{

lim
α→+∞

xi,α : i = 1, . . . , N
}
, (5-1)
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where all the limits do exist, up to a subsequence. For δ > 0 small enough, we let

ηα(δ)= max
M\

⋃N
i=1 Bxi,α (δ)

|Uα|. (5-2)

Thanks to the last equation in (4-4) of Proposition 4.2

lim sup
α→+∞

ηα(δ)≤ ‖U∞‖∞. (5-3)

Moreover, by standard elliptic theory, for any δ′ > δ,

max
M\

⋃N
i=1 Bxi,α (δ

′)
|∇Uα|g = O(ηα(δ)). (5-4)

In what follows we let R0 > 0 be such that for any i = 1, . . . , N ,

|x | ≤
R0

2
(5-5)

for all x ∈ Si , where Si is as in Proposition 4.2. We also set

µα = max
i∈{1,...,N }

µi,α, and rα(x)= min
i∈{1,...,N }

dg(xi,α, x). (5-6)

The pointwise estimate we prove in this section is stated as follows.

Proposition 5.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in C1(M) as
α→+∞ for some C1 map A from M to M s

p(R) satisfying (H). Let also (Uα)α be an arbitrary bounded
sequence in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. There
exists C1 > 0 such that, up to passing to a subsequence on the Uα’s, there holds that for any sequence
(xα)α of points in M , ∣∣Uα(xα)−U∞(xα)

∣∣≤ C1µ
(n−2)/2
α Dα(xα)2−n

+ εα‖U∞‖∞, (5-7)

where Dα and U∞ are as in Proposition 4.2, µα is as in (5-6), and εα→ 0 as α→+∞.

We divide the proof of Proposition 5.1 into two steps.

Step 1. For any 0< ε < 1
2 , there exist Rε > 0, δε > 0 and Cε > 0 such that

|Uα(x)| ≤ Cε
(
µ(1−2ε)(n−2)/2
α rα(x)(2−n)(1−ε)

+ ηα(δε)rα(x)(2−n)ε)
for all α and all x ∈ M \

⋃N
i=1 Bxi,α (Rεµi,α).

Proof of Step 1. Let 0< ε < 1
2 . Consider G the Green’s function of the operator u 7→1gu+u. We know

(see [Druet et al. 2004], for example) that there exist γ1 > 1, γ2 > 0 and γ3 > 0 such that for any distinct
x, y ∈ M ,

1
γ1
≤ dg(x, y)n−2G(x, y)≤ γ1 (5-8)

and
|∇G(x, y)|2

G(x, y)2
≥ γ2dg(x, y)−2

− γ3, (5-9)
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where ∇ in (5-9) is with respect to one of the two variables, for instance y. We let

9α,ε(x)= µ(1−2ε)(n−2)/2
α

N∑
i=1

G(xi,α, x)1−ε + ηα(δ)
N∑

i=1

G(xi,α, x)ε,

and let yα ∈ M \
⋃N

i=1 Bxi,α (Rµi,α) be such that

max
M\

⋃p
i=1 Bxi,α (Rµi,α)

∑p
i=1 ui,α

9α,ε
=

∑N
i=1 ui,α

9α,ε
(yα) (5-10)

for all α. We claim that, if δ > 0 is chosen sufficiently small and R > 0 sufficiently large, then

yα ∈ ∂
(

M \
N⋃

i=1
Bxi,α (Rµi,α)

)
or rα(yα) > δ (5-11)

for α large. We prove the claim by contradiction. Indeed, assume that (5-11) fails for all α. We can write

1g
(∑p

i=1 ui,α
)∑p

i=1 ui,α
(yα)≥

1g9α,ε

9α,ε
(yα). (5-12)

Thanks to (1-1),
1g
(∑p

i=1 ui,α
)∑p

i=1 ui,α
(yα)≤ |Uα(yα)|2

?
−2
+ p‖Aα‖∞,

where ‖Aα‖∞=maxi, j ‖Aαi j‖∞ for all α. By (5-12) we then get
1g9α,ε
9α,ε

(yα)≤|Uα(yα)|2
?
−2
+ p‖Aα‖∞.

Since rα(yα)≤ δ, this yields

rα(yα)2
1g9α,ε

9α,ε
(yα)≤ rα(yα)2|Uα(yα)|2

?
−2
+ δ2 p‖A‖∞+ o(1). (5-13)

Now we write

1g9α,ε(yα)= ε(1− ε)µ(1−2ε)(n−2)/2
α

N∑
i=1

∣∣∇G(xi,α, yα)
∣∣2
g

G(xi,α, yα)2
G(xi,α, yα)1−ε

+ε(1− ε)ηα(δ)
N∑

i=1

∣∣∇G(xi,α, yα)
∣∣2
g

G(xi,α, yα)2
G(xi,α, yα)ε

−εηα(δ)
N∑

i=1
G(xi,α, yα)ε − (1− ε)µ(1−2ε)(n−2)/2

α

N∑
i=1

G(xi,α, yα)1−ε.

Using (5-8) and (5-9), and since 0< ε < 1
2 , it follows that

1g9α,ε(yα)

≥−(1− ε)9α,ε(yα)− γ3ε(1− ε)9α,ε(yα) + ε(1− ε)γ2µ
(1−2ε)(n−2)/2
α

N∑
i=1

dg(xi,α, yα)−2G(xi,α, yα)1−ε

+ ε(1− ε)γ2ηα(δ)
N∑

i=1
dg(xi,α, yα)−2G(xi,α, yα)ε

≥−(1− ε)(1+ γ3ε)9α,ε(yα)+ ε(1− ε)γ2γ
ε−1
1 µ(1−2ε)(n−2)/2

α rα(yα)−2−(n−2)(1−ε)

+ ε(1− ε)γ2γ
−ε
1 ηα(δ)rα(yα)−2−(n−2)ε.
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From (5-8) we obtain 9α,ε(yα)≤ Nγ 1−ε
1 µ

(1−2ε)(n−2)/2
α rα(yα)−(n−2)(1−ε)

+ Nγ ε1 ηα(δ)rα(yα)
−(n−2)ε, and

we can write

rα(yα)21g9α,ε(yα)≥−(1− ε)(1+ γ3ε)rα(yα)29α,ε(yα)+
1
N
ε(1− ε)γ2γ

2(ε−1)
1 9α,ε(yα).

Coming back to (5-13), we thus get

1
N
ε(1− ε)γ2γ

2(ε−1)
1 ≤ rα(yα)2|Uα(yα)|2

?
−2
+ δ2 p‖A‖∞+ o(1)+ (1− ε)(1+ γ3ε)δ

2,

since we assumed that rα(yα)≤ δ. By the last equation in (4-4) of Proposition 4.2 we can choose δ > 0
and R > 0 so as to get a contradiction. Thus (5-11) is proved. Up to choosing R a little bit larger, we
deduce from the second equation in (4-5) of Proposition 4.2, and the definitions of µα and ηα(δ), that
there exists C > 0 such that

sup
M\

⋃N
i=1 Bxi,α (Rµi,α)

∑p
i=1 ui,α

9α,ε
≤ Cε.

Using (5-8), we obtain the existence of δε > 0, Rε > 0 and Cε > 0 such that
p∑

i=1

ui,α(x)≤ Cε
(
µ(1−2ε)(n−2)/2
α rα(x)(2−n)(1−ε)

+ ηα(δε)rα(x)(2−n)ε
)

for all α and all x ∈ M \
⋃N

i=1 Bxi,α (Rεµi,α). This proves Step 1. �

Step 2. There exists C0 > 0 such that |Uα(x)| ≤ C0
(
µ
(n−2)/2
α Dα(x)2−n

+ ‖U∞‖∞
)

for all α and all
x ∈ M.

Proof of Step 2. First we prove that there is δ > 0 small such that for any sequence (yα) of points in M ,

lim sup
α→+∞

|Uα(yα)|

µ
(n−2)/2
α Dα(yα)2−n + ηα(δ)

<+∞. (5-14)

By the definition of ηα(δ), it is clear that (5-14) holds if rα(yα)≥ δ. Now assume that rα(yα)= O(µα).
Then Dα(yα)= O(µα). We can use the last equation in (4-4) of Proposition 4.2 to obtain

Dα(yα)2µ−1
α |Uα(yα)|2/n−2

= O(Dα(yα)µ−1
α )+ O

( N∑
i=1

Dα(yα)2µ−1
α µ

−1
i,α

(
1+

dg(xi,α, yα)2

n(n− 2)µ2
i,α

)−1)
= O(1),

since Dα(yα)≤ dg(xi,α, yα)+µi,α for all i ∈ {1, . . . , N }. In particular, (5-14) holds true also in this case.
Thus we may assume from now on that

rα(yα)≤ δ and
rα(yα)
µα

→+∞ as α→+∞. (5-15)

We let λ > 1 be such that λp‖A‖∞ 6∈ Sp(1g) and we let G be the Green’s function of 1g − λp‖A‖∞.
Here again, there exist C1 > 1, C2 > 0 and C3 > 0 such that

1
C1

dg(x, y)2−n
−C2 ≤ G(x, y)≤ C1dg(x, y)2−n (5-16)
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and
|∇G(x, y)|g ≤ C3dg(x, y)1−n (5-17)

for all x, y ∈ M , x 6= y. We let x0 ∈ S be such that dg(yα, x0) ≤ δ+ o(1); such an x0 does exist thanks
to (5-15). We choose δ > 0 such that

dg(x, y)≥ 4δ (5-18)

for all x, y ∈ S, x 6= y, and such that

δ ≤ 1
4(C1C2)

−1/(n−2), (5-19)

where C1 and C2 are as in (5-16). We write with Green’s representation formula that
p∑

i=1

ui,α(yα)=
∫

Bx0 (2δ)
G(yα, x)

(
1g

( p∑
i=1

ui,α

)
− λp‖A‖∞

p∑
i=1

uαi

)
(x) dvg(x)

+

∫
∂Bx0 (2δ)

G(yα, x)∂ν

( p∑
i=1

ui,α

)
(x) dσg(x)−

∫
∂Bx0 (2δ)

∂νG(yα, x)
( p∑

i=1

ui,α

)
(x) dσg(x). (5-20)

Since λ > 1, we get with (1-1) that

1g

( p∑
i=1

ui,α

)
− λp‖A‖∞

p∑
i=1

ui,α ≤ |Uα|
2?−2

p∑
i=1

ui,α.

We have G(yα, x)≥ 0 in Bx0(2δ) for α large, thanks to (5-16) and (5-19). Thus we can write∫
Bx0 (2δ)

G(yα, x)
(
1g

( p∑
i=1

ui,α

)
− λp‖A‖∞

p∑
i=1

ui,α

)
(x) dvg(x)

≤ C1

∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−2

p∑
i=1

ui,α(x) dvg(x). (5-21)

From (5-18), we also know that dg
(
xi,α, ∂Bx0(2δ)

)
≥ δ for all i = 1, . . . , N and for α large so that we

can control the boundary terms in (5-20) thanks to (5-4), (5-16) and (5-17). We thus obtain that

|Uα(yα)| = O(ηα(δ))+ O
(∫

M
dg(yα, x)2−n

|Uα(x)|2
?
−1dvg(x)

)
. (5-22)

We fix 0< ε < 1
n+2

and we let Rε > 0, δε > 0 and Cε > 0 be given by Step 1. We write∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)

≤

∫
Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)+

p∑
i=1

∫
Bxi,α (Rεµα)

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x),

where Mα,ε = M \
⋃N

i=1 Bxi,α (Rεµα). From (5-15) and Hölder’s inequalities we obtain∫
Bxi,α (Rεµα)

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)= O

(
µ(n−2)/2
α dg(xi,α, yα)2−n)
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for all i ∈ {1, . . . , N }. Thus we get∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)

≤

∫
Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)+ O

(
µ(n−2)/2
α rα(yα)2−n). (5-23)

Using Step 1, we know that for any x ∈ Mα,ε,

|Uα(x)|2
?
−1
≤ 22?−2C2?−1

ε

(
µ
(1−2ε)(n+2)/2
α

rα(x)(n+2)(1−ε) +
ηα(δε)

2?−1

rα(x)(n+2)ε

)
so that∫

Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)

≤ 22?−2C2?−1
ε µ(1−2ε)(n+2)/2

α

∫
Mα,ε

dg(yα, x)2−nrα(x)−(n+2)(1−ε)dvg(x)

+ 22?−2C2?−1
ε ηα(δε)

2?−1
∫

Mα,ε

dg(yα, x)2−nrα(x)−(n+2)εdvg(x)

≤ 22?−2C2?−1
ε µ(1−2ε)(n+2)/2

α

N∑
i=1

∫
M\Bxi,α (Rεµα)

dg(yα, x)2−ndg(xi,α, x)−(n+2)(1−ε)dvg(x)

+ 22?−2C2?−1
ε ηα(δε)

2?−1
N∑

i=1

∫
M\Bxi,α (Rεµα)

dg(yα, x)2−ndg(xi,α, x)−(n+2)εdvg(x).

From (5-15), straightforward computations yield∫
Mα,ε

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)= O

(
µ(n−2)/2
α rα(yα)2−n)

+ O
(
ηα(δε)

2?−1).
Coming back to (5-23), using (5-3), we finally obtain that∫

M
dg(yα, x)2−n

|Uα(x)|2
?
−1dvg(x)= O

(
µ(n−2)/2
α rα(yα)2−n)

+ O(ηα(δε)).

Coming back to (5-22), taking 0<δ<δε such that (5-18) and (5-19) hold, we get (5-14) under assumption
(5-15). In particular, if δ is chosen sufficiently small, (5-14) holds. Now we claim that if U∞ ≡ 0, then

ηα(δ)= O
(
µ(n−2)/2
α

)
. (5-24)

As a consequence of (5-14), there exists C0 > 0 such that in any compact subset K of M \S,

|Uα(x)| ≤ C0

(
µ(n−2)/2
α CK + ηα(δ)

)
for some CK > 0. If (5-24) were false, we would get by standard elliptic theory that

Uα

ηα(δ)
→ H in C2

loc(M \S) as α→+∞,
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where H satisfies 1g H + AH = 0 in M \S and |H | ≤C0 in M \S. This implies that H is in the kernel
of1g+ A. Since all the components of H are nonnegative and H is not identically zero by the definition
of ηα(δ), this would contradict assumption (H). In particular, (5-24) is proved. Noting that if U∞ 6≡ 0,
then, by (5-3), ηα(δ)= O(‖U∞‖∞), we get with (5-14) that Step 2 holds true. �

Conclusion of the proof of Proposition 5.1. If U∞ ≡ 0, the proposition is a direct consequence of Step 2.
Assume now that U∞ 6≡ 0. We let H be the Green’s function of the Laplacian on M normalized such
that H(x, y)≥ 1 for all x, y ∈ M , x 6= y. There exists 21 > 1 such that

1
21

dg(x, y)2−n
≤H(x, y)≤21dg(x, y)2−n (5-25)

for all x, y ∈ M , x 6= y. We let (xα) be a sequence of points in M and prove that

|Uα(xα)−U∞(xα)| = O
(
µ(n−2)/2
α Dα(xα)2−n

)
+ o(1). (5-26)

If Dα(xα)= O(µα), then (5-26) is a direct consequence of the last equation in (4-4) of Proposition 4.2.
We may therefore assume that

Dα(xα)
µα

→+∞ as α→+∞. (5-27)

By standard elliptic theory,

Uα→U∞ in C2
loc(M \S) as α→+∞, (5-28)

where S is as in (5-1). We write using Green’s representation formula that
p∑

i=1

ui,α(xα)−
p∑

i=1

ui,∞(xα)=
1

Vg

p∑
i=1

∫
M

(
ui,α(xα)− ui,∞(xα)

)
dvg

+

p∑
i=1

∫
M

H(xα, x)1g(ui,α − ui,∞)(x) dvg(x),

where Vg is the volume of (M, g), and the ui,∞’s are the components of U∞. Then we get
p∑

i=1

ui,α(xα)−
p∑

i=1

ui,∞(xα)=
p∑

i=1

∫
M

H(xα, x)1g(ui,α − ui,∞)(x) dvg(x)+ o(1). (5-29)

Thanks to (5-28) there exists δα > 0, δα→ 0 as α→+∞, such that, up to a subsequence,

‖Uα −U∞‖C2({Dα>δα}) = o(1), (5-30)

where ‖U‖C2 =
∑p

i=1 ‖ui‖C2 , and {Dα > δα} is the subset of M consisting of the x ∈ M such that
Dα(x) > δα. In particular, it follows from (5-25), (5-29) and (5-30) that

p∑
i=1

ui,α(xα)−
p∑

i=1

ui,∞(xα)=
p∑

i=1

∫
{Dα(x)≤δα}

H(xα, x)1gui,α(x) dvg(x)+ o(1).

The proof of (5-26) then follows the lines of the proof of Step 2, using the estimate of that step. This
ends the proof of Proposition 5.1. �
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6. Strong pointwise estimates and sharp asymptotics

We now turn to pointwise estimates and sharp asymptotics. Our main result in this section is this:

Proposition 6.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, p ≥ 1 be
an integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα → A in C1(M) as
α→+∞ for some C1 map A from M to M s

p(R) satisfying (H). Let also (Uα)α be an arbitrary bounded
sequence in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞ → +∞ as α → +∞. Up to
passing to a subsequence on the Uα’s, there holds that for any sequence (xα)α of points in M ,∣∣∣∣Uα(xα)−U∞(xα)−

N∑
i=1

Bi,α(xα)3i

∣∣∣∣= εα‖U∞‖∞+ O
(
µ(n−2)/2
α

)
+ o

( N∑
i=1

Bi,α(xα)
)
, (6-1)

where Bi
α = Bi,α3i for all α and all i , where U∞, N , and the Bi

α’s are as in Proposition 4.2, where
εα→ 0 as α→+∞, and µα =maxi µi,α is the maximum weight of the weights of the Bi,α’s as in (5-6).

We prove Proposition 6.1 in several steps, based on induction on the following statement, defined for
1≤ k ≤ N + 1:

There exists Ck > 0 such that, up to a subsequence on the Uα’s, for any sequence (xα)
of points in M ,∣∣∣Uα(xα)−U∞(xα)−

k−1∑
i=1

Bi,α(xα)3i

∣∣∣
≤ Ck

(
µ
(n−2)/2
α +χkµ

(n−2)/2
k,α Rk,α(xα)2−n

)
+ εα‖U∞‖∞+ o

( k−1∑
i=1

Bi,α(xα)
)
,

where εα→ 0 as α→+∞, χk = 1 if k ≤ N , and χN+1 = 0.

(Ik)

Here we have reordered the blow-up points in such a way that µα = µ1,α ≥ µ2,α ≥ · · · ≥ µN ,α, and we
have defined

ri,α(x)= min
i≤ j≤N

dg(x j,α, x), (6-2)

Ri,α(x)= min
i≤ j≤N

(
dg(x j,α, x)+µ j,α

)
. (6-3)

We have R1,α(x)= Dα(x) and r1,α(x)= rα(x), where Dα is as in Proposition 4.2 and rα is as in (5-6).
We will refer to the whole indented statement above as (Ik), as well as the inequality so labeled.

Clearly, Proposition 6.1 is equivalent to (IN+1), while Proposition 5.1 implies (I1).
We apply induction on k to pass from (I1) to (IN ), and then we use a slightly distinct argument to

pass from (IN ) to (IN+1). In the following, we fix 1 ≤ κ ≤ N − 1 and assume that (Iκ ) holds true.
We proceed in several steps, but first we fix some notation. As in the preceding section we let G be the
Green’s function of the operator u 7→1gu+u. Then (5-8) and (5-9) hold. We fix 0< ε < 1/(n+2) and
fix R0 as in (5-5). For any 1≤ i ≤ κ , we define

8εi,α(x)=min
{
µ
(1−2ε)(n−2)/2
i,α G(xi,α, x)1−ε; D0µ

−(1−2ε)(n−2)/2
i,α G(xi,α, x)ε

}
, (6-4)

where x ∈ M \ {xi,α},
D0 = γ

2ε−1
1 (4R0)

(2−n)(1−2ε),
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and γ1 is as in (5-8). This choice of D0, together with (5-8), implies that

8εi,α(x)= D0µ
−(1−2ε)(n−2)/2
i,α G(xi,α, x)ε,

if dg(xi,α, x)≤ 2R0µi,α. We also let

ϕεα(x)=max
{
‖U∞‖∞;µ

(1−2ε)(n−2)/2
α

} N∑
i=1

G(xi,α, x)ε (6-5)

and
9ε
α(x)=

N∑
i=κ+1

G(xi,α, x)1−ε. (6-6)

For 1≤ i ≤ κ , we set

�εi,α =
{

x ∈ M s.t. 8εi,α(x)≥8
ε
j,α(x) for all 1≤ j ≤ κ

}
. (6-7)

We also set

D(ε)=
γ2ε(1− ε)

2N
, (6-8)

where γ2 is as in (5-8), and we define νκ,α by

ν(1−2ε)(n−2)/2
κ,α =max

{
µ
(1−2ε)(n−2)/2
κ+1,α ; max

1≤i≤κ
sup
�̃εi,α

8εi,α(x)

9ε
α(x)

}
, (6-9)

where
�̃εi,α =

{
x ∈�εi,α s.t. dg(xi,α, x)2Qκ,α(x)2

?
−2
≥ D(ε)

}
, (6-10)

and Qκ,α(x)= |Uα(x)−U∞(x)−
∑κ

i=1 Bi,α(x)3i |. By convention, the suprema in (6-9) are −∞ if the
sets �̃εi,α are empty. We can now start the proof of Proposition 6.1.

Step 1. νκ,α = O(µκ,α).

Proof of Step 1. We let yα ∈ �̃εi,α and assume that

ν1−2ε
κ,α 9ε

α(yα)
2/(n−2)

=8εi,α(yα)
2/(n−2).

This and (5-8) imply that

ν1−2ε
κ,α = O

(
Rκ+1,α(yα)2(1−ε)8εi,α(yα)

2/(n−2)). (6-11)

Since (Ik) holds and yα ∈ �̃εi,α, we also have

D(ε)≤ o(1)+ o
( κ−1∑

j=1
dg(xi,α, yα)2 B j,α(yα)2

?
−2
)
+ O

(
µ2
κ,αdg(xi,α, yα)2 Rκ,α(yα)−4).

Since yα ∈ �̃εi,α and �̃εi,α ⊂�
ε
i,α, we can write

κ−1∑
j=1

dg(xi,α, yα)2 B j,α(yα)2
?
−2
= O(1),

and we thus get
Rκ,α(yα)2 = O

(
µκ,αdg(xi,α, yα)

)
. (6-12)

If Rκ+1,α(yα)= O(Rκ,α(yα)), we get from (6-11) and (6-12) that

ν1−2ε
κ,α = O

(
µ1−ε
κ,α dg(xi,α, yα)1−ε8εi,α(yα)

2/(n−2))
= O(µ1−ε

κ,α µ
−ε
i,α)= O(µ1−2ε

κ,α ),
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and Step 1 is proved. Assume now that Rκ,α(yα)= o(Rκ+1,α(yα)). Then (6-12) becomes(
dg(xκ,α, yα)+µκ,α

)2
= O(µκ,αdg(xi,α, yα)). (6-13)

If i=κ we obtain dg(xi,α, yα)=O(µi,α); using the last equation in (4-4), and sinceµi,α=o(Rκ+1,α(yα)),
we obtain that

dg(xi,α, yα)2
∣∣∣∣Uα(yα)−U∞(yα)−

κ∑
j=1

B j,α(yα)3 j

∣∣∣∣2?−2

→ 0 as α→+∞.

This contradicts the fact that yα ∈ �̃εi,α. Thus we must have 1 ≤ i ≤ κ − 1. Since 8εi,α(yα) ≥8
ε
κ,α(yα),

because of (5-8), we can write

µ1−2ε
κ,α dg(xκ,α, yα)−2ε(µκ,α+dg(xκ,α, yα)

)−2(1−2ε)
=O

(
µ1−2ε

i,α dg(xi,α, yα)−2ε(µi,α+dg(xi,α, yα)
)−2(1−2ε))

.

In particular we obtain with (6-13) that(
µi,α + dg(xi,α, yα)

)1−ε
= O(µεκ,αµ

1−2ε
i,α ).

Since µk,α ≤µi,α, this implies that dg(xi,α, yα)= O(µi,α). We also get µi,α = O(µκ,α). Then we obtain
with (6-13) that dg(xκ,α, yα)= O(µi,α), and this contradicts the first equation in (4-5) of Proposition 4.2.
Step 1 is proved. �

Step 2. There exists Cε > 0 such that

|Uα(x)|≤Cε

( κ∑
i=1

8εi,α(x)+ν
(1−2ε)(n−2)/2
κ,α rκ+1,α(x)(2−n)(1−ε)

+max
{
‖U∞‖∞;µ

(1−2ε)(n−2)/2
α

}
rα(x)(2−n)ε

)
for all x ∈ M \

⋃N
i=κ+1 Bxi,α (R0µi,α).

Proof of Step 2. We let yα ∈ M \
⋃N

i=κ+1 Bxi,α (R0µi,α) be such that∑p
i=1 ui,α∑κ

i=18
ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

(yα)= sup
M\

⋃N
i=κ+1 Bxi,α (Rεµi,α)

∑p
i=1 ui,α∑κ

i=18
ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

,

(6-14)
and we assume by contradiction that∑p

i=1 uαi∑κ
i=18

ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

(yα)→+∞ as α→+∞. (6-15)

From (Iκ ) and (6-15) we get
rα(yα)→ 0 as α→+∞. (6-16)

We also have, using the second equation in (4-5),
dg(x j,α, yα)

µ j,α
→+∞ (6-17)

as α→+∞ for all κ+1≤ j ≤ N . Here we used the fact that, by (6-9), νκ,α ≥µκ+1,α. Thanks to (6-15)
and the second equation in (4-5), we also know that, for any 1≤ j ≤ κ , either

dg(x j,α, yα)≤ R0µ j,α or
dg(x j,α, yα)

µ j,α
→+∞ as α→+∞. (6-18)
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In particular, thanks to (6-14) we can write

1g
∑p

i=1 ui,α∑p
i=1 ui,α

(yα)≥
1g

(∑κ
i=18

ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕ

ε
α

)
∑κ

i=18
ε
i,α + ν

(1−2ε)(n−2)/2
κ,α 9α,ε +ϕεα

(yα). (6-19)

From (1-1), (5-8), and (5-9), we then get

0≥
κ∑

i=1

(
dg(xi,α, yα)−2

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
8εi,α(yα)

+

(
rκ+1,α(yα)−2

Nγ 2(1−ε)
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

+

(
rα(yα)−2

Nγ 2ε
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ϕα,ε(yα), (6-20)

where

Aε =
p‖Aα‖∞+ (1+ γ3ε)(1− ε)

γ2ε(1− ε)
.

We let in the following 1≤ i ≤ κ be such that yα ∈�εi,α. Then we deduce from (6-20) that

0≥
(

dg(xi,α, yα)−2
−

κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
− κAε

)
8εi,α(yα)

+

(
rκ+1,α(yα)−2

Nγ 2(1−ε)
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

+

(
rα(yα)−2

Nγ 2ε
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ϕα,ε(yα). (6-21)

From (6-15), we know that

‖U∞‖∞ = o(|Uα(yα)|) and µ(n−2)/2
α = o(|Uα(yα)|), (6-22)

and that

B j,α(yα)= o(|Uα(yα)|) (6-23)

for all 1≤ j ≤ κ since

B j,α(yα)= O(8εj,α(yα)) (6-24)

for all 1≤ j ≤ κ . From (6-17), we have

Rκ+1,α(yα)2 B j,α(yα)2
?
−2
= o(1) (6-25)

for all κ + 1 ≤ j ≤ N . Thus we can deduce from the last equation in (4-4) of Proposition 4.2 together
with (6-22), (6-23), and (6-25), that

Dα(yα)2|Uα(yα)|2
?
−2
= o(1). (6-26)
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Using (6-16) and (6-26), we can transform (6-21) into

0≥
(

dg(xi,α, yα)−2
−

κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
− κAε

)
8εi,α(yα)

+

(
rκ+1,α(yα)−2

Nγ 2(1−ε)
1

−
|Uα(yα)|2

?
−2

γ2ε(1− ε)
− Aε

)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

+

(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα). (6-27)

Since (Iκ ) holds true, we can prove with (6-22) and (6-23) that

|Uα(yα)|2
?
−2
= O

(
µ2
κ,αRκ+1,α(yα)−4). (6-28)

This implies that
Rκ+1,α(yα)2|Uα(yα)|2

?
−2
→ 0 as α→+∞. (6-29)

Indeed, if it is not the case, we would have from (6-28) that

Rκ+1,α(yα)= O(µk,α)

and thanks to (6-26) that there exists j ∈ {1, . . . , κ} such that

dg(x j,α, yα)+µ j,α = o(Rκ+1,α(yα)).

In particular, we get a contradiction since µ j,α ≥ µκ,α. As a remark, (6-28) also implies that

Rκ+1,α(yα)→ 0 as α→+∞, (6-30)

due to (6-23). Now, thanks to (6-29) and (6-30), we deduce from (6-27) that

0≥
(

dg(xi,α, yα)−2
−

κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
− κAε

)
8εi,α(yα)

+

(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α rκ+1,α(yα)−29α,ε(yα)

+

(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα). (6-31)

If yα 6∈ �̃εi,α, we transform (6-31) into

0≥
(

1+ o(1)−
κD(ε)

γ2ε(1− ε)
− κAεdg(xi,α, yα)2

)
dg(xi,α, yα)−28εi,α(yα)

+

(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α rκ+1,α(yα)−29α,ε(yα)+

(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα)

by using (6-22) and (6-23). This leads to(
1

Nγ 2ε
1

+ o(1)
)

rα(yα)−2ϕα,ε(yα)= O
(
µ
(1−2ε)(n−2)/2
i,α

)
,

thanks to our choice of D(ε). From (5-8), (6-16), and the definition of ϕα,ε, we clearly get a contradiction.
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Thus yα ∈ �̃εi,α. Coming back to (6-31), we obtain in this situation that(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)≤

(
κ

γ2ε(1− ε)
|Uα(yα)|2

?
−2
+ κAε

)
rκ+1,α(yα)28εi,α(yα).

Using (6-29), (6-30), and the definition of νκ,α, this leads to(
1

Nγ 2(1−ε)
1

+ o(1)
)
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)= o(8εi,α(yα))= o

(
ν(1−2ε)(n−2)/2
κ,α 9α,ε(yα)

)
and this is again a contradiction. Thus (6-15) cannot hold true and we get the equation in Step 2 from
(5-8). This ends the proof of Step 2. �

Step 3. There exists C0 > 0 such that

|Uα(x)| ≤ C0

( κ∑
i=1

Bi,α(x)+‖U∞‖∞+ ν(n−2)/2
κ,α Rκ+1,α(x)2−n

)
for all x ∈ M and all α > 0.

Proof of Step 3. We let (yα) be a sequence of points in M and we aim to prove that

lim sup
α→+∞

|Uα(yα)|∑κ
i=1 Bi,α(yα)+‖U∞‖∞+ ν

(n−2)/2
κ,α Rκ+1,α(yα)2−n

<+∞. (6-32)

Since (Iκ ) holds true, it is clear that (6-32) also holds true as soon as

µ(n−2)/2
κ,α Rκ+1,α(yα)2−n

= O(Bi,α(yα))

for some 1 ≤ i ≤ κ . By contradiction we assume in what follows that (6-32) does not hold true. Thus
we assume from now on that

Rκ+1,α(yα)2 = o(µi,αµκ,α)+ o
(
µκ,α

µi,α
dg(xi,α, yα)2

)
(6-33)

for all 1≤ i ≤ κ . This implies in particular that

Rκ+1,α(yα)→ 0 as α→+∞. (6-34)

Thanks to the last equation in (4-4) and to (6-33), we can assume that

Rα(yα)= Rκ+1,α(yα) and
Rκ+1,α(yα)
νκ,α

→+∞ as α→+∞. (6-35)

Indeed, otherwise, (6-32) holds true. We let λ> 1 be such that λp‖A‖∞ 6∈ Sp(1g), where Sp(1g) is the
spectrum of 1g, and let G be the Green’s function of Lg =1g − λp‖A‖∞. There exist C1 > 1, C2 > 0
and C3 > 0 such that

1
C1

dg(x, y)2−n
−C2 ≤ G(x, y)≤ C1dg(x, y)2−n (6-36)

and
|∇G(x, y)|g ≤ C3dg(x, y)1−n (6-37)

for all x, y ∈ M , x 6= y. We let x0 ∈ S be such that dg(yα, x0) ≤ δ+ o(1); such an x0 does exist thanks
to (6-34). We choose δ > 0 such that

dg(x, y)≥ 4δ (6-38)
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for all distinct x, y ∈ S, and such that

δ ≤ 1
4(C1C2)

−1/(n−2), (6-39)

where C1 and C2 are as in (6-36). We write with Green’s representation formula that

p∑
i=1

ui,α(yα)=
∫

Bx0 (2δ)
G(yα, x)Lg

( p∑
i=1

ui,α

)
(x) dvg(x)

+

∫
∂Bx0 (2δ)

G(yα, x)∂ν

( p∑
i=1

ui,α

)
(x) dσg(x)−

∫
∂Bx0 (2δ)

∂νG(yα, x)
( p∑

i=1

ui,α

)
(x) dσg(x). (6-40)

Since λ > 1, we get with (1-1) that

Lg

( p∑
i=1

ui,α

)
≤ |Uα|

2?−2
p∑

i=1

ui,α.

We have G(yα, x)≥ 0 in Bx0(2δ) for α large by (6-36) and (6-39). Thus we can write∫
Bx0 (2δ)

G(yα, x)Lg

( p∑
i=1

ui,α

)
(x) dvg(x)≤C1

∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−2

p∑
i=1

ui,α(x) dvg(x). (6-41)

From (6-38), we also know that

dg
(
xi,α, ∂Bx0(2δ)

)
≥ δ

for α large. In particular, we can control the boundary terms in (6-40) thanks to Proposition 5.1 and
standard elliptic theory. We thus obtain that

|Uα(yα)| = O
(

max
{
µ(n−2)/2
α ; ‖U∞‖∞

})
+ O

(∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1 dvg(x)

)
. (6-42)

We can now write thanks to Step 2 that∫
M

dg(yα, x)2−n
|Uα(x)|2

?
−1dvg(x)= O

( κ∑
i=1

∫
M

dg(yα, x)2−n8εi,α(x)
2?−1dvg(x)

)

+ O
(

max
{
‖U∞‖

2?−1
∞
;µ(1−2ε)(n+2)/2

α

} ∫
M

dg(yα, x)2−n

rα(x)(n+2)ε dvg(x)
)

+ O
(
ν(1−2ε)(n+2)/2
κ,α

∫
{rκ+1,α(x)≥R0νκ,α}

dg(yα, x)2−n

rκ+1,α(x)(n+2)(1−ε) dvg(x)
)

+ O
(∫
{rκ+1,α(x)≤R0νκ,α}

dg(yα, x)2−n
|Uα
|
2?−1dvg(x)

)
. (6-43)

Since 0< ε < 1
n+2

, it follows from Giraud’s lemma that∫
M

dg(yα, x)2−nrα(x)−(n+2)ε dvg(x)= O(1). (6-44)
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We can also write, for 1≤ i ≤ κ ,∫
M

dg(yα, x)2−n8εi,α(x)
2?−1dvg(x)

= O
(
µ
−(1−2ε)(n+2)/2
i,α

∫
{dg(xi,α,x)≤µi,α}

dg(yα, x)2−ndg(xi,α, x)−(n+2)εdvg(x)
)

+ O
(
µ
(1−2ε)(n+2)/2
i,α

∫
{dg(xi,α,x)≥µi,α}

dg(yα, x)2−ndg(xi,α, x)−(n+2)(1−ε)dvg(x)
)

thanks to (5-8) and (6-4). Direct computations, using Giraud’s lemma and the inequalities 0<ε< 1
n+2

,
lead then to ∫

M
dg(yα, x)2−n8εi,α(x)

2?−1 dvg(x)= O(Bi,α(yα)). (6-45)

By direct computations, using Giraud’s lemma, the inequalities 0< ε < 1
n+2

and (6-35), we also get

ν(1−2ε)(n+2)/2
κ,α

∫
{rκ+1,α(x)≥R0νκ,α}

dg(yα, x)2−nrκ+1,α(x)−(n+2)(1−ε)dvg(x)

= O
(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n), (6-46)

while, using (6-35), the fact that νκ,α ≥ µκ+1,α, and Hölder’s inequalities, we also have∫
{rκ+1,α(x)≤R0νκ,α}

dg(yα, x)2−n
|Uα|

2?−1dvg(x)= O
(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n). (6-47)

Coming back to (6-42) with (6-43)-(6-47), we obtain a contradiction with the assumption that (6-32)
does not hold true. This proves Step 3. �

The fourth step in the proof of Proposition 6.1 is as follows. The constants C > 0 in the statement of
this step and its proof are independent of α and built on Cκ . They may change from line to line.

Step 4. There exists C > 0 such that for any sequence (yα) of points in M ,

|Uα(yα)−U∞(yα)−
κ∑

i=1

Bi,α(yα)3i |

≤ εα‖U∞‖∞+ o
( κ∑

i=1

Bi,α(yα)
)
+C

(
µ(n−2)/2
α + ν(n−2)/2

κ,α Rκ+1,α(yα)2−n),
where εα→ 0 as α→+∞.

Proof of Step 4. Let (yα) be a sequence of points in M . Assume first that

Rκ+1,α(yα)= O(νκ,α). (6-48)

If Rκ+1,α(yα)= Dα(yα), we can apply the last equation in (4-4) of Proposition 4.2 to obtain∣∣∣∣Uα(yα)−U∞(yα)−
κ∑

i=1

Bi,α(yα)3i

∣∣∣∣≤ Cν(n−2)/2
κ,α Rκ+1,α(yα)2−n.

In particular, the estimate of Step 4 holds true. If Dα(yα) < Rκ+1,α(yα), then from Step 1 and (6-48) we
obtain the existence of some 1≤ i ≤ κ such that

dg(xi,α, yα)+µi,α < Rκ+1,α(yα)= O(µκ,α).
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This implies the following facts:

µi,α = O(µκ,α),

dg(xi,α, yα)= O(µi,α),

Rκ+1,α(yα)≥ µi,α.

Using (4-5) in Proposition 4.2 we get∣∣∣∣Uα(yα)−U∞(yα)−
κ∑

i=1

Bi,α(yα)3i

∣∣∣∣= o(Bi,α(yα)),

and the estimate of Step 4 holds also in this case. As a consequence, we may assume below that

Rκ+1,α(yα)
νκ,α

→+∞ as α→+∞. (6-49)

The rest of the proof is based on controlling the different terms we get from Green’s representation
formula. We let H be the Green’s function of the Laplacian on M normalized such that H(x, y)≥ 1 for
all x, y ∈ M , x 6= y. Then (5-25) holds and moreover

(x, y)
8
7→ dg(x, y)n−2H(x, y)

extends to a continuous function in M ×M whose value on the diagonal is

8(x, x)=
1

(n− 2)ωn−1

for all x . Now we write, for any i ∈ {1, . . . , p},

ui,α(yα)− ui,∞(yα)=
1

Vg

∫
M
(ui,α − ui,∞) dvg +

∫
M

H(x, yα)1g(ui,α − ui,∞)(x) dvg(x). (6-50)

Since (Iκ ) holds true, we can write∣∣∣∣∫
M
(ui,α − ui,∞) dvg

∣∣∣∣≤ Cµ(n−2)/2
α + εα‖U∞‖∞,

where εα→ 0 as α→+∞. Thus we can transform (6-50) into∣∣∣∣ui,α(yα)− ui,∞(yα)−
∫

M
H(x, yα)1g(ui,α − ui,∞)(x) dvg(x)

∣∣∣∣≤ Cµ(n−2)/2
α + εα‖U∞‖∞. (6-51)

In view of the equations satisfied by the Uα’s and U∞, we can now write

1g(ui,α − ui,∞)= |Uα|
2?−2ui,α − |U∞|

2?−2ui,∞−

p∑
j=1

Aαi j u j,α +

p∑
j=1

Ai j u j,∞

= |Uα −U∞|
2?−2(ui,α − ui,∞)+

(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞)

+
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞−

p∑
j=1

Aαi j (u j,α − u j,∞)+

p∑
j=1

(Ai j − Aαi j )u j,∞.
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Thus we obtain∣∣∣∣ui,α(yα)− ui,∞(yα)−
∫

M
Hyα |Uα −U∞|

2?−2(ui,α − ui,∞) dvg

∣∣∣∣
≤

∣∣∣∣∫
M

Hyα

(
|Uα|

2?−2
− |Uα −U∞|

2?−2
)
(ui,α − ui,∞) dvg

∣∣∣∣
+

∣∣∣∣ ∫
M

Hyα

(
|Uα|

2?−2
− |U∞|

2?−2
)

ui,∞dvg

∣∣∣∣ + ∣∣∣∣ p∑
j=1

∫
M

Hyα

(
Ai j − Aαi j

)
(x)u j,∞dvg

∣∣∣∣
+

∣∣∣∣ p∑
j=1

∫
M

Hyα Aαi j
(
u j,α − u j,∞

)
dvg

∣∣∣∣+Cµ(n−2)/2
α + εα|U∞|∞, (6-52)

where Hyα (x)=H(yα, x) for all x . The convergence of the Aα’s to A, together with (5-25), implies that
p∑

j=1

∫
M

Hyα (Ai j − Aαi j )u j,∞dvg = εα‖U∞‖∞, (6-53)

where εα→ 0 as α→+∞. Now we get with (5-25) that∣∣∣∣ p∑
j=1

∫
M

Hyα Aαi j
(
u j,α − u j,∞

)
dvg

∣∣∣∣≤ pC‖Aα‖∞

∫
M

dg(yα, x)2−n
|Uα(x)−U∞(x)| dvg(x).

Thanks to (Iκ ), we can write

|Uα(x)−U∞(x)| ≤ D1

( κ∑
j=1

B j,α(x)+µ(n−2)/2
κ,α Rκ+1,α(x)2−n

+µ(n−2)/2
α

)
+ εα‖U∞‖∞

for some D1 > 0, where εα→ 0 as α→+∞, while, thanks to Step 3, we have

|Uα(x)−U∞(x)| ≤ D2

( κ∑
j=1

B j,α(x)+ ν(n−2)/2
κ,α Rκ+1,α(x)2−n

+‖U∞‖∞

)
for some D2 > 0. Thus we can write∣∣∣∣ p∑

j=1

∫
M

Hyα Aαi j
(
u j,α − u j,∞

)
dvg

∣∣∣∣≤C
( κ∑

j=1

∫
M

dg(yα, x)2−n B j,α(x) dvg(x)
)
+εα‖U∞‖∞+Cµ(n−2)/2

α

+Cµ(n−2)/2
κ,α

∫
{Rκ+1,α(x)≥ηα}

dg(yα, x)2−n Rκ+1,α(x)2−ndvg(x)

+Cν(n−2)/2
κ,α

∫
{Rκ+1,α(x)≤ηα}

dg(yα, x)2−n Rκ+1,α(x)2−ndvg(x),

where ηα = 2diamg M if U∞ ≡ 0, ηα = µ
1/2
κ,α otherwise, and diamg M is the diameter of M with respect

to g. Simple computations, using Giraud’s lemma, then lead to the estimate∣∣∣∣ p∑
j=1

∫
M

Hyα Aαi j (u j,α − u j,∞) dvg

∣∣∣∣
≤ o

( κ∑
j=1

|Bαj (yα)|
)
+Cµ(n−2)/2

α + εα‖U∞‖∞+Cν(n−2)/2
κ,α Rκ+1,α(yα)2−n. (6-54)
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If U∞ ≡ 0, we have ∫
M

Hyα
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg = 0,

while, if U∞ 6≡ 0, we write, thanks to Proposition 5.1,∫
M

Hyα
(
|Uα|

2?−2
−|U∞|

2?−2)ui,∞dvg = o(1)+
∫
{Dα≤µ

1/4
α }

Hyα
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg

= o(1)+ O
(∫
{Dα≤µ

1/4
α }

dg(x, yα)2−n
|Uα(x)|2

?
−2dvg(x)

)
. (6-55)

Now we use Step 3 and we briefly distinguish the n = 3, 4, 5, and n ≥ 6 cases in the forthcoming
computations. We let (Rα)α be suitably chosen such that Rα → +∞ as α → +∞. Assuming that
n = 3, 4, 5, we write with (6-55) that∫

M
Hyα

(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg

= o(1)+ O
(∫
{Rκ+1,α≤Rκ+1,α(yα)/Rα}

dg(x, yα)2−n
|Uα(x)|2

?
−2 dvg(x)

)
+ O

(∫
{Rκ+1,α≥Rκ+1,α(yα)/Rα}∩{Dα≤µ

1/4
α }

dg(x, yα)2−n
|Uα(x)|2

?
−2dvg(x)

)

= o(1)+ O
( κ∑

j=1

∫
M

dg(x, yα)2−n B j,α(x)2
?
−2dvg(x)

)
+ O

(
ν2
κ,α

∫
{Rκ+1,α≥Rκ+1,α(yα)/Rα}

dg(x, yα)2−n Rκ+1,α(x)−4dvg(x)
)

= o(1)+ o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n),

and, assuming that n ≥ 6, since 2?− 2 ∈ (0, 1] in this case, we get from (6-55) that∫
M

Hyα
(
|Uα|

2?−2
−|U∞|

2?−2)ui,∞dvg = o(1)+ O
(∫
{Dα≤µ

1/4
α }

dg(x, yα)2−n
|Uα(x)|dvg(x)

)

= o(1)+ O
( κ∑

j=1

∫
M

dg(x, yα)2−n B j,α(x) dvg(x)
)

+ O
(
ν(n−2)/2
κ,α

∫
M

dg (x, yα)2−n Rκ+1,α(x)2−ndvg(x)
)

= o(1)+ o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n

)
.
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Thus, in all cases,∫
M

Hyα
(
|Uα|

2?−2
− |U∞|

2?−2)ui,∞dvg

= o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n)

+ εα‖U∞‖∞. (6-56)

Similarly, if U∞ ≡ 0, then∫
M

Hyα
(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞) dvg = 0,

while, if U∞ 6≡ 0, we can write∫
M

Hyα
(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞) dvg

= o(1)+ O
(∫
{Rα(x)≤µ

1/4
α }

dg(yα, x)2−n
|Uα(x)|2

?
−2 dvg(x)

)
= o(1)+ o

( κ∑
j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n).

Thus we have obtained∫
M

Hyα
(
|Uα|

2?−2
− |Uα −U∞|

2?−2)(ui,α − ui,∞) dvg

= o
( κ∑

j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n

)
+ εα‖U∞‖∞. (6-57)

Coming back to (6-52): thanks to (6-53)–(6-57), we now obtain∣∣∣∣Uα(yα)−U∞(yα)−
∫

M
Hyα |Uα −U∞|

2?−2 (Uα −U∞) dvg

∣∣∣∣
≤ o

( κ∑
j=1

B j,α(yα)
)
+ o

(
ν(n−2)/2
κ,α Rκ+1,α(yα)2−n

)
+ εα‖U∞‖∞+Cµ(n−2)/2

α . (6-58)

Using (4-5), (5-25), and the extension property of dg(x, y)n−2H(x, y) mentioned above, we can find a
sequence (Rα)α such that Rα→+∞ as α→+∞, that∣∣∣∣∫

Mi,α

Hyα |Uα −U∞|
2?−2(Uα −U∞) dvg − Bi,α(yα)3i

∣∣∣∣≤ Cµ(n−2)/2
α + o(Bi,α(yα))

for all i ∈ {1, . . . , κ}, and that the sets

Mi,α = Bxi,α (Rαµi,α)
∖ ⋃

i+1≤ j≤N
Bx j,α (R

−1
α µi,α)

are disjoint.
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Then we can write thanks to Proposition 5.1, Step 3, and (6-49), that∫
M\

⋃
1≤i≤κ Mi,α

dg(yα, x)2−n
|Uα(x)−U∞(x)|2

?
−1dvg(x)

≤ εα‖U∞‖∞+Cµ(n−2)/2
α +C

κ∑
j=1

∫
Mα

dg(yα, x)2−n B j,α(x)2
?
−1dvg(x)

+Cν(n+2)/2
κ,α

∫
{Rκ+1,α≥νκ,α}

dg(yα, x)2−n

Rκ+1,α(x)(n+2) dvg(x)+Cν(n−2)/2
κ,α Rκ+1,α(yα)2−n

≤ εα‖U∞‖∞+Cµ(n−2)/2
α + o

( κ∑
j=1

B j,α(yα)
)
+Cν(n−2)/2

κ,α Rκ+1,α(yα)2−n.

Coming back to (6-58), this ends the proof of Step 4. �

Step 5. νκ,α = µκ+1,α.

Proof of Step 5. We proceed by contradiction and thus assume that there exists i ∈ {1, . . . , κ} and a
sequence (yα) of points in �̃εi,α such that

ν(1−2ε)(n−2)/2
κ,α 9ε

α(yα)=8
ε
i,α(yα). (6-59)

Since yα ∈ �̃εi,α, we know that
8εi,α(yα)≥8

ε
j,α(yα) (6-60)

for all 1≤ j ≤ κ and that

dg(xi,α, yα)2
∣∣∣∣Uα(yα)−U∞(yα)−

κ∑
j=1

B j,α(yα)3 j

∣∣∣∣2?−2

≥ D(ε). (6-61)

Clearly,
dg(xi,α, x)2 Bi,α(x)2

?
−2
= O (1) . (6-62)

We now claim that
dg(xi,α, yα)2 B j,α(yα)2

?
−2
→ 0 as α→+∞ (6-63)

for all 1 ≤ j ≤ κ , j 6= i . In order to prove (6-63), we proceed by contradiction once again and assume
that there exists 1≤ j ≤ κ , j 6= i , such that(

dg(x j,α, yα)+µ j,α
)2
= O

(
µ j,αdg(xi,α, yα)

)
. (6-64)

Since 8εi,α(yα)≥8
ε
j,α(yα), we then get(

dg(xi,α, yα)+µi,α
)1−ε
= O(µεj,αµ

1−2ε
i,α ),

so µi,α = O(µ j,α) and dg(xi,α, yα)1−ε = O(µεj,αµ
1−2ε
i,α ). Coming back to (6-64), we also obtain µ j,α =

O(µi,α) and dg(x j,α, yα)= O(µi,α). This contradicts the first equation in (4-5). Thus (6-63) is proved.
Applying Step 4, we get from (6-61), (6-62), and (6-63) that

Rκ+1,α(yα)2 = O
(
νκ,αdg(xi,α, yα)

)
. (6-65)
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Using (5-8) and (6-59), we also have(
dg(xi,α, yα)+µi,α

)2(1−ε)
= O

(
µ1−2ε

i,α ν2ε−1
κ,α Rκ+1,α(yα)2(1−ε)

)
,

so that, with (6-65) and Step 1, we get that µi,α = O(µκ,α), that dg(xi,α, yα)= O(µi,α) and that µi,α =

O
(
Rκ+1,α(yα)

)
. Using the second equation in (4-5) of Proposition 4.2 we then obtain

dg(xi,α, yα)2|Uα(yα)− Bi,α3i (yα)|2
?
−2
→ 0 as α→+∞.

This contradicts (6-61) thanks to (6-63). Step 5 is proved. �

Conclusion of the proof of Proposition 6.1. By Proposition 5.1 we know that (I1) holds true. By Steps 4
and 5, and by induction, it follows that (IN ) holds true. It remains to prove that (IN+1) also holds true.
For this we proceed with similar arguments to those developed in the proof of Step 4. We let (yα) be a
sequence of points in M and write, for any i = 1, . . . , p,

ui,α(yα)− ui,∞(yα)=
1

Vg

∫
M
(ui,α − ui,∞) dvg +

∫
M

Hyα1g(ui,α − ui,∞) dvg, (6-66)

where Hyα ( · ) = H( · , yα) and H is the Green’s function of 1g normalized so that H ≥ 1. Since (IN )

holds true, ∫
M
|ui,α − ui,∞|dvg ≤ Cµ(n−2)/2

α + εα‖U∞‖∞,

where C > 0 is independent of α, and εα→ 0 as α→+∞. Using the equations satisfied by the Uα’s
and U∞, but also (IN ), mimicking what was done in the proof of Step 4, we get with (6-66) that∣∣∣∣Uα(yα)−U∞(yα)−

∫
M

Hyα |Uα −U∞|
2?−2(ui,α − ui,∞) dvg

∣∣∣∣
≤ Cµ(n−2)/2

α + o
( N∑

i=1

Bi,α(yα)
)
+ εα‖U∞‖∞. (6-67)

We also have∣∣∣∣∫
M

Hyα |Uα −U∞|
2?−2(ui,α − ui,∞) dvg −

N∑
i=1

Bi,α(yα)3i

∣∣∣∣
≤ Cµ(n−2)/2

α + o
( N∑

i=1

Bi,α(yα)
)
+ εα‖U∞‖∞, (6-68)

where C > 0 in (6-67), (6-68) is independent of α, and εα → 0 as α→ +∞. Combining (6-67) and
(6-68), we get (IN+1). This ends the proof of Proposition 6.1. �

7. A Pohozaev identity for systems

Let (M, g) be a smooth compact Riemannian manifold. Let also X be a smooth 1-form over M and
U :M→Rp be a C2-map. We define X (∇U) by X (∇U)= (∇U, X). This is a p-map with components
X (∇U)i = (∇ui , X) where the ui ’s are the components of U. We define also |∇U| and (T∇X)U by
|∇U|2 =

∑p
i=1 |∇ui |

2 and (T∇X)U =
∑p

i=1 S]X (∇ui ,∇ui ), where S]X is the (0, 2)-tensor field we obtain
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from the (2, 0)-tensor field SX by the musical isomorphism, and

SX =∇X −
1
n
(divgX)g. (7-1)

For � a smooth bounded domain in M we let ν be the unit outer normal to ∂�. The Pohozaev-type
identity for systems we prove is stated as follows.

Proposition 7.1. Let (M, g) be a smooth compact Riemannian n-manifold, � be a smooth bounded
domain in M , and A : M→ M s

p(R) be a C1-map. Let X be a smooth 1-form over M and U be a solution
of (0-1). Then∫
�

〈AU, X (∇U)〉Rp dvg +
n−2
4n

∫
�

(1g(divgX))|U|2dvg +
n−2
2n

∫
�

(divgX)〈AU,U〉Rp dvg

=−

∫
�

(T∇X)Udvg +
n−2
2n

∫
∂�

X (ν)|U|2
?

dσg −
n−2
4n

∫
∂�

∂ν(divgX)|U|2dσg

+
n−2
2n

∫
∂�

(divgX)〈∂νU,U〉Rp dσg −

∫
∂�

B∂�(U) dσg, (7-2)

where X (∇U) and (T∇X)U are as above, B∂�(U) = 1
2 X (ν)|∇U|2 − 〈X (∇U), ∂νU〉Rp on ∂�, and

〈 · , · 〉Rp is the scalar product in Rp.

Proof. Integrating by parts we easily see that for u : M→ R of class C2,∫
�
(∇u, X)1gudvg =

∫
�

S]X,2(∇u,∇u) dvg +

∫
∂�

(
1
2

∫
�

X (ν)|∇u|2− (∇u, X)∂νu
)

dσg, (7-3)

where SX,2 =∇X− 1
2(divg X)g. If we assume now that U is a p-map, applying (7-3) to the components

ui of U, and summing over i , we obtain∫
�

〈X (∇U),1gU〉Rp dvg =

∫
�

S]X,2(∇U,∇U) dvg +

∫
∂�

B∂�(U) dσg.

We assume now that U solves (0-1) and we use the equations satisfied by U to explicit the left-hand side
in the preceding equation. We can write∫
�

〈X (∇U),1gU〉Rp dvg =

∫
�

|U|2
?
−2
〈X (∇U),U〉Rp dvg −

∫
�

〈AU, X (∇U)〉Rp dvg

=
1
2?

∫
�

(∇|U|2
?

, X)dvg −

∫
�

〈AU, X (∇U)〉Rp dvg

=−
1
2?

∫
�

(divg X)|U|2
?

dvg −

∫
�

〈AU, X (∇U)〉Rp dvg +
1
2?

∫
∂�

X (ν)|U|2
?

dσg.

Then we get∫
�

〈AU, X (∇U)〉Rp dvg +
1
2?

∫
�

(divg X)|U|2
?

dvg +

∫
�

S]X,2(∇U,∇U) dvg

=
1
2?

∫
∂�

X (ν)|U|2
?

dσg −

∫
∂�

B∂�(U) dσg.
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Using once again (0-1), we obtain∫
�

S]X,2(∇U,∇U) dvg =

∫
�

S]X (∇U,∇U) dvg −
1
2?

∫
�

(divg X)|∇U|2dvg

=

∫
�

S]X (∇U,∇U) dvg −
1
2?

∫
∂�

(divg X)〈∂νU,U〉Rp dσg

+
n−2
4n

∫
∂�

∂ν(divg X)|U|2dσg +
n−2
4n

∫
�

(1g(divg X))|U|2dvg

−
1
2?

∫
�

(divg X)|U|2
?

dvg +
1
2?

∫
�

(divg X)〈AU,U〉Rp dvg,

and (7-2) easily follows. This ends the proof of the proposition. �

The Pohozaev-type identity (7-2) is used repeatedly, with different choices of X , in the next section.

8. The range of influence of blow-up points

We start with notations and the definition of the range of influence of blow-up points. The blow-up points
xi,α of Proposition 4.2 come with vector bubbles (Bi

α)α as in the same proposition. We let 3i be the
S p−1 projection of (Bi

α)α, and Bi,α = |B
i
α| for all i and all α. As above, (Aα)α is a sequence of C1 maps

from M to M s
p(R) such that Aα → A in C1(M) as α→+∞ for some C1 map A from M to M s

p(R)

satisfying (H), and we order the blow-up points in such a way that

µα = µ1,α ≥ · · · ≥ µN ,α, (8-1)

where the µi,α’s are the weights of the vector bubble (Bi
α)α. Given i, j ∈ {1, . . . , N }, i 6= j , we let si, j,α

be given by

s2
i, j,α =

µi,α

µ j,α

dg(xi,α, x j,α)
2

n(n− 2)
+µi,αµ j,α = µi,αB j,α(xi,α)

−2/(n−2) (8-2)

and we define the range of influence of the blow-up point xi,α by

ri,α =

{
min j∈Ai si, j,α if U∞ ≡ 0,
min

{
min j∈Ai si, j,α;

√
µi,α

}
if U∞ 6≡ 0.

(8-3)

where
Ai =

{
j ∈ {1, . . . , N } , j 6= i s.t. µi,α = O(µ j,α)

}
. (8-4)

If Ai = ∅ (so that, in particular, i = 1) and U∞ ≡ 0, we let by definition ri,α =
1
2 ig, where ig is the

injectivity radius of (M, g). Using the first equation in (4-5) it is easily checked that
si, j,α

µi,α
→+∞ as α→+∞ for all i, j ∈ {1, . . . , N } and all j ∈Ai . (8-5)

This implies in particular that
ri,α

µi,α
→+∞ as α→+∞. (8-6)

If j ∈Ai and i ∈A j , we let λi, j ≥ 0 be given by

λi, j =

(
lim

α→+∞

µ j,α

µi,α

)(n−2)/2

. (8-7)
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Given i ∈ {1, . . . , N }, we also let

Bi =

{{
j ∈ {1, . . . , N } , j 6= i s.t. dg(xi,α, x j,α)= O(ri,α)

}
if ri,α→ 0,{

j ∈ {1, . . . , N }, j 6= i s.t. x j ∈ Bxi (
1
2 ig)

}
if ri,α 6→ 0.

(8-8)

and, for j ∈Bi ,
zi, j = lim

α→+∞
r−1

i,α exp−1
xi,α
(x j,α). (8-9)

Up to a subsequence, all these limits exist. We let δi > 0 be such that for any i and any j ∈Bi ,

|zi, j | 6= 0⇒ |zi, j | ≥ 10δi . (8-10)

We also define Ci to be the subset of Bi given by

Ci =
{

j ∈Bi s.t. zi, j = 0
}
∩Ac

i . (8-11)

It can be proved that there exists a subset Di of Ci and a family (Ri, j ) j∈Di of positive real numbers such
that the two following assertions hold true: for any j, k ∈ Di , j 6= k,

dg(x j,α, xk,α)

s j,i,α
→+∞ (8-12)

as α→+∞, and for any j ∈ Ci there exists a unique k ∈ Di such that

lim sup
α→+∞

dg(x j,α, xk,α)

sk,i,α
≤

Ri,k

20
and lim sup

α→+∞

s j,i,α

sk,i,α
≤

Ri,k

20
. (8-13)

We also introduce the subsets
�i,α = Bxi,α (δiri,α)

∖ ⋃
j∈Di

�i, j,α (8-14)

of M , where
�i, j,α = Bx j,α (Ri, j s j,i,α) (8-15)

for all j ∈ Di . The �i, j,α’s are disjoint for α sufficiently large.
We now prove two lemmas to be used in the proof of Theorem 0.1.

Lemma 8.1. Let i ∈ {1, . . . , N }. Up to passing to a subsequence,

|Uα −3i Bi,α| = o(Bi,α)+ O
(
µ
(n−2)/2
i,α r2−n

i,α

)
+ O

(∑
j∈Di

B j,α

)
= O(Bi,α)

in Bxi,α

(
4δiri,α

)
\
⋃

j∈Di
Bx j,α

( 1
10 Ri, j s j,i,α

)
, and so, in particular, in �i,α.

Proof. Let xα ∈ Bxi,α

(
4δiri,α

)
\
⋃

j∈Di
Bx j,α

( 1
10 Ri, j s j,i,α

)
. Thanks to Proposition 6.1 we can write

Uα(xα)=U∞(xα)+ εα‖U∞‖∞+ O
(
µ(n−2)/2
α

)
+

N∑
j=1

(
3 j + o(1)

)
B j,α(xα). (8-16)

By the definition of ri,α, we know that r2
i,α ≤ µi,α if U∞ 6≡ 0 so that

U∞(xα)+ εα‖U∞‖∞ = µ
(n−2)/2
i,α r2−n

i,α

{
0 if U∞ ≡ 0,(
limα→+∞ rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi )+ o(1) if U∞ 6≡ 0.

(8-17)
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We now estimate B j,α(xα). Assume first that j 6∈Ci and j 6= i . As one can check with a little bit of work
from the above definitions, if ri,α→ 0 as α→+∞, then

B j,α(xα)= µ
(n−2)/2
i,α r2−n

i,α 3i, j,α, (8-18)

where

3i, j,α =


( n(n−2)
|z−zi, j |

2
µ j,α

µi,α

)(n−2)/2
+ o(1) if j ∈Ai ∩Bi and i ∈A j ,

rn−2
i,α /s

n−2
i, j,α + o(1) if j ∈Ai \Bi or j ∈Ai ∩Bi and i 6∈A j ,

o(1) if j ∈Ac
i \Ci ,

where, up to a subsequence,
z = lim

α→+∞
r−1

i,α exp−1
xi,α
(xα).

Note that zi, j 6= 0 if j ∈Ai ∩Bi and i ∈A j . This is a direct consequence of the definition of the si, j,α’s
and (8-6). Moreover, |z− zi, j | ≥ 6δi in this case. As a consequence we have proved that

Uα(xα)= O
(
µ(n−2)/2
α

)
+o
(
µ
(n−2)/2
i,α r2−n

i,α

)
+
(
3i + o(1)

)
Bi,α(xα)

+µ
(n−2)/2
i,α r2−n

i,α 3(1)i,α +µ
(n−2)/2
i,α r2−n

i,α

∑
j∈Ai

3(2)i, j,α3 j +
∑
j∈Ci

(
3 j + o(1)

)
B j,α(xα), (8-19)

where

3(1)i,α =
{

0 if U∞ ≡ 0,(
limα→+∞ rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi ) if U∞ 6≡ 0,

and

3(2)i, j,α =

{(
n(n− 2)

)(n−2)/2
λi, j/|z− zi, j |

n−2 if j ∈Bi and i ∈A j ,

limα→+∞ rn−2
i,α /s

n−2
i, j,α if j 6∈Bi or i 6∈A j .

Let j ∈ Ci . We claim that, up to a subsequence,

lim
α→+∞

(
B j,α(xα)
Bi,α(xα)

)2/(n−2)

= n(n− 2) lim
α→+∞

s2
j,i,α

dg(x j,α, xα)2
. (8-20)

To prove (8-20), we first remark that i ∈ A j since j ∈ Ci (and in particular j 6∈ Ai ). Thus, using (8-5),
we obtain that(

B j,α(xα)
Bi,α(xα)

)2/(n−2)

=
(
1+ o(1)

)
µ j,αµ

−1
i,αdg(x j,α, xα)−2(n(n− 2)µ2

i,α + dg(xi,α, xα)2
)

= n(n− 2)
s2

j,i,α

dg(x j,α, xα)2
+ o(1)+ O

(
µ j,α

µi,α

∣∣dg(xi,α, xα)2− dg(xi,α, x j,α)
2
∣∣

dg(x j,α, xα)2

)
.

From the triangle inequality, we easily get∣∣dg(xi,α, xα)2− dg(xi,α, x j,α)
2
∣∣

dg(x j,α, xα)2
≤ 1+ 2

dg(xi,α, x j,α)

dg(x j,α, xα)
= O (1)+ O

(
s j,i,α

dg(x j,α, xα)

√
µi,α

µ j,α

)
,

hence the estimate (8-20). Now, for j ∈ Ci , we let k ∈ Di be given by (8-13). By (8-20) it is easily
checked that

B j,α(xα)= O(Bk,α(xα)). (8-21)
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Since
µ
(n−2)/2
i,α r2−n

i,α = O(Bi,α(xα)), (8-22)

the first estimate in the lemma clearly holds true thanks to (8-19) and (8-21). Here it can be noted that

µ(n−2)/2
α = O

(
µ
(n−2)/2
i,α r2−n

i,α

)
for all i . Applying (8-20) again we easily obtain the second estimate in the lemma. This ends the proof
of Lemma 8.1. �

Now we prove that the following elliptic type lemma holds true. Lemma 8.2 provides estimates on
the Uα’s and ∇Uα’s in small regions around the blow-up points xi,α.

Lemma 8.2. There exists C > 0 such that, up to a subsequence,

|Uα| ≤ Cµ(n−2)/2
i,α r2−n

i,α and |∇Uα| ≤ Cµ(n−2)/2
i,α r1−n

i,α

in Bxi,α (2δiri,α) \ Bxi,α

( 1
2δiri,α

)
. There also exists C > 0 such that, up to a subsequence, for any j ∈ Di ,

|Uα| ≤ Cµ(n−2)/2
j,α s2−n

j,i,α and |∇Uα| ≤ Cµ(n−2)/2
j,α s1−n

j,i,α

in Bx j,α (5Ri, j s j,i,α) \ Bx j,α

( 1
5 Ri, j s j,i,α

)
.

Proof. The lemma follows from standard elliptic theory and the estimates we proved in Lemma 8.1.
Assuming first that xα ∈ Bxi,α (4δiri,α) \ Bxi,α

( 1
4δiri,α

)
, we easily get from Lemma 8.1 that

|Uα(xα)| = O
(
µ
(n−2)/2
i,α r2−n

i,α

)
. (8-23)

On the other hand, if we let Ũα be given by Ũα(x)= r (n−2)/2
i,α Uα

(
expxi,α

(ri,αx)
)
, then

1g̃αŨα + r2
i,α ÃαŨα = |Ũα|

2?−2Ũα, (8-24)

where g̃α =
(
exp?xi,α

g
)
(ri,αx) and Ãα(x) = Aα

(
expxi,α

(ri,αx)
)
. The first two estimates in Lemma 8.2

follow from (8-23) and (8-24) by standard elliptic theory. Similarly, if we assume that

xα ∈ Bx j,α (10Ri, j s j,i,α) \ Bx j,α

( 1
10 Ri, j s j,i,α

)
,

noting that s j,i,α = o(ri,α) in this case, we get from Lemma 8.1 and (8-20) that

|Uα(xα)| = O
(
µ
(n−2)/2
j,α s2−n

j,i,α

)
. (8-25)

Letting Ûα be given by Ûα(x)= s(n−2)/2
j,i,α Uα

(
expx j,α

(s j,i,αx)
)
, we also have

1ĝαÛα + s2
j,i,α ÂαÛα = |Ûα|

2?−2Ûα, (8-26)

where ĝα = (exp?x j,α
g)(s j,i,αx) and Âα(x)= Aα

(
expx j,α

(s j,i,αx)
)
. The last two estimates in Lemma 8.2

follow from (8-25) and (8-26) here again by standard elliptic theory. This proves Lemma 8.2. �

9. Sharp asymptotics for the range of influence

Our goal now is to prove the sharp asymptotics connecting the range of influence ri,α of the blow-up
points with the weights µi,α of the bubbles in the decomposition of Proposition 4.2. This is the subject of
Proposition 9.2. We adopt here the notations of the preceding section. In particular, (Aα)α is a sequence
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of C1 maps from M to M s
p(R) such that Aα→ A in C1(M) as α→+∞ for some C1 map A from M

to M s
p(R) satisfying (H), and we order the blow-up points in such a way that

µα = µ1,α ≥ · · · ≥ µN ,α,

where the µi,α’s are the weights of the vector bubble (Bi
α)α in Proposition 4.2, and let the ri,α’s be given

by (8-3). First we prove:

Lemma 9.1. If ri,α = o
(√
µi,α/µα

)
, then, up to a subsequence,

rn−2
i,α µ

1−(n/2)
i,α Uα

(
expxi,α

(ri,αz)
)
→
(
n(n− 2)

)(n−2)/2(
3i |z|2−n

+Hi (z)
)

in C2
loc

(
B0(2δi ) \ {0}

)p as α→+∞, where

Hi (z)=
∑

j∈Ai∩Bi ,
i∈A j

λi, j3 j

|z− zi, j |
n−2 + X i

is a smooth function in B0 (2δi ) satisfying that Hi (0) 6= 0, the λi, j ’s are as in (8-7), δi is as in (8-10), and
the X i ’s are nonnegative vectors in Rp.

Proof. Let z ∈ B0(3δi ) \ {0} and set xα = expxi,α
(ri,αz). Let also Wα be given by

Uα(x)= rn−2
i,α µ

−(n−2)/2
i,α Uα

(
expxi,α

(ri,αx)
)
.

Then

1gαUα + r2
i,α ÃαUα =

(µi,α

ri,α

)2
|Uα|

2?−2Uα, (9-1)

where gα = (exp?xi,α
g)(ri,αx) and Ãα(x)= Aα

(
expxi,α

(ri,αx)
)
. In particular, we get by (8-6), (8-19) and

(8-20) that, if r2
i,α = o

(
µi,α/µα

)
, then

lim
α→+∞

rn−2
i,α µ

1− n
2

i,α Uα(xα)=
(
n(n− 2)

)(n−2)/2(
3i |z|2−n

+Hi (z)
)
, (9-2)

where Hi (z) is the sum of two terms:{
0 if U∞ ≡ 0(
limα→+∞ rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi ) if U∞ 6≡ 0

and ∑
j∈Ai

3 j

{(
n(n− 2)

)(n−2)/2
λi, j/|z− zi, j |

n−2 if j ∈Bi and i ∈A j ,

limα→+∞ rn−2
i,α /s

n−2
i, j,α if j 6∈Bi or i 6∈A j .

As a remark, if j ∈ Ai and i ∈ A j , then µi,α ∼ µ j,α. In particular, zi, j 6= 0 since, if not the case, we
would get from the inequality ri,α ≤ si, j,α that ri,α = o(µi,α) and then that dg(xi,α, x j,α) = o(µi,α), a
contradiction with the first equation in (4-5) of Proposition 4.2. By (9-1) and (9-2), standard elliptic
theory gives the lemma, up to the proof that Hi (0) 6= 0. Assume first that there exists j ∈ Ai such that
si, j,α = ri,α. Then in the term involving this j in the above sum over Ai there is at least one line which
is positive. Since all the other terms are nonnegative, this proves that Hi (0) 6= 0. The other possibility
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is that U∞ 6≡ 0 and that r2
i,α = µi,α so the first term in the definition of Hi is nonzero. Indeed, by the

maximum principle, since
1g|U∞|6 +3|U∞|6 ≥ 0

for some 3> 0, where |U∞|6 =
∑

i ui,∞ is the sum of the components of U∞, we get that |U∞|6 > 0
in M if U∞ 6≡ 0. Then, here again, Hi (0) 6= 0. Noting that the above two possibilities are the only two
possibilities since our assumption on ri,α clearly implies that ri,α→ 0 as α→+∞, this ends the proof
of Lemma 9.1. �

As it can be checked from the above proof, we have an explicit formula for the X i ’s in Lemma 9.1.
We get that

X i =

(
lim

α→+∞
rn−2

i,α µ
1−(n/2)
i,α

)
U∞(xi )+

∑
j∈(Ai\Bi )∪2i

(
lim

α→+∞

ri,α

si, j,α

)n−2
3 j , (9-3)

where we adopt the convention that the first term in the right-hand side of (9-3) is zero if U∞ ≡ 0, that
the second term is zero if (Ai\Bi )∪2i = ∅, and where 2i = { j ∈ Ai s.t. i 6∈ A j }. Now, at this point,
we can state Proposition 9.2 which establishes sharp asymptotics connecting the range of influence ri,α

of the blow-up points xi,α to the weights µi,α of the bubbles in the decomposition of Proposition 4.2.

Proposition 9.2. Let (M, g) be a smooth compact Riemannian manifold of dimension n≥ 4, p≥ 1 be an
integer, and (Aα)α be a sequence of C1 maps from M to M s

p(R) such that Aα→ A in C1(M) as α→+∞
for some C1 map A from M to M s

p(R) satisfying (H). Let also (Uα)α be an arbitrary bounded sequence
in H 1(M) of nonnegative solutions of (1-1) such that ‖Uα‖∞→+∞ as α→+∞. Let i ∈ {1, . . . , N }
and assume that, up to a subsequence, ri,α = o

(√
µi,α/µα

)
. Then((

A(xi )−
1
6 Sg(xi ) Idp

)
3i + o(1)

)
r2

i,α ln
1
µi,α
= 2Hi (0)+ o(1) (9-4)

if n = 4, and((
A(xi )−

n−2
4(n−1)

Sg(xi ) Idp

)
3i + o(1)

)
µ4−n

i,α rn−2
i,α

=
nn−2(n− 2)n−1ωn−1∫

Rn u2
0 dx

(
Hi (0)+

n−4
2
〈3i ,Hi (0)〉Rp3i

)
+ o(1) (9-5)

if n ≥ 5, where Hi is as in Lemma 9.1, the ri,α’s are as in (8-3), and u0 is given by (4-3). Moreover,
〈3i ,∇Hi (0)〉Rp ≡ 0.

We prove Proposition 9.2 by reverse induction on i . We let i ∈ {1, . . . , N } be such that
√
µαri,α =

o
(√
µi,α

)
and, in case i < N , we assume that

for any j = i + 1, . . . , N , (9-4) and (9-5) hold for j if
√
µαr j,α = o

(√
µ j,α

)
. (Hi )

If i = N we do not assume anything. Then we aim to prove that (9-4) and (9-5) hold true for i . As a
remark it should be noted that we always have

Hi (0)+
n−4

2
〈3i ,Hi (0)〉Rp3i 6= 0. (9-6)
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Let i ∈
{
1, . . . , N

}
, i < N , be arbitrary. Assuming (Hi ), we get that for any j ∈ Di ,

s2−n
j,i,α =

{
O
(
− lnµ j,α

)
if n = 4,

O
(
µ4−n

j,α

)
if n ≥ 5.

(9-7)

Indeed, if j ∈ Di , then j > i . Moreover, for any j ∈ Di , we have i ∈ A j , so s j,i,α ≥ r j,α, and clearly
s2

j,i,α = o(µ j,αµ
−1
i,α)= o(µ j,αµ

−1
α ). In particular,

√
µαr j,α = o

(√
µ j,α

)
, and (9-7) is a direct consequence

of (Hi ), thanks to (9-6). Now we prove Proposition 9.2 in several steps. In the sequel we let Rt(α)

represent any quantity such that

Rt(α)=

{
o
(
−µ2

i,α lnµi,α
)

if n = 4,

o(µ2
i,α) if n ≥ 5.

(9-8)

The first step in the proof of Proposition 9.2 is as follows.

Step 1. Let i ∈
{
1, . . . , N

}
be arbitrary. In case i < N , assume that (Hi ) holds true. Let

Fα =
(
64ω3

(
〈A(xi )3i ,3i 〉Rp −

1
6 Sg(xi )

)
+ o(1)

)
µ2

i,α ln
ri,α

µi,α
+ o

(
−µ2

i,α lnµi,α
)

if n = 4, and

Fα =

((
〈A(xi )3i ,3i 〉Rp −

n−2
4(n−1)

Sg(xi )
) ∫

Rn
u2

0dx + o(1)
)
µ2

i,α

if n ≥ 5. Then we have, up to passing to a subsequence,

Fα =

(
1
2 nn−2(n− 2)nωn−1〈3i ,Hi (0)〉Rp + o(1)

)
µn−2

i,α r2−n
i,α

if
√
µαri,α = o

(√
µi,α

)
, and Fα = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise, where Hi is as in Lemma 9.1, the

ri,α’s are as in (8-3), and u0 is as in (4-3).

Proof of Step 1. We apply the Pohozaev identity (7-2) of Proposition 7.1 in Section 7 to Uα in �i,α with
X = Xα given by

Xα(x)=
(

1−
1

6(n− 1)
Rc]g(x)

(
∇ fα(x),∇ fα(x)

))
∇ fα(x), (9-9)

where fα(x) = 1
2 dg(xi,α, x)2, and Rc]g is the (0, 2)-tensor field we get from the (2, 0)-Ricci tensor Rcg

due to the musical isomorphism. We obtain∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg

+
n− 2

4n

∫
�i,α

(1g(divg Xα))|Uα|
2dvg +

n− 2
2n

∫
�i,α

(divg Xα)〈AαUα,Uα〉Rp dvg

= Qα −

∑
j∈Di

Q j
α + R1,α + R2,α −

∑
j∈Di

R j
2,α, (9-10)
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where, if ν = να stands for the unit outer normal to ∂Bxi,α (δiri,α), the Qα’s are given by

Qα =
n− 2

2n

∫
∂Bxi,α (δi ri,α)

(divg Xα)〈∂νUα,Uα〉Rp dσg

−

∫
∂Bxi,α (δi ri,α)

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg, (9-11)

the Q j
α’s are given by

Q j
α =

n− 2
2n

∫
∂�i, j,α

(divg Xα)〈∂νUα,Uα〉Rp dσg

−

∫
∂�i, j,α

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg, (9-12)

where �i, j,α is as in (8-15), the R1,α’s are given by

R1,α =−

∫
�i,α

(T∇Xα)Uαdvg, (9-13)

where (T∇X)U =
∑p

i=1 S]X (∇ui ,∇ui ) and SX is as in (7-1), the R2,α’s are given by

R2,α =
n− 2

2n

∫
∂Bxi,α (δi ri,α)

Xα(ν)|Uα|
2?dσg −

n− 2
4n

∫
∂Bxi,α (δi ri,α)

(∂ν(divg Xα))|Uα|
2dσg, (9-14)

and the R j
2,α’s are given by

R j
2,α =

n− 2
2n

∫
∂�i, j,α

Xα(ν)|Uα|
2?dσg −

n− 2
4n

∫
∂�i, j,α

(∂ν(divg Xα))|Uα|
2dσg. (9-15)

Note that Di =∅ if i = N . Thanks to the expression of the Xα’s in (9-9) we have the estimates

|Xα(x)| = O(dg(xi,α, x)),

divg Xα(x)− n = O(dg(xi,α, x)2),

|∇(divg Xα)(x)| = O(dg(xi,α, x)),

1g(divg Xα)(x)= n
n−1

Sg(xi,α)+ O(dg(xi,α, x)).

(9-16)

In what follows we estimate the different terms involved in (9-10). We start with estimates on the Q j
α’s

and R j
2,α’s in (9-12) and (9-15). Since

dg(xi,α, x)≤ dg(xi,α, x j,α)+ Ri, j s j,i,α = O
(√

µi,α

µ j,α
s j,i,α

)
on ∂�i, j,α, we obtain from Lemma 8.2, (9-7) and (9-16) that

Q j
α + R j

2,α = O
(√

µi,α
µ j,α

µn−2
j,α s2−n

j,i,α

)
= Rt(α), (9-17)

where Rt(α) is as in (9-8). Now we estimate the R2,α’s in (9-14). Still from Lemma 8.2, we obtain by
direct computations, using (8-6) and (9-16), that

R2,α = O(µn−2
i,α )+ o

(
µn−2

i,α r2−n
i,α

)
. (9-18)
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Concerning the right-hand side of (9-10) it remains to estimate the Qα’s in (9-11) and the R1,α’s in
(9-13). We start with estimates for the R1,α’s. We remark that S]Xα = O(dg(xi,α, x)2) and that

(T∇Xα)Bi
α
= O

(
dg(xi,α, x)3|∇Bi,α|

2).
In particular, we can write

R1,α = O
(∫

�i,α

dg(xi,α, x)3|∇Bi,α|
2dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|∇Bi,α||∇
(
Uα
− Bi,α3i

)
|dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|∇
(
Uα
− Bi,α3i

)
|
2dvg

)
.

Direct computations lead to∫
�i,α

dg(xi,α, x)2+κ |∇Bi,α|
2dvg =

{
Oκ

(
−µ2

i,α lnµi,α
)

if n = 4,
Oκ(µ

2
i,α) if n ≥ 5,

where Oκ = O if κ = 0, and Oκ = o if κ = 1. Integrating by parts and using Lemma 8.1, Lemma 8.2,
and (9-7), we can write∫
�i,α

dg(xi,α, x)2|∇(Uα−Bi,α3i )|
2dvg

= O
(∫

∂�i,α

|Uα−Bi,α3i |dg(xi,α, x)2|∇(Uα−Bi,α3i )|dσg

)
+ O

(∫
∂�i,α

dg(xi,α, x)|Uα−Bi,α3i |
2dσg

)
+ O

(∫
�i,α

|Uα−Bi,α3i |
2dvg

)
+

∫
�i,α

dg(xi,α, x)2
〈
Uα−Bi,α3i ,1g(Uα−Bi,α3i )

〉
Rp dvg,

and then∫
�i,α

dg(xi,α, x)2|∇(Uα − Bi,α3i )|
2dvg

=

∫
�i,α

dg(xi,α, x)2
〈
Uα − Bi,α3i ,1g(Uα − Bi,α3i )

〉
Rp dvg + o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α),

where Rt(α) is as in (9-8). It remains to remark that thanks to the equations satisfied by the Uα’s, and
the expression of 1g in geodesic polar coordinates, we have∫
�i,α

dg(xi,α, x)2
〈
Uα−Bi,α3i ,1g(Uα−Bi,α3i )

〉
Rp dvg

= O
(∫

�i,α

dg(xi,α, x)2|Uα−Bi,α3i |
(
|Uα|

2?−1
+ B2?−1

i,α

)
dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|Uα−Bi,α3i ||Uα|dvg

)
+ O

(∫
�i,α

dg(xi,α, x)3|Uα−Bi,α3i ||∇Bi,α|dvg

)
,

so that, by Lemma 8.1, using Hölder’s inequalities,

R1,α = o
(
µn−2

i,α r2−n
i,α

)
+ Rt(α), (9-19)
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where Rt(α) is as in (9-8). Still concerning the right-hand side of (9-10) it remains to estimate the Qα’s
in (9-11). Thanks to Lemma 8.2 and Lemma 9.1, we get by simple computations that

Qα =
(
−

1
2 nn−2(n− 2)nωn−1〈3i ,Hi (0)〉Rp + o(1)

)
µn−2

i,α r2−n
i,α + O

(
µn−2

i,α

)
, (9-20)

if ri,α = o
(√
µi,α/µα

)
, and Qα = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise. Now we concentrate on the left-hand

side of (9-10). Writing Aα(x)= Aα(xi,α)+ O(dg(xi,α, x)), we get∫
�i,α

〈
AαUα,Xα(∇Uα)

〉
Rp dvg=

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αXα(∇Uα)kdvg+O
(∫

�i,α

dg(xi,α,x)2|Uα||∇Uα|dvg

)
.

Using the Cauchy–Schwarz inequality, we can write∫
�i,α

dg(xi,α, x)2|Uα||∇Uα|dvg ≤5
1
j=0

(∫
�i,α

dg(xi,α, x)3−2 j
|∇

1− j Uα|
2dvg

)1/2

.

Using Lemma 8.1 it is easily checked that∫
�i,α

dg(xi,α, x)|Uα|
2dvg = Rt(α), (9-21)

where Rt(α) is as in (9-8). We integrate by parts and use the equations satisfied by the Uα’s, together
with Lemma 8.1, Lemma 8.2, and (9-7), to obtain∫
�i,α

dg(xi,α, x)3|∇Uα|
2dvg = O

(∫
∂�i,α

dg(xi,α, x)3|∇Uα||Uα|dσg

)
+ O

(∫
∂�i,α

dg(xi,α, x)2|Uα|
2dσg

)
+ O

(∫
�i,α

dg(xi,α, x)3|Uα|
2?dvg

)
+ O

(∫
�i,α

dg(xi,α, x)|Uα|
2dvg

)
,

and then that ∫
�i,α

dg(xi,α, x)3|∇Uα|
2dvg = o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α),

where Rt(α) is as in (9-8). Thus we get that∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg =

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αXα(∇Uα)kdvg + o
(
µn−2

i,α r2−n
i,α

)
+ Rt(α).

Integrating by parts again, and estimating the different terms as above, it is easily checked that we actually
have∫

�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg =−
n
2

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αuk,αdvg + o
(
µn−2

i,α r2−n
i,α

)
+ Rt(α),



STABILITY FOR STRONGLY COUPLED CRITICAL ELLIPTIC SYSTEMS IN INHOMOGENEOUS MEDIA 353

where Rt(α) is as in (9-8). Proceeding as above, thanks to (9-16), one finally gets that∫
�i,α

〈
AαUα, Xα(∇Uα)

〉
Rp dvg +

n− 2
4n

∫
�i,α

(1g(divg Xα))|Uα|
2dvg

+
n− 2

2n

∫
�i,α

(divg Xα)〈AαUα,Uα〉Rp dvg

=−

p∑
j,k=1

Aαjk(xi,α)

∫
�i,α

u j,αuk,αdvg +
n− 2

4(n− 1)
Sg(xi,α)

∫
�i,α

|Uα|
2dvg + o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α),

(9-22)

where Rt(α) is as in (9-8). We have∫
�i, j,α

B2
i,αdvg = Rt(α) for all j ∈ Di . (9-23)

Indeed, if dg(xi,α, x j,α)/s j,i,α→+∞ as α→+∞, then∫
Bx j,α (Ri, j s j,i,α)

B2
i,αdvg = O

(
sn

j,i,αBi,α(x j,α)
2)
= O

(
µn−2

j,α s4−n
j,i,α

)
= Rt(α),

thanks to (9-7), and if dg(xi,α, x j,α)= O(s j,i,α), then s j,i,α = o(µi,α) and∫
Bx j,α (Ri, j s j,i,α)

B2
i,αdvg = O

(
µ2−n

i,α sn
j,i,α

)
= o(µ2

i,α).

Clearly, (9-23) follows from these two equations. Plugging (9-23) into (9-22), we get from Lemma 8.1
that∫
�i,α

〈
AαUα, Xα(∇Uα)

〉
Rp dvg+

n−2
4n

∫
�i,α

(1g(divg Xα))|Uα|
2dvg+

n−2
2n

∫
�i,α

(divg Xα)〈AαUα,Uα〉Rp dvg

=−

(〈
A(xi )3i ,3i

〉
Rp −

n−2
4(n−1)

Sg(xi )+ o(1)
) ∫

Bxi,α (δi ri,α)

B2
i,αdvg + o

(
µn−2

i,α r2−n
i,α

)
+ Rt(α). (9-24)

We have ∫
Bxi,α (δi ri,α)

B2
i,αdvg =

{
64ω3µ

2
i,α ln(ri,α/µi,α)+ o

(
−µ2

i,α lnµi,α
)

if n = 4,(∫
Rn u2

0dx
)
µ2

i,α + o(µ2
i,α) if n ≥ 5,

(9-25)

where u0 is given by (4-3). Combining (9-10), (9-17)–(9-20), (9-24), and (9-25) yields the proof of
Step 1. �

Step 2. Let i ∈ {1, . . . , N } be arbitrary. In case i < N , assume that (Hi ) holds. Let Kα be given by

Kα =

(
64ω3

(
A(xi )3i −

1
6 Sg(xi )3i

)
+ o(1)

)
µ2

i,α ln
ri,α

µi,α
+ o

(
−µ2

i,α lnµi,α
)

in case n = 4, and

Kα =

((
A(xi )3i −

n− 2
4(n− 1)

Sg(xi )3i

) ∫
Rn

u2
0dx + o(1)

)
µ2

i,α
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in case n ≥ 5. Then, up to passing to a subsequence, we have

Kα =

(
nn−2(n− 2)n−1ωn−1

(
Hi (0)+

n−4
2
〈
Hi (0),3i

〉
3i

)
+ o(1)

)
µn−2

i,α r2−n
i,α ,

if
√
µαri,α = o

(√
µi,α

)
, and Kα = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise, where Hi is as in Lemma 9.1, the

ri,α’s are as in (8-3), and u0 is as in (4-3).

Proof of Step 2. We multiply the line k of the system (1-1) by ul,α and integrate over �i,α. This leads to∫
�i,α

ul,α1guk,αdvg +

p∑
m=1

∫
�i,α

Aαkmul,αum,αdvg =

∫
�i,α

|Uα|
2?−2ukαul,αdvg. (9-26)

Let the 3i,k’s, k = 1, . . . , p, be the components of 3i , and the Hi,k’s be the components of Hi . We
define Sαk,l by

Sαk,l =
(

nn−2(n− 2)n−1ωn−1
(
3i,kHi,l(0)−3i,lHi,k(0)

)
+ o(1)

)
µn−2

i,α r2−n
i,α ,

if ri,α = o
(√
µi,α/µα

)
, and Sαk,l = O

(
µ
(n−2)/2
i,α µ

(n−2)/2
α

)
otherwise. We also define T α

k,l by

T α
k,l =

{(
64ω3Wk,l + o(1)

)
µ2

i,α ln(ri,α/µi,α)+ o
(
−µ2

i,α lnµi,α
)

if n = 4,(
Wk,l

∫
Rn u2

0dx + o(1)
)
µ2

i,α if n ≥ 5,

where

Wk,l =

p∑
m=1

(
A(xi )lm3i,k3i,m − A(xi )km3i,l3i,m

)
,

and u0 is given by (4-3). Integrating by parts, thanks to Lemma 8.2 and Lemma 9.1, we have∫
�i,α

ul,α1guk,αdvg =

∫
�i,α

uk,α1gul,αdvg +

∫
∂�i,α

(uk,α∂νul,α − ul,α∂νuk,α) dσg

=

∫
�i,α

|Uα|
2?−2ukαul,αdvg −

p∑
m=1

∫
�i,α

Aαlmuk,αum,αdvg + O
(∑

j∈Di

µn−2
j,α s2−n

j,i,α

)
+ Sαk,l .

Now we write Aα(x) = Aα(xi,α) + O(dg(xi,α, x)). With similar estimates as in the proof of Step 1,
thanks to (9-21), we get that

p∑
m=1

∫
�i,α

Aαlmuk,αum,αdvg −

p∑
m=1

∫
�i,α

Aαkmul,αum,αdvg = o
(
µn−2

i,α r2−n
i,α

)
+ T α

k,l .

Coming back to (9-26) with all these estimates, thanks to (9-7), we obtain that Sαk,l = T α
k,l . In particular,∑

k Sαk,l3i,k =
∑

k T α
k,l3i,k and Step 2 follows from Step 1. This ends the proof of Step 2. �

Conclusion of the proof of Proposition 9.2. Equations (9-4) and (9-5) follow from Step 2. It remains to
prove that 〈3i ,∇Hi (0)〉Rp ≡ 0. We assume here that

√
µαri,α = o

(√
µi,α

)
. In particular, ri,α → 0 as

α→+∞. Let Y be an arbitrary 1-form in Rn . We apply once more the Pohozaev identity (7-2) to Uα

in �i,α. However, here we choose X = Xα to be given in the exponential chart at xi,α by

Xα
κ = Yκ − 2

3 Rκ jkl(xi,α)x j xkY l,
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where Y l
= Yl for all l and the Rκ jkl are the components of the Riemann tensor Rmg at xi,α in the

exponential chart. As is easily checked, still in geodesic normal coordinates at xi,α,

(∇Xα)κ j =−Rκ jkl(xi,α)xkY l
+ O(|x |2),

so that divg(Xα)= O
(
|x |2

)
. Then, thanks to the symmetries of the Riemann tensor, we obtain with the

Pohozaev identity that∫
∂�i,α

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg +

∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg

= O
(∫

�i,α

|Uα|
2dvg

)
+ O

(∫
�i,α

dg(xi,α, x)2|∇Uα|
2dvg

)
+ O

(∫
∂�i,α

|Uα|
2?dσg

)
+ O

(∫
∂�i,α

|Uα|
2dσg

)
+ O

(∫
∂�i,α

|∂νUα||Uα|dσg

)
,

(9-27)

Estimating the right-hand side of (9-27) via (9-7) and using Lemma 8.1 and Lemma 8.2, we get∫
∂�i,α

( 1
2 Xα(ν)|∇Uα|

2
−〈Xα(∇Uα), ∂νUα〉Rp

)
dσg +

∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg = R̂t(α), (9-28)

where R̂t(α) is such that

R̂t(α)=

{
O
(
−µ2

i,α lnµi,α
)
+ O

(
µn−2

i,α r2−n
i,α

)
if n = 4,

O(µ2
i,α)+ O

(
µn−2

i,α r2−n
i,α

)
if n ≥ 5.

(9-29)

Now we can write∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg =

p∑
k,l=1

Aαkl(xi,α)

∫
�i,α

uk,αXα(∇Uα)ldvg + O(Tα),

where

Tα =
∫
�i,α

dg(xi,α, x)|∇Uα||Uα|dvg,

obtaining∫
�i,α

〈AαUα, Xα(∇Uα)〉Rp dvg

=
1
2

p∑
k,l=1

Aαkl(xi,α)

∫
∂�i,α

uk,αul,αXα(ν) dσg −
1
2

p∑
k,l=1

Aαkl(xi,α)

∫
�i,α

uk,αul,α divg
(
Xα
)

dvg + O(Tα).

As above, estimating the various terms in this equation, it follows that∫
�i,α

〈
AαUα, Xα(∇Uα)

〉
Rp dvg = R̂t(α), (9-30)

where R̂t(α) is as in (9-29). As a consequence, coming back to (9-28), thanks to (9-30), we get∫
∂�i,α

(1
2 Xα(ν)|∇Uα|

2
−
〈
Xα(∇Uα), ∂νUα

〉
Rp

)
dσg = R̂t(α), (9-31)
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where R̂t(α) is as in (9-29). By Lemmas 8.2 and 9.1, together with (9-7), we have∫
∂�i,α

( 1
2 Xα(ν)|∇Uα|

2
−
〈
Xα(∇Uα), ∂νUα

〉
Rp

)
dσg

=

(
nn−2(n− 2)n−1ωn−1

〈
3i , (Y (∇Hi ))0

〉
Rp + o(1)

)
µn−2

i,α r1−n
i,α + Ŵα, (9-32)

where (Y (∇Hi ))0 ∈ Rp is such that (Y (∇Hi ))
l
0 =

∑n
κ=1 Yκ(∇κHi,l)(0) for all l = 1, . . . , p, and

Ŵα =

{
o
(
µ2

i,α(− lnµi,α)
3/2
)

if n = 4,

o(µ2
i,α) if n ≥ 5.

As a consequence of Step 2 we have

ri,α =

{
O
(
(− lnµi,α)

−1/2
)

if n = 4,

O
(
µ
(n−4)/(n−2)
i,α

)
if n ≥ 5.

Coming back to (9-31)–(9-32), it follows that
〈
3i , (Y (∇Hi ))0

〉
Rp = 0, and since Y is arbitrary, we get〈

3i ,∇Hi (0)
〉
Rp ≡ 0. �

10. Proof of Theorem 0.1

We prove Theorem 0.1 using Proposition 9.2. We let (Aα)α be a sequence of C1 maps from M to M s
p(R)

such that Aα → A in C1(M) as α→ +∞ for some C1 map A from M to M s
p(R) satisfying (H) and

(H′). We also let (Uα)α be an arbitrary bounded sequence in H 1(M) of nonnegative solutions of (1-1)
and we assume by contradiction that ‖Uα‖∞→+∞ as α→+∞. We order the blow-up points of the
Uα’s in such a way that

µα = µ1,α ≥ · · · ≥ µN ,α,

where the µi,α’s are the weights of the vector bubble (Bi
α)α in Proposition 4.2, and we let Ai be as in

(8-4). We consider A1. By (H′), Ker An(x)∩Vect+(Rp)= {0} for all x ∈ M , where An is as in (0-2). In
particular, if the ri,α’s are as in (8-3), it follows from Step 2 in Section 9 that r1,α→ 0 as α→+∞. As
a direct consequence, A1 6=∅. Let i ∈A1. Still by Step 2 in Section 9, we have ri,α→ 0 as α→+∞.
By Proposition 9.2, since Ker An(x)∩Vect+(Rp)= {0} for all x ∈ M , for any i ∈A1 ∪ {1}, there exists
Ci > 0 such that

r2
i,α ln

1
µi,α
→ Ci if n = 4 and rn−2

i,α µ
4−n
i,α → Ci if n ≥ 5 (10-1)

as α → +∞. By (10-1), µi,α = o(ri,α) for all i ∈ A1 ∪ {1}. We also get from (10-1) that for any
i ∈A1 ∪ {1},

µi,α = o(r2
i,α) if n = 4, 5 and r2

i,α = o(µi,α) if n ≥ 7. (10-2)

As a remark, it follows from (10-2) that U∞ ≡ 0 when n = 4, 5 since, if not the case, r2
i,α ≤ µi,α. It also

follows from (10-2) that for any i ∈A1∪{1}, Ai ∩Bi 6=∅, where the Bi ’s are as in (8-8). By (9-3), we
get with (10-2) that

Hi (z)=
∑

j∈Ai∩Bi

λi, j3 j

|z− zi, j |
n−2 , (10-3)
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where Hi is as in Lemma 9.1. In particular, the 3i ’s are the S p−1 projections of the bubbles (Bi
α)α. Let

E1= (A1∩B1)∪{1}. For any i ∈A1∩B1, we have Ai ∩Bi =E1\{i}. We pick up some i ∈E1 such that
dg(x1,α, xi,α) ≥ dg(x1,α, x j,α) for all j ∈ E1. By Proposition 9.2 we have

〈
3i ,∇Hi (0)

〉
Rp = 0. Together

with (10-3), this implies that 〈3i ,3 j 〉Rp = 0 for all j ∈ E1 \ {i}. Repeating the operation with E1 \ {i},
and so on up to exhaust all the indices in E1, we obtain that 〈3i ,3 j 〉Rp = δi j for all i, j ∈E1. Moreover,
it follows from (9-4) and (9-5) in Proposition 9.2 that V = Vect{3i , i ∈ E1} is a stable vector space of
An(x1). Noting that

〈
3i ,Hi (0)

〉
Rp = 0 for all i ∈ E1, we also get with (9-4) and (9-5) in Proposition 9.2

that the 3i ’s are isotropic vectors for An(x1) for all i ∈ E1. In particular, we get a contradiction with
(H′). This proves Theorem 0.1 when n 6= 6. When n = 6, thanks to Proposition 2.1, it remains to prove
that our systems are weakly stable, and thus that we necessarily have U∞ 6≡ 0 if we assume (H′). When
n = 6, it follows from (10-1) that r2

i,α ∼ µi,α. Then, by (9-3),

Hi (z)=
∑

j∈Ai∩Bi

λi, j3 j

|z− zi, j |
n−2 +CU∞(x1), (10-4)

where r−4
i,αµ

2
i,α→C as α→+∞. As above, 〈3i ,3 j 〉Rp = δi j for all i, j ∈E1, but we may have E1={1}.

By Proposition 9.2, V = Vect{3i , i ∈ E1} is a stable vector space of A6(x1) and the 3i ’s are isotropic
vectors for A6(x1) for all i ∈ E1 if U∞(x1) = 0. In particular, we do get a contradiction with (H′) if
U∞(x1)= 0. This proves Theorem 0.1 when n = 6.

As a remark, if n = 6 and A6 < 0 in M in the sense of bilinear forms, where A6 is as in (0-2), then
we also get a contradiction by (9-5) in Proposition 9.2 since r2

i,α ∼ µi,α and Hi (0),
〈
3i ,Hi (0)

〉
Rp3i ∈

Vect+(Rp). In particular, we recover analytic stability for our systems if we assume that A6 < 0 in
M in the sense of bilinear forms. More precisely, letting (M, g) be a smooth compact six-dimensional
Riemannian manifold, p ≥ 1 be an integer, and A : M→ M s

p(R) be a C1-map such that A satisfies (H),
the system (0-1) associated with A is analytically stable if A6(x) < 0 in the sense of bilinear forms for
all x .

As another remark, it is easily seen from (9-4) and (9-5) in Proposition 9.2 that for any n ≥ 4, and any
i ∈ A1 ∪ {1}, An(x1)3i ∈ Vect+(Rp). In particular, we can replace (H′) in Theorem 0.1 by the slightly
more general condition that for any x ∈ M , and any k ∈ {1, . . . , p}, there does not exist an orthonormal
family (e1, . . . , ek) of vectors in IsAn(x) ∩Vect+(Rp) such that An(x)V ⊂ V and An(x)ei ∈ Vect+(Rp)

for all i , where V is the k-dimensional subspace of Rp with basis (e1, . . . , ek).
As a final remark we mention that Theorem 0.1 still holds true, and can be proved with only slight

modifications in the arguments of Section 9, if the C1 convergence of the Aα’s is replaced by a C0,θ -
convergence of the Aα’s with θ = 1 when n = 4, and θ > 2/(n− 2) when n ≥ 5.
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