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Expanders, exact crossed products,
and the Baum–Connes conjecture

Paul Baum, Erik Guentner and Rufus Willett

We reformulate the Baum–Connes conjecture with coefficients by introducing
a new crossed product functor for C �-algebras. All confirming examples for
the original Baum–Connes conjecture remain confirming examples for the re-
formulated conjecture, and at present there are no known counterexamples to
the reformulated conjecture. Moreover, some of the known expander-based
counterexamples to the original Baum–Connes conjecture become confirming
examples for our reformulated conjecture.

1. Introduction

For a second-countable locally compact group G, the Baum–Connes conjecture
(with coefficients) [Baum et al. 1994; Valette 2002] asserts that the Baum–Connes
assembly map

K
top
� .GIA/!K�.AÌred G/ (1.1)

is an isomorphism for all G-C �-algebras A. Here the C �-algebra A is equipped
with a continuous action of G by C �-algebra automorphisms and, as usual, AÌred G

denotes the reduced crossed product. The conjecture has many deep and important
connections to geometry, topology, representation theory and algebra. It is known
to be true for large classes of groups: see for example [Higson and Kasparov 2001;
Chabert et al. 2003; Lafforgue 2012].

Work of Higson, Lafforgue and Skandalis [Higson et al. 2002] has, however,
shown the conjecture to be false in the generality stated above. The counterex-
amples to the Baum–Connes conjecture they discovered are closely connected to
failures of exactness in the sense of Kirchberg and Wassermann [Brown and Ozawa
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2008, Chapter 5]. Recall that a locally compact group G is exact if for every short
exact sequence of G-C �-algebras

0! I !A! B! 0

the corresponding sequence of reduced crossed products

0! I Ìred G!AÌred G! B Ìred G! 0

is still exact. All naturally occurring classes of locally compact groups1 are known
to be exact. For example, countable linear groups [Guentner et al. 2005], word hy-
perbolic groups [Roe 2005], and connected groups [Connes 1976, Corollary 6.9(c)]
are all exact. Nonetheless, Gromov [2003] has indicated how to construct nonexact
“monster” groups. (See [Arzhantseva and Delzant 2008; Coulon 2014; Osajda
2014] for detailed accounts of related constructions; the last of these is most rel-
evant for this paper.) Higson, Lafforgue and Skandalis [Higson et al. 2002] used
Gromov’s groups to produce short exact sequences of G-C �-algebras such that
the resulting sequence of crossed products fails to be exact even on the level of
K-theory. This produces a counterexample to the Baum–Connes conjecture with
coefficients.

Furthermore, the Baum–Connes conjecture actually predicts that the functor
associating to a G-C �-algebra A the K-theory of the reduced crossed product
AÌred G should send short exact sequences of G-C �-algebras to six-term exact
sequences of abelian groups. Thus any examples where exactness of the right-
hand-side of the conjecture in (1.1) fails necessarily produce counterexamples;
conversely, any attempt to reformulate the conjecture must take exactness into
account.

Several results from the last five years show that some counterexamples can be
obviated by using maximal completions, which are always exact. The first progress
along these lines was work of Oyono-Oyono and Yu [2009] on the maximal coarse
Baum–Connes conjecture for certain expanders. Developing these ideas, Yu and
the third author [2012a; 2012b] showed that some of the counterexamples to the
Baum–Connes conjecture coming from Gromov monster groups can be shown to
be confirming examples if the maximal crossed product AÌmax G is instead used to
define the conjecture. Subsequently, the geometric input underlying these results
was clarified by Chen, Wang and Yu [Chen et al. 2013], and the role of exactness,
and also a-T-menability, in the main examples was made quite explicit by Finn-Sell
and Wright [2014].

All this work suggests that the maximal crossed product sometimes has better

1Of course, what “naturally occurring” means is arguable! However, we think this can be reason-
ably justified.
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properties than the reduced crossed product; however, there are well-known prop-
erty (T) obstructions [Higson 1998] to the Baum–Connes conjecture being true
for the maximal crossed product in general. The key idea of the current work is
to study crossed products that combine the good properties of the maximal and
reduced crossed products.

In this paper we shall study C �-algebra crossed products that preserve short
exact sequences. The Baum–Connes conjecture also predicts that a crossed prod-
uct takes equivariantly Morita-equivalent G-C �-algebras to Morita-equivalent C �-
algebras on the level of K-theory (this is true for the maximal and reduced crossed
products, but not in general). We thus restrict attention to crossed products satisfy-
ing a Morita compatibility assumption that guarantees this.

We shall show that a minimal exact and Morita-compatible crossed product ex-
ists, and we shall use it to reformulate the Baum–Connes conjecture. Denoting the
minimal exact and Morita-compatible crossed product by AÌE G, we propose that
the natural Baum–Connes assembly map

� WK
top
� .GIA/!K�.AÌE G/ (1.2)

is an isomorphism for any second-countable locally compact group G and any
G-C �-algebra A.

This reformulation has the following four virtues:

(i) it agrees with the usual version of the conjecture for all exact groups and all
a-T-menable groups;

(ii) the property (T) obstructions to surjectivity of the maximal Baum–Connes
assembly map do not apply to it;

(iii) all known constructions of counterexamples to the usual version of the Baum–
Connes conjecture (for groups, with coefficients) no longer apply;

(iv) there exist groups G and G-C �-algebras A for which the old assembly map
in (1.1) fails to be surjective, but for which the reformulated assembly map
in (1.2) is an isomorphism.

Thanks to point (i) above, the reformulated assembly map is an isomorphism, or
injective, in all situations where the usual version of the assembly map is known
to have these properties.

Outline of the paper. In Section 2 we define what we mean by a general crossed
product, and show that any such has an associated Baum–Connes assembly map.
In Section 3 we define exact and Morita-compatible crossed products and show that
there is a minimal crossed product with both of these properties. In Section 4 we
show that the minimal exact and Morita-compatible crossed product has a descent
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functor in E-theory, and use this to state our reformulation of the Baum–Connes
conjecture. In Section 5 we show that the property (T) obstructions to the maxi-
mal Baum–Connes assembly map being an isomorphism do not apply to our new
conjecture. In Section 6 we show that our reformulated conjecture is true when an
action is a-T-menable. In Section 7 we produce an example where the new con-
jecture is true, but the old version of the conjecture fails. Finally, in Section 8, we
collect together some natural questions and remarks. In the Appendix we discuss
some examples of exotic crossed products; this material is not used in the main
body of the paper, but is useful for background and motivation.

2. Statement of the conjecture

Let G be a second-countable, locally compact group. Let C � denote the category
of C �-algebras: an object in this category is a C �-algebra, and a morphism is a �-
homomorphism. Let G-C � denote the category of G-C �-algebras: an object in this
category is C �-algebra equipped with a continuous action of G and a morphism is
a G-equivariant �-homomorphism.

We shall be interested in crossed product functors from G-C � to C �. The mo-
tivating examples are the usual maximal and reduced crossed product functors

A 7!AÌmax G; A 7!AÌred G:

Recall that the maximal crossed product is the completion of the algebraic crossed
product for the maximal norm. Here, the algebraic crossed product AÌalg G is the
space of continuous compactly supported functions from G to A, equipped with
the usual twisted product and involution. Similarly, AÌred G is the completion of
the algebraic crossed product for the reduced norm. Further, the maximal norm
dominates the reduced norm so that the identity on AÌalg G extends to a (surjec-
tive) �-homomorphism AÌmax G!AÌred G. Together, these �-homomorphisms
comprise a natural transformation of functors.

With these examples in mind, we introduce the following definition.

Definition 2.1. A (C �-algebra) crossed product is a functor

A 7!AÌ� G W G-C �! C �;

such that each C �-algebra A Ì� G contains A Ìalg G as a dense �-subalgebra,
together with natural transformations

AÌmax G!AÌ� G!AÌred G (2.2)

which restrict to the identity on each �-subalgebra AÌalg G.
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It follows that each C �-algebra AÌ� G is a completion of the algebraic crossed
product for a norm which necessarily satisfies

kxkred � kxk� � kxkmax

for every x 2 AÌalg G. Note also that the �-homomorphism AÌ� G! B Ì� G

functorially induced by a G-equivariant �-homomorphism A! B is necessarily
the extension by continuity of the standard �-homomorphism AÌalg G!BÌalg G.

In the Appendix we shall see that there are in general many crossed products
other than the reduced and maximal ones. Our immediate goal is to formulate a
version of the Baum–Connes conjecture for a general crossed product. For reasons
involving descent (that will become clear later), we shall formulate the Baum–
Connes conjecture in the language of E-theory, as in [GHT 2000, §10].

We continue to let G be a second-countable, locally compact group and con-
sider the � -crossed product for G. The � -Baum–Connes assembly map for G with
coefficients in the G-C �-algebra A is the composition

K
top
� .GIA/!K�.AÌmax G/!K�.AÌ� G/; (2.3)

in which the first map is the usual maximal Baum–Connes assembly map and the
second is induced by the �-homomorphism A Ìmax G ! A Ì� G. The domain
of assembly is independent of the particular crossed product we are using. It is
the topological K-theory of G with coefficients in A, defined as the direct limit of
equivariant E-theory groups

K
top
� .GIA/D lim

X�EG
cocompact

EG.C0.X /;A/;

where the direct limit is taken over cocompact subsets of EG, a universal space for
proper G-actions. The (maximal) assembly map is itself a direct limit of assembly
maps for the individual cocompact subsets of EG, each defined as a composition

EG.C0.X /;A/!E.C0.X /Ìmax G;AÌmax G/!E.C;AÌmax G/; (2.4)

in which the first map is the E-theoretic (maximal) descent functor, and the second
map is composition with the class of the basic projection in C0.X /Ìmax G, viewed
as an element of E.C;C0.X /Ìmax G/. Compatibility of the assembly maps for the
various cocompact subsets of EG indexing the direct limit follows from the unique-
ness (up to homotopy) of the basic projection. For details see [GHT 2000, §10].

For the moment, we are interested in what validity of the �-Baum–Connes
conjecture — the assertion that the �-Baum–Connes assembly map is an isomor-
phism — would predict about the �-crossed product itself. The first prediction is
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concerned with exactness. Suppose

0! I !A! B! 0

is a short exact sequence of G-C �-algebras. Exactness properties of equivariant
E-theory ensure that the sequence functorially induced on the left-hand side of
assembly

K
top
� .GI I/!K

top
� .GIA/!K

top
� .GIB/

is exact in the middle. (Precisely, this follows from the corresponding fact for each
cocompact subset of EG upon passing to the limit.) Now, the assembly map is
itself functorial for equivariant �-homomorphisms of the coefficient algebra. As a
consequence, the functorially induced sequence on the right-hand side of assembly

K�.I Ì� G/!K�.AÌ� G/!K�.B Ì� G/

must be exact in the middle as well.
The second prediction concerns Morita invariance. To formulate it, let H be the

countably infinite direct sum

H DL2.G/˚L2.G/˚ � � �

and denote the compact operators on H by KG , which we consider as a G-C �-
algebra in the natural way. Similarly, for any G-C �-algebra A, we consider the
spatial tensor product A˝KG as a G-C �-algebra via the diagonal action. Assume
for simplicity that A and B are separable G-C �-algebras. Then A and B are said
to be equivariantly Morita-equivalent if A˝KG is equivariantly �-isomorphic
to B ˝KG : results of [Curto et al. 1984] and [Mingo and Phillips 1984] show
that this is equivalent to other, perhaps more usual, definitions (compare [GHT
2000, Proposition 6.11 and Theorem 6.12]). If A and B are equivariantly Morita-
equivalent then EG.C;A/ Š EG.C;B/ for any G-C �-algebra C [GHT 2000,
Theorem 6.12]. There is thus an isomorphism

K
top
� .GIA/ŠK

top
� .GIB/

on the left-hand side of assembly. Assuming the �-Baum–Connes conjecture is
valid for G we must therefore also have an isomorphism

K�.AÌ� G/ŠK�.B Ì� G/

on the level of K-theory.

3. Crossed product functors

Motivated by the discussion in the previous section, we are led to study crossed
product functors that have good properties with respect to exactness and Morita
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equivalence. The following two properties imply this “good behavior”, and are
particularly well-suited to our later needs.

Throughout this section, G is a second-countable, locally compact group.

Definition 3.1. The � -crossed product is exact if for every short exact sequence

0!A! B! C ! 0

of G-C �-algebras the corresponding sequence of C �-algebras

0!AÌ� G! B Ì� G! C Ì� G! 0

is short exact.

Whereas the maximal crossed product functor is always exact in this sense (see
Lemma A.6), the reduced crossed product functor is (by definition) exact precisely
when G is an exact group [Kirchberg and Wassermann 1999, p. 170]. Note that
if the �-crossed product is exact, then the associated K-theory groups have the
half-exactness property predicted by the �-Baum–Connes conjecture and by half-
exactness of K-theory.

For the second property, recall that KG denotes the compact operators on the
infinite sum Hilbert space H D L2.G/˚L2.G/˚ � � � , considered as a G-C �-
algebra with the natural action. Write ƒ for the action of G on H . Recall that
for any G-C �-algebra A there are natural maps from A and G into the multiplier
algebra M.AÌmax G/, and we can identify A and G with their images under these
maps. This gives rise to a covariant representation

.�;u/ W .A˝KG ;G/!M.AÌmax G/˝KG

defined by �.a˝T /D a˝T and ug D g˝ƒg. The integrated form

ˆ W .A˝KG/Ìmax G! .AÌmax G/˝KG (3.2)

of this covariant pair is well-known to be a �-isomorphism, which we call the
untwisting isomorphism.

Definition 3.3. The �-crossed product is Morita-compatible if the untwisting iso-
morphism descends to an isomorphism

ˆ W .A˝KG/Ì� G! .AÌ� G/˝KG

of � -crossed products.

Both the maximal and reduced crossed product functors are Morita-compatible:
see Lemma A.7 in the Appendix. Note that, if Ì� is Morita-compatible, then it
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takes equivariantly Morita-equivalent (separable) G-C �-algebras to Morita-equi-
valent C �-algebras. Indeed, in this case we have

.AÌ� G/˝KG Š .A˝KG/Ì� G Š .B˝KG/Ì� G Š .B Ì� G/˝KG ;

where the middle isomorphism is Morita equivalence and the other two are Morita
compatibility. Thus if � is Morita-compatible then the associated K-theory groups
have the Morita invariance property predicted by the � -Baum–Connes conjecture.

Our goal for the remainder of the section is to show that there is a “minimal”
exact and Morita-compatible crossed product. To make sense of this, we introduce
a partial ordering on the collection of crossed products for G: the � -crossed product
is smaller than the � -crossed product if the natural transformation in (2.2) from the
�-crossed product to the reduced crossed product factors through the �-crossed
product, meaning that there exists a diagram

AÌ� G!AÌ� G!AÌred G

for every G-C �-algebra A, where the maps from AÌ� G and AÌ� G to AÌred G

are the ones coming from the definition of a crossed product functor. Equivalently,
for every x 2AÌalg G we have

kxkred � kxk� � kxk� ;

so that the identity on AÌalg G extends to a �-homomorphism AÌ� G!AÌ� G.
In particular, the order relation on crossed products is induced by the obvious order
relation on C �-algebra norms on AÌalg G.2 The maximal crossed product is the
maximal element for this ordering, and the reduced crossed product is the minimal
element.

Recall that the spectrum of a C �-algebra A is the set yA of equivalence classes
of nonzero irreducible �-representations of A. We will conflate a representation �
with the equivalence class it defines in yA. For an ideal I in a C �-algebra A, an irre-
ducible representation of A restricts to a (possibly zero) irreducible representation
of I , and conversely irreducible representations of I extend uniquely to irreducible
representations of A. It follows that yI identifies canonically with

f� 2 yA j I ª Kernel.�/g:

Similarly, given a quotient �-homomorphism � W A! B, the spectrum yB of B

identifies canonically with the collection

f� 2 yA j Kernel.�/� Kernel.�/g

2Incidentally, this observation gets us around the set-theoretic technicalities inherent when con-
sidering the “collection of all crossed products”.
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of elements of yA that factor through � via the correspondence yB 3 �$ � ı� 2 yA.
We will make these identifications in what follows without further comment; note
that, having done this, a short exact sequence

0! I !A! B! 0

gives rise to a canonical decomposition yAD yI t yB.
We record the following basic fact as a lemma as we will refer back to it several

times; for a proof, see for example [Dixmier 1977, Theorem 2.7.3].

Lemma 3.4. For any nonzero element of a C �-algebra, there is an irreducible
representation that is nonzero on that element. �

The next lemma is the last general fact we need about spectra.

Lemma 3.5. Consider a diagram of C �-algebras

A1

�1

��

�
// A2

�2

��

B1

 
// B2

where � is a �-homomorphism, and �1 and �2 are surjective �-homomorphisms.
For each � 2 yA2, define

��� WD f�0 2 yA1 j Kernel.� ı�/� Kernel.�0/g:

Then there exists a �-homomorphism  W B1! B2 making the diagram commute
if and only if ��� is a subset of yB1 for all � in yB2 (where yB2 is considered as a
subset of yA2).

Proof. Assume first that  exists. Let � be an element of yB2, and � ı �2 the
corresponding element of yA2. Then

��.� ı�2/D f�
0
2 yA1 j Kernel.� ı�2 ı�/� Kernel.�0/g

D f�0 2 yA1 j Kernel.� ı ı�1/� Kernel.�0/g

� f�0 2 yA1 j Kernel.�1/� Kernel.�0/g

D yB1:

Conversely, assume that no such  exists. Then the kernel of �1 is not a subset of
the kernel of �2 ı�, so there exists a 2A1 such that �1.a/D 0, but �2.�.a//¤ 0.
Lemma 3.4 implies that there exists � 2 yB2 such that �.�2.�.a/// ¤ 0. Write
C D�.�2.�.A1/// and cD�.�2.�.a///. Then Lemma 3.4 again implies that there
exists �00 2 yC such that �00.c/¤ 0. Let �0D �00 ı�ı�2 ı�, an element of yA1. Then

Kernel.� ı�2 ı�/� Kernel.�0/ (3.6)
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and �0.a/¤ 0. Line (3.6) implies that �0 is in ���, while the fact that �0.a/¤ 0

and �1.a/D 0 implies that �0 is not in the subset yB1 of yA1. Hence ��� ª yB1, as
required. �

We now turn back to crossed products. Let A be a G-C �-algebra and � a crossed
product. Let S� .A/ denote the subset of ̂AÌmax G consisting of representations
of AÌmax G that factor through the quotient AÌ� G; in other words, S� .A/ is the
subset of AÌmax G that identifies naturally with ÂÌ� G. In particular, Smax.A/ de-
notes ̂AÌmax G and Sred.A/ denotes ÂÌred G, considered as a subset of Smax.A/.

We will first characterize exactness in terms of the sets above. Let

0! I !A! B! 0

be a short exact sequence of G-C �-algebras. If � is a crossed product, consider
the corresponding commutative diagram

0 // I Ìmax G //

�I

��

AÌmax G //

�A

��

B Ìmax G

�B

��

// 0

0 // I Ì� G
�
// AÌ� G

�
// B Ì� G // 0

(3.7)

with exact top row. Note that the bottom row need not be exact, but we do have that
the map � is surjective (by commutativity of the right-hand square and surjectivity
of �B), and that the kernel of � contains the image of � (as � is a functor).

We make the following identifications:

(i) S� .A/ is by definition a subset of Smax.A/;

(ii) Smax.I/ and Smax.B/ identify canonically with subsets of Smax.A/ as IÌmaxG

and B Ìmax G are respectively an ideal and a quotient of AÌmax G;

(iii) S� .I/ and S� .B/ are by definition subsets of Smax.I/ and Smax.B/, respec-
tively, and thus identify with subsets of Smax.A/ by the identifications in the
previous point.

Lemma 3.8. Let the identifications above have been made.

(i) The map � in (3.7) is injective if and only if

Smax.I/\S� .A/D S� .I/:

(ii) The kernel of � is equal to the image of � in (3.7) if and only if

Smax.B/\S� .A/D S� .B/:
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Proof. For (i), as �.I Ì�G/ is an ideal in AÌ�G, we may identify its spectrum with
a subset of S� .A/, and thus also of Smax.A/. Commutativity of (3.7) identifies the
spectrum of �.I Ì� G/ with˚
� 2 Smax.A/ jKernel.�A/�Kernel.�/; �.I Ìmax G/¤ f0g

	
D Smax.I/\S� .A/:

Lemma 3.4 implies the map � is injective if and only if the spectrum of �.I Ì� G/

and S� .I/ are the same as subsets of Smax.A/, so we are done.
For (ii), surjectivity of � canonically identifies S� .B/ with a subset of S� .A/.

Part (i) and the fact that the image of � is contained in the kernel of � imply that
S� .B/ is disjoint from Smax.I/\S� .A/ as subsets of S� .A/. Hence the kernel
of � equals the image of � if and only if

S� .A/D S� .B/[ .Smax.I/\S� .A//;

or, equivalently, if and only if

S� .B/D S� .A/ nSmax.I/: (3.9)

As the top line of diagram (3.7) is exact, Smax.A/ is equal to the disjoint union of
Smax.I/ and Smax.B/, whence S� .A/ nSmax.I/D S� .A/\Smax.B/; the conclu-
sion follows on combining this with the condition in (3.9). �

We now characterize Morita compatibility. Recall that there is a canonical “un-
twisting” �-isomorphism

ˆ W .A˝KG/Ìmax G! .AÌmax G/˝KG ; (3.10)

and that a crossed product � is Morita-compatible if this descends to a�-isomorphism

.A˝KG/Ì� G Š .AÌ� G/˝KG :

The following lemma is immediate from the fact that the spectrum of the right-
hand-side of (3.10) identifies canonically with Smax.A/.

Lemma 3.11. A crossed product � is Morita-compatible if and only if the bijection

ŷ W Smax.A˝KG/! Smax.A/

induced by ˆ takes S� .A˝KG/ onto S� .A/. �

The following lemma is the final step in constructing a minimal exact and Morita-
compatible crossed product.

Lemma 3.12. Let † be a family of crossed products. Then there is a unique
crossed product � such that, for any G-C �-algebra A,

S� .A/D
\
�2†

S� .A/:
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Proof. For each � 2 †, let I� denote the kernel of the canonical quotient map
AÌmax G!AÌ� G, and similarly for Ired. Note that Ired contains all the ideals I� .
Let I denote the smallest ideal of AÌmax G containing I� for all � 2†. Define

AÌ� G WD .AÌmax G/=I I

as I is contained in Ired, this is a completion of A Ìalg G that sits between the
maximal and reduced completions. The spectrum of AÌ� G is

S� .A/D f� 2 Smax.A/ j I � Kernel.�/g:

Lemma 3.4 implies that this is equal to

f� 2 Smax.A/ j I� � Kernel.�/ for all � 2†g D
\
�2†

S� .A/;

as claimed. Uniqueness of the completion AÌ� G follows from Lemma 3.4 again.
Finally, we must check that Ì� defines a functor on G-C �: if � WA1!A2 is an

equivariant �-homomorphism, we must show that the dashed arrow in the diagram

A1 Ìmax G

��

�ÌG
// A2 Ìmax G

��

A1 Ì� G // A2 Ì� G

can be filled in. Fix � 2†. Lemma 3.5 applied to the analogous diagram with �
replaced by � implies that, for all � 2 S� .A2/, .� ÌG/�� is a subset of S� .A1/.
Hence for all � 2 S� .A2/ D

T
�2† S� .A2/ we have that .� ÌG/�� is a subset

of
T
�2† S� .A1/D S� .A1/. Lemma 3.5 now implies that the dashed line can be

filled in. �

The part of the following theorem that deals with exactness is due to Eberhard
Kirchberg.

Theorem 3.13. There is a unique minimal exact and Morita-compatible crossed
product.

Proof. Let † be the collection of all exact and Morita-compatible crossed prod-
ucts, and let � be the crossed product that satisfies S� .A/ D

T
�2† S� .A/ as in

Lemma 3.12. As � is a lower bound for the set †, it suffices to show that � is
exact and Morita-compatible. The conditions in Lemmas 3.8 and 3.13 clearly pass
to intersections, however, so we are done. �
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4. A reformulation of the conjecture

Continue with G a second-countable, locally compact group. We propose to refor-
mulate the Baum–Connes conjecture, replacing the usual reduced crossed product
with the minimal exact and Morita-compatible crossed product (the E-crossed prod-
uct). There is no change to the left side of the conjecture.

Definition 4.1. The E-Baum–Connes conjecture with coefficients is the statement
that the E-Baum–Connes assembly map

� WK
top
� .GIA/!K�.AÌE G/

is an isomorphism for every G-C �-algebra A. Here AÌE G is the minimal exact
and Morita-compatible crossed product.

When the group is exact, the reduced and E-crossed products agree, and thus the
original and reformulated Baum–Connes conjectures agree. Our main remaining
goal is to show that known expander-based counterexamples to the original Baum–
Connes conjecture are confirming examples for the reformulated conjecture. In-
deed, our positive isomorphism results will hold in these examples for every exact
and Morita-compatible crossed product, in particular for the reformulated conjec-
ture involving the E-crossed product. For the isomorphism results, we require
an alternate description of the E-Baum–Connes assembly map, amenable to the
standard Dirac-dual Dirac method of proving the conjecture.

We recall the necessary background about E-theory. The equivariant asymptotic
category is the category in which the objects are the G-C �-algebras and in which
the morphisms are homotopy classes of equivariant asymptotic morphisms. We
shall denote the morphism sets in this category by ŒŒA;B��G . The equivariant E-
theory groups are defined as particular morphism sets in this category:

EG.A;B/D ŒŒ†A˝KG ; †B˝KG ��G ;

where †A˝KG stands for C0.0; 1/˝A˝KG . The equivariant E-theory cate-
gory is the category in which the objects are the G-C �-algebras and in which the
morphism sets are the equivariant E-theory groups.

The equivariant categories we have encountered are related by functors: there
is a functor from the category of G-C �-algebras to the equivariant asymptotic
category which is the identity on objects, and which views an equivariant �-homo-
morphism as a “constant” asymptotic family; similarly there is a functor from the
equivariant asymptotic category to the equivariant E-theory category which is the
identity on objects and which “tensors” an asymptotic morphism by the identity
maps on C0.0; 1/ and KG .
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Finally, there is an ordinary (nonequivariant) theory parallel to the equivariant
theory described above: the asymptotic category and E-theory category are cat-
egories in which the objects are C �-algebras and the morphisms are appropriate
homotopy classes of asymptotic morphisms; there are functors as above, which are
the identity on objects. See [GHT 2000] for further background and details.

We start with two technical lemmas. For a C �-algebra B, let M.B/ denote its
multiplier algebra. If A is a G-C �-algebra with G-action ˛, recall that elements
of AÌalg G are continuous compactly supported functions from G to A; we denote
such a function by .ag/g2G . Consider the canonical action of A on AÌalg G by
multipliers defined by setting

b � .ag/g2G WD .bag/g2G and .ag/g2G � b WD .ag˛g.b//g2G (4.2)

for all .ag/g2G 2 A Ìalg G and b 2 A. This action extends to actions of A on
both AÌmax G and AÌred G by multipliers, i.e., there are �-homomorphisms A!

M.AÌmax G/ and A!M.AÌred G/ such that the image of b 2A is the extension
of the multiplier defined in (4.2) to all of the relevant completion. Analogously,
there is an action of G on AÌalg G by multipliers defined for h 2G by

uh �.ag/g2G WD .˛h.ah�1g//g2G and .ag/g2G �uh WD�.h
�1/.agh�1/g2G ; (4.3)

where � W G ! RC is the modular function for a fixed choice of (left-invariant)
Haar measure on G. This extends to a unitary representation

G!U.M.AÌmax G//; g 7! ug

from G into the unitary group of M.AÌmax G/, and similarly for M.AÌred G/.

Lemma 4.4. For any crossed product functor Ì� and any G-C �-algebra A, the
action of A on AÌalg G in (4.2) extends to define an injective �-homomorphism

A!M.AÌ� G/:

This in turn extends to a �-homomorphism

M.A/!M.AÌ� G/

from the multiplier algebra of A to that of AÌ� G.
Moreover, the action of G on A Ìalg G in (4.3) extends to define an injective

unitary representation
G!U.M.AÌ� G//:

Proof. The desired �-homomorphism A ! M.A Ì� G/ can be defined as the
composition

A!M.AÌmax G/!M.AÌ� G/
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of the canonical action of A on the maximal crossed product by multipliers and the
�-homomorphism on multiplier algebras induced by the surjective natural trans-
formation between the maximal and �-crossed products. Injectivity follows on
considering the composition

A!M.AÌmax G/!M.AÌ� G/!M.AÌred G/;

which is well known (and easily checked) to be injective. The �-homomorphism
A!M.AÌ� G/ is easily seen to be nondegenerate, so extends to the multiplier
algebra of A as claimed. The existence and injectivity of the unitary representation
G!U.M.AÌ� G// can be shown analogously. �

Let now ˇ denote the algebraic tensor product (over C) of two �-algebras, and
as usual use ˝ for the spatial tensor product of C �-algebras. Recall that we denote
elements of A Ìalg G by .ag/g2G . Equip C Œ0; 1� with the trivial G-action, and
consider the function defined by

� WC Œ0; 1�ˇ.AÌalgG/! .C Œ0; 1�˝A/ÌalgG; fˇ.ag/g2G 7! .f˝ag/g2G : (4.5)

It is not difficult to check that � is a well-defined �-homomorphism.

Lemma 4.6. Let A be a G-C �-algebra, and Ì� be any crossed product. Then the
�-homomorphism � defined in (4.5) extends to a �-isomorphism

� W C Œ0; 1�˝ .AÌ� G/Š .C Œ0; 1�˝A/Ì� G

on � -crossed products. Moreover, if the � -crossed product is exact, then the restric-
tion of � to C0.0; 1/ˇ .AÌalg G/ extends to a �-isomorphism

� W C0.0; 1/˝ .AÌ� G/Š .C0.0; 1/˝A/Ì� G:

Proof. The inclusion A!C Œ0; 1�˝A defined by a 7! 1˝a is equivariant, so gives
rise to a �-homomorphism

AÌ� G! .C Œ0; 1�˝A/Ì� G

by functoriality of the �-crossed product. Composing this with the canonical in-
clusion of the right-hand side into its multiplier algebra gives a �-homomorphism

AÌ� G!M..C Œ0; 1�˝A/Ì� G/: (4.7)

On the other hand, composing the canonical �-homomorphism

C Œ0; 1�!M.C Œ0; 1�˝A/

with the �-homomorphism on multiplier algebras from Lemma 4.4 gives a �-
homomorphism

C Œ0; 1�!M..C Œ0; 1�˝A/Ì� G/: (4.8)
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Checking on the strictly dense �-subalgebra

.C Œ0; 1�˝A/Ìalg G of M..C Œ0; 1�˝A/Ì� G/

shows that the image of C Œ0; 1� under the �-homomorphism in (4.8) is central,
whence combining it with the �-homomorphism in (4.7) defines a �-homomorphism

C Œ0; 1�ˇ .AÌ� G/!M..C Œ0; 1�˝A/Ì� G/;

and nuclearity of C Œ0; 1� implies that this extends to a �-homomorphism

C Œ0; 1�˝ .AÌ� G/!M..C Œ0; 1�˝A/Ì� G/:

It is not difficult to see that this �-homomorphism agrees with the map � from
(4.5) on the dense �-subalgebra C Œ0; 1�ˇ .AÌalg G/ of the left-hand side and thus
in particular has image in the C �-subalgebra .C Œ0; 1�˝A/Ì� G of the right-hand
side. We have thus shown that the �-homomorphism � from (4.5) extends to a
�-homomorphism

� W C Œ0; 1�˝ .AÌ� G/! .C Œ0; 1�˝A/Ì� G:

It has dense image, and is thus surjective; in the C Œ0; 1� case it remains to show
injectivity.

To this end, for each t 2 Œ0; 1� let

�t W .C Œ0; 1�˝A/Ì� G!AÌ� G

be the �-homomorphism induced by the G-equivariant �-homomorphism C Œ0; 1�˝

A!A defined by evaluation at t . Let F be an element of C Œ0; 1�˝.AÌ�G/, which
we may think of as a function from Œ0; 1� to AÌ� G via the canonical isomorphism

C Œ0; 1�˝ .AÌ� G/Š C.Œ0; 1�;AÌ� G/:

Checking directly on the dense �-subalgebra

C Œ0; 1�ˇ .AÌalg G/ of C Œ0; 1�˝ .AÌ� G/

shows that �t .�.F // D F.t/ for any t 2 Œ0; 1�. Hence, if F is in the kernel of �,
then F.t/D 0 for all t in Œ0; 1�, whence F D 0. Hence � is injective, as required.

Assume now that the �-crossed product is exact, and look at the C0.0; 1/ case.
The short exact sequence

0! C0.0; 1�! C Œ0; 1�! C! 0

combined with exactness of the maximal tensor product, nuclearity of commutative
C �-algebras and exactness of the �-crossed product gives rise to a commutative
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diagram

0 // C0.0; 1�˝ .AÌ� G/

��

// C Œ0; 1�˝ .AÌ� G/

� Š

��

// AÌ� G //

D

��

0

0 // .C0.0; 1�˝A/Ì� G // .C Œ0; 1�˝A/Ì� G // AÌ� G // 0

with exact rows, and where the leftmost vertical arrow is the restriction of �. The re-
striction of � to C0.0; 1�˝.AÌ�G/ is thus an isomorphism onto .C0.0; 1�˝A/Ì�G.
Applying an analogous argument to the short exact sequence

0! C0.0; 1/! C0.0; 1�! C! 0

completes the proof. �

Given this, the following result is an immediate generalization of [GHT 2000,
Theorem 4.12], which treats the maximal crossed product. See also [GHT 2000,
Theorem 4.16] for comments on the reduced crossed product.

Theorem 4.9. If the �-crossed product is both exact and Morita-compatible, then
there is a “descent functor” from the equivariant E-theory category to the E-
theory category which agrees with the �-crossed product functor on objects and
on those morphisms which are (represented by) equivariant �-homomorphisms.

Proof. We follow the proof of [GHT 2000, Theorem 6.22]. It follows from
Lemma 4.6 that a crossed product functor is always continuous in the sense of
[GHT 2000, Definition 3.1]. Applying (an obvious analogue of) [GHT 2000, The-
orem 3.5], an exact crossed product functor admits descent from the equivariant
asymptotic category to the asymptotic category. Thus, we have maps on morphism
sets in the asymptotic categories

EG.A;B/D ŒŒ†A˝KG ; †B˝KG ��G! ŒŒ.†A˝KG/Ì� G; .†B˝KG/Ì� G��

which agree with the �-crossed product on morphisms represented by equivariant
�-homomorphisms. It remains to identify the right-hand side with the E-theory
group E.AÌ� G;B Ì� G/. We do this by showing that

.C0.0; 1/˝A˝KG/Ì� G Š C0.0; 1/˝ .AÌ� G/˝KG :

This follows immediately from Morita compatibility and Lemma 4.6. �

We now have an alternate description of the �-Baum–Connes assembly map in
the case of an exact, Morita-compatible crossed product functor: we can descend
directly to the � -crossed products and compose with the basic projection. In detail,
it follows from Definition 2.1 and the corresponding fact for the maximal and re-
duced crossed products that, if X is a proper, cocompact G-space, then all crossed
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products of C0.X / by G agree. We view the basic projection as an element of
C0.X /Ì� G, giving a class in E.C;C0.X /Ì� G/. We form the composition

EG.C0.X /;A/!E.C0.X /Ì� G;AÌ� G/!E.C;AÌ� G/; (4.10)

in which the first map is the E-theoretic �-descent and the second is composition
with the (class of the) basic projection. Taking the direct limit over the cocompact
subsets of EG we obtain a map

K
top
� .GIA/!K�.AÌ� G/:

Proposition 4.11. The map just defined is the � -Baum–Connes assembly map.

Proof. We must show that applying the maps (4.10) to an element � 2EG.C0.X /;A/

gives the same result as applying those in (2.4) followed by the map on K-theory
induced by the natural transformation  A W A Ìmax G ! A Ì� G. Noting that
C0.X /Ìmax G D C0.X /Ì� G (as all crossed products applied to a proper algebra
give the same result), we have the class of the basic projection

Œp� 2E.C;C0.X /Ìmax G/DE.C;C0.X /Ì� G/;

and the above amounts to saying that the morphisms

 A ı .� Ìmax G/ ı Œp�; .� Ì� G/ ı Œp� W C!AÌ� G (4.12)

in the E-theory category are the same.
As the functors defined by the � and maximal crossed products are continu-

ous and exact, [GHT 2000, Proposition 3.6] shows that the natural transformation
AÌmaxG!AÌ�G gives rise to a natural transformation between the corresponding
functors on the asymptotic category. Hence if � is any morphism in ŒŒC0.X /;A��G
the diagram

C0.X /Ìmax G

�ÌmaxG

��

C0.X /Ì� G

�Ì� G

��

AÌmax G
 A

// AÌ� G

(4.13)

commutes in the asymptotic category. Hence by [GHT 2000, Theorem 4.6] the
diagram

†.C0.X /Ìmax G/˝K

1˝�ÌmaxG˝1

��

†.C0.X /Ì� G/˝K

1˝�Ì� G˝1
��

†.AÌmax G/˝K
1˝ A˝1

// †.AÌ� G/˝K

commutes in the asymptotic category, which says exactly that the diagram in (4.13)
commutes in the E-theory category. In other words, as morphisms in the E-theory
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category,

� Ì� G D  A ı .� Ìmax G/;

whence the morphisms in (4.12) are the same. �

We close the section with the following “two out of three” result, which will be
our main tool for proving the E-Baum–Connes conjecture in cases of interest.

Proposition 4.14. Assume G is a countable discrete group. Let � be an exact and
Morita-compatible crossed product. Let

0! I !A! B! 0

be a short exact sequence of separable G-C �-algebras. If the �-Baum–Connes
conjecture is valid with coefficients in two of I , A and B then it is valid with
coefficients in the third.

In the case that G is exact (or just K-exact), the analogous result for the usual
Baum–Connes conjecture was proved by Chabert and Echterhoff [2001, Proposi-
tion 4.2]. However, the result does not hold in general for the usual Baum–Connes
conjecture due to possible failures of exactness on the right-hand side; indeed, its
failure is the reason behind the known counterexamples.

We only prove Proposition 4.14 in the case of a discrete group as this is techni-
cally much simpler, and all we need for our results. As pointed out by the referee,
one could adapt the proof of [Chabert and Echterhoff 2001, Proposition 4.2] to ex-
tend the result to the locally compact case; however, this would necessitate working
in KK-theory. We give a direct E-theoretic proof here in order to keep our paper
as self-contained as possible.

Before we start the proof, we recall the construction of the boundary map in
equivariant E-theory associated to a short exact sequence

0! I !A! B! 0

of G-C �-algebras. See [GHT 2000, Chapter 5] for more details. Let futg be
an approximate identity for I that is quasicentral for A and asymptotically G-
invariant; such exists by [GHT 2000, Lemma 5.3]. Let s WB!A be a set-theoretic
section. Then there is an asymptotic morphism

� W C0.0; 1/˝B! A.I/ WD
Cb.Œ1;1/; I/

C0.Œ1;1/; I/

which is asymptotic to the map defined on elementary tensors by

f ˝ b 7! .t 7! f .ut /s.b//
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(see [GHT 2000, Proposition 5.5]) such that the corresponding class

� 2 ŒŒC0.0; 1/˝B; I ��G

does not depend on the choice of futg or s [GHT 2000, Lemma 5.7]. We then set


I D 1˝ � ˝ 1 2 ŒŒ†.C0.0; 1/˝B/˝KG ; †I ˝KG ��G DEG.C0.0; 1/˝B; I/

to be the E-theory class associated to this extension. This construction works
precisely analogously in the nonequivariant setting.

Lemma 4.15. Let G be a countable discrete group. Given a short exact sequence
of separable G-C �-algebras

0! I !A! B! 0

there is an element 
I 2EG.C0.0; 1/˝B; I/ as above. There is also a short exact
sequence of C �-algebras

0! I Ì� G!AÌ� G! B Ì� G! 0

giving rise to 
IÌ� G 2E.C0.0; 1/˝ .B Ì� G/; I Ì� G/.
The descent functor associated to the � -crossed product then takes 
I to 
IÌ� G .

Proof. Identify A with the C �-subalgebra faue j a 2Ag of AÌ� G, and similarly
for B and I . Choose any set-theoretic section s WBÌ� G!AÌ� G, which we may
assume has the property that s.Bug/�Aug for all g 2G. We then have that �I

is asymptotic to the map

f ˝ b 7! .t 7! f .ut /s.b//:

Checking directly, the image of �I under descent agrees with the formula

f ˝
P

g2G

bug 7! .t 7! f .ut /s.b/ug/ (4.16)

on elements of the algebraic tensor product C0.0; 1/ˇ .B Ìalg G/.
On the other hand, we may use s and futg (which identifies with a quasicentral

approximate unit for I Ì� G under the canonical inclusion I ! I Ì� G) to define
�IÌ� G , in which case the formula in (4.16) agrees with that for �IÌ� G on the
dense �-subalgebra .C0.0; 1/˝B/Ìalg G of .C0.0; 1/˝B/Ì� G. Thus, up to the
identification

.C0.0; 1/˝B/Ì� G Š C0.0; 1/˝ .B Ì� G/

from Lemma 4.6, the image of � 2 ŒŒC0.0; 1/˝B; I ��G under descent is the same
as �IÌ� G 2 ŒŒC0.0; 1/˝ .B Ì� G/; I Ì� G�� and we are done. �
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Proof of Proposition 4.14. Basic exactness properties of K-theory and exactness
of the �-crossed product give a six-term exact sequence on the right-hand side of
the conjecture:

K0.I Ì� G/ // K0.AÌ� G/ // K0.B Ì� G/

��

K1.B Ì� G/

OO

K1.AÌ� G/oo K1.I Ì� G/oo

(4.17)

Similarly, basic exactness properties of equivariant E-theory give a six-term se-
quence on the left-hand side:

K
top
0
.GI I/ // K

top
0
.GIA/ // K

top
0
.GIB/

��

K
top
1
.GIB/

OO

K
top
1
.GIA/oo K

top
1
.GI I/oo

(4.18)

The corresponding maps in these diagrams are given by composition with elements
of equivariant E-theory groups, and the corresponding descended elements of E-
theory groups; for example, the left-hand vertical map in (4.18) is induced by the
equivariant asymptotic morphism associated to the original short exact sequence of
G-C �-algebras, and the corresponding map in (4.17) is induced by its descended
asymptotic morphism.

Further, the assignments

A 7!K�.AÌ� G/; A 7!K
top
� .GIA/

define functors from EG to abelian groups, and functoriality of descent together
with associativity of E-theory compositions imply the assembly map is a natural
transformation between these functors. Hence assembly induces compatible maps
between the six-term exact sequences in (4.17) and (4.18). The result now follows
from the five lemma. �

5. Some properties of the minimal exact and
Morita-compatible crossed product

In this section, we study a natural class of exact and Morita-compatible crossed
products, and use these to deduce some properties of the minimal exact and Morita-
compatible crossed product. In particular, we show that the usual property (T)
obstructions to surjectivity of the maximal Baum–Connes assembly map do not
apply to our reformulated conjecture. We also give a concrete example of a crossed
product that could be equal to the minimal one.

Throughout the section, G denotes a locally compact, second-countable group.
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Definition 5.1. Let � be a crossed product, and B a fixed unital G-C �-algebra.
For any G-C �-algebra A, the �-B completion of AÌalg G, denoted AÌ�;B G, is
defined to be the image of the map

AÌ� G! .A˝max B/Ì� G

induced by the equivariant inclusion

A!A˝max B; a 7! a˝ 1:

Lemma 5.2. For any G-C �-algebra B and crossed product � , the family of com-
pletions AÌ�;B G defined above is a crossed product functor.

Proof. To see that Ì�;B dominates the reduced completion, note that as the �
completion dominates the reduced completion there is a commutative diagram

AÌ�;B G //

��

AÌred G

��

.A˝max B/Ì� G // .A˝max B/Ìred G

where the vertical arrows are induced by the equivariant inclusion a 7! a˝ 1,
and the bottom horizontal arrow is the canonical natural transformation between
the � and reduced crossed products. We need to show the dashed horizontal arrow
can be filled in. This follows as equivariant inclusions of G-C �-algebras induce
inclusions of reduced crossed products, whence the right vertical map is injective.

The fact that Ì�;B is a functor follows as the assignment A 7!A˝max B defines
a functor from the category of G-C �-algebras to itself, and the �-crossed product
is a functor. �

From now on, we refer to the construction in Definition 5.1 as the � -B-crossed
product.

Lemma 5.3. Let � be a crossed product, and B a unital G-C �-algebra. If the �-
crossed product is Morita-compatible (respectively, exact), then the �-B-crossed
product is Morita-compatible (exact).

Proof. To see Morita compatibility, consider the commutative diagram

.A˝KG/Ì�;B G //

��

.AÌ�;B G/˝KG

��

..A˝KG/˝maxB/Ì�G
Š // ..A˝maxB/˝KG/Ì�G

Š // ..A˝maxB/Ì�G/˝KG

where the left arrow on the bottom row comes from nuclearity of KG and asso-
ciativity of the maximal crossed product; the right arrow on the bottom row is the
Morita-compatibility isomorphism; and the vertical arrows are by definition of the
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�-B crossed product. It suffices to show that the dashed arrow exists and is an
isomorphism: this follows from the fact that the vertical arrows are injections.

To see exactness, consider a short exact sequence of G-C �-algebras

0! I !A!Q! 0

and the corresponding commutative diagram

0 // I Ì�;B G
� //

��

AÌ�;B G
� //

��

QÌ�;B G //

��

0

0 // .I ˝max B/Ì� G // .A˝max B/Ì� G // .Q˝max B/Ì� G // 0

Note that all the vertical maps are injections by definition. Moreover, the bottom
row is exact by exactness of the maximal tensor product, and the assumed exactness
of the � -crossed product. The only issue is thus to show that the kernel of � is equal
to the image of �.

The kernel of � is AÌ�;B G \ .I ˝max B/Ì� G, so we must show that this is
equal to I Ì�;B G. The inclusion

I Ì�;B G �AÌ�;B G \ .I ˝max B/Ì� G

is automatic, so it remains to show the reverse inclusion. Let x be an element of the
right-hand side. Let fuig be an approximate identity for I , and note that fvig WD

fui ˝ 1g can be thought of as a net in the multiplier algebra of .I ˝max B/Ì� G

via Lemma 4.4. The net fvig is an “approximate identity” in the sense that viy

converges to y for all y 2 .I˝max B/Ì� G. Let fxig be a (bounded) net in AÌalg G

converging to x in the AÌ�;B G norm, which we may assume has the same index
set as fvig. Note that

kvixi �xk � kvixi � vixkCkvix�xk � kvikkxi �xkCkvix�xk;

which tends to zero as i tends to infinity. Note, however, that vixi belongs to
I Ìalg G (considered as a �-subalgebra of .I ˝max B/Ì� G), so we are done. �

We now specialize to the case when � is E, the minimal exact crossed product.

Corollary 5.4. For any unital G-C �-algebra B, the E-crossed product and E-B-
crossed product are equal.

Proof. It is immediate from the definition that the E-B-crossed product is no larger
than the E-crossed product. Lemma 5.3 implies that the E-B-crossed product is
exact and Morita-compatible, however, so they are equal by minimality of the E-
crossed product. �
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Corollary 5.5. For any unital G-C �-algebra B and any G-C �-algebra A, the map

AÌE G! .A˝max B/ÌE G

induced by the inclusion a 7! a˝ 1 is injective.

Proof. The image of the map AÌE G is (by definition) equal to AÌE;B G, so this
is immediate from Corollary 5.4. �

The following result implies that the usual property (T) obstructions to surjec-
tivity of the maximal Baum–Connes assembly map do not apply to the E-Baum–
Connes conjecture: see Corollary 5.7 below. The proof is inspired by [Brown and
Ozawa 2008, Proof of Theorem 2.6.8, part (7)) (1)].

Proposition 5.6. Say the C �-algebra C �E .G/ WD CÌE G admits a nonzero finite-
dimensional representation. Then G is amenable.

Proof. Let Cub.G/ denote the C �-algebra of bounded, (left) uniformly continuous
functions on G, and let ˛ denote the (left) action of G on this C �-algebra, which
is a continuous action by �-automorphisms. It will suffice (compare [Bekka et al.
2008, §G.1]) to show that if C �E .G/ has a nonzero finite-dimensional representation
then there exists an invariant mean on Cub.G/: a state � on Cub.G/ such that
�.˛g.f //D �.f / for all g 2G and f 2 Cub.G/.

Assume then there is a nonzero representation � W C �E .G/!B.H/, where H is
finite-dimensional. Passing to a subrepresentation, we may assume � is nondegen-
erate, whence it comes from a unitary representation of G, which we also denote � .
Applying Corollary 5.5 to the special case ADC, BDCub.G/, we have that C �E .G/

identifies canonically with a C �-subalgebra of Cub.G/ÌE G. Hence by Arveson’s
extension theorem (in the finite-dimensional case — see [Brown and Ozawa 2008,
Corollary 1.5.16]) there exists a contractive completely positive map

� W Cub.G/ÌE G!B.H/

extending � . As � is nondegenerate, � is, whence [Lance 1995, Corollary 5.7] it
extends to a strictly continuous unital completely positive map on the multiplier
algebra, which we denote

� WM.Cub.G/ÌE G/!B.H/:

Now, since � is a representation, the C �-subalgebra C �E .G/ of M.Cub.G/ÌE G/

is in the multiplicative domain of � (compare [Brown and Ozawa 2008, p. 12]).
Note that the image of G inside M.Cub.G/Ìmax G/ is in the strict closure of the �-
subalgebra Cc.G/, whence the same is true in the image of G in M.Cub.G/ÌE G/

given by Lemma 4.4; it follows from this and strict continuity of � that the image
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of G in M.Cub.G/ÌE G/ is also in the multiplicative domain of �. Hence, for any
g 2G and f 2 Cub.G/,

�.˛g.f //D �.ugf u�g/D �.g/�.f /�.g/
�:

It follows that, if � W B.H/ ! C is the canonical tracial state, then � ı � is an
invariant mean on Cub.G/, so G is amenable. �

We now discuss the relevance of this proposition to the property (T) obstruc-
tions to the maximal Baum–Connes conjecture. Recall that if G is a group with
property (T) then for any finite-dimensional unitary representation � of G (for
example, the trivial representation), there is a central Kazhdan projection p� in
C �max.G/ that maps to the orthogonal projection onto the �-isotypical component
in any unitary representation of G. When G is infinite and discrete,3 it is well-
known [Higson 1998, Discussion below 5.1] that the class of p� in K0.C

�
max.G//

is not in the image of the maximal Baum–Connes assembly map. Thus, at least
for infinite discrete groups, the projections p� obstruct the maximal version of the
Baum–Connes conjecture.

The following corollary, which is immediate from the above proposition, shows
that these obstructions do not apply to the E-crossed product.

Corollary 5.7. Let G be a group with property (T), and � be a finite-dimensional
representation of G. Write C �E .G/ WD CÌE G. Then the canonical quotient map
C �max.G/! C �E .G/ sends p� to zero. �

Finally in this section, we specialize to the case of discrete groups and look at
the particular example of the max-l1.G/-crossed product. We show below that
this crossed product is actually equal to the reduced one when G is exact. It is thus
possible that the max-l1.G/-crossed product actually is the E-crossed product. As
further evidence in this direction, note that for any commutative unital B, there is a
unital equivariant map from B to l1.G/ by restriction to any orbit. This shows that
the max-l1.G/-crossed product is the greatest lower bound of the max-B-crossed
products as B ranges over commutative unital C �-algebras. We do not know what
happens when B is noncommutative: quite plausibly here one can get something
strictly smaller. Of course, there could also be many other constructions of exact
and Morita-compatible crossed products that do not arise as above.

Proposition 5.8. Say G is exact. Then the max-l1.G/-crossed product equals the
reduced crossed product.

Proof. Let A be a G-C �-algebra. We will show that

.A˝ l1.G//Ìmax G D .A˝ l1.G//Ìred G;

3It is suspected that this is true in general, but we do not know of a proof in the literature.
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which will suffice to complete the proof. The main result of [Ozawa 2000] (com-
pare also [Guentner and Kaminker 2002]) shows that the action of G on its Stone–
Čech compactification ˇG is amenable. However, the Stone–Čech compactifica-
tion of G is the spectrum of l1.G/ and A˝ l1.G/ is a G-l1.G/ algebra in the
sense of [Anantharaman-Delaroche 2002, Definition 5.2], so [ibid., Theorem 5.3]
(see also [Brown and Ozawa 2008, Theorem 4.4.3] for a slightly easier proof spe-
cific to the case that G is discrete) implies the desired result. �

We suspect a similar result holds for a general locally compact group (with
Cub.G/ replacing l1.G/). To adapt the proof above, one would need an analog of
the equivalence of exactness and amenability of the action of G on the spectrum
of l1.G/ to hold in the nondiscrete case; this seems likely, but it does not appear
to be known at present.

6. Proving the conjecture

In this section, we consider conditions under which the Baum–Connes conjecture
with coefficients in a G-C �-algebra A is true for exact and Morita-compatible
crossed products and, in particular, when the E-Baum–Connes conjecture is true.
This is certainly the case when G is exact and the usual Baum–Connes conjecture
for G with coefficients in A is valid. However, we are interested in the nonexact
Gromov monster groups. We shall study actions of these groups with the Haagerup
property as in the following definition (adapted from [Tu 1999, §3]).

Definition 6.1. Let G be a locally compact group acting on the right on a locally
compact Hausdorff topological space X . A function h W X �G! R is of condi-
tionally negative type if it satisfies the following conditions:

(i) the restriction of h to X � feg is zero;

(ii) for every x 2X , g 2G, we have that h.x;g/D h.xg;g�1/;

(iii) for every x in X and any finite subsets fg1; : : : ;gng of G and ft1; : : : ; tng of R

such that
P

i ti D 0 we have that

nX
i;jD1

ti tj h.xgi ;g
�1
i gj /� 0:

The action of G on X is a-T-menable if there exists a continuous conditionally neg-
ative type function h that is locally proper: for any compact K �X the restriction
of h to the set

f.x;g/ 2X �G j x 2K;xg 2Kg

is a proper function.
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In the precise form stated, the following theorem is essentially due to Tu [1999].
See also [Higson and Guentner 2004, Theorem 3.12; Higson 2000, Theorem 3.4;
Yu 2000, Theorem 1.1] for closely related results.

Theorem 6.2. Let G be a second-countable locally compact group acting a-T-
menably on a second-countable locally compact space X . The �-Baum–Connes
assembly map

K
top
� .GIC0.X //!K�.C0.X /Ì� G/

is an isomorphism for every exact and Morita-compatible crossed product � .

Proof. In the terminology of [Tu 1999, §3], Definition 6.1 says that the transforma-
tion groupoid X ÌG admits a locally proper, negative type function, and therefore
by [ibid., Proposition 3.8] acts properly by isometries on a field of Hilbert spaces. It
then follows from [ibid., Théorème 1.1] and the discussion in [ibid., last paragraph
of introduction] that there exists a proper X ÌG-algebra4 A built from this action
on a field of Hilbert spaces and equivariant E-theory elements

˛ 2EG.A;C0.X //; ˇ 2EG.C0.X /;A/

such that
˛ ıˇ D 1 in EG.C0.X /;C0.X //: (6.3)

(Actually, Tu works in the framework of equivariant KK-theory in the reference
used above. Using the natural transformation to equivariant E-theory, we obtain
the result as stated here.)

Consider now the following diagram, where the vertical maps are induced by
˛, ˇ above, E-theory compositions, and the descent functor from Theorem 4.9;
and the horizontal maps are assembly maps:

K
top
� .GIC0.X //

ˇ�

��

// K�.C0.X /Ì� G/

ˇ�

��

K
top
� .GIA/ //

˛�

��

K�.AÌ� G/

˛�

��

K
top
� .GIC0.X // // K�.C0.X /Ì� G/

The diagram commutes as descent is a functor and E-theory compositions are as-
sociative. Moreover, the vertical compositions are isomorphisms by (6.3). Further,
all crossed products are the same for a proper action, whence the central horizontal

4Precisely, this means that there is a locally compact proper G-space Z, an equivariant �-
homomorphism from C0.Z/ into the center of the multiplier algebra of A, and an equivariant, open,
and continuous map Z!X .
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map identifies with the usual assembly map, and so is an isomorphism by [Chabert
et al. 2001, Théorème 2.2]. Hence from a diagram chase the top and bottom maps
are isomorphisms, which is the desired result. �

Remark 6.4. The Baum–Connes conjecture with coefficients is true for a-T-menable
groups when defined with either the maximal or reduced crossed product [Higson
and Kasparov 2001]. The argument above shows that this extends to any exact and
Morita-compatible crossed product.

Based on this remark, it may be tempting to believe that for a-T-menable groups
the Baum–Connes conjecture is true with values in any “intermediate completion”
of the algebraic crossed product AÌalg G. This is false (even if A D C), as the
following example shows.

Example 6.5. Let G be an a-T-menable group that is not amenable, for example a
free group or SL.2;R/. Let C �

S
.G/ denote the completion of Cc.G/ in the direct

sum �˚ 1 of the regular and trivial representations.5

As G is not amenable the trivial representation is isolated in the spectrum of
C �

S
.G/, whence this C �-algebra splits as a direct sum

C �S .G/D C �red.G/˚C:

Let p 2 C �
S
.G/ denote the unit of the copy of C in this decomposition, a so-

called Kazhdan projection. The class Œp� 2 K0.C
�
r .G// generates a copy of Z,

which is precisely the kernel of the map on K-theory induced by the quotient map
C �

S
.G/! C �red.G/.
The Baum–Connes conjecture is true for G by a-T-menability, whence Œp� is not

in the image of the Baum–Connes assembly map

� WK
top
� .G/!K�.C

�
S .G//;

and so the assembly map is not surjective. The discussion in Examples A.15 de-
velops this a little further.

7. An example coming from Gromov monster groups

A Gromov monster group G is a discrete group whose Cayley graph contains an
expanding sequence of graphs (an expander), in some weak sense. The geomet-
ric properties of expanders can be used to build a commutative G-C �-algebra A

for which the Baum–Connes conjecture with coefficients fails. In fact, Gromov
monster groups are the only known source of such failures.

5C�
S
.G/ is the Brown–Guentner crossed product CÌBG;S G associated to the subset S D yGr [f1g

of the unitary dual: see the Appendix.
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In this section we show that for some Gromov monster groups there is a sepa-
rable commutative G-C �-algebra B for which the E-Baum–Connes conjecture is
true, but the usual version using the reduced crossed product is false. The exis-
tence of such a B can be attributed to two properties: failure of exactness, and the
presence of a-T-menability. The main result of this section is Theorem 7.9, which
proves a-T-menability of a certain action.

The ideas in this section draw on many sources. The existence of Gromov mon-
ster groups was indicated by Gromov [2003]. More details were subsequently
provided by Arzhantseva and Delzant [2008], and Coulon [2014]. The version of
the construction we use in this paper is due to Osajda [2014]. The idea of using
Gromov monsters to construct counterexamples to the Baum–Connes conjecture is
due to Higson, Lafforgue and Skandalis [Higson et al. 2002, §7]. The construction
of counterexamples we use in this section comes from [Willett and Yu 2012a, §8;
2012b]. The present exposition is inspired by subsequent work of Finn-Sell and
Wright [2014], of Chen, Wang and Yu [Chen et al. 2013], and of Finn-Sell [2014a].
Note also that Finn-Sell [2014b] has obtained analogs of Theorem 7.9 below using
a different method.

In order to discuss a-T-menability, we will be interested in kernels with the
properties in the next definition.

Definition 7.1. Let X be a set, and k WX �X ! RC a function (a kernel).
The kernel k is conditionally negative definite if

(i) k.x;x/D 0, for every x 2X ;

(ii) k.x;y/D k.y;x/, for every x, y 2X ;

(iii) for every subset fx1; : : : ;xng of X and every subset ft1; : : : ; tng of R such
that

Pn
iD1 ti D 0 we have

nX
i;jD1

ti tj k.xi ;xj /� 0:

Assume now that X is a metric space. The kernel k is asymptotically condition-
ally negative definite if conditions (i) and (ii) above hold, and the following weak
version of condition (iii) holds:

(iii)0 for every r > 0 there exists a bounded subset K DK.r/ of X such that for
every subset fx1; : : : ;xng of X nK of diameter at most r and every subset
ft1; : : : ; tng of R such that

Pn
iD1 ti D 0 we have

nX
i;jD1

ti tj k.xi ;xj /� 0:
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Continuing to assume that X is a metric space, a kernel k is proper if

sup
d.x;y/�r

k.x;y/

is finite for each r > 0 and if

inf
d.x;y/�r

k.x;y/

tends to infinity as r tends to infinity.

Remark 7.2. Using techniques similar to those in [Finn-Sell 2014a] (compare also
[Willett 2015]), one can show that if X admits a fibered coarse embedding into
Hilbert space as in [Chen et al. 2013, §2], then X admits a proper, asymptotically
conditionally negative definite kernel. One can also show directly that if X admits
a proper, asymptotically conditionally negative definite kernel, then the restriction
to the boundary of the coarse groupoid of X has the Haagerup property as studied
in [Finn-Sell and Wright 2014]. We will not need these properties, however, so do
not pursue this further here.

Let now X and Y be metric spaces. A map f WX ! Y is a coarse embedding
if there exist nondecreasing functions �� and �C from RC to RC such that for all
x1;x2 2X ,

��.d.x1;x2//� d.f .x1/; f .x2//� �C.d.x1;x2//

and such that ��.t/ tends to infinity as t tends to infinity. A coarse embedding
f W X ! Y is a coarse equivalence if in addition there exists C � 0 such that
every point of Y is distance at most C from a point of f .X /. Coarse equiv-
alences have “approximate inverses”: given a coarse equivalence f W X ! Y

there is a coarse equivalence g W Y ! X such that supx2X d.x;g.f .x/// and
supy2Y d.y; f .g.y/// are finite.

We record the following lemma for later use; the proof is a series of routine
checks.

Lemma 7.3. Let X and Y be metric spaces, and f WX ! Y a coarse embedding.
If k is a proper, asymptotically conditionally negative definite kernel on Y , then the
pullback kernel .f �k/.x;y/ WD k.f .x/; f .y// on X is proper and asymptotically
conditionally negative definite. �

We are mainly interested in metric spaces that are built from graphs. We identify
a finite graph with its vertex set, and equip it with the edge metric: the distance
between vertices x and y is the smallest number n for which there exists a sequence

x D x0;x1; : : : ;xn D y

in which consecutive pairs span an edge.
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Definition 7.4. Let .Xn/ be a sequence of finite graphs such that

(i) each Xn is nonempty, finite, and connected;

(ii) there exists a D such that all vertices have degree at most D.

Equip the disjoint union X D
F

n Xn with a metric that restricts to the edge metric
on each Xn and in addition satisfies

d
�
Xn;

F
n¤mXm

�
!1 as n!1:

The exact choice of metric does not matter for us: the identity map on X is a coarse
equivalence between any two choices of metric satisfying these conditions. The
metric space X is the box space associated to the sequence .Xn/.

The girth of a graph X is the length of the shortest nontrivial cycle in X , and
infinity if no nontrivial cycles exist. A box space X built from a sequence .Xn/ as
above has large girth if the girth of Xn tends to infinity as n tends to infinity.

A box space X associated to a sequence .Xn/ is an expander if there exists c > 1

such that for all n and all subsets A of Xn with jAj � jXnj=2, we haveˇ̌
fx 2Xn j d.x;A/� 1g

ˇ̌
jAj

� c:

Theorem 7.5. Let X be a large-girth box space as in Definition 7.4. Then the
distance function on X is a proper, asymptotically conditionally negative definite
kernel.

For the proof of this theorem, we shall require the following well-known lemma
[Julg and Valette 1984, §2]. For convenience, we sketch a proof.

Lemma 7.6. Let T be (the vertex set of ) a tree. The edge metric is conditionally
negative definite when viewed as a kernel d W T �T ! RC.

Proof. Let `2 denote the Hilbert space of square summable functions on the set of
edges in T . Fix a base vertex x0. For every vertex x let �.x/ be the characteristic
function of those edges along the unique no-backtrack path from x0 to x. The
result is a routine calculation starting from the observation that

k�.x/� �.y/k2 D d.x;y/

for every two vertices x and y. �

Proof of Theorem 7.5. Let k.x;y/D d.x;y/. Properness and conditions (i) and (ii)
from the definition of asymptotically conditionally negative definite are trivially
satisfied, so it remains to check condition (iii)0.

Given r > 0, let N be large enough that the following conditions are satisfied:

(a) if n>N then d
�
Xn;

F
m¤n Xm

�
> r ;
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(b) if n>N then the girth of Xn is at least 2r .

The force of (b) is that if Tn is the universal cover of Xn then the covering map
Tn ! Xn is an isometry on sets of diameter r or less. Let K D X1 t � � � tXN .
It now suffices to show that d is conditionally negative definite when restricted to
a finite subset F of X nK of diameter at most r . But such a subset necessarily
belongs entirely to some Xn, and the covering map Tn!Xn admits an isometric
splitting over F . Thus, restricted to F � F , the metric d is the pullback of the
distance function on Tn, which is conditionally negative definite by the previous
lemma. �

Let G be a finitely generated group. Fix a word length ` and associated left-
invariant metric on G; the following definition is independent of the choice of
length function.

Definition 7.7. The group G is a special Gromov monster if there exists a large-
girth expander box space X as in Definition 7.4 and a coarse embedding from X

to G.

Osajda [2014] has shown that special Gromov monsters in the sense above ex-
ist: in fact, he proves the existence of examples where the (large-girth, expander)
box space X is isometrically embedded. Other constructions of Gromov monster
groups, including Gromov’s original one, produce maps of (expander, large-girth)
box spaces into groups which are not (obviously) coarse embeddings: see the re-
marks in Section 8.4 below. The restriction to coarsely embedded box spaces is
the reason for the terminology “special Gromov monster” above.

For the remainder of this section, let G be a special Gromov monster group, and
let f WX !G be a coarse embedding of a large-girth, expander box space into G.
Let Z D f .X /�G be the image of f . For each natural number R, let NR.Z/ be
the R-neighborhood of Z in G.

Lemma 7.8. There exists a kernel k on G such that for any R 2 N the restriction
of k to NR.Z/ is proper and asymptotically conditionally negative definite.

Proof. Let p0 W Z ! Z be the identity map. For R 2 N inductively choose
pR W NR.Z/! Z by stipulating that pRC1 W NRC1.Z/! Z extends pR, and
satisfies d.pRC1.x/;x/ � RC 1 for all x 2 NRC1.Z/. Note that each pR is a
coarse equivalence. Let g WZ!X be any choice of coarse equivalence, and let d

be the distance function on X , so d has the properties in Theorem 7.5.
For each R, let kR be the pullback kernel .gıpR/

�d , which Lemma 7.3 implies
is proper and asymptotically conditionally negative definite. The choice of the
functions pR implies that for R > S the kernel kR extends kS , and so these
functions piece together to define a kernel k on

S
R NR.Z/DG. �
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We will now construct an a-T-menable action of G.
For each natural number R, let NR.Z/ be the closure of NR.Z/ in the Stone–

Čech compactification ˇG of G. Let

Y D

�[
R2N

NR.Z/

�
\ @G;

i.e., Y is the intersection of the open subset
S

R2N NR.Z/� ˇG with the Stone–
Čech corona @G.

Next we define an action of G on Y . This is best done by considering the
associated C �-algebras of continuous functions. The C �-algebra of continuous
functions on

S
R2N NR.Z/ naturally identifies with

AD
[

R2N

`1.NR.Z//;

the C �-subalgebra of `1.G/ generated by all the bounded functions on the R-
neighborhoods of Z. For every x and g in G we have

d.x;xg/D `.g/;

so that the right action of G on itself gives rise to an action on `1.G/ that pre-
serves A. In this way A is a G-C �-algebra. Note that A contains C0.G/ as a
G-invariant ideal, and Y identifies naturally with the maximal ideal space of the
G-C �-algebra A=C0.G/.

Theorem 7.9. The action of G on Y is a-T-menable.

Proof. Let k be as in Lemma 7.8. Say g is an element of G and y is an element of Y ,
so contained in some NR.Z/. Note that the set fk.x;xg/gx2NR.Z/ is bounded by
properness of the restriction of k to NRC`.g/.Z/. Hence, thinking of y as an
ultrafilter on NR.Z/, we may define

h.y;g/D lim
y

k.x;xg/:

This definition does not depend on the choice of R. We claim that the function

h W Y �G! RC

thus defined has the properties from Definition 6.1.
Indeed, condition (i) follows as

h.y; e/D lim
y

k.x;x/D 0

for any y. For condition (ii), note that

h.y;g/D lim
y

k.x;xg/D lim
y

k.xg;x/D h.xg;g�1/:
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For condition (iii), let y be fixed, fg1; : : : ;gng be a subset of G and ft1; : : : ; tng a
subset of R such that

P
ti D 0. Then

nX
i;jD1

ti tj h.ygi ;g
�1
i gj /D lim

y

nX
i;jD1

k.xgi ;xgig
�1
i gj /D lim

y

nX
i;jD1

k.xgi ;xgj /:

Let r be larger than the diameter of fxg1; : : : ;xgng, and note that removing the
finite set K.r/ as in the definition of asymptotic conditionally negative definite
kernel from NR.Z/ does not affect the ultralimit limy

P
k.xgi ;xgj /. We may

thus think of this as an ultralimit over a set of nonpositive numbers, and thus
nonpositive.

Finally, we check local properness. Let K be a compact subset of Y . As
fNR.Z/ \ Y j R 2 Ng is an open cover of Y , the set K must be contained in
some NR.Z/. Assume that y and yg are both in K. Choose any net .xi/ in
NR.Z/ converging to y and, passing to a subnet, assume that the elements xig are
all contained in NR.Z/. Passing to another subnet, assume that limi k.xi ;xig/

exists. We then have that

h.y;g/D lim
y

k.x;xg/D lim
i

k.xi ;xig/

� inffk.x;y/ j x;y 2NR.Z/; d.x;y/� `.g/g;

which tends to infinity as `.g/ tends to infinity (at a rate depending only on R,
whence only on K) by properness of the restriction of k to NR.Z/. This completes
the proof. �

We are now ready to produce our example of a C �-algebra B for which the
usual Baum–Connes assembly map

� WK
top
� .GIB/!K�.B Ìred G/

fails to be surjective, but for which the E-Baum–Connes assembly map

� WK
top
� .GIB/!K�.B ÌE G/

is an isomorphism.
Assume that G is a special Gromov monster group. Then there exists a Kazhdan

projection p in some matrix algebra Mn.A Ìred G/ over A Ìred G such that the
corresponding class Œp� 2K0.AÌred G/ is not in the image of the assembly map:
see [Willett and Yu 2012a, §8]. We may write

p D lim
n!1

X
g2Fn

nX
i;jD1

f
.n/

ijg eij Œg�;
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where Fn is a finite subset of G, feij g
n
i;jD1

are the standard matrix units for Mn.C/,
and each f .n/gij is an element of A.

Let h W Y � G ! RC be a function as in Definition 6.1, and let C0.W / be
the C �-subalgebra of C0.Y / generated by the countably many functions fx 7!
h.x;g/gg2G , the restriction of the countably many functions f .n/gij to Y , and all
translates of these elements by G. Let B be the preimage of C0.W / in A. Then
the following hold (compare [Higson and Guentner 2004, Lemma 4.2]):

(i) B is separable;

(ii) the action of G on W is a-T-menable;

(iii) the Kazhdan projection is contained in a matrix algebra over the reduced
crossed product B Ìred G.

Corollary 7.10. The E-Baum–Connes assembly map with coefficients in the alge-
bra B is an isomorphism. On the other hand, the usual Baum–Connes assembly
map for G with coefficients in B is not surjective.

Proof. The C �-algebra B sits in a G-equivariant short exact sequence of the form

0! C0.G/! B! C0.W /! 0:

The action of G on the space W is a-T-menable, so the E-Baum–Connes conjec-
ture with coefficients in C0.W / is true by Theorem 6.2. The E-Baum–Connes
conjecture with coefficients in C0.G/ is true by properness of this algebra (which
also forces C0.G/ ÌE G D C0.G/ Ìred G). The result for the E-Baum–Connes
conjecture now follows from Proposition 4.14.

On the other hand, the results of [Willett and Yu 2012a] show that the class
Œp� 2K0.AÌred G/ is not in the image of the assembly map; by naturality of the
assembly map in the coefficient algebra, the corresponding class Œp�2K0.BÌred G/

is not in the image of the assembly map either. �

Remark 7.11. It seems very likely that an analogous statement holds for A itself.
However, here we pass to a separable C �-subalgebra to avoid technicalities that
arise in the nonseparable case.

8. Concluding remarks and questions

8.1. The role of exactness. Given the current state of knowledge on exactness
and the Baum–Connes conjecture, we do not know which of the following (vague)
statements is closer to the truth:

(i) Failures of exactness are the fundamental reason for failure of the Baum–
Connes conjecture (with coefficients, for groups).
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(ii) Failures of exactness are a convenient way to detect counterexamples to the
Baum–Connes conjecture, but counterexamples arise for more fundamental
reasons.

The statement that the E-Baum–Connes conjecture is true is a precise version of
statement (i), and the material in this paper provides some evidence for its validity.
Playing devil’s advocate, we outline some evidence for statement (ii) below.

8.1.1. Groupoid counterexamples. As well as the counterexamples to the Baum–
Connes conjecture with coefficients for groups that we have discussed, Higson,
Lafforgue and Skandalis [Higson et al. 2002] also use failures of exactness to
produce counterexamples to the Baum–Connes conjecture for groupoids.

One can use the precise analog of Definition 2.1 to define general groupoid
crossed products, and then for a particular crossed product � define the �-Baum–
Connes assembly map as the composition of the maximal groupoid Baum–Connes
assembly map and the map on K-theory induced by the quotient map from the
maximal crossed product to the �-crossed product. It seems (we did not check all
the details) that the program of this paper can also be carried out in this context:
there is a minimal groupoid crossed product with good properties, and one can
reformulate the groupoid Baum–Connes conjecture with coefficients accordingly.
The work of Popescu [2004] on groupoid-equivariant E-theory is relevant here.

However, in the case of groupoids this method will not obviate all known coun-
terexamples. In fact, the following result is not difficult to extrapolate from [Higson
et al. 2002, §2, first counterexample]. For any groupoid G and groupoid crossed
product � , let C �� .G/ denote C0.G

.0//Ì� G, a completion of the groupoid convo-
lution algebra Cc.G/.

Proposition. There exists a (locally compact, Hausdorff , second-countable, étale)
groupoid G such that for any groupoid crossed product � , there exists a projection
p� 2 C �� .G/ whose K-theory class is not in the image of the � -assembly map.

Proof. Let �1 be the discrete group SL.3;Z/ and for each n let �nD SL.3;Z=nZ/

and let �n W �1! �n be the obvious quotient map. In [Higson et al. 2002, §2],
the authors show how to construct a locally compact, Hausdorff second-countable
groupoid G out of this data: roughly, the base space of G is N[f1g, and G is the
bundle of groups with �n over the point n in N[f1g.

As explained in [Higson et al. 2002, §2, first counterexample], there is a pro-
jection pred in C �red.G/ whose K-theory class is not in the image of the reduced
assembly map; roughly, pred exists since the trivial representation of SL.3;Z/ is
isolated among the congruence representations. However, as SL.3;Z/ has prop-
erty (T), the trivial representation is isolated among all unitary representations
of this group, and therefore there is a projection pmax in C �max.G/ that maps to
pred under the canonical quotient map. Let p� denote the image of pmax under the
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canonical quotient map from the maximal crossed product to the � -crossed product.
As the reduced assembly map factors through the � -assembly map, the fact that the
class of pred is not in the image of the reduced assembly map implies that the class
of p� is not in the image of the � -assembly map. �

For groupoids, then, statement (ii) above seems the more reasonable one. Hav-
ing said this, we think the methods of this paper can be used to obviate some of the
other groupoid counterexamples in [Higson et al. 2002], and it is natural to try to
describe the groupoids for which this can be done. This question seems interesting
in its own right, and it might also suggest phenomena that could occur in the less
directly accessible group case.

8.1.2. Geometric property (T) for expanders. As mentioned above, all current ev-
idence suggests that statement (i) above might be the correct one for groups and
group actions. It is crucial here that the only expanders anyone knows how to
coarsely embed into a group are those with “large girth”, as we exploited in Section 7.

Yu and the third author [2012b, §7; 2014] studied a property of expanders called
geometric property (T), which is a strong negation of the Haagerup-type properties
used in Section 7. Say G is a group containing a coarsely embedded expander with
geometric property (T) (it is not known whether such a group exists!). Then we may
construct the analogue of the C �-algebra B used in Corollary 7.10. For this B and
any crossed product Ì� the C �-algebra B Ì� G will contain a Kazhdan projection
that (modulo a minor technical condition, which should be easy to check) will not
be in the image of the �-assembly map. In particular, this would imply that the
E-Baum–Connes conjecture fails for the group G and coefficient C �-algebra B.

It is thus very natural to ask if one can embed an expander with geometric
property (T) into a group. We currently do not know enough to speculate on this
either way.

8.2. Other exact crossed products. We use the crossed product ÌE for our refor-
mulation of the Baum–Connes conjecture as it has the following two properties:

(i) It is exact and Morita-compatible.

(ii) It is equal to the reduced crossed product when the group is exact.

However, the results of Theorem 6.2 and Corollary 7.10 are true for any exact and
Morita-compatible crossed product. It is thus reasonable to consider other crossed
products with properties (i) and (ii) above.

For example, consider the family of crossed products introduced by Kaliszewski,
Landstad and Quigg [Kaliszewski et al. 2013] that we discuss in the Appendix.
These are all Morita-compatible, and one can consider the minimal exact crossed
product from this smaller class. This minimal Kaliszewski–Landstad–Quigg crossed
product would have particularly good properties: for example, it would be a functor
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on a natural Morita category of correspondences [Buss and Echterhoff 2015, §2].
It is not clear to us if ÌE has similarly good properties, or if it is equal to the
“minimal exact Kaliszewski–Landstad–Quigg crossed product”.

Another natural example is the max-l1.G/-crossed product that we looked at
in Proposition 5.8 above: it is possible that this is equal to the E-crossed product.
If it is not equal to the E-crossed product, it would be interesting to know why.

8.3. Consequences of the reformulated conjecture. Most of the applications of
the Baum–Connes conjecture to topology and geometry, for example to the Novikov
and Gromov–Lawson conjectures (see [Baum et al. 1994, §7]), follow from the
strong Novikov conjecture:6 the statement that the maximal assembly map with
trivial coefficients

� WK
top
� .G/!K�.C

�
max.G// (8.1)

is injective. This is implied by injectivity of the E-assembly map, so the reformu-
lated conjecture still has these same consequences. Moreover, isomorphism of the
E-assembly map implies that the assembly map in (8.1) is split injective.

On the other hand, the Kadison–Kaplansky conjecture states that if G is a torsion-
free discrete group then there are no nontrivial projections in the reduced group
C �-algebra C �red.G/. It is predicted by the classical form of the Baum–Connes
conjecture. However, it is not predicted by our reformulated conjecture for nonex-
act groups. The reformulated conjecture does not even predict that there are no
nontrivial projections in the exotic group C �-algebra CÌE G, essentially as this
C �-algebra does not (obviously) have a faithful trace.

It is thus natural to look for counterexamples to the Kadison–Kaplansky conjec-
ture among nonexact groups.

8.4. Weak coarse embeddings. Let X D
F

Xn be a box space as in Definition 7.4
and G be a finitely generated group equipped with a word metric. A collection of
functions fn WXn!G is a weak coarse embedding if

(i) there is a constant c > 0 such that

dG.fn.x/; fn.y//� cdXn
.x;y/

for all n and all x;y 2Xn;

(ii) the limit

lim
n!1

max
�
jf �1

n .x/j

jXnj
j x 2G

�
is zero.

6Some authors use “strong Novikov conjecture” to refer to the stronger statement that the reduced
assembly map with trivial coefficients is injective.
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If .Xn/ is a sequence of graphs, and f W X ! G is a coarse embedding from the
associated box space into a group G, then the sequence of maps .fn W Xn! G/

defined by restricting f is a weak coarse embedding. Some versions of the Gro-
mov monster construction (for example, [Gromov 2000; Arzhantseva and Delzant
2008]) show that weak coarse embeddings of large-girth, expander box spaces into
groups exist,7 but it is not clear from these constructions that coarse embeddings
are possible.

In their original construction of counterexamples to the Baum–Connes conjec-
ture with coefficients [Higson et al. 2002, §7], Higson, Lafforgue and Skandalis
used the existence of a group G and a weak coarse embedding of an expander
.fn WXn!G/. They use this data to construct G-spaces Y and Z, and show that
the Baum–Connes assembly map fails to be an isomorphism either with coefficients
in C0.Y / or with coefficients in C0.Z/. Their techniques do not show that the
reformulated conjecture will fail for one of these coefficients, but we do not know
if the reformulated conjecture is true under these assumptions either.

On the other hand, to produce our examples where the reformulated conjecture
is true but the old conjecture fails (compare Corollary 7.10) we need to know
the existence of a group G and a coarse embedding f W X ! G of a large-girth,
expander box space; such groups are the special Gromov monsters of Definition 7.7.
We appeal to recent results of Osajda [2014] to see that appropriate examples exist.

8.5. Further questions. The following (related) questions seem natural; we do
not currently know the answer to any of them. Unfortunately, nonexact groups are
quite poorly understood (for example, there are no concrete countable8 examples),
so many of these questions might be difficult to approach directly.

Questions. (i) Can one coarsely embed an expander with geometric property (T)
into a (finitely generated) discrete group?

(ii) Can one characterize exact crossed products in a natural way, e.g., by a “slice
map property”?

(iii) It is shown in [Roe and Willett 2014] that for G countable and discrete the
reduced crossed product is exact if and only if it preserves exactness of the

7Arzhantseva and Delzant [2008] show something much stronger than this: very roughly, they
prove the existence of maps fn WXn!G that are “almost a quasi-isometry”, and where the deviation
from being a quasi-isometry is “small” relative to the girth. See [ibid., §7] for detailed statements.
There is no implication either way between the condition that a sequence of maps .f WXn!G/ be
a coarse embedding, and the condition that it satisfy the “almost quasi-isometry” properties of [ibid.,
§7]. We do not know if the existence of an “almost quasi-isometric” embedding of a box space into
a group implies the existence of a coarse embedding.

8Exactness passes to closed subgroups, so finding concrete uncountable examples — like permu-
tation groups on infinitely many letters — is easy given that some countable nonexact group exists
at all.
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sequence

0! C0.G/! l1.G/! l1.G/=C0.G/! 0:

Is this true for more general crossed products? Is there another natural “uni-
versal short exact sequence” that works for a general crossed product?

(iv) Say G is a nonexact group, and let C �E .G/ denote CÌE G, a completion of
the group algebra. Can this completion be equal to C �red.G/?

(v) Is the E-crossed product equal to the minimal exact Kaliszewski–Landstad–
Quigg crossed product?

(vi) Is the E-crossed product equal to the max-l1.G/ crossed product described
in Proposition 5.8?

(vii) Does the E-crossed product give rise to a descent functor on KK-theory?9

(viii) Is the reformulated conjecture true for the counterexamples originally con-
structed by Higson, Lafforgue and Skandalis?

Appendix: Some examples of crossed products

In this appendix we discuss some examples of crossed products. These examples
are not necessary for the development in the main piece. However, they are impor-
tant as motivation and to show the sort of examples that can arise (and contradict
overly optimistic conjectures).

We will look at two families of exotic crossed products, which were introduced
in [Brown and Guentner 2013] and [Kaliszewski et al. 2013]. For many groups,
both families contain uncountably many natural examples that are distinct from
the reduced and maximal crossed products; thus there is a rich theory of exotic
crossed products. We will show this and that one family is always exact, the
other always Morita-compatible. We conclude with two examples showing that
the Baum–Connes conjecture fails for many exact crossed products.

The material draws on work of Brown and Guentner [2013], of Kaliszewski,
Landstad and Quigg [Kaliszewski et al. 2013] and of Buss and Echterhoff [2014;
2015]. The third author is grateful to Alcides Buss and Siegfried Echterhoff for
some very illuminating discussions of these papers.

Let G be a locally compact group. We will write u WG!U.H/, g 7! ug for a
unitary representation of G, and use the same notation for the integrated forms

u W Cc.G/ 7!B.H/; u W C �max.G/!B.H/

9Added in proof: the answer to this is “yes”: see [Buss et al. 2014, §5 and §7].
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as for the representation itself. If A is a G-C �-algebra, we will write a covariant
pair of representations for .A;G/ in the form

.�;u/ W .A;G/!B.H/;

where � W A!B.H/ is a �-representation and u W G!U.H/ is a unitary repre-
sentation satisfying the covariance relation

ug�.a/u
�
g D �.g.a//; g 2G; a 2A:

Recall from Section 2 that A Ìalg G denotes the space of compactly supported
continuous functions from G to A equipped with the usual twisted product and
involution, and that AÌmax G denotes the maximal crossed product. Write

� Ìu WAÌalg G!B.H/; � Ìu WAÌmax G!B.H/

for the integrated forms of .�;u/.
Recall that if S is a collection of unitary representations of G, and u is a unitary

representation of G, then u is said to be weakly contained in S if

ku.f /k � sup
v2S

kv.f /k (A.1)

for all f 2 Cc.G/.
Let yG denote the unitary dual of G, i.e., the set of unitary equivalence classes

of irreducible unitary representations of G. We will identify each class in yG with a
choice of representative when this causes no confusion. The unitary dual is topolo-
gized by the following closure operation: if S is a subset of yG, then the closure S

consists of all those elements of yG that are weakly contained in S . Let yGr denote
the closed subset of yG consisting of all (equivalence classes of) irreducible unitary
representations that are weakly contained in the (left) regular representation.

Definition A.2. A subset S of yG is admissible if its closure contains yGr .

Note that yG and yGr identify canonically with the spectra of the maximal and re-
duced group C �-algebras C �max.G/ and C �red.G/, respectively. If S is an admissible
subset of yG, define a C �-norm on Cc.G/ by

kf kS WD sup
u2S

ku.f /k

and let C �
S
.G/ denote the corresponding completion. Note that, as S contains yGr ,

the identity map on Cc.G/ extends to a quotient map

C �S .G/! C �red.G/:

We will now associate two crossed products to each admissible S � yG. The first
was introduced by Brown and Guentner [2013, §5] (at least in a special case), and
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the second by Kaliszewski, Landstad and Quigg [Kaliszewski et al. 2013, §6] (it
was subsequently shown to define a functor by Buss and Echterhoff [2014, §7]).

Definition A.3. Let S be an admissible subset of yG. A covariant pair .�;u/ for
a G-C �-algebra A is an S-representation if u is weakly contained in S . Define
the Brown–Guentner S-crossed-product (or “BG S-crossed-product”) of A by G,
denoted AÌBG;S G, to be the completion of AÌalg G for the norm

kxk WD supfk.� Ìu/.x/kB.H/ j .�;u/ W .A;G/!B.H/ an S -representationg:

If S is unambiguous, we will often write AÌBG G.

Definition A.4. Let A be a G-C �-algebra, and let

AÌmax G˝C �S .G/

denote the spatial tensor product of the maximal crossed product AÌmax G and
C �

S
.G/; let M.AÌmax G˝C �

S
.G// denote its multiplier algebra. Let

.�;u/ W .A;G/!M.AÌmax G/˝M.C �S .G//�M.AÌmax G˝C �S .G//

be the covariant representation defined by

� W a 7! a˝ 1; u W g 7! g˝g:

Note that this integrates to an injective �-homomorphism

� Ìu WAÌalg G!M.AÌmax G˝C �S .G//:

Define the Kaliszewski–Landstad–Quigg S-crossed-product (or “KLQ S-crossed-
product”) of A by G, denoted AÌKLQ;S G, to be the completion of

.� Ìu/.AÌalg G/

inside M.AÌmax G˝C �
S
.G//. If S is unambiguous, we will often write AÌKLQ G.

For the reader comparing this to [Brown and Guentner 2013] and [Kaliszewski
et al. 2013], we note that the constructions in those papers use spaces of matrix
coefficients rather than subsets of yG to build crossed products. Standard duality
arguments show that the two points of view are equivalent: we use subsets of yG
here simply as this seemed to lead more directly to the results we want.

We now show that both the Brown–Guentner and Kaliszewski–Landstad–Quigg
crossed products are crossed product functors.

Proposition A.5. Let S be an admissible subset of yG. Let � W A! B be a G-
equivariant �-homomorphism. Let

� ÌG WAÌalg G! B Ìalg G
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denote its integrated form. Then � Ì G extends to �-homomorphisms on both
the BG and KLQ S-crossed-products. In particular, ÌBG and ÌKLQ are crossed
product functors in the sense of Definition 2.1.

Proof. We first consider the BG crossed product. Let x be an element of AÌalg G

and note that

k.�ÌG/.x/kBÌBGGDsupfk..�ı�/Ìu/.x/kj.�;u/ an S-representation of .B;G/g:

However, the set that we are taking the supremum over on the right-hand side is a
subset of

fk.� Ìu/.x/k j .�;u/ an S -representation of .A;G/g;

and the AÌBG G norm of x is defined to the supremum over this larger set. This
shows that

k.� ÌG/.x/kBÌBGG � kxkAÌBGG

and thus that � ÌG extends to the BG crossed product.
The argument for the KLQ crossed product is essentially as in [Buss and Echter-

hoff 2014, Proposition 5.2].10 Define M0.A Ìmax G ˝ C �
S
.G// to be the C �-

subalgebra of M.AÌmax G˝C �
S
.G// consisting of all those m such that m.1˝ b/

and .1˝ b/m are in AÌmax G˝C �
S
.G/ for all b 2 C �

S
.G/, and note that there is

a unique extension of the �-homomorphism

.� ÌG/˝ id WAÌmax G˝C �S .G/! B Ìmax G˝C �S .G/

to a �-homomorphism

.� ÌG/˝ id WM0.AÌmax G˝C �S .G//!M.B Ìmax G˝C �S .G//

(whether or not � is nondegenerate) by [Echterhoff et al. 2006, Proposition A.6(i)].
Hence there is a commutative diagram

AÌalg G

�ÌG

��

// M0.AÌmax G˝C �
S
.G//

.�ÌG/˝id
��

B Ìalg G // M.B Ìmax G˝C �
S
.G//

where the horizontal arrows are the injective �-homomorphisms used to define
A ÌKLQ G and B ÌKLQ G (it is clear that the image of the former actually lies
in M0.AÌmax G˝C �

S
.G//). In particular, � ÌG extends to a �-homomorphism

between the closures
� ÌG WAÌalg G! B Ìalg G

10Our thanks to the referee for pointing out that there was a gap in our original argument and
suggesting this reference.
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of the algebraic crossed products AÌalgG and BÌalgG inside M.AÌmaxG˝C �
S
.G//

and M.B Ìmax G˝C �
S
.G//, respectively, and thus by definition to a map between

the KLQ crossed products. �
Note that if S is dense in yG then both the BG and KLQ crossed products as-

sociated to S are equal to the maximal crossed product. On the other hand, if
the closure of S is just yGr , then the KLQ crossed product is equal to the reduced
crossed product [Kaliszewski et al. 2013, p. 18, point (4)], but the analog of this
is not true in general for the BG crossed product, as follows for example from
Lemma A.8 below.

We now look at exactness and Morita compatibility (Definitions 3.1 and 3.3,
respectively). We will prove the following results:

(i) BG crossed products are always exact;

(ii) KLQ crossed products are always Morita-compatible;

(iii) BG crossed products are Morita-compatible only in the trivial case when
S D yG.

We do not know anything about exactness of KLQ crossed products, other than in
the special cases when S D yG and S D yGr ; this seems to be a very interesting
question in general.

Lemma A.6. For any admissible S , the BG S -crossed-product is exact.

Proof. Let
0! I

�
�!A

�
�! B! 0

be a short exact sequence of G-C �-algebras, and consider its “image”

0! I ÌBG G
�ÌG
���!AÌBG G

�ÌG
���! B ÌBG G! 0

under the functor ÌBG

It follows from the fact that ÌBG is a functor that .� Ì G/ ı .� Ì G/ is zero.
Moreover, �ÌG has dense image and is thus surjective.

To see that �ÌG is injective, note that if

.�;u/ W .I;G/!B.H/

is an S -representation, then the representation Q� WA!B.H/ defined on �.I/ �H by

Q�.a/.�.i/v/D �.ai/v

fits together with u.
Finally, note that as .�ÌG/ı .�ÌG/D 0, there is a surjective �-homomorphism

AÌBG G

I ÌBG G
! B ÌBG GI
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we must show that this is injective. Let � WAÌBG G!B.H/ be a nondegenerate
�-representation containing I ÌBG G in its kernel; it will suffice to show that � de-
scends to a �-representation of BÌBG G. As � is nondegenerate, it is the integrated
form of some S -representation

.�;u/ W .A;G/!B.H/:

As I Ìalg G is contained in the kernel of �, I is contained in the kernel of � .
Hence .�;u/ descends to a covariant pair for .B;G/, which is of course still an
S -representation. Its integrated form thus extends to B ÌBG G. �

Lemma A.7. The KLQ S-crossed-product is Morita-compatible for any admissi-
ble S .

Proof. Let KG denote the algebra of compact operators on the infinite amplificationL
n2N L2.G/ of the regular representation equipped with the natural conjugation

action. Let A be a G-C �-algebra, and let

ˆ W .A˝KG/Ìmax G! .AÌmax G/˝KG

denote the untwisting isomorphism from line (3.2). Consider the isomorphism

ˆ˝ 1 W .A˝KG/Ìmax G˝C �S .G/! .AÌmax G/˝KG ˝C �S .G/

and its extension

ˆ˝ 1 WM..A˝KG/Ìmax G˝C �S .G//!M..AÌmax G/˝KG ˝C �S .G//

to multiplier algebras. Up to the canonical identification

AÌmax G˝KG ˝C �S .G/Š .AÌmax G/˝C �S .G/˝KG ;

the restriction of ˆ˝ 1 to

.A˝KG/ÌKLQ G �M..A˝KG/Ìmax G˝C �S .G//

identifies with the untwisting isomorphism from this C �-algebra to

.AÌKLQ G/˝KG �M.AÌmax G˝C �S .G//˝KG

�M.AÌmax G˝C �S .G/˝KG/: �

Lemma A.8. The BG S -crossed-product is Morita-compatible for an admissible S

if and only if S is dense in yG.
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Proof. If S is dense in yG, then ÌBG is equal to the maximal crossed product and
well-known to be Morita-compatible.

For the converse, let KG be as in the definition of Morita compatibility. Let
U W G ! U.H/ be a unitary representation that extends faithfully to C �max.G/.
Consider now the covariant pair

.�;u/ W .KG ;G/!B
�L

n2N L2.G/˝H
�
;

defined by

� W T 7! T ˝ 1; u W g 7!
�L

�g

�
˝Ug;

which by the explicit form of the untwisting isomorphism is a faithful representa-
tion (with image KG˝C �max.G/). On the other hand, the representation u is weakly
contained in the regular representation by Fell’s trick. Hence, by admissibility of S ,
.�;u/ is an S -representation, and thus extends to KG ÌBG G. We conclude that the
canonical quotient map

KG Ìmax G! KG ÌBG G

is an isomorphism.
On the other hand, consider the commutative diagram

KG Ìmax G
ˆ;Š

// KG ˝C �max.G/

id˝�
��

KG ÌBG G // KG ˝C �
S
.G/

where ˆ is the untwisting isomorphism, � W C �max.G/! C �
S
.G/ is the canonical

quotient map, and the bottom line is defined to make the diagram commute. To
say that ÌBG is Morita-compatible means by definition that the surjection on the
bottom line is an isomorphism. This implies that the right-hand vertical map is an
isomorphism, whence � is an isomorphism and so S D yG. �

We now characterize when the various BG and KLQ crossed products are the
same. The characterizations imply that for nonamenable G the families of BG
and KLQ crossed products both tend to be fairly large (Proposition A.10 and
Examples A.13), and that the only crossed product common to both is the maximal
crossed product (Lemma A.14). Note that the second part of Proposition A.10 also
appears in [Buss and Echterhoff 2015, Proposition 2.2] (in different language).

Definition A.9. A subset S of yG is an ideal if for any unitary representation u and
any v 2 S the tensor product representation u˝ v is weakly contained in S .
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Proposition A.10. Let S , R be admissible subsets of yG.

(i) The BG crossed products defined by S and R are the same if and only if the
closures of R and S in yG are the same. In particular, BG crossed products
are in one-to-one correspondence with closed subsets of yG that contain yGr .

(ii) The KLQ crossed products defined by S and R are the same if and only if the
closed ideals in yG generated by R and S are the same. In particular, KLQ
crossed products are in one-to-one correspondence with closed ideals of yG
that contain yGr .

Proof. We look first at the BG crossed products. Note that a covariant pair .�;u/ W
.A;G/!B.H/ is an S -representation if and only if it is an S -representation. This
shows that the BG crossed products associated to S and S are the same, and thus
that if RD S then their BG crossed products are the same.

Conversely, note that if R and S have the same BG crossed products, then
considering the trivial action on C shows that C �

S
.G/D C �

R
.G/. This happens (if

and) only if RD S .
Look now at the KLQ crossed products. If S is an admissible subset of yG,

denote by hSi the closed ideal generated by S . Let A be a G-C �-algebra, and
consider the covariant representation of .A;G/ into

M.AÌmax G/˝M.C �max.G//�M.AÌmax G˝C �max.G//

defined by

� W a 7! a˝ 1; u W g 7! g˝g:

The integrated form of this representation defines a �-homomorphism

AÌalg G!M.AÌmax G˝C �max.G//

and the closure of its image is isomorphic to AÌmax G by [Kaliszewski et al. 2013,
p. 18, point (3)]. It follows that to define AÌKLQ;S G we may take the closure of
the image of AÌalg G under the integrated form of the covariant pair of .A;G/
with image in

M.AÌmax G/˝M.C �max.G//˝M.C �S .G//�M.AÌmax G˝C �max.G/˝C �S .G//

defined by

� W a 7! a˝ 1˝ 1; u W g 7! g˝g˝g: (A.11)

However, the closure of the image of the integrated form of the representation

u WG!U.C �max.G/˝C �S .G//; g 7! g˝g (A.12)
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is easily seen to be C �
hSi
.G/. Therefore the integrated form of the representation

in (A.11) identifies with the integrated form of the covariant pair of .A;G/ with
image in

M.AÌmax G/˝M.C �
hSi.G//�M.AÌmax G˝C �

hSi.G//

defined by
� W a 7! a˝ 1; u W g 7! g˝g:

This discussion shows that S and hSi give rise to the same KLQ crossed product,
and thus that if hSi D hRi then S and R define the same KLQ crossed product.

Conversely, note that CÌS G is (by definition) the C �-algebra generated by the
integrated form of the unitary representation in (A.12) and, as already noted, this
is C �
hSi
.G/. In particular, if R and S have the same KLQ crossed product then

C �
hSi
.G/ and C �

hRi
.G/ are the same, and this forces hRi D hSi. �

Examples A.13. Let G be a locally compact group. For any p 2 Œ1;1/, let Sp

denote those (equivalences classes of) irreducible unitary representations for which
there is a dense set of matrix coefficients in Lp.G/. Then Sp is an ideal in yG
containing yGr . Building on seminal work of Haagerup [1978/79], Okayasu [2014]
has shown that for G D F2, the free group on two generators, the completions
C �

Sp
.G/ are all different as p varies through Œ2;1/. It follows by an induction

argument that the same is true for any discrete G containing F2 as a subgroup.11

Hence, in particular, for “many” nonamenable G there is an uncountable family
of distinct closed ideals fSp j p 2 Œ2;1/g in yG, and thus an uncountable family of
distinct KLQ and BG completions.

The next lemma discusses the relationship between the BG and KLQ crossed
products associated to the same S . Considering the trivial crossed products of C

with respect to the trivial action as in the proof of Proposition A.10 shows that
the question is only interesting when S is a closed ideal in yG, so we only look at
this case. Compare [Kaliszewski et al. 2013, Example 6.6] and also [Quigg and
Spielberg 1992] for a more detailed discussion of similar phenomena.

Lemma A.14. Let S be a closed ideal in yG containing yGr . Then for any G-C �-
algebra A the identity on AÌalg G extends to a quotient �-homomorphism

AÌBG G!AÌKLQ G

from the BG S -crossed-product to the KLQ S -crossed-product.
Moreover, this quotient map is an isomorphism for ADKG if and only if S D yG

(in which case we have ÌBG D ÌKLQ D Ìmax).

11This is also true more generally; whether it is true for any nonamenable locally compact G

seems to be an interesting question.
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Proof. Let H and HA be faithful representation spaces for C �
S
.G/ and AÌmax G

respectively. As S is an ideal, the representation

AÌalg G!M.AÌmax G˝C �S .G//�B.HA˝H/

defining AÌKLQ G is the integrated form of an S-representation of .A;G/, and
thus extends to AÌBG G. This shows the existence of the claimed quotient map.

For the second part, note that the arguments of Lemmas A.7 and A.8 show that
there is a commutative diagram

KG ÌBG G
Š
//

��

KG ˝C �max.G/

id˝�
��

KG ÌKLQ G
Š
// KG ˝C �

S
.G/

where the left-hand vertical map is the quotient extending the identity map on
KG Ìalg G, and the right-hand vertical map is the quotient extending the identity
on the algebraic tensor product KG ˇCc.G/. Hence if

KG ÌBG G D KG ÌKLQ G

then we must have that � W C �max.G/! C �
S
.G/ is an isomorphism; as S is closed,

this forces S D yG. �
We conclude this appendix with two examples showing that one should not in

general expect exact crossed products to satisfy the Baum–Connes conjecture.

Examples A.15. Let G be a nonamenable group, and let S D yGr [f1g, where 1

is the class of the trivial representation (compare Example 6.5). As 1 is a finite-
dimensional representation it is a closed point in yG, and thus S is a closed subset
of yG. Moreover, nonamenability of G implies that 1 is an isolated point of S . It
follows as in Example 6.5 that there is a Kazhdan projection p in C �

S
.G/ whose

image in any representation maps onto the G-fixed vectors. The class of this pro-
jection Œp� 2K0.C

�
S
.G// cannot be in the image of the Baum–Connes assembly

map in many cases:12 for example, if G is discrete (see [Higson 1998, discussion
below 5.1]), or if the Baum–Connes conjecture is true for C �r .G/ (for example if G

is almost connected [Chabert et al. 2003]). Hence the Baum–Connes conjecture
fails for the BG crossed product associated to S in this case.

In particular, for any nonamenable discrete or almost connected G, there is an
exact crossed product for which the Baum–Connes conjecture fails. Note that this
is true even for a-T-menable groups, where the Baum–Connes conjecture is true
for both the maximal and reduced crossed products.

12We would guess it can never be in the image, but we do not know how to prove this.
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A similar, perhaps more natural, example can be arrived at by starting with
G D SL.2;Z/, which is a nonamenable, a-T-menable group. Let

un W SL.2;Z/!B.l2.SL.2;Z=nZ///

be the n-th congruence representation, and define a norm on Cc.G/ by

kxkcong WD sup
n
fkun.x/kg:

Note that this norm dominates the reduced norm. To see this, let � WG!U.l2.G//

be the regular representation. Let x 2 Cc.G/ and � 2 l2.G/ have finite support. As
the supports of � and �.x/� are finite subsets of G, they are mapped injectively to
SL.2;Z=nZ/ for all suitably large n. It follows that for all suitably large n we may
find �n in l2.SL.2;Z=nZ// with k�nk D k�k and kun.x/�nk D k�.x/�k: indeed,
�n can be taken to be the pushforward of � . As � 2 l2.G/ was an arbitrary element
of finite support, the desired inequality kxkcong � k�.x/k follows from this.

Isolation of the trivial representation in the spectrum of C �cong.SL.2;Z// is a
consequence of Selberg’s theorem [1965] (see also [Lubotzky 1994, §4.4]), and
the same construction of a Kazhdan projection goes through.

As our second class of examples, let G be any locally compact group and S

an admissible subset of yG. Consider the commutative diagram coming from the
Baum–Connes conjecture for the BG crossed product associated to S :

K
top
� .G/ //

&&

K�.C
�
max.G//

��

K�.C
�
S
.G//

Assuming the Baum–Connes conjecture for the BG S-crossed product, the diag-
onal map is an isomorphism, and Lemma A.8 (together with the Baum–Connes
conjecture for this crossed product and coefficients in KG) implies that the vertical
map is an isomorphism. Hence the horizontal map (the maximal Baum–Connes
assembly map) is an isomorphism.

However, for discrete property (T) groups (see [Higson 1998, discussion be-
low 5.1] again) for example, the maximal assembly map is definitely not an iso-
morphism. Hence for discrete property (T) groups, the Baum–Connes conjecture
will fail for all BG crossed products.
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