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Remarks on 2–dimensional HQFTs

MIHAI D STAIC

VLADIMIR TURAEV

We introduce and study algebraic structures underlying 2–dimensional Homotopy
Quantum Field Theories (HQFTs) with arbitrary target spaces. These algebraic
structures are formalized in the notion of a twisted Frobenius algebra. Our work
generalizes results of Brightwell, Turner and the second author on 2–dimensional
HQFTs with simply connected or aspherical targets.
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Introduction

A fruitful idea in topology is to construct invariants of manifolds that behave functorially
with respect to gluings of manifolds along the boundary. More formally, one associates
to every closed oriented d –dimensional manifold M a finite dimensional vector space
VM and to every compact oriented .dC1/–dimensional cobordism .W;M;N / a
homomorphism �W W VM ! VN . The conditions satisfied by .V; �/ in order to obtain
a consistent theory are formalized in the notion of a .dC1/–dimensional Topological
Quantum Field Theory (TQFT); see Atiyah [1]. The second author introduced more
general Homotopy Quantum Field Theories (HQFTs) [5]. One can think of a .dC1/–
dimensional HQFT as a TQFT for a d –dimensional manifolds and .dC1/–dimensional
cobordisms endowed with maps to a fixed space X .

The 1–dimensional HQFTs with target X are easily classified in terms of finite di-
mensional representations of �1.X /. A study of 2–dimensional HQFTs is more
involved and leads to interesting algebra. For contractible X , the category of 2–
dimensional HQFTs with target X is equivalent to the category of 2–dimensional
TQFTs and is known to be equivalent to the category of commutative finite-dimensional
Frobenius algebras. If X DK.G; 1/ is an Eilenberg–Mac Lane space determined by
a group G , then the category of 2–dimensional HQFTs with target X is equivalent
to the category of so-called crossed Frobenius G–algebras [5]. If X D K.A; 2/ is
an Eilenberg–Mac Lane space determined by an abelian group A, then the category
of 2–dimensional HQFTs with target X is equivalent to the category of Frobenius
A–algebras; see Brightwell and Turner [2].
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In this paper we address the case where both groups G D �1.X / and A D �2.X /

are allowed to be nontrivial. An important role will be played by the first k –invariant
k 2 H 3.G;A/ of X . We shall introduce and study algebraic structures underlying
2–dimensional HQFTs with target X . We call them twisted Frobenius algebras or,
shorter, TF–algebras over .G;A; k/. Briefly speaking, a TF–algebra is a G–graded
algebra of A–modules which is associative up to a 3–cocycle representing k and
which satisfies a form of commutativity. This work is a step towards classification
of 2–dimensional HQFTs with target X (for a different approach, see Porter and
Turaev [4]).

The paper is organized as follows. We introduce TF–algebras in Section 1. In Section 2
we recall the notion of an HQFT and the definition of the first k –invariant of a
topological space. In Section 3 we derive from any 2–dimensional HQFT the underlying
TF–algebra. In Section 4 we compute the underlying TF–algebras of the cohomological
2–dimensional HQFTs.

Throughout the paper the symbol K denotes a field and ˝D˝K .

Acknowledgments The work of M Staic was partially supported by the CNCSIS
project “Hopf algebras, cyclic homology and monoidal categories”, contract number
560/2009. The work of V Turaev was partially supported by NSF grants DMS-0707078
and DMS-0904262.

1 Twisted Frobenius algebras

1.1 Preliminaries

In this section G is a group with neutral element " and A is a left G–module with
neutral element 1D 1A . We use multiplicative notation for the group operation in A.
As usual, the group ring of A with coefficients in K is denoted KŒA�. The action of
˛ 2G on a 2A is denoted by ˛a.

To calculate the cohomology H�.G;A/, we use the standard cochain complex

C 0.G;A/
ı0

! C 1.G;A/
ı1

! C 2.G;A/
ı2

! C 3.G;A/
ı3

! C 4.G;A/! � � �

where C n.G;A/DMap.Gn;A/ for any n � 0. For small n, the coboundary homo-
morphism ınW C n.G;A/! C nC1.G;A/ is given by the following formulas:

ı0.a/.˛/D ˛a a�1
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for any a 2AD C 0.G;A/ and ˛ 2G ,

ı1. /.˛; ˇ/D ˛ .ˇ/ .˛ˇ/�1 .˛/

for any  2 C 1.G;A/ and ˛; ˇ 2G ,

ı2.!/.˛; ˇ;  /D ˛!.ˇ;  / !.˛ˇ;  /�1!.˛; ˇ / !.˛; ˇ/�1

for any ! 2 C 2.G;A/ and ˛; ˇ;  2G , and

ı3.�/.˛; ˇ; ; �/D ˛�.ˇ; ; �/ �.˛ˇ; ; �/�1�.˛; ˇ; �/ �.˛; ˇ; �/�1�.˛; ˇ;  /

for any � 2 C 3.G;A/ and ˛; ˇ; ; � 2G .

1.2 Definition of TF–algebras

Fix from now on a normalized 3–cocycle �W G3!A. Thus, for all ˛; ˇ; ; � 2G ,

˛�.ˇ; ; �/ �.˛ˇ; ; �/�1 �.˛; ˇ; �/ �.˛; ˇ; �/�1 �.˛; ˇ;  /D 1:

The word “normalized” means that for all ˛; ˇ 2G ,

�."; ˛; ˇ/D �.˛; "; ˇ/D �.˛; ˇ; "/D 1:

A twisted Frobenius algebra (TF–algebra) over the triple .G;A; �/ is a G–graded
KŒA�–module V D

L
˛2G V˛ such that the following properties hold:

(a) (Underlying module and action of A) The underlying K–vector space of V˛ is
finite-dimensional and for all ˛ 2G , u 2 V˛ and a 2A,

auD ˛au:(1)

(b) (Multiplication) We have a K–bilinear multiplication V � V ! V carrying
V˛ �Vˇ to V˛ˇ for all ˛; ˇ 2G . For any u 2 V˛ , v 2 Vˇ , w 2 V with ˛; ˇ;  2G ,

.uv/w D �.˛; ˇ;  /u.vw/:(2)

There is a unit element 1V 2 V" such that 1V uD u1V D u for all u 2 V .

(c) (Inner product) We have a nondegenerate symmetric K–bilinear form

�"W V"˝V"!K

such that for all ˛ 2G , the pairing

V˛˝V˛�1 !K; u˝ v 7! �".uv˝ 1V /(3)

(where u 2 V˛ , v 2 V˛�1 ) is nondegenerate.
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(d) (Projective action of G ) For each ˇ 2 G , we have a K–linear isomorphism
'ˇW V ! V carrying V˛ to Vˇ˛ˇ�1 for all ˛ and such that

'ˇ.av/D
ˇa'ˇ.v/ for any a 2A and v 2 V;(4)

'ˇjVˇ
D idVˇ

W Vˇ! Vˇ;(5)

'ˇ.1V /D 1V ;(6)

vuD 'ˇ.u/v for any u 2 V; v 2 Vˇ;(7)

�".'ˇ.u/˝'ˇ.v//D �".u˝ v/ for any u; v 2 V";(8)

'ˇ.u/ 'ˇ.v/D lˇ˛; 'ˇ.uv/ for any ˛;  2G and u 2 V˛; v 2 V ;(9)

l
ˇ
˛; D �.ˇ˛ˇ

�1; ˇˇ�1; ˇ/ �.ˇ˛ˇ�1; ˇ;  /�1 �.ˇ; ˛;  / 2A;where

'ˇjV˛
D h˛;ˇ .' ı'ˇ/jV˛

for all ˛; ˇ;  2G;(10)

h˛
;ˇ
D �.ˇ˛.ˇ/�1; ; ˇ/ �.; ˇ˛ˇ�1; ˇ/�1�.; ˇ; ˛/ 2A:where

(e) (The trace condition) For any ˛; ˇ 2G and c 2 V˛ˇ˛�1ˇ�1 ,

(11) Tr.�.˛ˇ˛�1ˇ�1; ˇ; ˛/ �c 'ˇW V˛! V˛/

D Tr.�.˛ˇ˛�1ˇ�1; ˇ˛ˇ�1; ˇ/ '�1
˛ �c W Vˇ! Vˇ/;

where �c is left multiplication V ! V; v 7! cv by c and Tr is the standard trace of
linear maps.

We have the following elementary consequences of the definition. The KŒA�–bilinearity
of multiplication in V implies that

a.uv/D .au/v D u.av/(12)

for all a 2A and u; v 2 V . Note that if u 2 V˛ and v 2 Vˇ , then for all a 2A,

˛a.uv/D .˛au/v D .au/v D a.uv/

and similarly ˇa.uv/D a.uv/. Formula (10) applied to  D ˇ D " implies that

'" D idW V ! V:(13)

In the following lemma and in the sequel the pairing (3) is denoted by �˛ .

Lemma 1.1 For any a 2A, u 2 V˛ , v 2 V˛�1 with ˛ 2G ,

�˛.au˝ v/D �˛.u˝ av/;

�˛.u˝ v/D �˛�1.�.˛�1; ˛; ˛�1/�1 v˝u/:
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For any ˛; ˇ 2G , u 2 V˛ , v 2 V˛�1 ,

�ˇ˛ˇ�1.'ˇ.u/˝'ˇ.v//D �˛.l
ˇ

˛;˛�1u˝ v/:

For any ˛; ˇ 2G , u 2 V˛ , v 2 Vˇ and w 2 V.˛ˇ/�1 ,

�˛ˇ.uv˝w/D �˛.�.˛; ˇ; .˛ˇ/
�1/u˝ vw/:

Proof We check only the first two identities leaving the other two to the reader. For
the first identity, we have

�˛.au˝ v/D �"..au/v˝ 1V /

D �".u.av/˝ 1V /

D �˛.u˝ av/:

Formulas (5), (13) and (10) with  D ˛ , ˇ D ˛�1 imply the identity '˛.v/ D

�.˛�1; ˛; ˛�1/�1 v for all v 2 V˛�1 . Therefore

�˛.u˝ v/D �".uv˝ 1V /

D �".'˛.v/u˝ 1V /

D �".�.˛
�1; ˛; ˛�1/�1 vu˝ 1V /

D �˛�1.�.˛�1; ˛; ˛�1/�1 v˝u/:

Given z 2K� and a TF–algebra, we can multiply the inner product �" by z (keeping
the rest of the data) and obtain thus a new TF–algebra. This operation on TF–algebras
is called z–rescaling.

Let V , W be TF–algebras over .G;A; �/. A KŒA�–isomorphism f W V ! W

is an isomorphism of TF–algebras if f is an isomorphism of algebras such that
�".f .u/˝f .v//D �".u˝ v/ for all u; v 2 V" and f 'ˇ D 'ˇf for all ˇ 2G .

1.3 Examples

The definition of a TF–algebra over .G;A; �/ generalizes both the notion of a crossed
Frobenius G –algebra [5] and the notion of an A–Frobenius algebra [2]. Consequently
we have the following two sources of examples.

Example 1.2 If L is a crossed Frobenius G–algebra, then L is a TF–algebra over
.G;A; �/ where A is the trivial group and � is the trivial cocycle.

Example 1.3 If V is an A–Frobenius algebra, then V is a TF–algebra over .G;A; �/
where G is the trivial group and � is the trivial cocycle.

Further examples of TF–algebras are constructed in Section 4.
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1.4 Coboundary equivalence

Let �W G3!A be a normalized 3–cocycle. Given a normalized 2–cochain !W G2!A,
the map �0 D ı2.!/, �W G3 ! A is a normalized 3–cocycle cohomological to � .
Using ! , we can transform a TF–algebra V over .G;A; �/ into a TF–algebra V !

over .G;A; �0/ as follows. The underlying G–graded KŒA�–modules of V ! and V

are the same. The inner product on V !
" D V" is the same as in V . Multiplication �!

on V ! is defined by

u �! v D !.˛; ˇ/�1 u � v;

for u 2 V˛; v 2 Vˇ , where � is multiplication in V . Given ˇ 2G , the automorphism
'!
ˇ

of V ! is defined by

'!ˇ jV˛
D !.ˇ; ˛/�1 !.ˇ˛ˇ�1; ˇ/ 'ˇjV˛

for all ˛ 2G . Direct computations show that V ! is a TF–algebra over .G;A; �0/. We
say that V ! is obtained from V by a coboundary transformation. This transformation
defines an equivalence between the category of TF–algebras over .G;A; �/ and their
isomorphisms and the category of TF–algebras over .G;A; �0/ and their isomorphisms.

Given k 2H 3.G;A/, the coboundary transformations and the isomorphisms generate
an equivalence relation on the class of TF–algebras over the triples .G;A; �/ where
�W G3 ! A runs over all normalized 3–cocycles representing k . This relation is
called coboundary equivalence and the corresponding equivalence classes are called
TF–algebras over .G;A; k/.

2 Preliminaries on HQFTs and k–invariants

2.1 HQFTs

We recall the definition of an HQFT from [5; 6]. We say that a topological space is
pointed if all its connected components are provided with base points. By maps of
pointed spaces we mean continuous maps carrying base points to base points.

Fix a pointed path connected topological space X . An X –manifold is a pair .M;g/,
where M is a pointed closed oriented manifold and g is a map M ! X . An X –
homeomorphism between .M;g/ and .M 0;g0/ is an orientation preserving (and base
point preserving) homeomorphism f W M !M 0 such that g D g0f . An empty set is
considered as an X –manifold of any given dimension.

An X –cobordism between X –manifolds .M0;g0/ and .M1;g1/ is an oriented com-
pact cobordism .W;M0;M1/ endowed with a map gW W ! X such that @W D
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Remarks on 2–dimensional HQFTs 1373

.�M0/qM1 and gjMi
D gi for i D 1; 2. Note that W is not required to be pointed,

but M0 and M1 are pointed. An X –homeomorphism between two X –cobordisms
.W;M0;M1;g/ and .W 0;M 0

0
;M 0

1
;g0/ is an orientation preserving homeomorphism

of triples F W .W;M0;M1/! .W 0;M 0
0
;M 0

1
/ such that g D g0F and F restricts to

X –homeomorphisms M0!M 0
0

and M1!M 0
1

. For example, for any X –manifold
.M;g/ we have the cylinder cobordism .M � Œ0; 1�;M � 0;M � 1; xg/ between two
copies of .M;g/. Here xg is the composition of the projection M � Œ0; 1� ! M

with g . Any X –homeomorphism of X –manifolds multiplied by idŒ0;1� yields an
X –homeomorphism of the corresponding cylinder cobordisms.

A .dC1/–dimensional Homotopy Quantum Field Theory .V; �/ with target X as-
signs a finite-dimensional K–vector space VM to any d –dimensional X –manifold, a
K–isomorphism f#W VM ! VM 0 to any X –homeomorphism of d –dimensional X –
manifolds f WM !M 0 and a K–homomorphism �.W /W VM0

!VM1
to any .dC1/–

dimensional X –cobordism .W;M0;M1/. These vector spaces and homomorphisms
should satisfy the following axioms:

(1) For any X –homeomorphisms of d –dimensional X –manifolds f W M !M 0 ,
f 0 WM 0!M 00 , we have .f 0f /# D f 0#f# .

(2) For any disjoint d –dimensional X –manifolds M , N , there is a natural isomor-
phism VMqN D VM ˝VN .

(3) V∅ DK .

(4) For any X –homeomorphism of .dC1/–dimensional X –cobordisms

F W .W;M0;M1;g/! .W 0;M 0
0;M

0
1;g
0/;

the following diagram is commutative:

V.M0;gjM0
/

.F jM0
/#

�����! V.M 0
0
;g0j

M 0
0
/??y�.W ;g/ ??y�.W 0;g0/

V.M1;gjM1
/

.F jM1
/#

�����! V.M 0
1
;g0j

M 0
1
/

(5) If a .dC1/–dimensional X –cobordism W is a disjoint union of X –cobordisms
W1 , W2 , then �.W /D �.W1/˝ �.W2/.

(6) If an X –cobordism .W;M0;M1/ is obtained from two .dC1/–dimensional
X –cobordisms .W0;M0;N / and .W1;N

0;M1/ by gluing along an X –homeo-
morphism f W N !N 0 , then

�.W /D �.W1/f#�.W0/W VM0
! VM1

:
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(7) For any d –dimensional X –manifold .M;g/,

�.M � Œ0; 1�;M � 0;M � 1; xg/D idW VM ! VM ;

where we identify M � 0 and M � 1 with M in the obvious way and the triple
.M � Œ0; 1�;M � 0;M � 1; xg/ is the cylinder cobordism over .M;g/.

(8) For any .dC1/–dimensional X –cobordism .W;M0;M1;g/, the homomor-
phism �.W / is preserved under homotopies of g constant on @W DM0qM1 .

Remark In this definition we follow [6] rather than [5]. The difference is that Ax-
iom (7) in [6] is weakened in comparison with the corresponding axiom in [5].

For shortness, HQFTs with target X will be also called X –HQFTs. For examples of
X –HQFTs, see the second author’s papers [5; 6]. Note here that any cohomology class
� 2H dC1.X IK�/ determines a .dC1/–dimensional X –HQFT .V � ; �� /.

An isomorphism of X –HQFTs �W .V; �/! .V 0; � 0/ is a family of K–isomorphisms
f�M W VM!V 0

M
gM , where M runs over all d –dimensional X –manifolds, �∅D idK ,

�MqN D �M ˝ �N for all M;N , and the natural square diagrams associated with
the X –homeomorphisms and X –cobordisms are commutative.

2.2 The k–invariant

Let X be a path connected topological space with base point x0 . We recall from [3]
the definition of the first k –invariant of X .

Let pW Œ0; 1�!S1Dfz 2C j jzjD 1g be the map carrying t 2 Œ0; 1� to �i exp.�2� i t/.
We provide S1 with clockwise orientation and base point �i D p.0/ D p.1/. Set
G D �1.X;x0/ and recall that AD �2.X;x0/ is a left G –module in the standard way.
For each ˛ 2G , fix a loop u˛W S

1!X carrying �i to x0 and representing ˛ . We
assume that the loop u" representing the neutral element " 2 G is the constant path
at x0 . Fix a 2–simplex �2 with vertices v0; v1; v2 . For every ˛; ˇ 2 G , fix a map
f˛;ˇW �2!X such that for all t 2 Œ0; 1�,

f˛;ˇ..1� t/v0C tv1/D u˛ p.t/; f˛;ˇ..1� t/v1C tv2/D uˇ p.t/;

f˛;ˇ..1� t/v0C tv2/D u˛ˇ p.t/ :

We assume that f";" is the constant map �2! fx0g and that for all ˛ 2G , the maps
f";˛ and f˛;" are the standard “constant” homotopies between two copies of u˛ . We
call the collection �D ffu˛g˛2G I ff˛;ˇg˛;ˇ2Gg a basic system of loops and triangles
in X .
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Figures 1–14 below represent X –surfaces using the following conventions. The vertices
in each figure are labeled by integers; the vertex labeled by an integer i is denoted vi .
With every edge in the figure we associate an element of G called its label. For some
edges, the labels are indicated by Greek letters in the picture. The labels of all the
other edges can be computed uniquely using the following rule: in any triangle vivjvk

with i < j < k the label of the edge vivk is the product of the labels of vivj and
vjvk . Each figure below represents a compact oriented surface † endowed with a
map f W † ! X . The map f carries all vertices of † to the base point x0 2 X .
The restriction of f to any edge vivj with i < j and with label � 2 G is given by
f ..1� t/vi C tvj / D u�p.t/ for all t 2 Œ0; 1�. The restriction of f to any triangle
vivjvk with i < j < k is given by

f .t0vi C t1vj C t2vk/D f�;�.t0v0C t1v1C t2v2/;

where �; � are the labels of vivj and vjvk respectively and t0; t1; t2 run over nonneg-
ative real numbers whose sum is equal to 1. The map f W †!X is considered up to
homotopy constant on @†.

0

1

2

3

˛ ˇ

˛ˇ

ˇ



Figure 1: A map @�3!X

Let �3 be the standard 3–simplex with vertices v0; v1; v2; v3 . Given ˛; ˇ;  2 G ,
Figure 1 describes a map from the 2–sphere @�3 to X . Here the labels of the edges
v0v2; v1v3 , and v0v3 are ˛ˇ; ˇ , and ˛ˇ , respectively. We take v0 as the base point
of @�3 . With this choice, the map @�3! X in Figure 1 represents an element of
AD �2.X;x0/ denoted �.˛; ˇ;  /. This defines a map �D ��W G3!A. It is known
that � is a cocycle. It follows from the definitions (and from the choice of the maps
f˛;"; f";˛ ) that � is normalized in the sense of Section 1.1. The cohomology class of �
in H 3.G;A/ is independent of the choice of �. This cohomology class is the first
k –invariant of X .
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3 The TF–algebra underlying a 2–dimensional HQFT

Let X be a path connected topological space with base point x0 . We derive from any
2–dimensional X –HQFT .V; �/ its underlying TF–algebra.

For shortness, one-dimensional X –manifolds will be called X –curves and two-dimen-
sional X –cobordisms will be called X –surfaces. We say that two X –surfaces with
the same bases

.W;M0;M1;gW W !X / and .W 0;M0;M1;g
0
W W 0!X /

are h–equivalent if there is a homeomorphism F W W !W 0 constant on the boundary
and such that g0F W W !X is homotopic to g via a homotopy constant on the boundary.
The axioms of an HQFT imply that then �.W /D �.W 0/W VM0

! VM1
.

Fix a basic system of loops and triangles �D ffu˛g˛2G I ff˛;ˇg˛;ˇ2Gg in X , where
G D �1.X;x0/. Let �W G3!AD �2.X;x0/ be the cocycle constructed in Section
2.2. We construct a TF–algebra V � over .G;A; �/ in several steps.

Step 1 (Underlying module and action of A) For each ˛ 2G , consider the pointed
oriented circle S1 and the map u˛W S

1!X as in Section 2.2. The pair .S1;u˛/ is an
X –curve. Set V˛DV.S1;u˛/

. By the definition of an HQFT, V˛ is a finite-dimensional
K–vector space.

For all ˛ 2G , the group AD �2.X;x0/ acts on V˛ by

av D �.S.˛; a//.v/;

where a 2 A, v 2 V˛ , and S.˛; a/ is the X –annulus obtained as a connected sum
of the cylinder cobordism over .S1;u˛/ and a map S2 ! X representing a. The
X –annulus S.˛; a/ is shown in the left part of Figure 2. Here and below we use

0 1

2 3

˛

˛

˛

" " "a

0 1

2 3

˛

˛

˛

" " "˛a

Figure 2: The X –annulus S.˛; a/

external arrows to indicate the edges glued to each other (keeping the surface oriented).

Observe that the X –annulus in the right part of Figure 2 is h–equivalent to S.˛; a/.
Therefore, av D ˛av for all a 2A and v 2 V˛ .
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Step 2 (Multiplication) For ˛; ˇ 2G , consider the X –cobordism (a disk with two
holes) D.˛; ˇ/ in Figure 3. Composing the map

0

1

2

3

4 5

6
˛

˛ ˇ

ˇ

"

" "

"

˛ˇ

Figure 3: The X –disk with 2 holes D.˛; ˇ/

V˛ �Vˇ! V˛˝Vˇ; .u; v/ 7! u˝ v

with the homomorphism

�.D.˛; ˇ//W V˛˝Vˇ! V˛ˇ

we obtain a K–linear multiplication V˛ �Vˇ! V˛ˇ . This extends to multiplication
in

L
˛2G V˛ by linearity.

It is clear that for any a 2A, the gluing of S.˛; a/ to D.˛; ˇ/ along the left bottom
base of D.˛; ˇ/ and the gluing of S.˛ˇ; a/ to D.˛; ˇ/ along the top base of D.˛; ˇ/

yield h–equivalent X –surfaces. Applying � , we obtain .au/vD a.uv/ for any u 2 V˛
and v 2 Vˇ . Similarly, .au/v D u.av/. Hence, multiplication in

L
˛2G V˛ is KŒA�–

bilinear.

To check the twisted associativity (2), note that .uv/w is computed by applying �
to the X –surface (a disk with three holes) obtained by gluing D.˛; ˇ/ to D.˛ˇ;  /.
Similarly, u.vw/ is computed by applying � to the X –surface obtained by gluing
D.ˇ;  / to D.˛; ˇ /. These X –surfaces are shown in Figure 4 where the external
arrows indicating the gluing of sides are omitted. It is easy to see that the left X –surface
is h–equivalent to a connected sum of the right X –surface with the map S2!X used
to define �.˛; ˇ;  / 2A. This implies Formula (2). Note for future use that the narrow
“collar-type” rectangles in Figure 4 play no role in the argument but are necessary to
define the X –surfaces at hand. In some of the figures below we omit these collar
rectangles to simplify the figures.

Next consider an oriented 2–disk B mapped to fx0g � X and viewed as an X –
cobordism between an empty set and .S1;u"/. We have a map �.B/W K! V" , and
we set 1V D �.B/.1/. One easily sees that 1V uD u1V D u for all u 2 V .
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Figure 4: Proof of the identity .uv/w D �.˛; ˇ;  /u.vw/

Step 3 (Inner product) Consider the X –annulus C��.˛; "/ shown in Figure 5. The

0 1 2 3˛ ˛�1

˛�1

Figure 5: The X –annulus C��.˛; "/

subscript �� reflects the fact that the orientation on both boundary components of the
annulus is opposite to the orientation induced from the annulus. Set

�˛ D �.C��.˛; "//W V˛˝V˛�1 !K:

The X –annulus C��.˛; "/ can be obtained by gluing the X –surfaces C��."; "/,
D.˛; ˛�1/, and B . This yields

�˛.u˝ v/D �.C��.˛; "//.u˝ v/D �".uv˝ 1V /

for all u 2 V˛ and v 2 V˛�1 .

The X –surfaces shown in Figure 6 are h–equivalent. Applying � to the surface on the
left we get .idV

˛�1
˝ �˛/.�˝ idV

˛�1
/, where � is a homomorphism K! V˛�1 ˝V˛ .

Applying � to the surface on the right we get idV
˛�1

. This results in the equality
.idV

˛�1
˝ �˛/.�˝ idV

˛�1
/D idV

˛�1
, which implies the nondegeneracy of �˛ .

Note finally that the map C��."; "/!X used to define �" is the constant map with
value x0 . This easily implies that the form �" is symmetric.
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Figure 6: Proof of the nondegeneracy of �˛

Step 4 (Projective action of G) Consider the X –annulus C�C.˛; ˇ/ shown in
Figure 7. The subscript �C reflects the fact that the orientation on the boundary

0 1

2 3
˛

ˇ ˇ
ˇ˛

ˇ˛ˇ�1

Figure 7: The X –annulus C�C.˛; ˇ/

component corresponding to ˛ is opposite to the orientation induced from the annulus,
while the orientation on the boundary component corresponding to ˇ˛ˇ�1 is induced
from the orientation of the annulus. Set

'ˇ D �.C�C.˛; ˇ//W V˛! Vˇ˛ˇ�1 :

The identity 'ˇ.av/D ˇa'ˇ.v/ for a 2A and v 2 V˛ follows from the fact the X –
annulus obtained by gluing C�C.˛; ˇ/ to S.˛; a/ is h–equivalent to the X –annulus
obtained by gluing S.ˇ˛ˇ�1; ˇa/ to C�C.˛; ˇ/.

Figure 8 represents two h–equivalent X –annuli (it is understood that the vertical sides of
the right rectangle are glued in the usual way to make an annulus). The left X –annulus
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is C�C.˛; "/. The right X –annulus is obtained by gluing C�C.˛; ˇ/ represented by
the lower rectangle to an X –annulus C 0.˛; ˇ/ represented by the upper rectangle. This
proves that 'ˇ is invertible and '�1

ˇ
D �.C 0.˛; ˇ//.

2 3

4 5˛

˛

˛

" "
0 1

2 3

4 5˛

˛

ˇ ˇ

ˇ ˇ

ˇ˛

ˇ˛ˇ�1

ˇ˛

Figure 8: Proof of the invertibility of 'ˇ

To prove that 'ˇjVˇ
D idVˇ

W Vˇ ! Vˇ , consider the X –annuli in Figure 9. Using
the Dehn twist of an annulus about its core circle, one easily observes that these
two X –annuli are h–equivalent. The X –annulus on the right is C�C.ˇ; "/, and the
associated map '"W Vˇ ! Vˇ is the identity by Axiom (7) of an HQFT. It is easy
to see that a connected sum of the left X –annulus with the map S2 ! X used to
define �.ˇ; "; ˇ/ 2A is h–equivalent to C�C.ˇ; ˇ/. Since �.ˇ; "; ˇ/D 1, we obtain
idVˇ
D 'ˇjVˇ

.

0 1

2 3ˇ

ˇ

ˇ ˇ"

0 1

2 3ˇ

ˇ

ˇ" "

Figure 9: Proof of the identity 'ˇjVˇ
D idVˇ

The equality 'ˇ.1V /D 1V follows from the fact that the X –disk obtained by gluing
the X –disk B to the bottom of C�C."; ˇ/ is h–equivalent to B .

To prove the identity (7), consider the X –surfaces (disks with two holes) in Figure 10
(we omit in the figure the collar rectangles glued to some external edges; they play no
role in the argument and the reader may easily recover them). The first X –surface is
obtained by gluing the X –annulus C 0.˛; ˇ/ to the right bottom boundary component
.S1;u˛/ of D.ˇ; ˛/. Since �."; ˇ; ˛/ D 1, this X –surface is h–equivalent to the
second X –surface in Figure 10. The third X –surface is obtained from the second
one by separating the left face along the "–labeled edge v0v2 and gluing it on the
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right along the edges indicated by the external arrows. Thus, the second and third
X –surfaces are h-homeomorphic. The map from the third X –surface to X can be
easily computed because its restriction to the face v1v3v4 (respectively to v0v2v4 ) is
the constant homotopy of ˇ to itself (respectively, of ˇ˛ to itself). This X –surface is
h–equivalent to D.ˇ˛ˇ�1; ˇ/. Applying � , we obtain v'�1

ˇ
.w/D wv for all v 2 Vˇ

and w 2 Vˇ˛ˇ�1 . This is an equivalent form of (7).
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ˇ˛

ˇ˛ˇ�1

0

1

4

ˇ
ˇ˛ˇ�1

Figure 10: Proof of the identity v'�1
ˇ
.w/D wv

The identity �".'ˇ.u/˝'ˇ.v//D �".u˝ v/ for u; v 2 V" follows from the fact that
the X –annulus obtained by the gluing of C�C."; ˇ/qC�C."; ˇ/ to the bottom of
C��."; "/ is h–equivalent to C��."; "/ (see Figure 11).

To prove that
'ˇ.u/ 'ˇ.v/D lˇ˛; 'ˇ.uv/

for all u 2 V˛ and v 2 V , consider the X –disks with three holes W1;W2;W3;W4 in
Figure 12 (again we omit the collar rectangles glued to some external edges). Clearly,
the homomorphism �.W1/W V˛˝V ! Vˇ˛ˇ�1 carries u˝ v to 'ˇ.u/ 'ˇ.v/. The
X –surface W2 differs from W1 by two adjacent triangles v0v10v5 and v0v100v5 both
representing fˇ˛ˇ�1;ˇˇ�1 W �2 ! X . These two copies of fˇ˛ˇ�1;ˇˇ�1 “cancel”
each other, and so W2 is h–equivalent to W1 . Thus, �.W2/D �.W1/. The X –surface
W3 is obtained from W2 by removing the vertices v10 and v100 . Hence

�.W3/D �.ˇ˛ˇ
�1; ˇˇ�1; ˇ/�1 �.ˇ˛ˇ�1; ˇ;  / �.W2/:
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Figure 11: Proof of the identity �".'ˇ.u/˝'ˇ.v//D �".u˝ v/

The X –surface W4 is obtained from W3 by switching the diagonal in the quadrilat-
eral v0v3v4v5 . Therefore �.W4/D �.ˇ; ˛;  /

�1 �.W3/. Combining these formulas,
we obtain �.W4/ D .l

ˇ
˛; /
�1 �.W1/. It remains to observe that the homomorphism

�.W4/W V˛˝V ! Vˇ˛ˇ�1 carries u˝ v to 'ˇ.uv/.
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Figure 12: Proof of the identity 'ˇ.u/ 'ˇ.v/D l
ˇ
˛; 'ˇ.uv/

To show the identity 'ˇjV˛
D h˛

;ˇ
''ˇjV˛

, consider the X –annuli W1 , W2 , W3 ,
W4 in Figure 13. Clearly, W1 D C�C.˛; ˇ/ and therefore �.W1/ D 'ˇjV˛

. The
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X –annulus W2 is obtained from W1 by adding two vertices v2 and v3 . Hence

�.W2/D �.ˇ˛ˇ
�1�1; ; ˇ/�1 �.; ˇ; ˛/�1 �.W1/:

The X –annulus W3 is obtained from W2 by switching the diagonal in the quadrilateral
v0v2v5v3 . Therefore �.W3/D �.; ˇ˛ˇ

�1; ˇ/ �.W2/. Finally, W4 is obtained from
W3 by canceling two adjacent copies of the singular triangle f;ˇ . Therefore W4 is h–
equivalent to W3 and �.W4/D �.W3/. It is clear that �.W4/D ''ˇjV˛

. Combining
these equalities, we obtain the required identity.
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ˇ˛ˇ�1�1

˛

ˇ

ˇ





ˇ

ˇ

ˇ˛ˇ�1�1
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ˇ ˇ

 

ˇ˛ˇ�1�1

˛

ˇ

ˇ




ˇ˛ˇ�1�1

Figure 13: Proof of the identity 'ˇ.u/D h˛
;ˇ
' .'ˇ.u//

Step 5 (The trace condition) Consider the three X –surfaces (punctured tori) W1 ,
W2 , W3 in Figure 14. All three are X –cobordisms between .S1;u / and ∅, where
 D ˛ˇ˛�1ˇ�1 . Clearly,

�.W1/D �.; ˇ˛ˇ
�1; ˇ/ �.W2/ and �.W3/D �.; ˇ; ˛/ �.W2/:
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Figure 14: Proof of the trace condition

Consider the X –surface obtained by gluing C�C.˛; ˇ/ and D.˛;  /. If we identify
the two copies of .S1;u˛/ we obtain W1 . Similarly for the X –surface obtained by
gluing D.; ˇ/ and C 0.ˇ; ˛/ we can identify the two copies of .S1;uˇ/ in order to
obtain W3 . This implies the equality

Tr.�.; ˇ; ˛/�c'ˇW V˛! V˛/D Tr.�.; ˇ˛ˇ�1; ˇ/'�1
˛ �c W Vˇ! Vˇ/:

We summarize the results above in the following theorem.

Theorem 3.1 To every 2–dimensional X –HQFT .V; �/ and to every basic system
of loops and triangles �D .fu˛g˛2G ; ff˛;ˇg˛;ˇ2G/ in X , we associate a TF–algebra
V � D V �.�/ over the triple .G D �1.X /;AD �2.X /; �

�W G3!A/.

It is obvious that the construction of V � is functorial with respect to isomorphisms of
X –HQFTs. We now show that V � does not depend on � at least up to coboundary
equivalence (see Section 1.4).

Lemma 3.2 The TF–algebra V � considered up to coboundary equivalence does not
depend on the choice of �.

Algebraic & Geometric Topology, Volume 10 (2010)



Remarks on 2–dimensional HQFTs 1385

Proof Let �0 D .fu0˛g˛2G ; ff
0
˛;ˇ
g˛;ˇ2G/ be another basic system of loops and trian-

gles in X . Assume first that u˛ D u0˛ for all ˛ 2 G . It is clear that up to homotopy
constant on @�2 the map f˛;ˇW �

2 ! X is a connected sum of f 0
˛;ˇ
W �2 ! X

and a certain map !.˛; ˇ/W �2 ! X carrying @�2 to x0 . Assigning to each pair
.˛; ˇ/ 2 G2 the element of A D �2.X;x0/ represented by !.˛; ˇ/, we obtain a
2–cochain !W G2 ! A. This cochain is normalized because by the definition of a
basic system of loops and triangles, f 0˛;" D f˛;" and f 0";˛ D f";˛ for all ˛ 2 G . A
direct comparison of the X –surfaces used to define the 3–cocycles �; �0W G3 ! A

associated with �;�0 and the TF–algebras V �;V �0 shows that �0 D ı2.!/� and
V �0 is obtained from V � by the coboundary transformation determined by ! , ie,
V �0 Š .V �/! .

In the case u˛¤u0˛ for some ˛ , we construct a third basic system of loops and triangles
in X as follows. For each ˛ 2 G , fix a homotopy h˛W S

1 � Œ0; 1�! X between the
loops u˛;u

0
˛W S

1 ! X representing ˛ . (It is understood that h" is a constant map
to x0 .) Recall the map pW Œ0; 1�! S1 from Section 2.2. The map

xh˛ D h˛ ı .p� idŒ0;1�/W Œ0; 1�
2
!X

is a homotopy between u˛p and u0˛p . We construct a map f h
˛;ˇ
W �2 ! X by

gluing xh˛; xhˇ; xh˛ˇ to the sides of the singular simplex f˛;ˇW �2! X . The system
�h D .fu0˛g˛2G ; ff

h
˛;ˇ
g˛;ˇ2G/ satisfies all conditions of a basic system of loops and

triangles in X except possibly one: the maps f h
";˛ and f h

˛;" are not necessarily the
standard “constant” homotopies between two copies of u0˛p . However, f h

";˛ and
f h
˛;" are homotopic rel @�2 to these constant homotopies, as easily follows from

the assumptions on f";˛ and f˛;" and the definition of f h . Therefore, deforming
if necessary the maps f h

";˛ and f h
˛;" , we can transform �h into a basic system �00

of loops and triangles in X . The associated 3–cocycle �00W G3!A is equal to � .
Moreover, the homomorphisms

f�.h˛/W Vu˛
! Vu0˛

g˛2G

form an isomorphism V �! V �00 in the category of TF–algebras over .G;A; �/. By
the argument above, the TF–algebra V �0 is obtained from V �00 by a coboundary
transformation. This completes the proof of the lemma.

The following theorem shows that the isomorphism class of a 2–dimensional X –HQFT
is entirely determined by the underlying TF–algebra.

Theorem 3.3 Two 2–dimensional X –HQFTs are isomorphic if and only if their
underlying TF–algebras are coboundary equivalent.
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Proof We fix a basic system � of loops and triangles in X . It is obvious that an
isomorphism of X –HQFTs �W .V1; �1/! .V2; �2/ induces an isomorphism V �

1
'V �

2

of TF–algebras over .�1.X /; �2.X /; �
�/. Therefore, the underlying TF–algebras are

coboundary equivalent.

Conversely, assume that we have two X –HQFTs .V1; �1/ and .V2; �2/ such that
their underlying TF–algebras are coboundary equivalent. If we use the same basic
system �D .fu˛g˛2�1.X /; ff˛;ˇg˛;ˇ2�1.X // of loops and triangles in X , then the two
algebras in question are TF–algebras over the same triple .�1.X /; �2.X /; �

�/. Since
they are coboundary equivalent, there is an isomorphism �W V �

1
! V �

2
. We lift � to

an isomorphism of the HQFTs. For every ˛ 2 �1.X /, denote by �˛ the restriction
of � to .V �

1
/˛ D .V1/.S1;u˛/ . For every connected X –curve .M;gM /, there are

˛ 2 �1.X /, an X –annuli a D aM W Œ0; 1� � S1 ! X , and an X –homeomorphism
hD hM W .S

1; aM j1�S1/! .M;gM / such that

aM j0�S1 D u˛W S
1
!X and aM .Œ0; 1�� f�g/D x0;

where � is the base point of S1 and x0 is the base point of X . Notice that ˛ is
uniquely determined by .M;gM /. We define �M W .V1/M ! .V2/M by the formula

�M D h#2
�2.a/�˛�1.a/

�1h�1
#1
;

where h#i
W .Vi/.S1;aj

1�S1 /
! .Vi/.M;gM / is the K–isomorphism associated to h by

the HQFT .Vi ; �i/. Next we show that �M does not depend on the choice of a

and h. Indeed, take another pair ya, yh which satisfies the above properties. Consider a

(respectively ya) as an X –cobordism between .S1;u˛/ and .S1; aj1�S1/ (respectively
.S1; yaj1�S1/) and observe that yh�1h is an X –homeomorphism between the top bases
of these X –cobordisms. Let C be the X –cobordism obtained by gluing these two
along yh�1h (the orientation in the second cobordism should be reversed). Then C is
a cobordism between two copies of .S1;u˛/. Clearly, C is the trivial X –annuli (as
in Axiom (7) of an HQFT) up to h–equivalence and the action of some c 2 �2.X /.
Hence �i.C /W .V

�
i /˛! .V �

i /˛ is multiplication by c . Since � is an isomorphism of
TF–algebras, we have

�˛�1.C /D �2.C /�˛

or equivalently

�˛�1.ya/
�1.yh�1h/#1

�1.a/D �2.ya/
�1.yh�1h/#2

�2.a/�˛:

This implies that

yh#2
�2.ya/�˛�1.ya/

�1yh�1
#1
D h#2

�2.a/�˛�1.a/
�1h�1

#1
:
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So �M does not depend on the choice of a and h. Denote by x� the family of K–
isomorphisms f�M W .V1/M! .V2/M gM where M runs over all X –curves. We claim
that x� is an isomorphism of HQFTs.

For any X –homeomorphism f W M !N , we have

f#2
�M D f#2

.hM /#2
�2.aM /�˛�1.aM /�1.hM /�1

#1

D .f ı hM /#2
�2.aM /�˛�1.aM /�1.f ı hM /�1

#1
f#1

D �Nf#1
:

So, x� is natural with respect to X –homeomorphisms.

Next, notice that any compact oriented X –surface splits along a finite family of disjoint
simple loops into a disjoint union of X –disks with at most two holes. Deforming
if necessary the map from the surface to X , we can choose the splitting loops to
be X –curves X –homeomorphic to .S1;u˛/, for some ˛ 2 �1.X /. Moreover, we
can make the cuts in such a way that each component adjacent to the boundary is
X –homeomorphic to some aM and all the other X –surfaces are of types

B; S.˛; a/; D.˛; ˇ/; C�C.˛; ˇ/; C��."; "/; CCC."; "/:(14)

We consider the X –surface aM .id� h�1
M
/W Œ0; 1��M !X which is an X –cobordism

between M 0 D .M;u˛ ı h�1
M
/ and .M;gM /. Axiom (4) of an HQFT implies that for

i D 1; 2;

�i.aM .id� h�1
M //D .hM /#i

�i.aM /.hM /�1
#i
:

From this formula and the definition of x� , we have

�M �1.aM .id� h�1
M //D .hM /#2

�2.aM /�˛.hM /�1
#1

D .hM /#2
�2.aM /.hM /�1

#2
.hM /#2

�˛.hM /�1
#1

D �2.aM .id� h�1
M //�M 0 :

Therefore the natural square diagram associated to x� and aM .id�h�1
M
/ is commutative.

Since � is a morphism of TF–algebras, the natural square diagrams associated with the
X –surfaces listed in (14) are commutative. Finally, since any X –surface can be ob-
tained by gluing a finite collection of the above X –surfaces along X –homeomorphisms,
we get that the natural square diagrams associated to all X –surfaces are commutative.
We conclude that x� is an isomorphism of HQFTs.

We expect that any TF–algebra can be realized by a 2–dimensional HQFT which if
true, together with Theorem 3.3 would yield a complete algebraic characterization of
2–dimensional HQFTs with arbitrary targets.
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Given a mapping of pointed topological spaces f W Y ! X , we can pull back a 2–
dimensional X –HQFT along f to obtain a 2–dimensional Y –HQFT. If f induces
isomorphisms in �1 and �2 , then the underlying TF–algebra of this Y –HQFT is
isomorphic to the underlying TF–algebra of the original X –HQFT.

4 Simple TF–algebras and cohomological HQFTs

In this section we compute the underlying TF–algebras of the cohomological 2–
dimensional HQFTs. We begin by introducing a class of simple TF–algebras.

4.1 Simple TF–algebras and �–pairs

Let G be a group with neutral element " and A be a left G –module. Let �W G3!A

be a normalized 3–cocycle. A TF–algebra V D
L
˛2G V˛ over .G;A; �/ is simple

if dimK .V˛/ D 1 for all ˛ 2 G . We now classify simple TF–algebras in terms of
so-called �–pairs.

Form now on we endow the multiplicative abelian group K� with the trivial action
of G . This allows us to apply notation of Section 1.1 to K�–valued cochains on G .
By a �–pair, we mean a pair of maps g1W G �G!K� , g2W A!K� such that g2

is a ZŒG�–homomorphism,

g1.˛; "/D g1."; ˛/D 1 for all ˛ 2G;(15)

ı2.g1/D g2 ı �W G
3
!K�:(16)

The ZŒG�–linearity of g2W A!K� means that g2 is a group homomorphism such
that for all ˛ 2G , a 2A,

g2.
˛a/D g2.a/:(17)

For example, for any map  W G!K� the pair

.g1 D ı
1. /W G �G!K�;g2 D 1W A!K�/

is a �–pair. We call it a coboundary �–pair.

Lemma 4.1 Let .g1;g2/ be a �–pair. For each ˛ 2G , let V˛ be the one-dimensional
vector space over K with basis vector l˛ . We provide V D

L
˛2G V˛ with a structure

of an A–module by av D g2.a/v for all v 2 V . We provide V with K–bilinear
multiplication by

(18) l˛lˇ D g1.˛; ˇ/
�1l˛ˇ
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for all ˛; ˇ 2G . Let �"W V"˝V"!K be the K–bilinear form such that

(19) �".l"˝ l"/D g1."; "/:

Let 'ˇW V ! V be the K–homomorphism defined by

(20) 'ˇ.l˛/D g1.ˇ; ˛/
�1g1.ˇ˛ˇ

�1; ˇ/ lˇ˛ˇ�1

for all ˛; ˇ 2 G . Then the G–graded vector space V with this data is a TF–algebra
over .G;A; �/.

The TF–algebra constructed in this lemma is denoted by V .g1;g2/.

Proof The KŒA�–bilinearity of multiplication in V follows from the definitions.
Formula (1) follows from the identity (17). It is sufficient to verify (2) for the basis
vectors uD l˛; v D lˇ; w D l :

.l˛lˇ/l D .g1.˛; ˇ/
�1l˛ˇ/ l

D g1.˛; ˇ/
�1g1.˛ˇ;  /

�1l˛ˇ

D g1.ˇ;  /
�1g1.˛; ˇ /

�1g2.�.˛; ˇ;  // l˛ˇ

D g2.�.˛; ˇ;  // l˛.lˇl /

D �.˛; ˇ;  / l˛.lˇl /:

Formula (15) implies that l" is the unit element of V . The symmetry and nondegeneracy
of �" are obvious. The nondegeneracy of the form �˛W V˛˝V˛�1!K defined by (3)
follows from the formula �.l˛˝ l˛�1/D g1.˛; ˛

�1/�1 . We check (4):

'ˇ.al˛/D g1.ˇ; ˛/
�1g1.ˇ˛ˇ

�1; ˇ/g2.a/ lˇ˛ˇ�1

D g2.
ˇa/g1.ˇ; ˛/

�1g1.ˇ˛ˇ
�1; ˇ/ lˇ˛ˇ�1

D
ˇa'ˇ.l˛/:

Formulas (5) and (6) follow from the definitions. We check (7):

'ˇ.l˛/ lˇ D g1.ˇ; ˛/
�1g1.ˇ˛ˇ

�1; ˇ/ lˇ˛ˇ�1 lˇ

D g1.ˇ; ˛/
�1 lˇ˛ D lˇ l˛:

Similar computations prove (8) and (9). We now check (10). Observe that for
˛; ˇ;  2G ,

' .'ˇ.l˛//D g1.;ˇ˛ˇ
�1/�1g1.ˇ˛.ˇ/

�1; /g1.ˇ; ˛/
�1g1.ˇ˛ˇ

�1; ˇ/lˇ˛.ˇ/�1

'ˇ.l˛/D g1.ˇ; ˛/
�1g1.ˇ˛.ˇ/

�1; ˇ/lˇ˛.ˇ/�1 :
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Therefore 'ˇ.l˛/D h' .'ˇ.l˛//, where

hD g1.ˇ; ˛/
�1g1.ˇ˛.ˇ/

�1; ˇ/

�g1.; ˇ˛ˇ
�1/g1.ˇ˛.ˇ/

�1;  /�1g1.ˇ; ˛/g1.ˇ˛ˇ
�1; ˇ/�1:

Now, a direct computation using the definition of h˛
;ˇ

and the assumption that g2 is a
group homomorphism satisfying g2 ı � D ı

2.g1/ shows that g2.h
˛
;ˇ
/D h. Therefore

'ˇ.l˛/D h' .'ˇ.l˛//D h˛;ˇ ' .'ˇ.l˛//:

To check the trace identity (11), observe that

g2.�.˛ˇ˛
�1ˇ�1; ˇ; ˛//

D .ı2.g1//.˛ˇ˛
�1ˇ�1; ˇ; ˛/

D g1.ˇ; ˛/g1.˛ˇ˛
�1; ˛/�1g1.˛ˇ˛

�1ˇ�1; ˇ˛/g1.˛ˇ˛
�1ˇ�1; ˇ/�1

and similarly

g2.�.˛ˇ˛
�1ˇ�1; ˇ˛ˇ�1; ˇ//

D .ı2.g1//.˛ˇ˛
�1ˇ�1; ˇ˛ˇ�1; ˇ/

D g1.ˇ˛ˇ
�1; ˇ/g1.˛; ˇ/

�1g1.˛ˇ˛
�1ˇ�1; ˇ˛/g1.˛ˇ˛

�1ˇ�1; ˇ˛ˇ�1/�1:

It follows from the definitions that

Tr.�c'ˇ/D g1.ˇ; ˛/
�1g1.ˇ˛

�1ˇ�1; ˇ/g1.˛ˇ˛
�1ˇ�1; ˇ˛�1ˇ�1/�1;

Tr.'�1
˛ �c/D g1.˛ˇ˛

�1; ˛/�1g1.˛; ˇ/g1.˛ˇ˛
�1ˇ�1; ˇ/�1:

Comparing these expressions, we obtain that

g2.�.˛ˇ˛
�1ˇ�1; ˇ; ˛//Tr.�c'ˇ/D g2.�.˛ˇ˛

�1ˇ�1; ˇ˛ˇ�1; ˇ//Tr.'�1
˛ �c/:

This formula is equivalent to (11).

Lemma 4.2 Any simple TF–algebra V D
L
˛2G V˛ over .G;A; �/ that satisfies

�".1V ˝ 1V / D 1 is isomorphic to V .g1;g2/ for a certain �–pair .g1;g2/. This
�–pair is determined by V uniquely up to multiplication of g1 by ı1. / for a map
 W G!K� .

Proof For each ˛ 2G , fix a nonzero vector l˛ 2 V˛ . In the role of l" 2 V" we take
1V . For any a 2A and ˛ 2G , we have al˛ D g˛

2
.a/l˛ with g˛

2
.a/ 2K . Clearly,

l˛ D 1Al˛ D .a
�1a/ l˛ D g˛2 .a

�1/g˛2 .a/ l˛

and so g˛
2
.a/ 2K� .
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Given ˛; ˇ2G , we have l˛lˇD c.˛; ˇ/ l˛ˇ for some c.˛; ˇ/2K . Since the pairing (3)
is nondegenerate, l˛l˛�1 ¤ 0. Thus, c.˛; ˛�1/¤ 0 for all ˛ .

We claim that g˛
2
.a/ does not depend on ˛ for every a 2A. Indeed,

.al˛/ l˛�1 D g˛2 .a/ l˛ l˛�1 D g˛2 .a/ c.˛; ˛�1/ l";

a.l˛l˛�1/D ac.˛; ˛�1/ l" D g"2.a/c.˛; ˛
�1/ l":

Since .al˛/ l˛�1 D a.l˛l˛�1/ and c.˛; ˛�1/¤ 0, we have g˛
2
.a/D g"

2
.a/. Set g2 D

g"
2
W A ! K� . Since V is an A–module, the map g2 is a group homomorphism.

Formula (1) implies the identity (17).

Given ˛; ˇ 2G , we have

c.ˇ; ˇ�1/ l˛ D c.ˇ; ˇ�1/ l˛ l"

D l˛.lˇ lˇ�1/

D �.˛; ˇ; ˇ�1/�1.l˛ lˇ/ lˇ�1

D �.˛; ˇ; ˇ�1/�1c.˛; ˇ/ l˛ˇ lˇ�1 :

Therefore c.˛; ˇ/ 2 K� . Let g1W G �G ! K� be the map defined by g1.˛; ˇ/ D

.c.˛; ˇ//�1 for all ˛; ˇ . The identity l˛lˇ D g1.˛; ˇ/
�1l˛ˇ and Formula (2) yield

g1.˛; ˇ/
�1g1.˛ˇ;  /

�1l˛ˇ D g2.�.˛; ˇ;  //g1.˛; ˇ /
�1g1.ˇ;  /

�1l˛ˇ :

This implies that g2ı�D ı
2.g1/. The equality (15) follows from the definitions and the

choice l" D 1V . Thus, the maps g1;g2 form a �–pair. It is clear that V D V .g1;g2/.

The second claim of the lemma follows from the fact that any two bases l D fl˛g˛2G

and l 0 D fl 0˛g˛2G in V as above are related by l˛ D  ˛l 0˛ , where  ˛ 2 K� for
all ˛ . The bases l , l 0 yield the same map g2W A! K� while the associated maps
g1W G �G!K� differ by the coboundary of the map G!K�; ˛!  ˛ .

4.2 The group H 2.G;A; �I K �/

The �–pairs .g1W G�G!K�; g2 WA!K�/ form an abelian group H DH.G;A; �/

under pointwise multiplication. The neutral element of H is the �–pair .g1D1;g2D1/.
The inverse of a �–pair .g1;g2/ in H is the �–pair .g�1

1
;g�1

2
/. The coboundary

�–pairs form a subgroup of H . Let H 2.G;A; �IK�/ be the quotient of H by the
subgroup of coboundary �–pairs. Lemma 4.2 yields a bijective correspondence between
the set H 2.G;A; �IK�/�K� and the set of isomorphism classes of simple TF–algebras
over .G;A; �/. This correspondence assigns to a pair (h 2H 2.G;A; �IK�/, z 2K� )
the isomorphism class of the z–rescaled TF–algebra V .g1;g2/, where .g1;g2/ is an
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arbitrary �–pair representing h. The following theorem due to Eilenberg and MacLane
computes H 2.G;A; �IK�/ in topological terms.

Theorem 4.3 [3] Let X be a path connected topological space with base point
x0 . Let G D �1.X;x0/, A D �2.X;x0/, and � D ffu˛g˛2G I ff˛;ˇg˛;ˇ2Gg be
a basic system of loops and triangles in X . Let � be a K�–valued singular 2–
cocycle on X representing a cohomology class Œ� � 2 H 2.X;K�/. Then the pair
.g1W G �G!K�;g2W A!K�/ defined by g1.˛; ˇ/D �.f˛;ˇ/ for ˛; ˇ 2 G and
g2.a/D �.a/ for a2A is a �–pair, where �D ��W G3!A be the 3–cocycle defined
in Section 2.2. Moreover, the formula Œ� � 7! .g1;g2/ defines an isomorphism

H 2.X;K�/ŠH 2.G;A; �IK�/:

4.3 The underlying TF–algebras of cohomological HQFTs

We keep the assumptions of Theorem 4.3.

Theorem 4.4 Let .V � ; �� / be the 2–dimensional X –HQFT determined by the coho-
mology class � 2 H 2.X;K�/ [5]. If � corresponds to .g1;g2/ 2 H 2.G;A; �;K�/,
then the underlying TF–algebra of .V � ; �� / is isomorphic to V .g1;g2/.

Proof Let V D
L
˛2G V˛ D V � be the underlying TF–algebra of .V � ; �� /. The

definition of V � implies that V˛ D V �
.S1;u˛/

is a 1–dimensional K–vector space. This
vector space is generated by a vector p˛ represented by the map pW Œ0; 1�! S1 from
Section 2.2 viewed as a fundamental cycle of S1 . Multiplication in V is computed by

p˛ pˇ D �
� .D.˛; ˇ//.p˛˝pˇ/D f

�.�/.B/p˛ˇ;

where ˛; ˇ 2 G , the map f W D.˛; ˇ/! X is determined by the structure of an X –
surface in the disk with two holes D.˛; ˇ/, and B is a fundamental singular chain in
D.˛; ˇ/ such that @.B/D p˛ˇ �p˛ �pˇ . It is easy to see (cf [6]) that

g�.�/.B/D �.f˛;ˇ/
�1
D g1.˛; ˇ/

�1:

So, p˛ pˇ D g1.˛; ˇ/
�1 p˛ˇ . Similarly, for all a 2AD �2.X /,

a p" D �
� .S."; a//.p"/D �.a/p" D g2.a/p";

where �.a/ 2K� is the evaluation of � on a. Therefore V D V .g1;g2/.
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