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Homology of planar telescopic linkages

MICHAEL FARBER

VIKTOR FROMM

We study topology of configuration spaces of planar linkages having one leg of
variable length. Such telescopic legs are common in modern robotics where they
are used for shock absorbtion and serve a variety of other purposes. Using a Morse
theoretic technique, we compute explicitly, in terms of the metric data, the Betti
numbers of configuration spaces of these mechanisms.

55R80; 70B15

1 Introduction

A planar linkage is a mechanism shown on Figure 1; it consists of several bars of fixed
length connected by revolving joints forming a closed polygonal chain; the positions
of two adjacent vertices are fixed but the other vertices are free to move in the plane.

The configuration space of a planar linkage depends on the bar lengths `1; : : : ; `n and
is generically a closed smooth manifold of dimension n� 3 where n is the number
of bars in the mechanism. For some special collections of bar lengths `1; : : : ; `n the
configuration space is a compact manifold with finitely many singular points; see for
instance Farber [3].

l1

l2
l3l4

l5

Figure 1: A planar linkage

Configuration spaces of planar linkages appear also as moduli spaces of shapes of
planar n–gons with prescribed side lengths. These same manifolds emerge in statistical
shape theory (see Kendall, Barden, Carne and Le [12]); they also describe spaces of
stable and semistable configurations of labeled points on the projective plane which
play an important role in algebraic geometry and mathematical physics.
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Mathematical study of linkages and more general mechanisms has a long history
going back to the Middle Ages. Engineering discoveries involving linkages played
an important role in the industrial revolution. The topological theory of linkages was
initiated by W Thurston, his students and collaborators. Kevin Walker [15] in his
1985 Princeton undergraduate thesis gives an amazingly deep picture of configuration
spaces of linkages. A A Klyachko [13] used methods of algebraic geometry to find an
explicit expression for the Betti numbers of configuration spaces of linkages in R3 .
Betti numbers of planar linkages were fully described by the first author and D Schütz
in [5]; the result of [5] covers also the nongeneric cases. Significant progress in
topology of linkages was made by J-C Hausmann [6], Hausmann and A Knutson [7]
and M Kapovich and J Millson [11]. Nongeneric polygon spaces were independently
studied by the Japanese school (see, eg Kamiyama, Tezuka and Toma [10]).

The monograph of the first author [3] contains a detailed exposition of the topology of
linkages. We also refer the reader to the book by Demaine and O’Rourke [1] providing
a wealth of information about linkages and their applications in engineering.

In this paper we study a planar mechanism which is slightly more general than the usual
planar linkage. Namely, we assume that there are n bars connected cyclically as shown
on Figure 1 and all bars except one have constant lengths; however the remaining bar
is assumed to be telescopic, ie its length may vary in a prescribed interval Œa; b� where
a� b . Telescopic legs are quite common in modern robotics; they serve many practical
purposes, for example they are used for shock absorption.

The subject of this article, besides its obvious importance for the theory of mechanisms
and for the control theory, carries special charm of vigorous interplay of tools belonging
to very different branches of mathematics: topology of manifolds (in particular, Morse
theory), group actions and combinatorics. Symmetry enters the game in the form of
various involutions which are important as they imply perfectness of certain Morse
functions (see Farber and Schütz [5] and Farber [3]). Combinatorics of short and
long subsets plays a crucial role leading to a decomposition of the simplex of length
parameters into chambers which encode the topological types of generic configuration
spaces of linkages (see Farber, Hausmann and Schütz [4]).

2 Configuration space of linkage with telescopic leg

In order to give a formal definition of the configuration space of a linkage with one
telescopic leg, consider the following continuous map

F W Cn
!Rn; F.z1; z2; : : : ; zn/D .`1; `2; : : : ; `n/;(1)
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where

`i D jziC1� zi j; i D 1; : : : ; n:(2)

The indices in (2) are understood cyclically modulo n, ie znC1 D z1 . Let E.2/ denote
the group of orientation preserving isometries of the plane C D R2 . The map F is
invariant under the diagonal action of E.2/ on Cn . If `D .`1; `2; : : : ; `n/ 2Rn is a
prescribed length vector, `i > 0, then

M` D F�1.`/=E.2/(3)

is the moduli space of shapes of planar n–gons with sides having lengths `1; : : : ; `n .

Let us now assume that we have two length vectors `˙ D .`˙
1
; : : : ; `˙n / where

`�j D `
C
j D j̀ > 0 for all j 2 f1; : : : ; n� 1g

0< `�n < `
C
n :and

Here n is the index corresponding to the telescopic leg: we assume that the length
of the n–th bar is not fixed but is variable in the segment1 Œ`�n ; `

C
n �. We consider the

interval of length vectors A�Rn which is parallel to the n–th axis and connects the
vectors `� and `C :

AD f`D .`1; : : : ; `n/I `
�
j � j̀ � `

C
j ; 1� j � ng:

The configuration space of a linkage with a telescopic leg is defined similarly to (3) as

MA D F�1.A/=E.2/:(4)

The symbol A in the notation MA can be viewed as representing all metric data of a
telescopic linkage.

We will say that a metric data A as above is generic if
nX

jD1

�j`
�
j 6D 0 and

nX
jD1

�j`
C
j 6D 0

for any choice of coefficients �j D˙1.

Proposition 1 If A is generic then MA is a smooth compact orientable manifold 2

with boundary and dim MA D n� 2. The boundary of MA is a disjoint union of the
manifolds M`� and M`C .

1In this paper we always assume that the lower bound for the length of the telescopic leg is positive,
`�n > 0 , and we do not allow `�n D 0 .

2It is curious to note that Proposition 1 is false for linkages in R3 having a telescopic leg; in this case
the configuration space MA (defined similarly to (4)) has singularities even for generic metric data.
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The proof is given in Section 5.

For 1 � j � n let Hj � Cn denote the hyperplane zj D zjC1 (note that the hyper-
plane Hn is given by the equation zn D z1 ). The map F (see Equation (1)) is smooth
when restricted onto the complement

X DCn
�

[
j

Hj :

It is well-known that the critical points of F jX are collinear configurations, ie the
collections .z1; : : : ; zn/2Cn such that the points z1; : : : ; zn lie on an affine real line L

in C . The critical values of F jX are vectors .`1; : : : ; `n/ corresponding to collinear
configurations. If .z1; : : : ; zn/ is a collinear configuration lying on an affine real line L

then zi � ziC1 D �i`iv , where `i D jzi � ziC1j, v is a fixed unit vector parallel to L

and �i D˙1. Then
Pn

jD1 �j j̀ D 0 and thus the set of critical values of F jX equals [
J

SJ

!
\Rn
C:

Here the symbol J runs over all proper subsets J � f1; : : : ; ng and SJ �Rn denotes
the hyperplane X

j2J

j̀ D

X
j…J

j̀ :

For a length vector `D .`1; : : : ; `n/ 2Rn
C we denote by Œ`� the number

Œ`�Dmin

 
nX

iD1

�i`i

!
(5)

where for i D 1; : : : ; n the numbers �i D˙1 are such that
Pn

iD1 �i`i � 0. Clearly Œ`�
is a measure of “genericity”of the vector `; indeed, Œ`� 6D 0 if and only if ` is generic.

Proposition 2 Consider a telescopic linkage with generic metric data A consisting of
numbers `1; : : : ; `n�1 and parameters of the telescopic leg `�n < `

C
n . Suppose that the

difference `Cn � `
�
n satisfies

`Cn � `
�
n < Œ`

��:(6)

Then MA is diffeomorphic to the Cartesian product

MA 'M`� � Œ0; 1�;

where `� D .`1; : : : ; `n�1; `
�
n /.
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Proof The statement of Proposition 2 follows once we know that inequality (6)
guarantees that the interval of length vectors

f.`1; : : : ; `n/I `
�
n � `n � `

C
n g �Rn

does not cross any of the hyperplanes SJ ; see above. Suppose that for some ` 2A the
length vector ` lies in SJ . Then

Pn
iD1 �i`i D 0 where �i D 1 if i 2 J and �i D�1

if i … J . Without loss of generality we may assume that �n D 1. Then one has

n�1X
iD1

�i`i C `
�
n < 0;

n�1X
iD1

�i`i C `
C
n > 0:

n�1X
iD1

�i`i C `
�
n � �Œ`

��It follows that

0< .`Cn � `
�
n /C

 
`�n C

n�1X
iD1

�i`i

!
� .`Cn � `

�
n /� Œ`

��;and

contradicting (6).

By symmetry, one may always assume without loss of generality that

`1 � `2 � � � � � `n�1:(7)

However the interval Œ`�n ; `
C
n � may interact with the sequence of numbers (7) in various

ways.

Proposition 3 Under the condition (7) the manifold MA is nonempty if and only if the
intervals Œ`�n ; `

C
n � and Œr;R� have a nonempty intersection. Here RD `1C � � �C `n�1

and r D `n�1� `1� � � � � `n�2 .

Proof Assume that MA 6D∅, and let .z1; : : : ; zn/ be a configuration with jziC1�zi jD

`i for i D 1; : : : ; n� 1 and

`�n � jzn� z1j � `
C
n :

Then clearly, using the triangle inequality,

`n�1� `1� � � � � `n�2 � jzn� z1j � `1C � � �C `n�1:

Hence Œ`�n ; `
C
n �\ Œr;R� 6D∅.

Conversely, suppose that �2 Œ`�n ; `
C
n �\Œr;R�. Then there exists a configuration of points

.z1; : : : ; zn/ 2 Cn such that jziC1 � zi j D `i for i D 1; : : : ; n� 1 and jzn � z1j D �:

Hence MA 6D∅:
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3 Betti numbers of MA

In this section we state the main theorem of this paper which gives explicitly the Betti
numbers of the manifolds MA .

Recall that A denotes the metric data of the telescopic linkage consisting of two vectors
`C; `� 2 Rn

C which have all coordinates equal `Ci D `
�
i D `i > 0 for all i < n and

`Cn > `�n > 0. In other words the telescopic leg corresponds to the n–th coordinate.
We will also assume the inequalities (7).

Before stating our main result we have to define some combinatorial quantities. For
a subset J � f1; : : : ; ng one denotes by �J D .�1; : : : ; �n/ 2 Rn the vector having
coordinates �i D 1 if i 2 J and �i D�1 if i … J . One may view the vectors �J for
various J as vertices of the unit cube C D Œ�1; 1�n �Rn .

Given ` 2Rn
C and an integer k D 0; 1; : : : ; n� 2 we denote by ˛k.`/ the number of

subsets J � f1; : : : ; n� 1g of cardinality jJ j D n� k � 1 such that h`; �J i> 0. The
last inequality may also be expressed by saying3 that “J is long with respect to `”.

Passing to complements, we see that ˛k.`/ equals the number of kC1 element subsets
of the index set f1; : : : ; ng which contain n (the index of the telescopic leg), and are
short with respect to `.

Given two vectors4 `C; `� 2Rn
C with `Ci D `

�
i D `i for i D 1; : : : ; n�1 satisfying (7)

and an integer k D 0; : : : ; n � 2, we denote by ˇk.`
C; `�/ the number of subsets

J � f1; : : : ; n� 2g of cardinality jJ j D n� k � 2 such that

h`C; �J 0i< 0 and h`�; �J 00i> 0;(8)

where J 0 D J [fng and J 00 D J [fn�1g. In other words, J 0 is short with respect to
`C and J 00 is long with respect to `� .

Each subset J as above determines a subset K � f1; : : : ; ng (the complement of J 00

in f1; : : : ; ng) which has the following properties:

(a) jKj D kC 1.

(b) n 2K and n� 1 …K .

(c) K is short with respect to `� .

(d) The set K0 obtained from K by removing n and adding n� 1 is long with
respect to `C .

3According to a well established terminology a subset J � f1; : : : ; ng is called long with respect to a
length vector ` if h�J ; `i> 0 . A subset J is called short with respect to ` if its complement is long.

4Note that in the definition of ˇk.`
C; `�/ we do not assume that `Cn is necessarily greater than `�n .
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Clearly ˇk.`
C; `�/ equals the number of subsets K satisfying (a)–(d).

Note the following symmetry property:

ˇk.`
C; `�/D ˇn�2�k.`

�; `C/;(9)

which follows by passing to complements of subsets and adding n, ie by considering
the map K 7! xK[fng. Next we observe that

˛k.`
�/� ˇk.`

C; `�/:(10)

We also mention the following property:

Lemma 4 Assume that the average length of the telescopic leg is longer than any other
leg of the linkage, ie

`Cn C `
�
n

2
� `n�1:(11)

Then ˇk.`
C; `�/D 0 for all k .

Proof Assume that ˇk.`
C; `�/ 6D 0, ie there exists a subset K satisfying (a)–(d).

Denote

x D
X

i2K ; i 6Dn

`i �

X
i…K ; i 6Dn�1

`i :

We have two inequalities x�`n�1C`
�
n <0 (because of (b) and (c)) and xC`n�1�`

C
n >

0 (because of (d)). These two inequalities imply that 2`n�1 > `
C
n C `

�
n contradicting

our assumption.

The following statement is the main result of this paper.

Theorem 5 Let A be the metric data of a telescopic linkage having legs of fixed
lengths `1 � `2 � � � � � `n�1 and a telescopic leg of length varying between `�n and
`Cn , where 0 < `�n < `

C
n . Assume that the metric data A is generic; see above. Then

the homology group Hk.MAIZ/ is free abelian and its rank equals

˛k.`
�/�ˇk.`

C; `�/C˛n�3�k.`
C/�ˇn�3�k.`

�; `C/(12)

for k D 0; : : : ; n� 2.
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4 Examples

Before embarking on the proof of Theorem 5 in the next section we consider a few
special cases.

Example 1 Suppose that the numbers `Cn and `�n are nearly equal, ie the length
vectors `C; `� satisfy the condition of Proposition 2. In this case the manifold MA

is diffeomorphic to the product M` � Œ0; 1� where M` is the moduli space of closed
linkage with length vector ` D .`1; : : : ; `n/ where `i D `Ci for all i . We want to
compare the statement of Theorem 5 in this special case with the result of [5] giving
Betti numbers of planar linkages with a fixed length vector. Set `C D `� D `. It is
known [5] that the integral homology groups of planar polygon spaces are free abelian
and are given in the nondegenerate case by the formula

rk Hk.M`/D ak C an�3�k

where ak denotes the number of short subsets with respect to ` which have cardinality
kC 1 and contain the index of the longest link.

Consider the difference

˛k.`
�/�ˇk.`

C; `�/D ˛k.`/�ˇk.`; `/:

Without loss of generality we may assume that `1 � `2 � � � � � `n�1 however the last
coordinate `n (corresponding to the telescopic leg) can be arbitrary.

According to our definition, ˛k.`/ is the number of subsets of the set f1; : : : ; n� 1g

which are of cardinality n�k�1 and are long with respect to `. Passing to complements,
we see that ˛k.`/ equals the number of subsets of f1; : : : ; ng of cardinality k C 1

which contain n and are short with respect to `.

The other quantity ˇk.`; `/ equals the number of J �f1; : : : ; n�2g with jJ jDn�k�2

such that J 0 D J [fng is short with respect to ` and J 00 D J [fn� 1g is long with
respect to `. Each such subset J determines a subset K � f1; : : : ; ng (the complement
of J 00 in f1; : : : ; ng) which has the following properties: (a) jKj D kC 1; (b) n 2K

and n� 1 …K ; (c) K is short with respect to `; (d) The set K0 obtained from K by
removing n and adding n� 1 is long with respect to `. Clearly ˇk.`; `/ equals the
number of subsets K satisfying properties (a)–(d).

Consider now two cases.

(I) If `n�1 � `n then obviously ˇk.`; `/D 0 and the number ˛k.`/ coincides with
the number ak.`/ defined in [5] as the number of short subsets of cardinality kC 1

containing the index of the longest link n.
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(II) Assume now that `n�1 > `n . The number ˛k.`/ equals the number of short
subsets of cardinality k C 1 containing n. The family of all subsets of cardinality
kC 1 which contain n and are short with respect to ` can be represented as the union
of three mutually disjoint families

A[B [C;

where A is the family of all subsets K�f1; : : : ; ng of cardinality kC1 with n�1; n2K

which are short with respect to `; B is the family of all subsets K � f1; : : : ; ng of
cardinality kC 1 with n 2K and n� 1 …K such that K and LK DK�fng[ fn� 1g

are short with respect to `; C is the family of all subsets K � f1; : : : ; ng of cardinality
kC 1 with n 2K and n� 1 …K such that K is short and LK DK�fng[ fn� 1g is
long with respect to `.

Clearly ˇk.`; `/ is exactly the cardinality of C . Hence the difference ˛k.`/�ˇk.`; `/

equals ak.`/ as defined in [5], the number of short subsets of cardinality k C 1

containing n� 1, ie the index of the longest link.

Thus we see that Theorem 5 implies Theorem 1 from [5] in the nonsingular case
(note that the latter result covers also the cases when the moduli space of linkages has
singularities).

Example 2 Assume that (a) `n�1 > `1C� � �C`n�2 ; (b) `�n > 0 is very small; and (c)
`Cn >`1C� � �C`n�1 is very large. Then clearly MADT n�2 is the .n�2/–dimensional
torus. To apply Theorem 5 one computes the numbers ˛k.`

�/ and ˛k.`
C/. A subset

J � f1; : : : ; n� 1g is long with respect to `� if and only if it contains n� 1. There
are no subsets J � f1; : : : ; n� 1g which are long with respect to `C . Thus we obtain
˛k.`

�/D
�
n�2

k

�
and ˛k.`

C/D 0. The numbers ˇk all vanish in this case. We see that
the result is consistent with the fact that MA D T n�2 .

Example 3 Consider the zero-dimensional Betti number as given by Theorem 5.
Analyzing the definitions given above one sees that the difference ˛0.`

�/�ˇ0.`
C; `�/

can be either 0 or 1 and it equals 1 if and only if the following inequalities hold

`�n < `1C � � �C `n�1 and `Cn > `n�1� `1� `2� � � � � `n�2:

Denoting RD `1C� � �C`n�1 and r D `n�1�`1�`2�� � ��`n�2 , we may express the
above two inequalities equivalently as Œ`�n ; `

C
n �\ Œr;R� 6D∅: It follows that ˛0.`

�/�

ˇ0.`
C; `�/ equals one if and only if the manifold MA is nonempty; see Proposition 3.

Note that in general the difference ˛k.`
C/�ˇk.`

�; `C/ equals the number of subsets
J � f1; : : : ; n� 1g with jJ j D n� k � 1 such that J is long with respect to `C and
either n� 1 … J or n� 1 2 J and the set J [fng� fn� 1g is long with respect to `� .
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Substituting k D n� 3, we obtain that ˛n�3.`
C/�ˇn�3.`

�; `C/ equals the number
of two-element subsets J � f1; : : : ; n� 1g which are long with respect to `C and
either (a) n�1 … J or (b) n�1 2 J and the set J [fng� fn�1g is long with respect
to `� . If (a) occurs then clearly J D fn� 3; n� 2g and `Cn � `n�3 ; the necessary and
sufficient condition for (a) is given by the inequality

2.`n�3C `n�2/� `1C � � �C `n�1C `
C
n :(13)

We see that there may be at most one set J satisfying (a).

Suppose now that (b) is satisfied. Then the subset J must coincide with fn� 2; n� 1g

since for any other choice J D fi; n� 1g (with i < n� 2) we would have the sets
fn � 2; n � 1g and fi; ng long and mutually disjoint with respect to `� , which is
impossible. Hence the case (b) is equivalent to the inequalities

2.`n�2C `n�1/� `1C � � �C `n�1C `
C
n ;(14)

2.`n�2C `
�
n /� `1C � � �C `n�1C `

�
n :(15)

This last inequality implies that fn� 2; ng is long with respect to `C which is incon-
sistent with fn� 3; n� 2g being long with respect to `C , ie with the case (a). Indeed,
if fn� 2; ng is long then fn� 1; ng is long and we obtain that any subset lying in the
complement of fn� 1; ng (such as fn� 3; n� 2g) is short.

We obtain that the cases (a) and (b) are inconsistent with each other and either of the
cases is satisfied by at most one subset.

Corollary 6 The manifold MA has at most two connected components. MA is
disconnected if and only if either the inequality (13) or the two inequalities (14) and
(15) are satisfied.

Corollary 7 If MA is disconnected then for any fixed length for the n–th leg `�n �
`n � `

C
n , the manifold M` is disconnected where `D .`1; : : : ; `n�1; `n/.

Recall that M` is defined as the moduli space of shapes of all closed planar n–gons
with sides of lengths `1; : : : ; `n .

Corollary 8 If either M`C or M`� is connected then MA is connected.

One may restate Corollary 6 in a different form:

Corollary 9 MA is disconnected if and only if there exist three indices 1� i < j <

k � n such that for any `n 2 Œ`
�
n ; `
C
n � the pairs fi; j g, fi; kg and fj ; kg are long with

respect to the length vector `D .`1; : : : ; `n�1; `n/.
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Proof Indeed, in case (a) the triple i; j ; k with the properties indicated above is given
by i D n� 3; j D n� 2; k D n� 1; in case (b) we set i D n� 2; j D n� 1; k D n.

This result is a generalization of the results of B Jaggi [9], Theorem 4.1 of W Lenhart
and S Whitesides [14] and Theorem 1 from M Kapovich and J Millson [11]; all results
mentioned above dealt with linkages with all legs having a fixed length.

Example 4 Consider a two-dimensional example with both ends M`˙ disconnected
but MA connected. Namely, let n D 4 and `1 D 4, `2 D 8, `3 D 10 and `C

4
D 12,

`�
4
D 1. We see that both length vectors .4; 8; 10; 12/ and .4; 8; 10; 1/ determine

disconnected one-dimensional manifolds M`C 'M`� ' S1 t S1 . Indeed, for the
vector `C three indices 2; 3; 4 form a “rigid triple”; for the vector `� a “rigid triple”
is formed by the indices 1; 2; 3. Hence we see that MA is connected as the condition
of Corollary 9 is not satisfied.

Example 5 In the case when nD 4 the manifold MA has dimension two; it can be
visualized as follows. Consider a planar quadrangle ABCD as shown on Figure 2.
The side AD will remain horizontal and the side CD represents the telescopic leg with

l1

l2

l3

l4

A

B

C

D

Figure 2: Variable quadrangle

its length `4 varying between `�
4

and `C
4

. We will assume below that `1 � `2 � `3 .

First we disregard the condition that jCDj should be within the interval Œ`�
4
; `C

4
�. Then

we obtain that the position of the point C must be within the annulus with center at A

with exterior radius RD `2C`3 and interior radius r D `2�`3 . Note that any internal
point of this annulus is represented by exactly two configurations (which are symmetric
to each other with respect to the line AC ) while the boundary points are represented
by a unique configuration of the bars AB and BC (since the boundary points of the
annulus are achieved by collinear configurations).

Next we impose the condition that the distance jCDj must satisfy `�
4
� jCDj � `C

4
.

This means that C must lie in another annulus with center D , external radius `C
4

and
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internal radius `�
4

. One takes two copies of the intersection of the first and the second
annuli and identifies the points lying on the boundary of the first annulus in both copies;
the resulting space will be homeomorphic to MA .

Consider now specifically the configuration space of the telescopic linkage with metric
data as in Example 4, ie `1 D 4, `2 D 8; `3 D 10; `�

4
D 1, `C

4
D 12. In this case

the first annulus has radii 18 and 2 and the second annulus has radii 12 and 1 and
the centers of the annuli are distance 4 apart, as shown on Figure 3 (a). On the right
(Figure 3 (b)) one sees the intersection of these annuli (a disc with two disjoint small
discs removed). To obtain MA one takes two copies of the intersection and glues them
to each other along boundary points of the first annulus (shown by bold on Figure 3).
We obtain that in this example MA is homeomorphic to the sphere S2 with four discs

(a) (b)

Figure 3: Two annuli (a) and their intersection (b)

removed. In particular MA is connected although each of the boundary manifolds
M`˙ is disconnected.

Let us compute in this example the numbers which appear in Theorem 5. One finds:
˛0.`

�/ D 1, ˇ0.`
�; `C/ D 0, ˛1.`

�/ D 3, ˇ1.`
C; `�/ D 1. Besides, ˛0.`

C/ D 1,
ˇ0.`

�; `C/ D 0, ˛1.`
C/ D 1, and ˇ1.`

�; `C/ D 1. Thus, by Theorem 5 the Betti
numbers of MA are 1 (in dimension 0) and 3 (in dimension 1). This is consistent with
our explicit description of the configuration space MA in this example.

5 Proofs of Proposition 1 and Theorem 5

A robot arm is a simple planar mechanism consisting of several bars of fixed length
connected by revolving joints as shown on Figure 4. We assume that there are n� 1

bars of lengths `1 � `2 � � � � � `n�1 and the initial point of the robot arm is fixed on
the plane. The space of all possible shapes of the arm

W D f.u1; : : : ;un�1/ 2 S1
� � � � �S1

g=SO.2/
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l1

l2

l3 l4

Figure 4: Robot arm

is diffeomorphic to a torus of dimension n� 2.

Consider the smooth function

f W W !R; f .u1; : : : ;un�1/D�

ˇ̌̌̌
ˇ

n�1X
iD1

`iui

ˇ̌̌̌
ˇ
2

:(16)

Geometrically, the value of f equals the negative of the squared distance between the
initial point of the arm to the end of the arm (shown by the dotted line on Figure 4).

It is clear that the moduli space MA of the telescopic linkage is diffeomorphic to the
preimage f �1Œa; b� where

aD�.`Cn /
2 and b D�.`�n /

2:

It is known that the critical points of f are collinear configurations [5; 3]. The
critical values of f are of the form �

ˇ̌Pn�1
iD1 `i�i

ˇ̌2 where �i D˙1. We obtain that
a and b are regular values of f if and only if the vectors `C D .`1; : : : ; `n�1; `

C
n /

and `� D .`1; : : : ; `n�1; `
�
n / are generic, ie they do not lie on the hyperplanes SJ ,

described in Section 2. This implies Proposition 1. The orientability of MA follows
from the orientability of W .

Next we prove Theorem 5. We denote by W aD f �1.�1; a� and W b D f �1.�1; b�

and
W Œa;b�

D f �1Œa; b�:

Our goal is to compute the Betti numbers of W Œa;b� 'MA .

Consider the homological exact sequence of the pair .W b;W Œa;b�/

!HiC1.W
b;W Œa;b�/!Hi.W

Œa;b�/!Hi.W
b/

j�
!Hi.W

b;W Œa;b�/!
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with coefficients5 in Z. We may identify the relative homology as follows

Hi.W
b;W Œa;b�/'Hi.W

a; @W a/'H n�2�i.W a/' .Hn�2�i.W
a//�:

Here we used the excision axiom, Poincaré duality and the universal coefficient theorem.
The last symbol on the right denotes the dual group

.Hn�2�i.W
a//� D Hom.Hn�2�i.W

a/;Z/:

Note that the integral homology groups of W a and W b are free abelian [5; 3], which
explains absence of the torsion term in the universal coefficient theorem.

Consider the intersection form

Hi.W
b/˝Hn�2�i.W

a/! Z(17)

given geometrically by intersection of cycles in W b . Note that W a �W b and thus a
cycle in W a can be viewed as a cycle in W b . It is well known (see Section VIII.13 of
Dold [2], in particular formula (13.5) on page 337) that the homomorphism

Hi.W
b/! .Hn�2�i.W

a//�(18)

associated to the bilinear form (17) coincides with

j�W Hi.W
b/!Hi.W

b;W Œa;b�/(19)

modulo the isomorphisms indicated above.

Let ki and ci denote the kernel and cokernel of the homomorphism (19) correspondingly.
We obtain the short exact sequence

0! ciC1!Hi.MA/! ki! 0:(20)

It is clear that ki is free abelian and we will see below that ci is also torsion free for
all i . We denote by ri the rank of the intersection form (17). Then

ri C rk.ki/D rk.Hi.W
b//;

ri C rk.ci/D rk.Hi.W
b;W Œa;b�//D rk.Hn�2�i.W

a//

and the exact sequence (20) gives

rk.Hi.MA//D rk.Hi.W
Œa;b�//

D rk.Hi.W
b//C rk.Hn�3�i.W

a//� ri � riC1:
(21)

It also follows from (20) that Hi.MA/ is torsion free if and only if ciC1 is torsion free.

5In this paper we will often not indicate explicitly the coefficient group understanding that it is the ring
of integers Z .
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Next we describe homology of the manifolds W a and W b following [5; 3]. For any
subset J � f1; : : : ; n � 1g consider the subset WJ � W ' T n�2 consisting of all
configurations .u1; : : : ;un�1/ such that ui D uj for all i; j 2 J . In other words, we
“freeze” all links labeled by indices in J to be parallel to each other. It is clear that
WJ is diffeomorphic to a torus of dimension n� 1� jJ j.

The torus WJ is contained in W a , ie WJ �W a , if and only if J (viewed as a subset
of f1; : : : ; ng) is long with respect to `C . Indeed, let pJ D .u1; : : : ;un�1/ be the
configuration where ui D 1 for all i 2J and ui D�1 for all i …J . Then the maximum
of the restriction f jWJ is either 0 or f .pJ /; see Lemma 8, statement (4) of [5]. The
inequality f .pJ /� a is equivalent to h`C; �J i> 0 which means that J is long with
respect to `C .

By Corollary 9 from [5] the homology classes of the submanifolds WJ form a basis
of the free abelian group Hi.W

a/ where J runs over all subsets J � f1; : : : ; n� 1g

of cardinality n� 1� i which are long with respect to `C . Thus using the notation
introduced earlier one obtains

rk Hi.W
a/D ˛i.`

C/:(22)

Similarly, for a subset I � f1; : : : ; n� 1g one has WI �W b if and only if I is long
with respect to `� . The homology Hi.W

b/ is freely generated by homology classes
of all submanifolds WI � W where I runs over all subsets I � f1; : : : ; n� 1g of
cardinality n� 1� i which are long with respect to `� . We have

rk .Hi.W
b//D ˛i.`

�/:(23)

Next we have to analyze the intersection form (17) in the basis of homology given by
the submanifolds WI . For this purpose we represent Hi.W

b/ as a direct sum

Hi.W
b/DAb

i ˚Bb
i ˚C b

i ;(24)

described below. The group Ab
i is generated by the homology classes ŒWI � with those

subsets I � f1; : : : ; n� 1g, jI j D n� 1� i , which are long with respect to `� and
such that yI is long with respect to `C . Here yI denotes the subset of f1; : : : ; ng which
is obtained from I by removing the maximal index lying in I and adding n. Similarly,
Bb

i is generated by the homology classes ŒWI � with those subsets I � f1; : : : ; n� 1g,
jI j D n� 1� i , which are long with respect to `� and such that n� 1 2 I and yI
is short with respect to `C ; note that in this case yI is obtained from I by deleting
n � 1 and adding n. Finally, C b

i is generated by the homology classes ŒWI � with
I � f1; : : : ; n� 2g, jI j D n� 1� i , which is long with respect to `� and such that yI
is short with respect to `C .
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We represent the group Hi.W
a/ as a direct sum in a similar fashion

Hi.W
a/DAa

i ˚Ba
i ˚C a

i ;(25)

where Aa
i ;B

a
i ;C

a
i are defined analogously to Ab

i ;B
b
i ;C

b
i with the roles of `C and

`� interchanged. In more detail, Aa
i is generated by the homology classes ŒWJ � with

J � f1; : : : ; n� 1g, jJ j D n� 1� i , which is long with respect to `C and such that yJ
is long with respect to `� . The space Ba

i is generated by the homology classes ŒWJ �

with J � f1; : : : ; n�1g, jJ j D n�1� i , n�1 2 J , which are long with respect to `C

and such that yJ is short with respect to `� . Finally, C a
i is generated by the homology

classes ŒWJ � with J � f1; : : : ; n� 2g, jJ j D n� 1� i , long with respect to `C and
such that yJ is short with respect to `� .

Note that in the decompositions (24) and (25) each of the subgroups has a specified
basis which will be important in the sequel. Counting the number of elements in the
basis we obtain

rk.Bb
i /D ˇi.`

C; `�/; rk.Ba
i /D ˇi.`

�; `C/;(26)

according to our definitions. We see that the statement of Theorem 5 would follow
from (9), (21), (22), (23), (26) once it is shown that the cokernel ci of the intersection
form (17) has no torsion and the rank of the intersection from (17) equals rk.Bb

i /.

Suppose that I � f1; : : : ; n� 1g is a subset of cardinality n� i � 1 which is long with
respect to `� and J � f1; : : : ; n� 1g is a subset of cardinality i C 1 which is long
with respect to `C . Then the homology classes

ŒWI � 2Hi.W
b/; ŒWJ � 2Hn�2�i.W

a/

of the submanifolds WI and WJ (properly oriented) have complementary dimensions
and one wants to compute their intersection via (17). By formula (33) from [5],

(27) ŒWI � � ŒWJ �D

(
˙1 if jI \J j D 1;

0 if jI \J j> 1:

To make this more precise we fix orientations of W and all submanifolds WJ as
follows. Recall that W is the quotient of T n�1 by the diagonal action of SO.2/. Let
ei denote the unit tangent vector field on T n�1 which is tangent to the i –th circle and
rotates it in the positive direction, where i D 1; : : : ; n� 1. Let e0i be the image of ei

under the projection T n�1!W . The fields e0
1
; : : : ; e0

n�1
generate the tangent space

to W at every point and satisfy the relation e0
1
C � � � C e0

n�1
D 0. We orient W by

declaring the basis e0
2
; e0

3
; : : : ; e0

n�1
to be positive.
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Consider now a subset I � f1; : : : ; n�1g and the corresponding submanifold WI . Let
xI D fi1 < i2 < � � � < ir g denote the complement of I , where r D n� 1� jI j. Then
the fields e0i1

; : : : ; e0ir
form a basis of the tangent space to WI at every point and we

orient WI according to the basis e0i1
; : : : ; e0ir

.

The following statement is a refinement of the first part of formula (27). It is presented
here only of the sake of completeness as it will not be used in the proof of Theorem 5:

Lemma 10 Suppose that I;J � f1; : : : ; n � 1g are such that I \ J D fj g and
I [ J D f1; : : : ; n � 1g. Then, with the orientations specified as indicated above,
one has

ŒWI � � ŒWJ �D .�1/jC1�j .xI ; xJ /;(28)

where �j .xI ; xJ / denotes the sign of the permutation of the set

f1; : : : ; n� 1g� fj g

determined by placing all elements of xI in their natural ordering and then all elements
of xJ in their natural ordering.

Proof We know from [3, page 27] that the submanifolds WI and WJ intersect
transversally at a single point and we need to determine the sign of this intersection. Let
xIDfi1< � � �< ir g and xJDfj1< � � �<jsg where rDn�1�jI j and sDn�1�jJ j. Note
that rCsD n�2. The tangent space to WI is freely generated by the vector fields e0i˛
(where ˛D 1; : : : ; r ) and the tangent space to WJ is freely generated by the fields e0jˇ
(where ˇ D 1; : : : ; s ). Thus the intersection number ŒWI � � ŒWJ � equals ˙1 depending
on whether the orientation of W determined by the basis e0i1

; : : : ; e0ir
; e0j1

; : : : ; e0js
is

positive or negative. Thus, we obtain that ŒWI � � ŒWJ �D �j .xI ; xJ / ��j where �j denotes
the sign of the base obtained from the set of vector fields e0

1
; : : : ; e0

n�1
by removing

the field e0j . Since e0
1
C � � �C e0

n�1
D 0 it is easy to see that �j D .�1/jC1 .

Consider the decomposition (24) in dimension i as well as the decomposition (25) in
the dual dimension

i 0 D n� 2� i:

Suppose that ŒWI � 2 Ab
i . The intersection ŒWI � � ŒWJ � 2 Z is nonzero only if J is

obtained from the complement of I in the set f1; : : : ; n� 1g by adding an element
of I . Can such J be long with respect to `C? If J with these properties exists then
its complement zJ in f1; : : : ; ng is short with respect to `C . But zJ is obtained from I

by removing one element and adding n. It follows that the set yI obtained from I by
removing the largest element from I and adding n is also short with respect to `C .
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However this is impossible according to our definition of Ab
i . Hence we obtain that

for any ŒWI � 2Ab
i and for any ŒWJ � 2Hi0.W

a/ one has ŒWI � � ŒWJ �D 0.

Similarly one obtains that for any ŒWJ � 2 Aa
i0 and for any ŒWI � 2 Hi.W

b/ one has
ŒWI � � ŒWJ �D 0.

Consider now ŒWI � 2 Bb
i and ŒWJ � 2 Ba

i0 . Since the sets I and J both contain n� 1

the intersection ŒWI � � ŒWJ � 6D 0 if and only if I \J D fn� 1g, ie when J is obtained
from the complement zI by removing n and adding n�1. We see that given ŒWI �2Bb

i

there exists a unique basis element ŒWJ � 2 Ba
i0 such that ŒWI ��ŒWJ �D˙1. In particular,

the restriction of the intersection form (17) to Bb
i ˝Ba

i0 is nondegenerate and

rk.Bb
i /D ˇi.`

C; `�/D rk.Ba
i0/D ˇi0.`

�; `C/:

As another remark we mention that ŒWI � � ŒWJ � D 0 if ŒWI � 2 C b
i and ŒWJ � 2 C a

i0 .
Indeed in this case the sets I;J � f1; : : : ; n� 2g must have at least two elements in
common, jI \J j> 1, since jI j D n� i � 1 and jJ j D i C 1.

For each basis element ŒWI � 2 C b
i define

YI D ŒWI ��
X
K

ŒWI � � ŒWK 0 �

ŒWK � � ŒWK 0 �
ŒWK � 2 Hi.W

b/;(29)

where K is such that ŒWK � is a basis element of Bb
i and K0 stands for

K0 D zK�fng[ fn� 1g:

In the last formula zK denotes the complement of K in f1; : : : ; ng. This class YI has
clearly the property that the intersection

YI � ŒWJ �D 0(30)

is trivial for all ŒWJ � 2 Aa
i0 ˚Ba

i0 . Next we show that vanishing (30) holds also for
ŒWJ � 2 C a

i0 .

With this goal in mind we first rewrite formula (29) retaining only nonzero terms, ie
only terms with jI \K0j D 1. We obtain that the nonzero terms in (29) correspond to
subsets K of the form

K D I �fig[ fn� 1g DKi

where i 2 I . Assuming that I � f1; : : : ; n� 2g is long with respect to `� and yI is
short with respect to `C one obtains that for any i 2 I the set Ki is long with respect
to `� and the set yKi is short with respect to `C (for obvious reasons). Thus we have

YI D ŒWI ��
X
i2I

ŒWI � � ŒWK 0
i
�

ŒWKi
� � ŒWK 0

i
�
ŒWKi

�:(31)
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Given ŒWJ � 2 C a
i0 consider the intersection YI � ŒWJ � which equals

ŒWI � � ŒWJ ��
X
i2I

ŒWI � � ŒWK 0
i
�

ŒWKi
� � ŒWK 0

i
�
.ŒWKi

� � ŒWJ �/D�
X
i2I

ŒWI � � ŒWK 0
i
�

ŒWKi
� � ŒWK 0

i
�
.ŒWKi

� � ŒWJ �/ :

If for some i 2 I one has jJ \Ki j D 1 then jI \ J j D 2. Thus we obtain that if
jI \J j> 2 then all terms in the above formula are trivial and therefore YI � ŒWJ �D 0.

Assuming that jI \J j D 2, say, I \J D fi; j g, we obtain that

YI � ŒWJ �D��i ��j ;(32)

�i D
ŒWI � � ŒWK 0

i
�

ŒWKi
� � ŒWK 0

i
�
.ŒWKi

� � ŒWJ �/where

and �j is defined similarly with j instead of i . We show below that �iC�j D 0 and
hence YI � ŒWJ �D 0 for any ŒWJ � 2Hi0.W

a/.

Consider the homeomorphism T n�1! T n�1 interchanging the i –th and the j –th
coordinates. It descends to a homeomorphism �W W !W . Since the subsets I and
J both contain i and j it follows that �.WI / D WI and �.WJ / D WJ . Besides,
�.WKi

/DWKj and �.WKj /DWKi
; moreover, �.WK 0

i
/DWK 0

j
and �.WK 0

j
/DWK 0

i
.

Note that � reverses the orientation of W and therefore for any two homology classes
z 2Hi.W /, z0 2Hi0.W / one has

��.z/ ���.z
0/D�z � z0:(33)

Besides, � preserves the orientations of the submanifolds WI and WJ and hence

��ŒWI �D ŒWI �; ��ŒWJ �D ŒWJ �:(34)

Using our convention concerning orientations of the submanifolds WJ and assuming
that i < j , one obtains

��ŒWKi
�D .�1/j.i;j/\xI j ŒWKj �:(35)

Here j.i; j /\ xI j is the number of integers between i and j which do not belong to I .
Similarly,

(36) ��ŒWKj �D .�1/j.i;j/\xI j ŒWKi
�:

Analogously, we have

��ŒWK 0
i
�D .�1/j.i;j/\I j ŒW 0Kj �;

��ŒWK 0
j
�D .�1/j.i;j/\I j ŒWK 0

j
�:

(37)
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Therefore, using (33)–(37), we obtain

�i D�
Œ�.WI /� � Œ�.WK 0

i
/�

Œ�.WKi
/� � Œ�.WK 0

i
/�
.Œ�.WKi

/� � Œ�.WJ /�/

D�
ŒWI � � ŒWK 0

j
�

ŒWKj � � ŒWK 0
j
�
.ŒWKj � � ŒWJ �/D��j :

All signs which come from formulas (35), (36), (37) cancel each other since each of
them appears twice. Thus, �i C�j D 0 and

YI � ŒWJ �D 0 for all ŒWJ � 2 C a
i0 :

Now we are able to complete the proof of Theorem 5. Denote by Db
i the subgroup

freely generated by the homology classes YI where the subset I � f1; : : : ; n� 2g is
such that ŒWI � 2 C b

i . We have a direct sum decomposition

Hi.W
b/DAb

i ˚Bb
i ˚Db

i

and the homomorphism

j�W Hi.W
b/!Hi.W

b;W Œa;b�/D .Hi0.W
a//�

vanishes on Ab
i ˚Db

i . However the restriction j�jB
b
i is a monomorphism onto a

direct summand (since its composition with the projection .Hi0.W
a//�! .Ba

i0/
� is

an isomorphism). We obtain that the cokernel ci of j� is torsion free and the rank of
the image of j� equals

ri D rk.Bb
i /D rk.Ba

i0/:

As explained after (26), Theorem 5 now follows from (9), (21), (22), (23), (26).

6 Equilateral linkage with a telescopic leg

In this section as an illustration of Theorem 5 we examine the special case when all
bars of the linkage have length 1 and the length of the telescopic leg may vary in an
interval Œa; b� where 0< a< b .

Using the previously introduced notation we have in this case

`1 D � � � D `n�1 D 1; `�n D a; `Cn D b:

The metric data of the linkage is generic if neither a nor b is an integer of opposite
parity to n. For example, if n is even then the genericity assumption is satisfied if
neither a nor b is an odd integer. If n is odd then we require that neither a nor b can
be an even integer.
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Let us compute the numbers ˛k.`
˙/ and ˇk.`

˙; `�/ which appear in Theorem 5.

A subset J � f1; : : : ; n� 1g of cardinality n� 1� k is long with respect to `� if and
only if a< n� 2k � 1. Hence we obtain

(38) ˛k.`
�/D

(�
n�1

k

�
if a< n� 2k � 1,

0 if a� n� 2k � 1:

Similarly, one computes explicitly the numbers ˇk.`
C; `�/. Simple analysis shows

that ˇk.`
C; `�/ and ˇk.`

�; `C/ can be nonzero only in the case when n is even,
nD 2r C 2, and k D r , ie when one considers the middle dimensional homology. In
this case one has

(39) ˇr .`
C; `�/D ˇr .`

�; `C/D

(�
2r
r

�
if a< 1 and b < 1,

0 otherwise:

Thus for 2k < n� 4 one has

(40) rk Hk.MA/D

(�
n�1

k

�
if a< n� 2k � 1;

0 if a> n� 2k � 1.

Hence homology in low dimension does not depend on the value of the parameter b .
Similarly one obtains that for 2k > n� 2 the k –dimensional Betti number equals

(41) rk Hk.MA/D

(�
n�1
kC2

�
if b < 2k � nC 5;

0 if b > 2k � nC 5:

It remains to calculate the Betti numbers in the middle dimension, ie for n� 2k equal
to 2; 3; 4.

For n�2k D 2 or n�2k D 3 we have ˇkC1.l
C; l�/D 0. In the first case n�2k D 2

we find

rk Hk.MA/D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�
n�1

k

�
C
�

n�1
kC2

�
�
�
n�2

k

�
if a< 1; b < 1;�

n�1
k

�
C
�

n�1
kC2

�
if 1< b < 3; a< 1;�

n�1
kC2

�
if 1< b < 3; 1< a;�

n�1
k

�
if b > 3; a< 1;

0 if b > 3; 1< a:
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In the case n� 2k D 3 we have ˇk.l
C; l�/D 0 and thus

rk Hk.MA/D

8̂̂<̂
:̂
�
n�1

k

�
C
�

n�1
kC2

�
if b < 2;�

n�1
k

�
if a< 2< b;

0 if a; b > 2:

Finally, let us consider the case n� 2k D 4. Here we have ˇk.l
C; l�/D 0. If b < 1

then ˇkC1.l
C; l�/D ˇn�k�3.l

�; lC/ is nonzero and we have

rk Hk.MA/D

�
n� 1

k

�
C

�
n� 1

kC 2

�
�

�
n� 2

kC 1

�
:

For n� 2k D 4 and b > 1 we have

rk Hk.MA/D

(�
n�1

k

�
if a< 3;

0 if a> 3:

This can be compared with the Betti numbers of equilateral linkages with no telescopic
leg [5; 3].

7 The disconnected case

In this section we prove the following statement which is a generalization of a result of
M Kapovich and J Millson [11] who dealt with nontelescopic linkages.

Proposition 11 If MA is disconnected then it is diffeomorphic to the product

Œ0; 1�� .T n�3
tT n�3/

of the interval Œ0; 1� and the disjoint union of two copies of an .n�3/–dimensional
torus T n�3 .

First we prove an analogue of Proposition 2 from Section 2 involving a small nontele-
scopic leg. Results of this type are known for the usual (nontelescopic) linkages; see
Proposition 6.1 of [8].

Lemma 12 Consider a planar linkage with a telescopic leg which has generic metric
data A given by `1 � � � � � `n�1 and 0 < `�n < `

C
n . Suppose that `1 > 0 is so small

that the following is true: for `n D `
˙
n and for any choice of �2 D˙1; : : : ; �n D˙1

such that nX
iD2

�i`i > 0
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one has nX
iD2

�i`i > `1:

Then MA is diffeomorphic to
MA0 �S1;

where A0 is the metric data of the linkage having n� 2 legs of fixed lengths `2 � � � � �

`n�1 and a telescopic leg of length varying in the interval Œ`�n ; `
C
n �.

Proof Let V DT n�2�Œ`�n ; `
C
n � denote the product of a torus of dimension n�2 and an

interval. The points of V are of the form .u3; : : : ;un; `n/ where u3; : : : ;un 2S1�R2

are unit vectors on the plane and `n is a number which belongs to the interval Œ`�n ; `
C
n �.

Consider a smooth map gW V !R2 given by

g.u3; : : : ;un; `n/D

nX
iD2

`iui 2R2:(42)

In this formula u2 denotes the unit vector pointing in the direction of the x–axis. Note
that g�1.0/ coincides with the configuration space MA0 of the telescopic linkage with
sides `2; : : : ; `n�1 and with telescopic leg with parameters 0< `�n < `

C
n .

Now, let C �R2 denote the circle with center at the origin and with radius `1 . Then
the preimage g�1.C / is the configuration space MA .

g�1.C /

g�1.0/

Figure 5: Manifold V and submanifolds g�1.0/ and g�1.C /

Note that g is a submersion as already the last summand in (42) has surjective differen-
tial. The boundary @V has two components @�V DT n�2�`�n and @CV DT n�2�`Cn .
The critical points of the restriction gj.@˙V / are collinear configurations lying entirely

Algebraic & Geometric Topology, Volume 10 (2010)
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in the x–axis. Our assumption on `1 guarantees that the image of any of the critical
points of gj.@˙V / lies outside the circle C . Thus we see that g is a submersion over
the disk bounded by C and therefore g�1.C / is diffeomorphic to g�1.0/�C ; see
Figure 5. This completes the proof.

Proof of Proposition 11 Assume that the metric data A is given by the numbers
`1 � � � � � `n�1 and 0< `�n < `

C
n . If MA is disconnected we may apply Corollary 9

asserting that there exist three indices 1� i < j < k � n such that the three pairs fi; j g,
fi; kg and fj ; kg are long with respect to .`1; : : : ; `n�1; `n/ for any `n 2 Œ`

�
n ; `
C
n �.

There are two possibilities: either (a) the triple fi; j ; kg does not contain n, the index
of the telescopic leg, or (b) nD k .

Consider first the case (a). Then obviously i D n�3, j D n�2 and k D n�1. Let us
show that we may apply Proposition 2. Indeed, a subset J � f1; : : : ; ng is long with
respect to `� if and only if it contains at least two of the indices fn� 3; n� 2; n� 1g.
In particular, for a subset J the property of being short or long with respect to `� does
not depend on whether J contains elements i < n� 3. We trivially obtain

Œ`��D `n�2C `n�3� `1� � � � � `n�4� `n�1� `
�
n :

See (5) for the notation Œ`��. We see that inequality (6) is equivalent to

`n�2C `n�3� `1� � � � � `n�4� `n�1� `
C
n > 0;

which is valid since fn�2; n�3g is long with respect to `C: By Proposition 2 we have
MA 'M`� � Œ0; 1� and clearly M`� is disconnected. Now we may refer to [11] for
the statement that M`0 is diffeomorphic to T n�3 tT n�3 and Proposition 11 follows.

Consider now the case (b). Then i D n�2, j D n�1, k D n. Proposition 11 is trivial
for n D 3 hence we will assume that n > 3. A subset J � f1; : : : ; ng is long with
respect to .`1; : : : ; `n�1; `n/ where `�n � `n � `

C
n if and only if it contains at least

two indices out of fn� 2; n� 1; ng. Again, the property of a subset J to be short or
long with respect to ` does not depend on whether J contains elements which are less
than n� 2. Hence

Pn
iD2 �i`i > 0 implies

Pn
iD2 �i`i > `1 . We see that Lemma 12 is

applicable and MA is diffeomorphic to the product MA0 �S1 where A0 is the metric
data of a linkage with legs of fixed lengths `2 � � � � � `n�1 and with a telescopic leg
with parameters `�n < `

C
n : Proposition 11 now follows by induction as MA0 must be

disconnected.
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