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On the universal sl2 invariant of ribbon bottom tangles

SAKIE SUZUKI

A bottom tangle is a tangle in a cube consisting of arc components whose boundary
points are placed on the bottom, and every link can be represented as the closure of
a bottom tangle. The universal sl2 invariant of n–component bottom tangles takes
values in the n–fold completed tensor power of the quantized enveloping algebra
Uh.sl2/ , and has a universality property for the colored Jones polynomials of n–
component links via quantum traces in finite dimensional representations. In the
present paper, we prove that if the closure of a bottom tangle T is a ribbon link, then
the universal sl2 invariant of T is contained in a certain small subalgebra of the
completed tensor power of Uh.sl2/ . As an application, we prove that ribbon links
have stronger divisibility by cyclotomic polynomials than algebraically split links for
Habiro’s reduced version of the colored Jones polynomials.

57M27; 57M25

1 Introduction

For each ribbon Hopf algebra H , Reshetikhin and Turaev [12] defined invariants of
framed links colored by finite dimensional representations. A universal invariant (see
Lawrence [6; 7] and Ohtsuki [11]) associated to H is an invariant of framed tangles and
links defined without using representations. The universal invariant has a universality
property such that the colored link invariants constructed by Reshetikhin and Turaev
are obtained from the universal invariants by taking trace in the representations attached
to the components of links.

A quantized enveloping algebra Uh D Uh.sl2/ of the Lie algebra sl2 is a complete
ribbon Hopf QJhK–algebra. By the universal sl2 invariant, we mean the universal
invariant associated to Uh . In [3], Habiro studied the universal invariant of bottom
tangles (see Section 2) associated to an arbitrary ribbon Hopf algebra, and in [4],
he studied the universal sl2 invariant of bottom tangles in detail. The universal sl2
invariant of an n–component bottom tangle takes values in the n–fold completed tensor
power U

y̋n
h

of Uh . For every oriented, ordered, framed link L, there is a bottom
tangle whose closure is isotopic to L. The universal invariant of bottom tangles has
a universality property such that the colored link invariants of a link L is obtained
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from the universal invariant of a bottom tangle T whose closure is isotopic to L, by
taking the quantum trace in the representations attached to the components of links. In
particular, one can obtain the colored Jones polynomials of links from the universal
sl2 invariant of bottom tangles.

An n–component link L is called a ribbon link if it bounds a system of n ribbon
disks in S3 . Mizuma [9] derived an explicit formula for the first derivative at �1 for
the Jones polynomial of 1–fusion ribbon knots, and in [10], she estimated the ribbon
number of those knots by using the formula. Eisermann [2] proved that the Jones
polynomial V .L/ 2 ZŒv; v�1� of an n–component ribbon link L is divisible by the
Jones polynomial V .On/D .vC v�1/n of the n–component unlink On .

A ribbon bottom tangle is defined as a bottom tangle whose closure is a ribbon link. In
the present paper, we study the universal sl2 invariant of ribbon bottom tangles.

1.1 Main result

Set v D exp h
2

, q D v2: We have ZŒq; q�1� � ZŒv; v�1� �QJhK. Let JT denote the
universal sl2 invariant of a bottom tangle T .

Habiro [4] proved that the universal sl2 invariant JT of an n–component, algebraically-
split, 0–framed bottom tangle T is contained in . zU ev

q /
z̋n , a certain ZŒq; q�1�–subalg-

ebra of U
y̋n

h
. He also defined another ZŒq; q�1�–subalgebra . xU ev

q /z
z̋n
� . zU ev

q /
z̋n and

stated the following conjecture for boundary bottom tangle. (A bottom tangle is said to
be boundary if it bounds mutually disjoint Seifert surfaces in Œ0; 1�3 , see [3] for the
detail.)

Conjecture 1.1 (Habiro [4]) Let T be an n–component boundary bottom tangle
with 0–framing. Then we have JT 2 . xU

ev
q /z

z̋n .

We shall define another subalgebra . xU ev
q /y

y̋n
� . xU ev

q /z
z̋n . (Here, we do not know

whether the inclusion is proper or not, but the definition of . xU ev
q /y

y̋n is more natural
than that of . xU ev

q /z
z̋n in our setting.) The main result of the present paper is the

following, which we prove in Section 5.

Theorem 1.2 Let T be an n–component ribbon bottom tangle with 0–framing. Then
we have JT 2 . xU

ev
q /y

y̋n .

An n–component bottom tangle T is called a slice bottom tangle if T is concordant
to the n–component trivial bottom tangle, where the trivial bottom tangle is the bottom
tangle taking the shape as \ : : :\ (see Section 2 for the definition of the concordance
of bottom tangles). The following is a generalization of Conjecture 1.1 and Theorem
1.2.
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Conjecture 1.3 If an n–component bottom tangle T is concordant to a boundary
bottom tangle (in particular, if T is a slice bottom tangle), then we have JT 2 . xU

ev
q /y

y̋n .

1.2 An application to the colored Jones polynomial

Here, we give an application of Theorem 1.2. We use the following q–integer notations.

figq D qi
� 1; figq;n D figqfi � 1gq : : : fi � nC 1gq; fngq!D fngq;n;

Œi �q D figq=f1gq; Œn�q!D Œn�q Œn� 1�q : : : Œ1�q;
�

i
n

�
q
D figq;n=fngq!;

for i 2 Z; n� 0.

For l � 1, let Vl denote the l –dimensional irreducible representation of Uh . Let R
denote the representation ring of Uh over Q.v/, that is, R is the Q.v/–algebra

RD SpanQ.v/fVl j l � 1g

with the multiplication induced by the tensor product.

Habiro [4] studied the following polynomials in V2

zP 0l D
vl

flgq!

l�1Y
iD0

.V2� v
2iC1
� v�2i�1/ 2R;

for l � 0, and proved the following theorem.

Theorem 1.4 (Habiro [4]) Let L be an n–component, algebraically-split, 0–framed
link. We have

J
LI zP 0

l1
;:::; zP 0

ln

2
f2lj C 1gq;ljC1

f1gq
ZŒq; q�1�;

for l1; : : : ; ln � 0, where j is a number such that lj Dmaxflig1�i�n .

Here JLI zP 0
l1

;:::; zP 0
ln

is the colored Jones polynomial of L associated to zP 0
l1
; : : : ; zP 0

ln
(see

Section 4). The above theorem is an important technical step in Habiro’s construction
of the unified Witten–Reshetikhin–Turaev invariants for integral homology spheres.
Habiro [4] also proved that Conjecture 1.1 would imply the following Theorem 1.5,
with a ribbon link replaced by a boundary link. Thus, Theorem 1.5 follows from
Theorem 1.2 and Habiro’s argument in [4].

Theorem 1.5 Let L be an n–component ribbon link with 0–framing. We have

J
LI zP 0

l1
;:::; zP 0

ln

2
f2lj C 1gq;ljC1

f1gq
Il1
: : : yIlj : : : Iln

;
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for l1; : : : ; ln � 0, where j is a number such that lj Dmaxflig1�i�n . Here, for l � 0,
Il is the ideal in ZŒq; q�1� generated by the elements fl � kgq!fkgq! for k D 0; : : : ; l ,
and yIlj denotes omission of Ilj .

Remark 1.6 For m� 1, let ˆm.q/ 2ZŒq� denote the mth cyclotomic polynomial. It
is not difficult to prove that Il ; l � 0; is contained in the principal ideal generated byQ

mˆm.q/
f .l;m/ , where f .l;m/Dmax

˚
0;
�

lC1
m

˘
� 1

	
. Here for r 2Q, we denote

by brc the largest integer smaller than or equal to r .

Remark 1.7 As we have mentioned, Eisermann [2] proved that the Jones polynomial
V .L/2ZŒv; v�1� of an n–component ribbon link L is divisible by the Jones polynomial
V .On/ D .vC v�1/n of the n–component unlink On . This result does not follow
directly from Theorem 1.5. However, we give another proof of it in the author’s
dissertation [13] by proving a refinement of Theorem 1.2 involving a subalgebra of
U
y̋n

h
smaller than . xU ev

q /y
y̋n . We do not describe it in the present paper since the proof

in [13] is quite complicated and also since we expect further refinements.

We expect Theorem 1.5 to be useful for detection of non-ribbonness of a link. For
example, it is easy to check that the Borromean rings does not have the divisibility
given in Theorem 1.5, hence it is not a ribbon link as is well known, see Section 6 for
the detail. However, we have few examples so far.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we define bottom tangles
and ribbon bottom tangles. In Section 3, we define the quantized enveloping algebra
Uh , and its subalgebras. In Section 4, we consider the universal sl2 invariant of bottom
tangles and ribbon bottom tangles. In Section 5, we prove Theorem 1.2. In Section 6,
we consider the cases of the Borromean tangle and the Borromean rings.

2 Bottom tangles and ribbon bottom tangles

In this section, we recall from [3] the notion of bottom tangles. We also define the
notion of ribbon bottom tangles, which is implicit in [3].

2.1 Bottom tangles

An n–component bottom tangle T D T1 [ : : :[ Tn is an oriented, ordered, framed
tangle in a cube Œ0; 1�3 consisting of n arcs T1; : : : ;Tn; whose boundary points are
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on the bottom line Œ0; 1��
˚

1
2

	
� f0g, such that for each i D 1; : : : ; n, the component

Ti runs from the 2i th boundary point to the .2i � 1/th boundary point, where the
boundary points are ordered by the first coordinate. As usual, we draw a bottom tangle
as a diagram in a rectangle, see Figure 1 (a),(b). For each n� 0, let BTn denote the

T1
T2

T3

(a) (b) (c)

Figure 1: (a) A 3–component bottom tangle T D T1 [ T2 [ T3 . (b) A
diagram of T in a rectangle. (c) The closure of T .

set of the isotopy classes of n–component bottom tangles, and set BT D
S

n�0 BTn .

The closure of T is the link obtained from T by pasting a “[–shaped tangle” to each
component of T , as depicted in Figure 1 (c). For any link L, there is a bottom tangle
whose closure is isotopic to L.

The linking matrix Lk.T / of a bottom tangle T D T1[ : : :[Tn is defined as that of
the closure of T . Thus, for 1� i ¤ j � n, the linking number of Ti and Tj is defined
as the linking number of the corresponding components in the closure of T , and, for
1� i � n; the framing of Ti is defined as the framing of the closure of Ti .

Two bottom tangles T;T 0 2 BTn are concordant if there is a proper embedding

f W

na
Œ0; 1�� Œ0; 1� ,! Œ0; 1�3 � Œ0; 1�

such that f .
`n

Œ0; 1�� f0g/D T � f0g, f .
`n

Œ0; 1�� f1g/D T 0 � f1g, and

f
� na

@Œ0; 1�� Œ0; 1�
�
D @T � Œ0; 1�D @T 0 � Œ0; 1�:

2.2 Ribbon bottom tangles

Definition 2.1 A bottom tangle T 2 BT is called a ribbon bottom tangle if and only
if the closure of T is a ribbon link.
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A system of ribbon disks for an n–component bottom tangle T D T1[ : : :[Tn is an
immersed surface with ribbon singularities in Œ0; 1�3 consisting of n disks bounded
by the link zT D .T1[ 
1/[ : : :[ .Tn[ 
n/, where 
i � Œ0; 1��

˚
1
2

	
� f0g is the line

segment such that @
i D @Ti for 1� i � n.

Proposition 2.2 A bottom tangle T 2 BTn is a ribbon bottom tangle if and only if it
admits a system of ribbon disks.

Proof Let X � S3 be a system of ribbon disks for the link zT . Up to isotopy in S3

fixed on the link zT , we can assume that X � Œ0; 1�2� Œ�1; 1�. If we admit introducing
new ribbon singularities, we can transform X into a system of ribbon disks for the
bottom tangle T by pulling the segment part 
i � Œ0; 1��

˚
1
2

	
� f0g straight down to

the Œ0; 1��
˚

1
2

	
�f�1g, and transforming Œ0; 1�2� Œ�1; 1� into Œ0; 1�3 by isotopy of S3 .

For example, see Figure 2.

(a) (b) (c)

Figure 2: (a) A system of ribbon disks for the closure link zT . (b) A system
of ribbon disks for a link isotopic to zT . (c) A system of ribbon disks for the
bottom tangle T .

3 The quantized enveloping algebra Uh and its subalgebras

We mostly follow the notations in [4].

3.1 The quantized enveloping algebra Uh

Recall that v D exp h
2

, and q D v2: We denote by Uh the h–adically complete QJhK–
algebra, topologically generated by the elements H;E; and F , satisfying the relations

HE �EH D 2E; HF �FH D�2F; EF �FE D
K�K�1

v� v�1
;
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where we set

K D vH
D exp

hH

2
:

We equip Uh with a topological Z–graded algebra structure with deg F D�1, deg ED

1, and deg H D 0. For a homogeneous element x of Uh , the degree of x is denoted
by jxj.

There is a unique complete ribbon Hopf algebra structure on Uh such that

�.H /DH ˝ 1C 1˝H; ".H /D 0; S.H /D�H;

�.E/DE˝ 1CK˝E; ".E/D 0; S.E/D�K�1E;

�.F /D F ˝K�1
C 1˝F; ".F /D 0; S.F /D�FK:

The universal R–matrix and its inverse are given by

RDD

�X
n�0

v
1
2

n.n�1/ .v� v
�1/n

Œn�!
Fn
˝En

�
;(1)

R�1
DD�1

�X
n�0

.�1/nv�
1
2

n.n�1/ .v� v
�1/n

Œn�!
FnKn

˝K�nEn

�
;(2)

where D D v
1
2

H˝H
D exp

�
h
4
H ˝H

�
2 U

y̋2
h

and

Œi �D
vi � v�i

v� v�1
; Œn�!D Œn�Œn� 1� : : : Œ1�

for i 2 Z; n� 0. The ribbon element and its inverse are given by

r D
X
x̨K�1 x̌ D

X
x̌K x̨; r�1

D

X
˛Kˇ D

X
ˇK�1˛;

where RD
P
˛˝ˇ , and R�1 D .S ˝ 1/RD

P
x̨ ˝ x̌.

We use notations D D
P

DC
Œ1�
˝DC

Œ2�
, and D�1 D

P
D�
Œ1�
˝D�

Œ2�
. We shall use the

following formulas.X
DC
Œ2�
˝DC

Œ1�
DD; .�˝ 1/D DD13D23;(3)

."˝ 1/.D/D 1; .S ˝ 1/D DD�1;(4)

D.1˝x/D .Kjxj˝x/D;(5)

where D13 D
P

DC
Œ1�
˝ 1˝DC

Œ2�
, D23 D 1˝D , and x is a homogeneous element of

Uh .
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3.2 Subalgebras UZ;q and U ev
Z;q

of Uh

Let UZ denote Lusztig’s integral form of Uh (see [8]), which is defined to be the
ZŒv; v�1�–subalgebra of Uh generated by K;K�1; E.n/ D En=Œn�!, and F .n/ D

Fn=Œn�! for n� 1. Set

zE.n/
D .v�1E/n=Œn�q!D v�

1
2

n.nC1/E.n/;

zF .n/ D FnKn=Œn�q!D v�
1
2

n.n�1/F .n/Kn;

for n� 0. Let UZ;q denote the ZŒq; q�1�–subalgebra of UZ generated by K , K�1 ,
zE.n/ and zF .n/ for n� 1. Note that

UZ D UZ;q˝ZŒq;q�1�ZŒv; v
�1�:

Let U ev
Z;q denote the ZŒq; q�1�–subalgebra of UZ;q generated by K2 , K�2 , zE.n/ and

zF .n/ for n� 1. UZ;q is equipped with a .Z=2Z/–graded ZŒq; q�1�–algebra structure

UZ;q D U ev
Z;q˚KU ev

Z;q:

There is a Hopf ZŒq; q�1�–algebra structure on UZ;q inherited from Uh such that

�.Ki/DKi
˝Ki ;(6)

�. zE.n//D

nX
jD0

zE.n�j/Kj
˝ zE.j/;(7)

�. zF .n//D

nX
jD0

zF .n�j/Kj
˝ zF .j/;(8)

S˙1.Ki/DK�i ;(9)

S˙1. zE.n//D .�1/nq
1
2

n.n�1/K�n zE.n/;(10)

S˙1. zF .n//D .�1/nq�
1
2

n.n�1/K�n zF .n/;(11)

".Ki/D 1;(12)

". zE.n//D ". zF .n//D ın;0;(13)

for i 2 Z; n� 0.
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3.3 Subalgebras xUq and xU ev
q of Uh

Let xU denote the ZŒv; v�1�–subalgebra of Uh generated by the elements K;K�1 ,
.v� v�1/E , and .v� v�1/F (see De Concini and Procesi [1]). Set

e D v�1.q� 1/E; f D .q� 1/FK:

Let xUq denote the ZŒq; q�1�–subalgebra of UZ;q generated by the elements K;K�1; e

and f . Note that

xU D xUq˝ZŒq;q�1�ZŒv; v
�1�:

Let xU ev
q denote the ZŒq; q�1�–subalgebra of U ev

Z;q generated by the elements K2 ,
K�2 , e and f . We have

xU ev
q D

xUq \U ev
Z;q;

xUq D
xU ev

q ˚K xU ev
q :

There is a Hopf ZŒq; q�1�–algebra structure on xUq inherited from Uh such that

�.en/D

nX
jD0

� n
j

�
q
en�j Kj

˝ej ;(14)

�.f n/D

nX
jD0

� n
j

�
q
q�j.n�j/f n�j Kj

˝f j ;(15)

S˙1.en/D .�1/nq
1
2

n.n�1/K�nen;(16)

S˙1.f n/D .�1/nq�
1
2

n.n�1/K�nf n;(17)

".en/D ".f n/D ın;0;(18)

for n� 0.

We have

emf n
D

min.m;n/X
pD0

q
1
2

p.pC1/�nm
fpgq!

�
m
p

�
q

�
n
p

�
q
f n�p

fH�m�nC2pgq;pem�p;(19)

for m; n� 0. Here, for i 2 Z and p � 0, we set

fH C igq;p D fH C igqfH C i � 1gq : : : fH C i �pC 1gq;

where
fH C j gq D qHCj

� 1D qj K2
� 1;

for j 2 Z.
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The following lemma, which is a ZŒq; q�1�–version of a well known result for xU by
De Concini and Procesi [1], can be proved by using the formula (19).

Lemma 3.1 xUq (resp. xU ev
q ) is freely ZŒq; q�1�–spanned by the elements f iKj ek

(resp. f iK2j ek ) with i; k � 0 and j 2 Z.

3.4 Adjoint action

We use the left adjoint action adW Uh˝Uh! Uh defined by

ad.a˝ b/D
X

a0bS.a00/;

for a; b 2 Uh , where �.a/D
P

a0˝ a00 . We also use the notation aF b D ad.a˝ b/.

The following proposition is suggested by Habiro. In fact, Habiro and Le [5] prove
a generalization of a ZŒv; v�1�–version of the following proposition with i D 0 to
quantized enveloping algebras for all simple Lie algebras.

Proposition 3.2 For i D 0; 1, we have

UZ;q FKi xU ev
q �Ki xU ev

q :

Proof In view of Lemma 3.1, it is enough to prove that x F f i1Ki2ei3 2Ki2 xU ev
q for

every x 2 fK;K�1; zE.n/; zF .n/ j n � 0g and i1; i3 � 0, i2 2 Z. By computation, we
have

K˙1
Ff i1Ki2ei3 D q˙.i3�i1/f i1Ki2ei3 ;(20)

zE.n/
Ff i1Ki2ei3 D(21)

min.i1;n/X
pD0

.�1/nq
1
2

p.pC1/�n.i1Ci2/C2i2p�i1
p

�
q
f i1�pKi2g.i1; i2; i3;n;p/e

i3Cn�p;

zF .n/ Ff i1Ki2ei3 D(22)

min.i3;n/X
pD0

q
1
2

p.pC1/�n.i1Ci2/C2i2p
�

i3
p

�
q
f i1Cn�pKi2g.i3; i2; i1;n;p/e

i3�p;

where

g.i1; i2; i3; n;p/D

pX
sD0

.�1/sq
1
2

s.sC1/�s.n�pCi1/
�

p
s

�
q

�
n�pCi2Ci3Cs�1

n�p

�
q
K2s:

The right hand sides of (20)–(22) are all contained in Ki2 xU ev
q , hence we have the

assertion.
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4 The universal sl2 invariant of bottom tangles

In this section, we define the universal sl2 invariant of bottom tangles [3], and study
the values of it. Then we discuss the case of ribbon bottom tangles.

4.1 Decorated diagrams

We use diagrams of tangles obtained from copies of the fundamental tangles, as depicted
in Figure 3, by pasting horizontally and vertically. A decorated diagram of a bottom

, , , ,

Figure 3: Fundamental tangles. The orientations of the strands are arbitrary.

tangle T 2 BT is a diagram P of T together with finitely many dots on strands,
each labeled by an element of Uh . We also allow pairs of dots, each connected by an
oriented dashed line which is labeled by an element of U

y̋2
h

, see Figure 4 (a). If the

(a)

x

y

z
w

y D
P

yŒ1� yŒ2�

(b)

Figure 4: A decorated diagram P

element y 2 U
y̋2

h
on it is symmetric, we do not have to specify the orientation of a

dashed line.

For every decorated diagram P for an n–component bottom tangle T DT1[: : :[Tn 2

BTn , we define an element J.P / 2 U
y̋n

h
as follows. The i th component of J.P / is

defined to be the product of the elements put on the component corresponding to Ti ,
where the elements are read off along each component reversing the orientation of P ,
and written from left to right. Here we read an element y D

P
yŒ1�˝yŒ2� 2 U

y̋2
h

on
dashed line by assuming that the first tensorand is attached to the start point of the
line and the second tensorand to the end point, see Figure 4 (b). (The result does not
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depend on how one expresses the element on each dashed line as a sum of tensors.)
For example, for the decorated diagram P depicted in Figure 4 (a), we have

J.P /D
X

xyŒ2�˝yŒ1�zŒ1�˝ zŒ2�w;

where we set y D
P

yŒ1�˝yŒ2� and zD
P

zŒ1�˝zŒ2� . In what follows, we sometimes
identify a decorated diagram and its image by J . For example, the picture depicted in
Figure 5 represents the formula (5).

D x D

D

x
Kjxj

Figure 5: A graphical version of (5). By the two pictures above, we mean
two decorated diagrams of a bottom tangle which are identical outside the
dotted circles.

4.2 The universal sl2 invariant of bottom tangles

For T D T1[ : : :[Tn 2 BTn , we define the universal sl2 invariant JT 2 U
y̋n

h
of T

as follows. We choose a diagram P of T . We denote by C.P / the set of the crossings
of P: We call a map

sW C.P / ! f0; 1; 2; : : :g

a state. We denote by S.P / the set of states for P . For each state s 2 S.P /, we define
a decorated diagram .P; s/ (by abusing the notation) as follows.

We rewrite the R–matrix (1) and its inverse (2) as R˙1 DD˙1
P

n�0 R˙n , where

RCn D q
1
2

n.n�1/ zF .n/K�n
˝ en; R�n D .�1/n zF .n/˝K�nen:(23)

We use the notations RCn D
P

RC
nŒ1�
˝RC

nŒ2�
and R�n D

P
R�

nŒ1�
˝R�

nŒ2�
.

For each fundamental tangle in P , we attach elements following the rule described in
Figure 6, where “S 0” should be replaced with id if the string is oriented downward,
and with S otherwise, see Figure 7. Thus we have an element J.P; s/ 2 U

y̋n
h

as the
image of the decorated diagram .P; s/ by J .

Set
JT D

X
s2S.P/

J.P; s/:
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K�1

K

.S 0˝S 0/
�
DRC

s.c/

�

.S 0˝S 0/
�
D�1R�

s.c/

�
Figure 6: How to place elements on the fundamental tangles

S 0.x/ D x S 0.x/ D S.x/

Figure 7: The definition of S 0

c1

c2

.S˝1/.DRCm/

.1˝S/.DRCn /

(a) (b)

Figure 8: (a) A diagram P of C 2 BT2 . (b) The decorated diagram .P; s/ .

As is well known (see Ohtsuki [11]), JT does not depend on the choice of the diagram
P , and defines an isotopy invariant of bottom tangles.

For example, let us compute the universal sl2 invariant JC of a bottom tangle C with
a diagram P as depicted in Figure 8 .a/, where c1 (resp. c2 ) denotes the upper (resp.
lower) crossing of P . The decorated diagram .P; s/ for the state s 2 S.P / is depicted
in Figure 8 .b/, where we set mD s.c1/; nD s.c2/. We have

JC D

X
s2S.P/

J.P; s/

D

X
s2S.P/

X
S.DC

Œ1�
RC

mŒ1�
/S.D0C

Œ2�
RC

nŒ2�
/˝D0C

Œ1�
RC

nŒ1�
DC
Œ2�

RC
mŒ2�

D

X
m;n�0

.�1/mCnq�nC2mnD�2. zF .m/K�2nen
˝ zF .n/K�2mem/:

where D˙1 D
P

D˙
Œ1�
˝D˙

Œ2�
D
P

D0˙
Œ1�
˝D0˙

Œ2�
.
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4.3 The colored Jones polynomial

If V is a finite dimensional representation of Uh , then the quantum trace trV
q .x/ in V

of an element x 2 Uh is defined by

trV
q .x/D trV .�V .K

�1x// 2QJhK;

where �V W Uh!End.V / denotes the left action of Uh on V , and trV W End.V /!QJhK
denotes the trace in V . For every element y D

P
n anVn 2R, an 2Q.v/, we set

try
q .x/D

X
n

an trVn
q .x/ 2Q..h//

for x 2 Uh . Here Q..h// denotes the quotient field of QJhK.

The universal sl2 invariant of bottom tangles has a universality property for the colored
Jones polynomials of links as follows.

Proposition 4.1 (Habiro [4]) Let LDL1[ : : :[Ln be an n–component, ordered,
oriented, framed link in S3 . Choose an n–component bottom tangle T whose closure
is isotopic to L. For y1; : : : ;yn 2R, the colored Jones polynomial JLIy1;:::;yn

of L

can be obtained from JT by

JLIy1;:::;yn
D
�
try1

q ˝ � � �˝ tryn
q

�
.JT /:

4.4 Values of the universal sl2 invariant of bottom tangles

In this subsection we consider the value of J.P; s/ for a decorated diagram .P; s/.
Let us prepare some notations.

For n� 1; 1� i � n, and for X 2 Uh , we define Xi 2 U
y̋n

h
by

Xi D 1˝ � � �˝X ˝ � � �˝ 1;

where X is at the i th position.

For 1� i; j � n, and for Y D
P

y1˝y2 2 U
y̋2

h
, we define Yij 2 U

y̋n
h

by

Yij D

X
.y1/i.y2/j :

For every symmetric integer matrix M D .mij /1�i;j�n of size n� 1, we define two
invertible elements DM ; zDM 2 U

y̋n
h

by

DM
D

Y
1�i;j�n

D
mij

ij D

Y
1�i<j�n

D
2mij

ij

Y
1�i�n

.vH 2=2/
mi i

i ;

zDM
DDM

Y
1�i�n

K
mi i

i D

Y
1�i<j�n

D
2mij

ij

Y
1�i�n

.vH 2=2K/
mi i

i :
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Later, we shall use the following proposition.

Proposition 4.2 Let T D T1[ : : :[Tn be an n–component bottom tangle. For every
diagram P of T and every state s 2 S.P /, we have

J.P; s/ 2 zDLk.T /.U ev
Z;q/

˝n:

Before proving Proposition 4.2, we modify the dots of the decorated diagram .P; s/.
Then we define three decorated diagrams .P; s/ı; .P; s/�; and .P; s/˘ , which we use
in the proof of Proposition 4.2.

In what follows, we can work up to the equivalence relation � on .UZ;q/
˝n generated

by multiplication on any tensorands by ˙qj ;K2j .j 2 Z/. The modification process
goes as follows. Let c be a crossing of .P; s/ with strands oriented downward, and set
mD s.c/. As depicted in Figure 9, we replace the two dots labeled by D˙1R˙m with
two black dots labeled by D˙1 and two white dots labeled by R˙m . Then we slide the

DRCm

D�1R�m

RCm

D

D�1

R�m

KmRC
mŒ1�

RC
mŒ2�

D

KmR�
mŒ2�

R�
mŒ1�

D�1

Figure 9: The modification process of .P; s/ on positive and negative crossings

black (resp. white) dots to the right hand side (resp. the left hand side) of the crossings,
and put the produced element Km into the same dot of R˙m . Here the transformation
follows from the formulas

DRCm D
X

DŒ1�R
C

mŒ1�
˝DŒ2�R

C

mŒ2�
D

X
DŒ1�K

mRC
mŒ1�
˝RC

mŒ2�
DŒ2�

and D�1R�m D
X

D�Œ1�R
�
mŒ1�˝D�Œ2�R

�
mŒ2� D

X
R�mŒ1�D

�
Œ1�˝D�Œ2�K

mR�mŒ2�:

Note that

KmRC
mŒ1�
˝RC

mŒ2�
� zF .m/˝ em;(24)

R�mŒ1�˝KmR�mŒ2� �
zF .m/˝ em:(25)
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Similarly, we modify the dots on the other crossings as depicted in Figure 10. We
have completed the modification. By abusing the notation, we denote by .P; s/ the
decorated diagram obtained from the modification.

em

zF .m/

D

em zF .m/

D

em

zF .m/

D

emzF .m/

D

em

zF .m/

D�1

emzF .m/

D�1

em

zF .m/

D�1

em zF .m/

D�1

Figure 10: Crossings of the decorated diagram .P; s/ after the modification

We define the decorated diagrams .P; s/ı , .P; s/�; and .P; s/˘ as follows.

Definition 4.3 (1) Let .P; s/ı denote the diagram P together with the white dots
on crossings of .P; s/. Note that

(26) J.P; s/ı 2 .U ev
Z;q/

˝n:

Let E\, E[ and \ denote the fundamental tangles defined by

E\ D , E[ D , \D .

(2) Let .P; s/� denote the diagram P with the black dots labeled by D˙1 on
crossings of .P; s/, and dots on E\ and E[ of .P; s/.

x
D˙1

D K�jxj

x

D˙1

Figure 11: The picture when we slide a homogeneous x through a dot labeled
by D˙1 . This is essentially the same with the picture in Figure 5.
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(3) For i D 1; : : : ; n; let Pi denote the part of P corresponding to Ti . We call the
2i th (resp. .2i�1/th) boundary point of P the start point (resp. end point) of
Pi . On .P; s/, we slide all white dots to the start points of the strands of P .
When we slide a white dot through a dot on E\ or E[, a scalar qj .j 2Z/ appears,
which we can ignore. When we slide a white dot through a dot labeled by D˙1 ,
a power of K appears, see Figure 11. We attach such an element to a new white
diamond. Let .Pi ; s/

} be the diagram Pi with the white diamonds on Pi . Set

J.P; s/} D J.P1; s/
}
˝ � � �˝J.Pn; s/

}:

For example, for the decorated diagram .P; s/ in Figure 12, we have

Lk.T /D
�

1 �1
�1 0

�
; zDLk.T /

DD�2.vH 2=2K˝ 1/;

J.P; s/ı � zF .l/el zF .m/ek
˝ zF .k/em; J.P1; s/

}
�K�2k

� 1;

J.P; s/� �D�2.vH 2=2K˝ 1/; J.P2; s/
}
�K�2m

� 1:

We reduce Proposition 4.2 to the following two lemmas.
K

el zF .l/

D

zF .m/
em

D�1

D�1

ek zF .k/

K

D

K�m

K�m

zF .l/el zF .m/ek

K�k

D�1

K�k

D�1

zF .k/em

Figure 12: The sliding process for a decorated diagram .P; s/ , where we
set s.c1/D l; s.c2/Dm , and s.c3/D k for the upper, the middle, and the
lower crossings c1; c2; and c3; respectively. We work up to multiplication by
˙qj ;K2j .j 2 Z/ .

Lemma 4.4 For every diagram P of a bottom tangle K2BT1 with framing r.K/2Z,
let u.P / 2 Z�0 be the total number of the copies of E\ and E[ which are contained in
P . Then, the sum u.P /C r.K/ is even.

Proof Note that the parity of u.P /C r.K/ does not change by the Reidemeister
moves RI, RII, RIII, and crossing changes as depicted in Figure 13. Since P is equal
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RI RII RIII

crossing change

Figure 13: The Reidemeister moves RI, RII, RIII, and the crossing change

to the bottom tangle \ up to those moves, we have

u.P /C r.K/� u.\/C r.\/D 0 .mod 2/:

Let U 0
h

denote the QJhK–subalgebra of Uh generated by K;K�1 . Set

xU ev 0
q D xU ev

q \U 0
h ;

which is the ZŒq; q�1�–subalgebra of xU ev
q generated by K2;K�2 .

Lemma 4.5 We have

J.P; s/� 2 zDLk.T /. xU ev 0
q /˝n:

Proof For each i D 1; : : : ; n, we denote by �i the product of the K˙1 s on the copies
of E\ and E[ of Pi . We have

J.P; s/� DDLk.T /.�1˝ � � �˝ �n/

D zDLk.T /.K�m1;1�1˝ � � �˝K�mn;n�n/:

Since we have K�mi;i�i 2
xU ev 0

q by Lemma 4.4, the right hand side is contained in
zDLk.T /. xU ev 0

q /˝n . This completes the proof.

Lemma 4.6 For every i D 1; : : : ; n; we have

J.Pi ; s/
}
� 1:

If we assume Lemma 4.6, then Proposition 4.2 follows from

J.P; s/�J.P; s/�J.P; s/}J.P; s/ı

2 zDLk.T /. xU ev 0
q /˝n

�.U ev
Z;q/

˝n

� zDLk.T /.U ev
Z;q/

˝n;

by (26) and Lemma 4.5.
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Proof of Lemma 4.6. For a crossing c of .P; s/, we denote by Ec (resp. Fc ) the
white dot on the over (resp. under) strand labeled by es.c/ (resp. zF .s.c// ). We slide
those white dots to the start points of strands of P , and count the powers of K labeled
to the white diamonds on each strands.

Note that each time we exchange Ec with one of the two dots connected by dashed
line, labeled by D˙1 , a white diamond labeled by K�s.c/ appears next to the other
dot, see Figure 11 again. Similarly, if we exchange Fc with one of the two dots labeled
by D˙1 , then a white diamond labeled by K˙s.c/ appears next to the other dot.

Let pi.Ec/ denotes the number of times Ec traverses the strand Pi during the sliding
process. Define pi.Fc/ similarly. Then we have J.Pi ; s/

} DKdi , where

di �

X
c2C.P/

s.c/.pi.Ec/Cpi.Fc// .mod 2/:

Hence it is enough to prove that pi.Ec/C pi.Fc/ is even for each crossing c . We
prove the assertion with three types of crossings as follows.

(i) Self crossings of Pi

(ii) Crossings of Pj with Pl for j ¤ i; l ¤ i

(iii) Crossings of Pi with Pj for j ¤ i

Color black or white, in chessboard fashion, the regions of the complements of Pi in
the rectangle so that the outermost region is colored white. For example, see Figure 14.
Divide the strand Pi into two parts Bi and Wi , each consisting of segments bounded

i�1 i iC1

Figure 14: A diagram P D P1 [ : : :[ Pn colored by chessboard fashion
associated to Pi . We depict only the .i � 1/ , i , and .i C 1/th component.

by self crossing points or the boundary points of Pi ; such that if one goes along a
segment in Wi (resp. Bi ) to the start point of Pi ; then one sees a white (resp. black)
region on the left.

Note that the boundary points of the strand Pl , i ¤ l , are contained in the white region,
and those of Pi are contained in Wi .
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(i) For a self crossing c of Pi .
Note that when we trace along Pi from the end point to the start point, every
time we traverse the self crossing of Pi , Bi and Wi appear alternatingly. For
every self crossing c 2 Pi , both Ec and Fc are either in BP or in WP . Hence
if we slide Ec and Fc to the start point, then the parities of pi.Ec/ and pi.Fc/

are the same. Thus, pi.Ec/Cpi.Fc/ is even.

(ii) For a crossing c of Pj and Pl with j ¤ i; l ¤ i .
If the crossing c is in the white region, then both pi.Ec/ and pi.Fc/ are
even. If c is in the black region, then both pi.Ec/ and pi.Fc/ are odd. Hence
pi.Ec/Cpi.Fc/ is even in both cases.

(a) (b) (c) (d)

Wi Bi

Wi Bi

Figure 15: The four types of crossings

(iii) For a crossing c of Pi and Pj with j ¤ i .
See Figure 15. There are four types of crossings such that whether the white dot
on Pi is in Wi or in Bi , and whether the white dot on Pj is in the white region
or in the black region.
We assume Pi is the over strand, that is, Ec is attached on Pi . The other case
is almost the same. For .a/, since Ec starts and ends in Wi , pi.Ec/ is even.
Similarly, since Fc starts and ends in the white region, pi.Fc/ is even. Thus,
pi.Ec/Cpi.Fc/ is even. For the other three cases, in a similar way, we can prove
that the parities of pi.Ec/ and pi.Fc/ are the same. Hence pi.Ec/Cpi.Fc/

is even.

Therefore we have J.Pi ; s/
} � 1 for i D 1; : : : ; n, this completes the proof.

Remark 4.7 As defined in [4], let U ev
q � UZ;q denote the subalgebra of Uh freely

generated over ZŒq; q�1� by the elements zF .i/K2j ek for i; k � 0; j 2 Z. Note that
the right hand sides of (24) and (25) are in .U ev

q /
˝2 . This implies a result stronger than

Proposition 4.2 :

J.P; s/ 2 zDLk.T /.U ev
q /
˝n:
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This implies the following, which is proved by Habiro when Lk.T /D 0 in the other
way,

JT 2
zDLk.T /. zU ev

q /
z̋n;

where . zU ev
q /
z̋n is Habiro’s completion of .U ev

q /
˝n in [4].

4.5 The universal sl2 invariant of ribbon bottom tangles

Habiro [4] studied the universal sl2 invariant of 1–component ribbon bottom tangles.
We generalize those to n–component ribbon bottom tangles for n� 1.

For T 2BTiCjC2 , i; j �0, let .adb/i;j .T /2BTiCjC1 and .�b/.i;j/.T /2BTiCjC1

denote the bottom tangles as depicted in Figure 16. We use the following lemma.

T D

iC1 iC2

.adb/i;j .T /D

iC1

.�b/i;j .T /D

iC1

Figure 16: A bottom tangle T 2 BTiCjC2 and the bottom tangles
.adb/.i;j/.T / , .�b/.i;j/.T / 2 BTiCjC1 . We depict only the .iC1/th and
.iC2/th components of T , and the .iC1/th components of .adb/.i;j/.T / ,
.�b/.i;j/.T / .

Lemma 4.8 (Habiro [3]) For every bottom tangle T 2 BTiCjC2 , i; j � 0, we have

J.adb/i;j .T / D adi;j .JT /; J.�b/i;j .T / D �i;j .JT /;

where we set

adi;j D id˝i
˝ ad˝ id˝j

W U
y̋ iCjC2

h
! U

y̋ iCjC1

h
;

�i;j D id˝i
˝�˝ id˝j

W U
y̋ iCjC2

h
! U

y̋ iCjC1

h
:
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Here �W Uh y̋Uh! Uh is the multiplication of Uh .

For a 2k –component bottom tangle W DW1[ : : :[W2k 2 BT2k ; k � 0, set

W ev
D

k[
iD1

W2i 2 BTk and W odd
D

k[
iD1

W2i�1 2 BTk :

For a diagram P of W , let P ev (resp. P odd ) denote the part of the diagram P

corresponding to W ev (resp. W odd ). We say a bottom tangle W 2 BT2k is even-
trivial if W ev is a trivial bottom tangle. For example, see Figure 17. We also say a
diagram P of W is even-trivial if and only if P ev has no self crossings. Note that a
bottom tangle W has an even-trivial diagram if and only if W is even-trivial.

W D

Figure 17: An even-trivial bottom tangle W 2 BT6 . Here W ev is depicted
with thick lines.

The following lemma is almost the same as [3, Theorem 11.5].

Proposition 4.9 For any bottom tangle T 2 BTn , the following conditions are equiv-
alent.

(1) T is a ribbon bottom tangle.

(2) There is an even-trivial bottom tangle W 2 BT2k ; k � 0, and there are integers
N1; : : : ;Nn � 0 satisfying N1C � � �CNn D k , such that

T D �
ŒN1;:::;Nn�

b
ad˝k

b
.W /;(27)

where
ad˝k

b
W BT2k ! BTk

is as depicted in Figure 18, and

�
ŒN1;:::;Nn�

b
W BTN1C���CNn

! BTn

is as depicted in Figure 19.
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If (27) holds, then we call .W IN1; : : : ;Nn/ a ribbon data for T . For example,
the ribbon bottom tangle �Œ1;2;0�.adb/

˝3.W / 2 BT3 with the ribbon data .W 2

BT3I 1; 2; 0/, where W is the bottom tangle in Figure 17, is as depicted in Figure 20.

Proof of Proposition 4.9 In view of Proposition 2.2, the proof is almost the same as
that of [3, Theorem 11.5].

T D

2k

� � � ad˝k
b
.T /D � � �

� � �

k

Figure 18: A bottom tangle T 2 BT2k and the bottom tangle ad˝k
b
.T / 2 BTk

T D

N1; : : : ; Nn

� � �
� � � � � � �

ŒN1;:::;Nn�

b
.T /D � � �

� � �

� � �
� � �

� � �

n

Figure 19: A bottom tangle T 2 BTk and the bottom tangle �ŒN1;:::;Nn�

b
.T / 2 BTn

�Œ1;2;0�.adb/
˝3.W /D

Figure 20: The ribbon bottom tangle �Œ1;2;0�.adb/
˝3.W / 2 BT3 for the

even-trivial bottom tangle W 2 BT3 in Figure 17

For n� 1, let

�Œn�W U
y̋n

h
! Uh; x1˝ � � �˝xn 7! x1x2 : : :xn
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denote the n–input multiplication. For integers N1; : : : ;Nn � 0, N1C � � �CNn D k ,
set

�ŒN1;:::;Nn� D �ŒN1�˝ � � �˝�ŒNn�W U
y̋k

h
! U

y̋n
h
:

Proposition 4.10 Let T 2 BTn be a ribbon bottom tangle with ribbon data .W 2

BT2k IN1; : : : ;Nn/. Then we have

JT D �
ŒN1;:::;Nn� ad˝k.JW /;

where ad˝k
W U
y̋2k

h
! U

y̋k
h

is the k –fold tensor power of the adjoint action.

Proof By Lemma 4.8, we have

Jad˝k

b
.T /
D ad˝k.JT /;

for T 2 BT2k , and

J
�

ŒN1;:::;Nn�

b
.T /
D �ŒN1;:::;Nn�.JT /;

for T 2 BTk . This implies the assertion.

5 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let T 2BTn , n� 0, be a ribbon bottom tangle,
and .W 2BT2k IN1; : : : ;Nn/, k � 0, a ribbon data for T . Let PW be an even-trivial
diagram of W , and s 2 S.PW / a state. We use this setting throughout this section.
The proof of Theorem 1.2 is outlined as follows.

First, we prove the following proposition.

Proposition 5.1 We have

J.PW ; s/ 2 zD
Lk.T /.U ev

Z;q˝
xU ev

q /
˝k :

Then we consider the contribution of zDLk.T / to the adjoint action, and we construct
an element zJ .PW ; s/ 2 .U

ev
Z;q˝

xU ev
q /
˝k such that

ad˝k.J.PW ; s//D ad˝k. zJ .PW ; s//:(28)
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Thus, by Proposition 3.2, we have

ad˝k.J.PW ; s// 2 . xU
ev
q /
˝k :(29)

Finally, we define a completion . xU ev
q /y

y̋k of . xU ev
q /
˝k and prove Theorem 1.2, that is,

we prove

JT D �
ŒN1;:::;Nn�

X
s2S.PW /

ad˝k.J.PW ; s// 2 . xU
ev
q /y

y̋n:

5.1 Proof of Proposition 5.1

We modify the proof of Proposition 4.2. The key to the proof is the fact

KmRC
mŒ1�
˝RC

mŒ2�
;R�mŒ1�˝KmR�mŒ2� 2 .U

ev
Z;q˝

xU ev
q /\ .

xU ev
q ˝U ev

Z;q/;

which follows from (24) and (25). Since PW is even-trivial, the set C.PW / of the
crossings of PW is the disjoint union of two subsets

C eo
D fcrossings of P ev

W with P odd
W g and C oo

D fcrossings of P odd
W with P odd

W g:

Thus, on the decorated diagram .PW ; s/, we can assume that the element attached to
the white dot on P ev

W
(resp. P odd

W
) is contained in xU ev

q (resp. U ev
Z;q ). For example, we

attach elements to positive crossings as depicted in Figure 21. Then for the decorated
diagram .PW ; s/

ı , we have

J.PW ; s/
ı
2 .U ev

Z;q˝
xU ev

q /
˝k :(30)

The rest is analogous to the proof of Proposition 4.2.

P ev
W P odd

W

zF .m/

em
D

P odd
W

P ev
W

f m

zE.m/
D

P odd
W

P odd
W

zF .m/

em
D

Figure 21: The three types of positive crossings. We work up to multiplication
by ˙qj ;K2j .j 2 Z/ .
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5.2 The element zJ .PW ; s/

In this subsection, we construct the element zJ .PW ; s/ 2 .U
ev
Z;q˝

xU ev
q /
˝k satisfying

(28).

Lemma 5.2 For homogeneous elements x;y 2 Uh , we have

(i)
P
.D˙

Œ1�
Fx/˝D˙

Œ2�
D x˝K˙jxj;

(ii)
P
.D˙

Œ1�
Fx/˝ .D˙

Œ2�
Fy/D q˙jxjjyjx˝y; and

(iii) .vH 2=2K/˙1 Fx D q˙jxj.jxjC1/x .

Proof We prove the formulas for the positive signs. Then the other cases are similar.
By the formulas (3)–(5), we have

(i)
P
.DC

Œ1�
Fx/˝DC

Œ2�
D
P
.DC

Œ1�
xD�

Œ1�
/˝ .DC

Œ2�
D�
Œ2�
/D x˝Kjxj .

Using (i), we obtain

(ii)
P
.DC

Œ1�
Fx/˝ .DC

Œ2�
Fy/D

P
x˝ .Kjxj Fy/D qjxjjyjx˝y , and

(iii) .vH 2=2K/F x D
P
.DC

Œ1�
DC
Œ2�

K/F x D qjxj.DC
Œ1�

DC
Œ2�
F x/D qjxj.Kjxj F x/D

qjxj.jxjC1/x:

Lemma 5.3 For k � 0, let M D .mi;j /1�i;j�2k be a symmetric integer matrix of
size 2k , satisfying m2i;2j D 0 for 1� i; j � k . Let X D x1˝ � � �˝x2k 2 U˝2k

h
be

the tensor product of homogeneous elements x1; : : : ;x2k 2 Uh . We have

ad˝k. zDM X /D qN.M;X / ad˝k
�
.1˝K2a1.M;X /

˝ � � �˝ 1˝K2am.M;X //X
�
;

where if we set Xi D x2i�1 Fx2i , then

ai.M;X /D
X

1�j�k

m2i;2j�1jXj j;

N.M;X /D
X

1�i<j�k

2m2i�1;2j�1jXi jjXj jC

X
1�i�k

m2i�1;2i�1jXi j.jXi jC 1/:

Here jXi j D jx2i�1jC jx2i j is the degree of Xi defined in Section 3.
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Proof We use induction on
P

1�i;j�2k jmij j. If
P

1�i;j�2k jmij jD0, that is, M D0,
then the claim is clear. Let us assume M ¤ 0. Then there is a matrix M 0 satisfying
the assertion, and either

M DM 0
˙ .12i;2j�1C 12j�1;2i/; for 1� i ¤ j � k; or

M DM 0
˙ .12i�1;2j�1C 12j�1;2i�1/; for 1� i ¤ j � k; or

M DM 0
˙ 12i�1;2i�1; for 1� i � k;

where 1i;j is the matrix of size 2k such that the .i; j /–component is 1 and the others
are 0. Note that

zDM 0˙.1i;jC1j ;i / D zDM 0D˙2
i;j ; for 1� i ¤ j � 2k; and

zDM 0˙1i i D zDM 0.vH 2=2K/˙1
i ; for 1� i � 2k:

Then the following formulas using Lemma 5.2 imply the assertion.

ad˝k
�
D˙1

2i;2j�1X
�
DX1˝� � �˝

�
x2i�1 FD˙Œ1�x2i

�
˝� � �˝

�
D˙Œ2� FXj

�
˝� � �˝Xk

DX1˝� � �˝
�
x2i�1 FK˙jXj jx2i

�
˝� � �˝Xj˝� � �˝Xk ;

ad˝k
�
D˙1

2i;2i�1X
�
DX1˝� � �˝

�
D˙Œ2�x2i�1 FD˙Œ1�x2i

�
˝� � �˝ � � � ˝Xk

DX1˝� � �˝
�
x2i�1 FK˙jXi jx2i

�
˝� � �˝Xj˝� � �˝Xk ;

ad˝k
�
D˙1

2i�1;2j�1X
�
DX1˝� � �˝

�
D˙Œ1� FXi

�
˝� � �˝

�
D˙Œ2� FXj

�
˝� � �˝Xk

D q˙jXi jjXj jX1˝� � �˝Xi˝� � �˝Xj˝� � �˝Xk ;

ad˝k
��
vH 2=2K

�˙1

2i�1
X
�
DX1˝� � �˝

��
vH 2=2K

�˙1
FXi

�
˝� � �˝Xk

D q˙jXi j

�
jXi jC1

�
X1˝� � �˝Xi˝� � �˝Xk ;

for 1� i ¤ j � k .

By Proposition 5.1, we have

X WD . zDLk.W //�1J.PW ; s/ 2 .U
ev
Z;q˝

xU ev
q /
˝k :

Since the linking matrix Lk.W / of W satisfies the assumption of Lemma 5.3, we
obtain the element zJ .PW ; s/ 2 .U

ev
Z;q˝

xU ev
q /
˝k satisfying (28), such that

zJ .PW ; s/D qN .1˝K2a1 ˝ � � �˝ 1˝K2ak /X;

where we set

N DN.Lk.W /;X /; and ai D ai.Lk.W /;X /;

for i D 1; : : : ; k , as in Lemma 5.3.
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5.3 Filtrations of xU ev
q

In this subsection, we define two filtrations fApgp�0 and fCpgp�0 of xU ev
q , which are

cofinal with each other. We give four equivalent definitions for fApgp�0 , and two for
fCpgp�0 .

For a subset X � xU ev
q , let hX iideal denote the two-sided ideal of xU ev

q generated by X .
For p � 0, set

Ap D hUZ;q F ep
iideal; A0p D hUZ;q Ff

p
iideal;

Bp D hK
p.UZ;q FK�pep/iideal; B0p D hK

p.UZ;q Ff
pK�p/iideal;

Cp D

DX
p0�p

.UZ;q
zE.p0/

F xU ev
q

�E
ideal

; C 0p D
DX
p0�p

.UZ;q
zF .p
0/
F xU ev

q

�E
ideal

:

Proposition 5.4 (i) fApgp�0 is a decreasing filtration.

(ii) For p � 0, we have

Ap DA0p D Bp D B0p:

Proof (i) In view of Proposition 3.2, the assertion follows from

ApC1 D h.UZ;q F e/.UZ;q F ep/iideal �Ap;

for p � 0:

(ii) By the formulas

f pK�p
D .�1/pq�p2

zF .2p/
FK�pep

2 UZ;q FK�pep;(31)

K�pep
D .�1/pqp2

zE.2p/
Ff pK�p

2 UZ;q Ff
pK�p;(32)

we have Bp DB0p . We prove Ap DBp , then A0p DB0p is similar. By Proposition 3.2,
we have

Kp.UZ;q FK�pep/�Kp.UZ;q FK�p/ � .UZ;q F ep/

� xU ev
q .UZ;q F ep/�Ap:

Hence we have Bp �Ap . Conversely, we have

UZ;q F ep
D UZ;q FKpK�pep

� .UZ;q FKp/ � .UZ;q FK�pep/

� xU ev
q Kp.UZ;q FK�pep/� Bp:

Hence we have Ap � Bp , this completes the proof.
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Proposition 5.5 (i) For p � 0, we have Cp D C 0p:

(ii) For p � 0, we have C2p �Ap .

(iii) If p � 0 is even, then we have C2p DAp .

Proof

(i) We prove Cp � C 0p , then Cp � C 0p is similar. Using the formula

zE.2p/
F zF .p/K�p

D .�1/pq�
1
2

p.pC1/K�p zE.p/;

we have

UZ;q
zE.p/
� UZ;q

�
zE.2p/

F zF .p/K�p
�

� UZ;q
zF .p/UZ;q:

Hence we have

UZ;q
zE.p/
F xU ev

q � UZ;q
zF .p/UZ;q F

xU ev
q

� UZ;q
zF .p/ F xU ev

q :

This completes the proof.

(ii) In view of Lemma 3.1, it is enough to prove that

zE.p0/
Ff i1K2i2ei3 �Ap;

for p0 � 2p: If i1 � p0 � p , then the assertion follows from

UZ;q Ff
i1K2i2ei3 � .UZ;q Ff

i1/ xU ev
q �A0p DAp:

If i1 < p0 , then we have

zE.p0/
Ff i1K2i2ei3 2 hUZ;q Ff

i1iideal\ he
i3Cp0�i1iideal;

�A0i1
\Ai3Cp0�i1

�Amaxfi1;i3Cp0�i1g
;

where the 2 follows from the formula (21), and the last � follows from Proposition
5.4. Hence the assertion follows from

maxfi1; i3Cp0� i1g �
1
2
.i3Cp0/� p:

(iii) If p � 0 is even, then we have

Kp.UZ;q FK�pep/D .�1/pqp2

Kp.UZ;q F . zE
.2p/
Ff pK�p//

� hUZ;q
zE.2p/

F xU ev
q iideal � C2p;
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from (31). Hence we have C2p � Bp.DAp/, this completes the proof.

Corollary 5.6 For p � 0, we have

C2p � hpUh:

Proof Since ep � hpUh , we have C2p �Ap � hpUh by Proposition 5.5.

5.4 The completion . xU ev
q /y

y̋n of . xU ev
q /˝n

In this subsection we define the completion . xU ev
q /y

y̋n of . xU ev
q /
˝n , and prove Theorem

1.2. Let . xU ev
q /ydenote the completion in Uh of xU ev

q with respect to the decreasing
filtration fCpgp�0 , that is, . xU ev

q /y is the image of the homomorphism

lim
 �
p

�
xU ev

q =Cp

�
! Uh

induced by the inclusion xU ev
q � Uh , which is well defined since C2p � hpUh for

p � 0. For n� 1, we define a filtration fC .n/
p gp�0 for . xU ev

q /
˝n by

C .n/
p D

nX
jD1

xU ev
q ˝ � � �˝

xU ev
q ˝Cp˝

xU ev
q ˝ � � �˝

xU ev
q ;

where Cp is at the j th position. Define the completion . xU ev
q /y

y̋n of . xU ev
q /
˝n as the

image of the homomorphism

lim
 �
p

�
. xU ev

q /
˝n=C .n/

p

�
! U

y̋n
h
:

For nD 0, it is natural to set

C .0/
p D

(
ZŒq; q�1� if p D 0;

0 otherwise:

Thus, we have

. xU ev
q /y

y̋0
D ZŒq; q�1�:

Recall the setting mentioned at the beginning of this section. For i D 1; : : : ; 2k; let Pi

denote the part of PW corresponding to the i th component of W DW1[ : : :[W2k ,
and C.Pi/ the set of the crossings on the component Pi . For p � 0, we denote by
Ip the two-sided ideal of UZ;q generated by zE.p/; zF .p/ 2 UZ;q . For s 2 S.PW /, set
jsji Dmaxfs.c/ j c 2 C.Pi/g.
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Lemma 5.7 For each s 2 S.PW /, there are elements w2i�1 2 U ev
Z;q \ Ijsj2i�1

and
w2i 2

xU ev
q \ Ijsj2i

for i D 1; : : : k , such that

zJ .PW ; s/D w1˝ � � �˝w2k :

Proof Let .Pi ; s/
ı denote the decorated diagram with Pi and white dots of .PW ; s/

ı

on Pi (see Definition 4.3 for the definition of .PW ; s/
ı ). Recall that one of the elements

zE.s.c// , zF .s.c// , es.c/ , f s.c/ is labeled on a white dot on a crossings c of the decorated
diagram .PW ; s/

ı . Since each of those elements is contained in Is.c/ , we have

J.Pi ; s/
ı
2 Ijsji :

Note that

zJ .PW ; s/� . zD
Lk.W //�1J.PW ; s/� J.P1; s/

ı
˝ � � �˝J.P2k ; s/

ı;

where � means equality up to multiplication by ˙qj ;K2j .j 2 Z/ on any tensorands.
This and Proposition 5.1 complete the proof.

Proof of Theorem 1.2. Let jsj Dmaxfs.c/ j c 2C.PW /g denote the maximal integer
of the image of s . Since every crossing of PW has at least one strand in P odd

W
, we

can assume s.c/D jsj for a crossing c that has a strand of P2j�1 , 1� j � k . Take
elements w2i�1 2 U ev

Z;q \ Ijsj2i�1
and w2i 2

xU ev
q \ Ijsj2i

, i D 1; : : : ; k , as in Lemma
5.7. We have

w2j�1 2 Ijsj:

Since Ijsj F xU ev
q � Cjsj , we have

w2j�1 Fw2j 2 Cjsj:

In view of Proposition 3.2, we have

ad˝k. zJ .PW ; s//D ad˝k.w1˝ � � �˝w2k/ 2 C
.k/

jsj
:

Thus by Proposition 4.10, we have

JT D �
ŒN1;:::;Nn� ad˝k.JW /

D

X
l�0

X
s2S.PW /;jsjDl

�ŒN1;:::;Nn� ad˝k. zJ .PW ; s// 2 . xU
ev
q /y

y̋n:

This completes the proof.
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Remark 5.8 Recall from [4] the ZŒq; q�1�–subalgebra . xU ev
q /z

z̋n of U
y̋n

h
. We can

prove the inclusion . xU ev
q /y

y̋n
� . xU ev

q /z
z̋n as follows. We have only to prove C2p �

Fp.U ev
q /; for p � 0; where Fp.U ev

q / denotes the two-sided ideal of U ev
q generated by

ep . In view of Proposition 5.5, we have only to prove Ap � Fp.U ev
q /. Set�

HCi
p

�
q
D fH C igq;p=fpgq!;

for i 2 Z, p � 0. One can show that

U ev
Z;q D

M
i;j�0

zF .i/U ev 0
Z;q
zE.j/;

where U ev 0
Z;q is the ZŒq; q�1�–subalgebra of U ev

Z;q generated by K2 , K�2 and
�

HCi
p

�
q

for i 2Z, p � 0 (This fact is a variant of a well known fact on Lusztig’s integral form
UZ [8].) Thus it is enough to prove that

zF .i/g zE.j/
F ep
� Fp.U ev

q /;

for i; j � 0 and g 2 U ev 0
Z;q . For a homogeneous element x 2 Uh , we have

K Fx D qjxjx and
�

HCk
l

�
q
Fx D

�
2jxjCk

l

�
q
x;

for k 2 Z; l � 0. Hence we have

U ev 0
Z;q Fx � ZŒq; q�1�x:

Then the claim follows from

zE.j/
F ep
D .�1/j

�
jCp�1

j

�
q
epCj ;

zF .i/ F epCj
D

iX
kD0

.�1/kq�
1
2

k.k�1/Ck.pCj/ zF .i�k/epCj zF .k/ � Fp.U ev
q /:

6 Examples

The Borromean tangle B 2 BT3 is the bottom tangle depicted in Figure 22. Note that
B is a 3–component, algebraically-split, 0–framed bottom tangle, and the closure of
B is the Borromean rings LB . It is well known that LB is not a ribbon link. In [4],
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Figure 22: The Borromean tangle B 2 BT3

the following formula of the universal sl2 invariant of B is observed.

(33) JB D

X
m1;m2;m3;

n1;n2;n3�0

qm3Cn3.�1/n1Cn2Cn3q
P3

iD1

�
� 1

2
mi .miC1/�niCmi miC1�2mi ni�1

�
zF .n3/em1 zF .m3/en1K�2m2 ˝ zF .n1/em2 zF .m1/en2K�2m3

˝ zF .n2/em3 zF .m2/en3K�2m1 62 . xU ev
q /y

y̋3;

where the index i should be considered modulo 3. The following is also observed in
[4].

J
LBI zP

0
i
; zP 0

j
; zP 0

k

D

(
.�1/iq�i.3i�1/f2i C 1gq;iC1=f1gq if i D j D k;

0 otherwise.
(34)

Since f2iC1gq;iC1

f1gq
62
f2iC1gq;iC1

f1gq
IiIi for i � 1, each of (33) and (34) implies that the

Borromean rings LB is not a ribbon link.

Remark 6.1 Let LK be the 2–component link obtained from a knot K by duplicating
the component. Indeed, LK is a boundary link. In particular, if K is a ribbon knot,
then LK is a ribbon link. We can prove

J
LK I zP

0
m; zP

0
n
2
f2mC1gq;mC1

f1gq
In

as follows. By the formulas in [4, Section 8], we have

zP 0m
zP 0n D

min.m;n/X
kD0

q�kl fmCngq !

fkgq !fm�kgq !fn�kgq !
zP 0l D

min.m;n/X
kD0

q�l.kClC1/Ck;m;n.q/P
00
l ;
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where l DmC n� k , P 00
l
D

f1gq
f2lC1gq;lC1

ql.lC1/ zP 0
l
, and

Ck;m;n.q/D
f2mC1gq;mC1

f1gq
fkgq!fn� kgq!

�
2lC1
2mC1

�
q

�
2.n�k/

n�k

�
q

�
mCn

k

�
q

�
m
k

�
q

2
f2mC1gq;mC1

f1gq
In:

[4, Theorem 6.4] implies that JK IP 00
l
2 ZŒq; q�1� for l � 0, hence we have

J
LK I zP

0
m; zP

0
n
D J

K I zP 0m� zP
0
n
D

min.m;n/X
kD0

q�l.kClC1/Ck;m;n.q/JK IP 00
l
2
f2mC1gq;mC1

f1gq
In:
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