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Yang–Mills theory over surfaces
and the Atiyah–Segal theorem

DANIEL A RAMRAS

In this paper we explain how Morse theory for the Yang–Mills functional can be used
to prove an analogue for surface groups of the Atiyah–Segal theorem. Classically, the
Atiyah–Segal theorem relates the representation ring R.�/ of a compact Lie group �
to the complex K–theory of the classifying space B� . For infinite discrete groups, it
is necessary to take into account deformations of representations, and with this in mind
we replace the representation ring by Carlsson’s deformation K–theory spectrum
Kdef.�/ (the homotopy-theoretical analogue of R.�/). Our main theorem provides
an isomorphism in homotopy Kdef

� .�1†/ Š K��.†/ for all compact, aspherical
surfaces † and all � > 0 . Combining this result with work of Tyler Lawson, we
obtain homotopy theoretical information about the stable moduli space of flat unitary
connections over surfaces.

55N15, 58E15; 58D27, 19L41

1 Introduction

In this paper we present evidence of two newly emerging phenomena involving the
representation spaces Hom.�;U.n//, for finitely generated discrete groups � admitting
compact classifying spaces. The first phenomenon is akin to the classical Atiyah–Segal
theorem and relates Carlsson’s deformation K–theory spectrum Kdef.�/ (an object
built from the representation spaces) to the topological K–theory of the classifying
space B� . Second is that in dimensions higher than the cohomological dimension
of � , the homotopy groups of the coarse moduli space Mn.�/DHom.�;U.n//=U.n/

appear to vanish after an appropriate stabilization. In some cases, including the surface
groups considered here, this stabilization simply amounts to forming the colimit

M.�/D colim
n!1

Mn.�/D Hom.�;U /=U:

If � is the fundamental group of a compact manifold M , this space may also be
viewed as the stable moduli space of flat connections (or Hermitian bundles) over M .

The link between these phenomena is provided by recent work of Tyler Lawson [32;
33], which shows that M.�/ is closely related to the cofiber of the Bott map in
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deformation K–theory (see Section 6). Lawson applied his theorems to prove that
for finitely generated free groups Fk , one has a weak equivalence (of ku–algebras)
Kdef.Fk/ ' Map.BFk ;ku/, and that the stable moduli space M.Fk/ D U k=U is
homotopy equivalent to the torus .S1/k . Lawson’s work also provides analogous
statements for free abelian groups (note though that M.Zk/ may be computed by
hand, using the fact that commuting matrices are simultaneously diagonalizable). In
this paper we use Morse theory for the Yang–Mills functional to prove:

Theorem 5.1 Let M be a compact, aspherical surface. Then for �> 0,

Kdef
� .�1.M //ŠK��.M /:

Bott periodicity provides an isomorphism K��.X /ŠK�.X / for any space X , but the
isomorphism constructed in this paper more naturally lands in ��Map.M;Z�BU /D

K��.M /. This result yields a complete computation of Kdef
� .�1M / (Corollary 5.2).

The isomorphism is natural for smooth maps between surfaces, and is in particular
equivariant with respect to the mapping class group of the surface. For nonorientable
surfaces, there is actually an isomorphism on �0 as well; this is just a reinterpretation
of the results of Ho and Liu [24; 26]. When M D S1�S1 , Theorem 5.1 follows from
T Lawson’s product formula Kdef.�1 ��2/'Kdef.�1/^ku Kdef.�2/ [32] together
with his calculation of Kdef.Z/ as a ku–module [33]. As we will explain, Theorem 5.1
provides evidence that the homotopy groups of M.�1†/ vanish above dimension 2 in
the orientable case and above dimension 1 in the nonorientable case; it also allows us
to compute the nonzero groups (Corollary 6.5 and Proposition 6.6).

Theorem 5.1 is closely related to the classical theorem of Atiyah and Segal [5; 7]. For
a compact Lie group G , the topological K–theory of the infinite complex B� is the
limit of the K–theories of the skeleta B�.n/ , and hence has the structure of a complete
ring (this follows most readily from a lim1 calculation). The Atiyah–Segal theorem
states that this ring is isomorphic to the completion of the representation ring R.�/ at
its augmentation ideal (the virtual representations of virtual dimension zero).

For groups � with B� compact, K�.B�/ is no longer complete and one might hope
to relate K.B�/ directly to R.�/. Deformation K–theory may be viewed as the direct
homotopical analogue of R.�/ (see Section 2.1), so Theorem 5.1 should be viewed
as a direct homotopical analogue of the Atiyah–Segal theorem. This suggests that
deformation K–theory is the proper setting in which to study Atiyah–Segal phenomena
for groups with compact classifying spaces, and we expect that for many such groups
� , the deformation K–groups of � will agree with K��.B�/ for � greater than
the cohomological dimension of � minus one. The author’s excision result for free
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products [44] and Lawson’s product formula [32] indicate that this phenomenon should
be stable under both free and direct products of discrete groups. In particular, an Atiyah–
Segal theorem for free products of surface groups follows immediately from Theorem
5.1 together with the main result from [44] (or can be deduced from the proof of
Theorem 5.1). The extent of this relationship is at yet unclear. In all known examples,
deformation K–theory eventually becomes 2–periodic, but there are examples in
which these periodic groups fail to agree with K–theory of the classifying space (see
Section 2.1).

Extensions and analogues of the Atiyah–Segal theorem (or more generally, the relation
between representations and K–theory) have been studied extensively. For infinite
discrete groups � satisfying appropriate finiteness conditions, Adem [3] and Lück [34]
have studied the relationship between the K–theory of the classifying space B� and
the representation rings of the finite subgroups of � . Lück and Oliver [35] considered
the case of an infinite discrete group � acting properly, ie with finite stabilizers,
on a space X . They showed that the � –equivariant K–theory of X , completed
appropriately, agrees with the topological K–theory of the homotopy orbit space
E� �� X . When X is a point, properness forces � to be finite, and the Lück–Oliver
theorem reduces to the Atiyah–Segal theorem. For finite groups � , Chris Dwyer has
recently established a twisted version of the classical Atiyah–Segal theorem, relating
twisted K–theory of B� to the completion of a twisted version of R.�/. Deformation
K–theory should also prove useful in studying Atiyah–Segal phenomena for groups with
noncompact classifying spaces, and in this context, Carlsson’s derived completion [10]
should play the role of the completed representation ring. This approach should lead
to a spectrum-level version of the Atiyah–Segal theorem itself, and may also yield
spectrum-level versions of these various extensions.

In a different direction, the Baum–Connes conjecture relates an analytical version of
the representation ring of a group � (namely the reduced C �–algebra of � ) to the
equivariant K–homology of the classifying space for proper actions. It is interesting to
note that for a nonorientable surface †, deformation K–theory recovers the topological
K–theory of †, whereas the K–theory of C �red.�/ is the K–homology of B� . A
direct relationship between deformation K–theory and the C �–algebras, at least for
groups with no torsion in their (co)homology, would be extremely interesting.

The failure of Theorem 5.1 in degree zero (and the failure in higher degrees for
tori [32]) is an important feature of deformation K–theory, and reflects its close ties to
the topology of representation spaces. While K–theory is a stable homotopy invariant
of G (ie depends only on the stable homotopy type of BG ), the representation spaces
carry a great deal more information about the group G , and some of this information is
captured by the low-dimensional deformation K–groups. Hence deformation K–theory
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should be viewed as a subtler invariant of G , and its relationship to the topological
K–theory of BG should be viewed as an important computational tool.

As an application of Theorem 5.1 (and a justification of the preceding paragraph),
we obtain homotopy-theoretical information about the stable moduli space M.�1M /

of flat unitary connections over a compact, aspherical surface M . Ho and Liu [27;
25] computed the components of this moduli space before stabilization (for general
structure groups). In Section 6, we combine our work with T Lawson’s results on the
Bott map in deformation K–theory [33] to study these moduli spaces after stabilizing
with respect to the rank. In particular, we prove:

Corollary 1.1 Let M be a compact, aspherical surface. Then the fundamental group
of the stable moduli space M.�1M / is isomorphic to K�1.†/ŠKdef

1
.�1†/, and if

M is orientable then �2M.�1M /Š Z.

Lawson’s results naturally lead to a conjectural description of the homotopy type of
M.�1M / (for a compact, aspherical surfaces M ) . For an orientable surface M g ,
we expect that M.�1M g/' Sym1.M g/; for a nonorientable surface † we expect a
homotopy equivalence M.�1†/' .S

1/k
`
.S1/k , where k is the rank H 1.†IZ/.

Theorem 5.1 relies on Morse theory for the Yang–Mills functional, as developed by
Atiyah and Bott [6], Daskalopoulos [11] and Råde [42]; the key analytical input comes
from Uhlenbeck’s compactness theorem [50; 51]. The nonorientable case uses recent
work of Ho and Liu [27; 26] regarding representation spaces and Yang–Mills theory for
nonorientable surfaces. Deformation K–theory and Yang–Mills theory are connected
by the well-known fact that representations of the fundamental group induce flat
connections, which form a critical set for the Yang–Mills functional. In Section 3.1, we
motivate our arguments by giving a proof along these lines that Kdef

� .Z/ŠK��.S1/.

This paper is organized as follows. In Section 2, we introduce and motivate deformation
K–theory and explain how the McDuff–Segal group completion theorem provides a
convenient model for the zeroth space of the �–spectrum Kdef.�1M /. In Section 3,
we discuss the precise relationship between representation varieties and spaces of flat
connections. In Section 4 we discuss the Harder–Narasimhan stratification on the
space of holomorphic structures and its relation to Morse theory for the Yang–Mills
functional. The main theorem is proven in Section 5, using the results of Sections 2,
3 and 4. Section 6 discusses T Lawson’s work on the Bott map and its implications
for the stable moduli space of flat connections. In Section 7, we explain how the
failure of Theorem 5.1 in degree zero leads to a failure of excision for connected sum
decompositions of Riemann surfaces. Finally, we have included an appendix, Section 8,
discussing the holonomy representation associated to a flat connection.
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2 Deformation K –theory

In this section, we motivate and introduce Carlsson’s notion of deformation K–
theory [9] and discuss its basic properties. Deformation K–theory is a contravariant
functor from discrete groups to spectra, and is meant to capture homotopy-theoretical
information about the representation spaces of the group in question. As first observed
by T. Lawson [31], this spectrum may be constructed as the K–theory spectrum
associated to a topological permutative category of representations (for details see [44,
Section 2]). Here we will take a more naive, but essentially equivalent, approach. The
present viewpoint makes clear the precise analogy between deformation K–theory and
the classical representation ring.

2.1 Deformations of representations and the Atiyah–Segal theorem

Associated to any group � , one has the (unitary) representation ring R.�/, which
consists of “virtual isomorphism classes” of representations. Each representation
�W �!U.n/ induces a vector bundle E�DE���Cn (where � acts on E� by deck
transformations and on Cn via the representation �) over the classifying space B� ,
and this provides a map ˛W R.�/!K0.B�/. When � is a compact Lie group, the
Atiyah–Segal theorem states that ˛ becomes an isomorphism after completing R.�/

at its augmentation ideal.

Now consider the simplest infinite discrete group, namely �DZ. Representations of Z
are simply unitary matrices, and isomorphism classes of representations are conjugacy
classes in U.n/. By the spectral theorem, these conjugacy classes correspond to points
in the symmetric product Symn.S1/, and the natural map

`
n Symn.S1/!R.Z/ is

injective. So the discrete representation ring of Z is quite large, and bears little relation
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to K–theory of BZ D S1 : every complex vector bundle over S1 is trivial, and so
K0.S1/ is just the integers.

In this setting, deformations of representations play an important role. A deformation of
a representation �0W �! U.n/ is simply a representation �1 and a continuous path of
representations �t connecting �0 to �1 . The path �t now induces a bundle homotopy
E�t

between E�0
and E�1

. Hence the bundle associated to �0 is isomorphic to the
bundle associated to each of its deformations, and the map from representations to
K–theory factors through deformation classes.1 Returning to the example � D Z, we
observe that since U.n/ is path connected, the natural map from deformation classes
of representations to K–theory of BZ group completes to an isomorphism.

With this situation understood, one is inclined to look for an analogue of the rep-
resentation ring which captures deformations of representations, ie the topology of
representation spaces. The most naive approach fails rather badly: the monoid of
deformation classes

`
n �0Hom.�;U.n// admits a well-defined map to K0.B�/, but

(despite the case � D Z) this map does not usually group-complete to an isomor-
phism: the representation spaces Hom.�;U.n// are compact CW–complexes, so have
finitely many components, but there can be infinitely many isomorphism types of
n–dimensional bundles over B� . In the case of Riemann surfaces (ie complex curves)
†, the spaces Hom.�1†;U.n// are always connected (see discussion at the end of
Section 2.3), so the monoid of deformation classes is just N and its group completion is
Z; on the other hand bundles over a Riemann surface are determined by their dimension
and first Chern class (and all Chern classes are realized) so K0.†/D Z˚Z. Note
here that †D B.�1†/ except in the case of the Riemann sphere.

The deformation-theoretical approach is not doomed to failure, though. Let Rep.�/
denote the topological monoid of unitary representation spaces, and let Gr denote the
Grothendieck group functor. Carlsson’s deformation K–theory spectrum Kdef.�/ [9]
is a lifting of the functor Gr .�0Rep.�// to the category of spectra, or in fact, ku–
algebras, in the sense that

�0Kdef.�/Š Gr .�0Rep.�// :

The isomorphism Kdef
� .�1.M //ŠK��.M / for �> 0 in Theorem 5.1 may be seen as

a correction to the fact that Gr .�0Rep.�1†// �!K0.†/ fails to be an isomorphism
when † is a compact, aspherical Riemann surface.

1 For finite groups, this discussion is moot: any deformation of a representation � is actually isomorphic
to � , because the trace of a representation gives a continuous, complete invariant of the isomorphism type,
and on representations of a fixed dimension, the trace takes on only finitely many values. Hence when G

is finite, deformations are already taken into account by the construction of R.G/ .
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We conclude this section by noting two cases in which deformation K–theory fails
to agree with topological K–theory, even in high dimensions. Lawson showed [32,
Example 34] that the deformation K–theory of the integral Heisenberg group H 3 ,
whose classifying space is a 3–manifold, is 2–periodic starting in dimension 1. However,
its homotopy groups are infinitely generated. As pointed out to me by Ian Leary, there
also exist groups � which have no finite dimensional unitary representations, but do
have nontrivial K–theory. Leary’s examples arise from Higman’s group [21]

H D ha; b; c; d j ab
D a2; bc

D b2; cd
D c2; da

D d2
i;

which has no finite quotients, and hence no finite-dimensional unitary representa-
tions (a representation would give a linear quotient, and by a well-known theorem
of Malcev, finitely generated linear groups are residually finite). Now, Higman’s
group has the (co)homology of a point,2 so can now build a Kan–Thurston group for
S2 by amalgamating two copies of H along the infinite cyclic subgroups generated,
say, by a 2 H . The resulting group G still admits no unitary representations but
now has the integral (co)homology, hence the K–theory, of a 2–sphere. In this case
Kdef.G/DKdef.f1g/D ku.

2.2 The construction of deformation K–theory

For the rest of this section, we fix a discrete group � . The construction of the (unitary)
representation ring R.�/ may be broken down into several steps: one begins with
the sets Hom.�;U.n//, which form a monoid under direct sum; next, one takes
isomorphism classes by modding out the actions of the groups U.n/ on the sets
Hom.�;U.n//. The monoid structure descends to the quotient, and in fact tensor
product now induces the structure of a semiring. Finally, we form the Grothendieck
ring R.�/ of this semiring of isomorphism classes. Deformation K–theory (additively,
at least) may be constructed simply by replacing each step in this construction by its
homotopy theoretical analogue. To be precise, we begin with the space

Rep.�/D
1a

nD0

Hom.�;U.n//;

which is a topological monoid under block sum. Rather than passing to U.n/–orbit

2This can be proven using the Mayer–Vietoris sequence for a certain amalgamation decomposition of
H [8], or from the fact that the presentation 2–complex for H is a model for BH (with 4 one-cells and 4
two-cells). The latter fact follows from Higman’s proof that H ¤ f1g .
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spaces, we now form the homotopy quotient

Rep.�/hU D

1a
nD0

EU.n/�U.n/ Hom.�;U.n//:

Block sum of unitary matrices induces maps EU.n/�EU.m/!EU.nCm/, and
together with the monoid structure on Rep.�/ these give Rep.�/hU the structure of
a topological monoid (for associativity to hold, we must use a functorial model for
EU.n/, as opposed to the infinite Stiefel manifolds; see Remark 2.2). Finally, we apply
the homotopical version of the Grothendieck construction to this topological monoid
and call the resulting space Kdef.�/, the (unitary) deformation K–theory of � .

Definition 2.1 The deformation K–theory of a discrete group � is the space

Kdef.�/ WD�B .Rep.�/hU / ;

whose homotopy groups we denote by Kdef
� .�/D ��K

def.�/.

Here B denotes the simplicial bar construction, namely the classifying space of the
topological category with one object and with Rep.�/hU as its space of morphisms.
Note that Kdef.�/ is a contravariant functor from discrete groups to spaces.

It was shown in [44, Section 2] that the above space Kdef.�/ is weakly equivalent to
the zeroth space of the connective �–spectrum associated to T Lawson’s topological
permutative category of unitary representations; in particular the homotopy groups of
this spectrum agree with the homotopy groups of the space Kdef.�/. We note that
constructing a ring structure in deformation K–theory requires a subtler approach, and
this has been carried out by T Lawson [32].

The first two homotopy groups of Kdef.�/ have rather direct meanings: Kdef
0
.�/

is the Grothendieck group of virtual connected components of representations, ie
Gr .�0Rep.�// [44, Section 2]. It follows from work of Lawson [33] that the group
Kdef

1
.�/ is a stable version of the group �1Hom.�;U.n//=U.n/; a precise discussion

will be given in Section 6.

Remark 2.2 In [44], the simplicial model ESU.n/ for EU.n/ is used; in this paper
we will need to use universal bundles for Sobolev gauge groups, where the simplicial
model may not give an actual universal bundle. Hence it is more convenient to use
Milnor’s infinite join construction EJ U.n/ [37], which is functorial and applies to
all topological groups. These two constructions are related by the “mixed model”
BM U.n/D

�
ESU.n/�EJ U.n/

�
=U.n/, which maps by weak equivalences to both

versions of BU.n/.
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2.3 Group completion in deformation K-theory

The starting point for our work on surface groups is an analysis of the consequences of
McDuff–Segal Group Completion theorem [36] for deformation K–theory, as carried
out in [44]. Here we recall that result and explain its consequences for surface groups.
Given a topological monoid M and an element m 2M , we say that M is stably
group-like with respect to m if the submonoid of �0M generated by the component
containing m is cofinal (in �0M ). Explicitly, M is stably-group-like with respect to m

if for every x 2M , there exists an element x�1 2M such that x �x�1 is connected
by a path to mn for some n 2N . We then have:

Theorem 2.3 [44] Let � be a finitely generated discrete group such that Rep.�/ is
stably group-like with respect to � 2 Hom.�;U.k//. Then there is a weak equivalence

Kdef.�/' telescope
�

Rep.�/hU

˚�
�! Rep.�/hU

˚�
�! � � �

�
;

where ˚� denotes block sum with the point Œ�k ; �� 2EU.k/�U.k/ Hom.�;U.k/.

Here, and throughout this article, telescope refers to the mapping telescope of a
sequence of maps. The novel aspect of this result is that, unlike elsewhere in algebraic
K–theory, Quillen’s C–construction does not appear. This is due to the fact that the
fundamental group on the right-hand side is already abelian, a fact which (in general)
depends on rather special properties of the unitary groups. In low dimensions, this
result has the following manifestation:

Corollary 2.4 Let M be either the circle or an aspherical compact surface. Then there
is a weak equivalence between Kdef.�1.M // and the space

telescope
������!
˚1

.Rep.�1M /hU / WD telescope
�

Rep.�1M /hU

˚1
�! Rep.�1M /hU

˚1
�! � � �

�
where ˚1 denotes the map induced by block sum with the identity matrix 1 2 U.1/.

There are at least two ways to show that Rep.�1M / is stably group-like with respect
to 1 2 Hom.�1M;U.1//. In Corollaries 4.11 and 4.12 we use Yang–Mills theory to
show that Rep.�1M / is stably group-like for any compact, aspherical surface M .
(In the orientable case, this amounts to showing that the representation spaces are all
connected, which is a well-known folk theorem.) This argument is quite close to Ho
and Liu’s proof of connectivity for the moduli space of flat connections [27, Theorem
5.4]. For most surfaces, other work of Ho and Liu [26] gives an alternative method,
depending on Alekseev, Malkin and Meinrenken’s theory of quasi-Hamiltonian moment
maps [4]. A version of that argument, adapted to the present situation, appears in the
author’s thesis [45, Chapter 6].
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3 Representations and flat connections

Let M denote an n–dimensional, compact, connected manifold, with a fixed basepoint
m0 2 M . Let G be a compact Lie group, and � W P ! M be a smooth principal
G–bundle, with a fixed basepoint p0 2 �

�1.m0/ � P . Our principal bundles will
always have a right action of the structure group G . In this section we explain how to
pass from G –representation spaces of �1.M / to spaces of flat connections on principal
G –bundles over M , which form critical sets for the Yang–Mills functional. The main
result of this section is the following proposition, which we state informally for the
moment.

Proposition 3.9 For any n–manifold M and any compact, connected Lie group G ,
holonomy induces a G –equivariant homeomorphisma

ŒPi �

Aflat.Pi/=G0.Pi/
SH
�! Hom.�1.M /;G/;

where the disjoint union is taken over some set of representatives for the (unbased)
isomorphism classes of principal G–bundles over M . (Note that to define SH we
choose, arbitrarily, a base point in each representative bundle Pi .)

Here G0.P / denotes the based gauge group, and consists of all principal bundle
automorphisms of P that restrict to the identity on the fiber over m0 2M .

3.1 The one-dimensional case

Before beginning the proof of Proposition 3.9, we explain how this result immediately
leads to an analogue of the Atiyah–Segal theorem for the infinite cyclic group Z. This
argument will motivate our approach for surface groups.

By Corollary 2.4, deformation K–theory of Z is built from the homotopy orbit spaces

.U.n/Ad/hU.n/ WDEU.n/�U.n/ Hom.Z;U.n//;

and the homotopy groups of LBU.n/DMap.S1;BU.n// are just the complex K–
groups of S1 D BZ (in dimensions 0 < � < 2n). Thus the well-known homotopy
equivalence

(1) .U.n/Ad/hU.n/ 'LBU.n/
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may be interpreted as an Atiyah–Segal theorem for the group Z, and upon taking
colimits (1) yields an isomorphism Kdef

� .Z/ŠK��.S1/ for any �> 0. (The equiva-
lence (1) is well-known for any group G , but the only general reference of which I am
aware is the elegant proof given by K Gruher in her thesis [18]).)

Proposition 3.9 actually leads to a proof of (1) for any compact, connected Lie group G .
Connections over the circle are always flat, and G0.P / acts freely, so by Proposition
3.9 and a basic fact about homotopy orbit spaces we have

Hom.Z;G/hG Š
�
A.S1

�G/=Map�.S
1;G/

�
hG
'
�
A.S1

�G/
�
hMap.S1;G/

:

But connections form a contractible (affine) space, so the right hand side is the classify-
ing space of the full gauge group. By Atiyah and Bott [6, Section 2], Map.S1;BG/D

LBG is a model for BMap.S1;G/, so .GAd/hG 'LBG as desired.

When Z is replaced by the fundamental group of a two-dimensional surface, one can
try to mimic this argument. Not all connections are flat in this case, but flat connections
do form a critical set for the Yang–Mills functional LW A!R. In Section 4, we will
use Morse theory for L to prove a connectivity result for the space of flat connections.

3.2 Sobolev spaces of connections and the holonomy map

In order to give a precise statement and proof of Proposition 3.9, we need to introduce
the relevant Sobolev spaces of connections and gauge transformations. Our notation
and discussion follow Atiyah and Bott [6, Section 14], and another excellent reference
is the appendix to Wehrheim [51].

We use the notation L
p

k
to denote functions with k weak (ie distributional) derivatives,

each in the Sobolev space Lp . We will record the necessary assumptions on k and p

as they arise. The reader interested only in the applications to deformation K–theory
may safely ignore these issues, noting only that all the results of this section hold in
the Hilbert space L2

k
for large enough k . When nD 2, our main case of interest, we

just need k > 2.

Definition 3.1 Let k > 1 be an integer, and let 1� p <1. We denote the space of
all connections on the bundle P of Sobolev class L

p

k
by Ak;p.P /. This is an affine

space, modeled on the Banach space of L
p

k
sections of the vector bundle T �M ˝ad P

(here ad P D P �G g, and g is the Lie algebra of G equipped with the adjoint action).
Hence Ak;p.P / acquires a canonical topology, making it homeomorphic to the Banach
space on which it is modeled. Flat L

p

k
connections are defined to be those with zero

curvature. The subspace of flat connections is denoted by Ak;p
flat .P /.
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We let GkC1;p.P / denote the gauge group of all bundle automorphisms of P of
class L

p

kC1
, and (when .k C 1/p > n) we let GkC1;p

0
.P / denote the subgroup of

based automorphisms (those which are the identity on the fiber over m0 2M ). These
gauge groups are Banach Lie groups, and act smoothly on Ak;p.P /. We will always
use the left action, meaning that we let gauge transformations act on connections by
pushforward. We denote the group of all continuous gauge transformations by G.P /.
Note that so long as .kC1/p> n, the Sobolev Embedding Theorem gives a continuous
inclusion GkC1;p.P / ,! G.P /, and hence in this range GkC1;p

0
.P / is well-defined.

We denote the smooth versions of these objects by .�/1.P /.

The following lemma is well-known.

Lemma 3.2 For .kC 1/p > n, the inclusion GkC1;p.P / ,! G.P / is a weak equiva-
lence.

Proof Gauge transformations are simply sections of the adjoint bundle P �G Ad.G/
(see Atiyah and Bott [6, Section 2]). Hence this result follows from general approxima-
tion results for sections of smooth fiber bundles.

The continuous inclusion GkC1;p.P / ,! G.P / implies that there is a well-defined,
continuous homomorphism r W GkC1;p.P /! G given by restricting a gauge transfor-
mation to the fiber over the basepoint m0 2M . To be precise, r.�/ is defined by
p0 � r.�/D �.p0/, and hence depends on our choice of basepoint p0 2 P .

Lemma 3.3 Assume G is connected and .k C 1/p > n. Then the restriction map
r W GkC1;p.P / �! G induces a homeomorphism xr W GkC1;p.P /=GkC1;p

0
.P /

Š
�!G .

The same statements hold for the smooth gauge groups.

Proof Thinking of gauge transformations as sections of the adjoint bundle, we may
deform the identity map P!P over a neighborhood of m0 so that it takes any desired
value at p0 (here we use connectivity of G ). Hence r and xr are surjective.

By a similar argument, we may construct continuous local sections sW U ! G1.P /
of the map r , where U � G is any chart. If � W G1.P /! G.P /1=G1

0
.P / is the

quotient map, then the maps � ı s are inverse to xr on U . Hence xr�1 is continuous.
The same argument applies to GkC1;p.P /.

I do not know whether Lemma 3.3 holds for nonconnected groups; certainly the proof
shows that the image of the restriction map is always a union of components.
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Flat connections are related to representations of �1M via the holonomy map. Our
next goal is to analyze this map carefully in the current context of Sobolev connections.
The holonomy of a smooth connection is defined via parallel transport: given a smooth
loop  based at m0 2M , there is a unique A–horizontal lift z of  with z .0/ D
p0 , and the holonomy representation H.A/ D �A is then defined by the equation
z .1/ � �A.Œ �/D p0: (Since flat connections are locally trivial, a standard compactness
argument shows that this definition depends only on the homotopy class Œ � of  .)
It is important to note here that the holonomy map depends on the chosen basepoint
p0 2 P . Further details on holonomy appear in the Appendix.

Lemma 3.4 The holonomy map Ak;p
flat .P /! Hom.�1M;G/ is continuous if k > 2

and .k � 1/p > n.

Proof The assumptions on k and p guarantee a continuous embedding L
p

k
.M / ,!

C 1.M /. Hence if Ai 2Ak;p
flat .P / is a sequence of connections converging (in Ak;p

flat .P /)
to A, then Ai ! A in C 1 as well. We must show that for any such sequence, the
holonomies of the Ai converge to the holonomy of A.

It suffices to check that for each loop  the holonomies around  converge. These
holonomies are defined (continuously) in terms of the integral curves of the vector fields
V .Ai/ on  �P arising from the connections Ai . Since these vector fields converge
in the C 1 norm, we may assume that the sequence kV .Ai/�V .A/kC 1 is decreasing
and less than 1. By interpolating linearly between the V .Ai/, we obtain a vector field
on  �P �I which at time ti is just V .Ai/, and at time 0 is V .A/. This is a Lipschitz
vector field and hence its integral curves vary continuously in the initial point (see
Lang [30, Chapter IV]) completing the proof.

Remark 3.5 With a bit more care, one can prove Lemma 3.4 under the weaker
assumptions k > 1 and kp > n. The basic point is that these assumptions give
an embedding L

p

k
.M / ,! C 0.M /, and by compactness C 0.M / ,! L1.M / (and

similarly after restricting to a smooth curve in M ). Working in local coordinates, one
can deduce continuity of the holonomy map from the fact that limits commute with
integrals in L1.Œ0; 1�/.

Lemma 3.6 Assume p > n=2 (and if n D 2, assume p > 4=3). If G is connected,
then each GkC1;p

0
.P /–orbit in Ak;p

flat .P / contains a unique G1
0
.P /–orbit of smooth

connections.

Proof By Wehrheim [51, Theorem 9.4], the assumptions on k and p guarantee
that each GkC1;p.n/ orbit in Ak;p

flat .n/ contains a smooth connection. Now, say � �A
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is smooth for some � 2 GkC1;p.P /. By Lemma 3.3, there exists a smooth gauge
transformation  such that r. /D r.�/�1 . The composition  ı� is based, and since
 is smooth we know that . ı�/ �A is smooth. This proves existence. For uniqueness,
say � �A and  �A are both smooth, where �; 2 GkC1;p

0
.P /. Then � �1 is smooth

by [6, Lemma 14.9], so these connections lie in the same G1
0

–orbit.

The following elementary lemma provides some of the compactness we will need.

Lemma 3.7 If G is a compact Lie group, then only finitely many isomorphism classes
of principal G –bundles over M admit flat connections.

Proof As described in the Appendix, any bundle E admitting a flat connection A is
isomorphic to the bundle induced by holonomy representation �AW �1M !G . If two
bundles E0 and E1 arise from representations �0 and �1 in the same path component
of Hom.�1M;G/, then choose a path �t of representations connecting �0 to �1 . The
bundle

E D . �M � Œ0; 1��G/
ı
. zm; t;g/� . zm � ; t; �t . /

�1g/

is a principal G–bundle over M � Œ0; 1� and provides a bundle homotopy between
E0 and E1 ; by the Bundle Homotopy Theorem we conclude E0 Š E1 . Hence the
number of isomorphism classes admitting flat connections is at most the number of
path components of Hom.�1M;G/.

Now recall that any compact Lie group is in fact algebraic: its image under a faithful
representation �W G ! GLnC is Zariski closed (see Sepanski [48, Excercise 7.35,
page 186] for a short proof using the Stone–Weierstrass Theorem and Haar measure).
Since �1M is finitely generated (by k elements, say), Hom.�1M;G/ is the subvariety
of Gk cut out by the relations in �1M . So this space is a real algebraic variety as well,
hence triangulable (see Hironaka [22]). Since compact CW–complexes have finitely
many path components, the proof is complete.

Remark 3.8 We note that the previous lemma also holds for noncompact algebraic
Lie groups, by a result of Whitney [52] regarding components of varieties.

We can now prove the result connecting representations to Yang–Mills theory.

Proposition 3.9 Assume p > n=2 (and if n D 2, assume p > 4=3), k > 1, and
kp > n. Then for any n–manifold M and any compact, connected Lie group G , the
holonomy map induces a G –equivariant homeomorphisma

ŒPi �

Ak;p
flat .Pi/=GkC1;p

0
.Pi/

SH
�! Hom.�1.M /;G/;
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where the disjoint union is taken over some set of representatives for the (unbased)
isomorphism classes of principal G–bundles over M . (Note that to define SH we
choose, arbitrarily, a base point in each representative bundle Pi .)

The G–action on the left is induced by the actions of GkC1;p.Pi/ together with the
homeomorphisms GkC1;p.Pi/=GkC1;p

0
.Pi/Š G , which again depends on the chosen

basepoints in the bundles Pi .

Proof The assumptions on k and p allow us to employ all previous results in this
section (note Remark 3.5). It is well-known that the holonomy map

H W
a
ŒPi �

A1flat.Pi/ �! Hom.�1.M /;G/

is invariant under the action of the based gauge group and induces an equivariant
bijection

xH W
a
ŒPi �

A1flat.Pi/=G10 .Pi/ �! Hom.�1.M /;G/:

For completeness we have included a proof of this result in the Appendix. By Lemma
3.6, the left hand side is unchanged (set-theoretically) if we replace A1flat and G1

0
by

Ak;p
flat and GkC1;p

0
, and hence Lemma 3.4 tells us that we have a continuous equivariant

bijection
SHW
a
ŒPi �

Ak;p
flat .Pi/=GkC1;p

0
.Pi/ �! Hom.�1.M /;G/:

We will show that for each P , Ak;p
flat .P /=G

kC1;p
0

.P / is sequentially compact. Since,
by Lemma 3.7, only finitely many isomorphism types of principal G –bundle admit flat
connections, this implies thata

ŒPi �

Ak;p
flat .Pi/=GkC1;p

0
.Pi/

is sequentially compact. A continuous bijection from a sequentially compact space to
a Hausdorff space is a homeomorphism, so this will complete the proof.

The Strong Uhlenbeck Compactness Theorem [51] (see also Daskalopoulos [11,
Proposition 4.1]) states that the space Ak;p

flat .P /=GkC1;p.P / is sequentially compact.
Given a sequence fAig in Ak;p

flat .P /, there exists a subsequence fAij g and a sequence
�j 2 GkC1;p.n/ such that �j �Aij converges in Ak;p to a flat connection A. Let
gj D r.�j /. Since G is compact, passing to a sub-sequence if necessary we may
assume that the gj converge to some g 2 G . The proof of Lemma 3.3 shows that
we may choose a convergent sequence  j 2 GkC1;p.P / with r. j / D g�1

j ; we let
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 D lim j , so r. /D g�1 . By continuity of the action, the sequence . j ı�j / �Aij

converges to  �A. Since  j ı�j 2 GkC1;p
0

.P /, this completes the proof.

Remark 3.10 Since Hom.�1M;G/ is compact, Proposition 3.9 implies compactness
of Ak;p

flat .P /=G
kC1;p
0

.P /. However, point-set considerations alone show that sequential
compactness of Ak;p

flat .P /=G
kC1;p
0

.P / suffices to prove its compactness: specifically,
Ak;p

flat .P / is second countable, since it is a subspace of a separable Banach space. The
quotient map of a group action is open, so Ak;p

flat .P /=G
kC1;p
0

.P / is second countable
as well. Now, any second countably, sequentially compact space is compact. (The
necessary point-set topology can be found in Wilansky [53, 5.3.2, 7.3.1, 5.4.1].)

More interesting is that Proposition 3.9 implies that the based gauge orbits in Ak;p
flat .P /

are closed (the quotient embeds in Hom.�1M;G/). Since G is compact, one also
concludes that the full gauge orbits are closed.

4 The Harder–Narasimhan stratification and Morse theory
for the Yang–Mills Functional

In Section 3, we explained how to pass from spaces of representations to spaces
of flat connections. We now focus on the case where M is a compact surface and
G D U.n/. We wish to compare the space of flat connections on a U.n/–bundle
P over M to the contractible space of all connections on P , and in particular we
want to understand what happens as the rank of P tends to infinity. Atiyah and Bott
made such a comparison (for a fixed bundle P ) using computations in equivariant
cohomology. We will work directly with homotopy groups, using Smale’s infinite
dimensional transversality theorem. A (co)homological approach could be used in
the orientable case (details may be found in [43]), but there are difficulties, related to
equivariant Thom isomorphisms, in extending such an argument to the nonorientable
case. These issues are the focus of ongoing work with Ho and Liu.

The main result of this section is the following connectivity estimate.

Proposition 4.9 Let M DM g denote a compact Riemann surface of genus g , and
let n > 1 be an integer. Then the space Ak

flat.n/ of flat connections on a trivial
rank n bundle over M is 2g.n�1/–connected, and if † is a nonorientable surface
with oriented double cover M g , then the space of flat connections on any principal
U.n/–bundle over † is .g.n�1/�1/–connected.

In the orientable case this result is in fact sharp; in the nonorientable case it can be
improved significantly [43].
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We will work in the Hilbert space of L2
k

connections, and we assume k > 2 so that
the results of Section 3.2 apply. We suppress p D 2 from the notation, writing simply
Ak , Gk , and so on. Over a Riemann surface, any principal U.n/–bundle admitting a
flat connection is trivial (see Corollary 4.11), and hence we restrict our attention to the
case P DM �U.n/ and write Ak.n/DAk.M �U.n//, etc.

For any smooth principal U.n/–bundle P !M , the Yang–Mills functional

LW Ak.P /!R

is defined by the formula

L.A/D

Z
M

kF.A/k2dvol

where F.A/ denotes the curvature form of the connection A and the volume of M

is normalized to be 1. The space Ak
flat.n/ of flat connections forms a critical set

for the L [6, Proposition 4.6], and so one hopes to employ Morse-theoretic ideas to
compare the topology of this critical set to the topology of Ak.P /. In particular, the
gradient flow of L should allow one to define stable manifolds associated to critical
sets of M , which should deformation retract to those critical subsets. The necessary
analytical work has been done by Daskalopoulos [11] and Råde [42], and furthermore
Daskalopoulos has explicitly identified the Morse stratification of Ak.P / (proving a
conjecture of Atiyah and Bott). We now explain this situation.

We now recall (see [6, Sections 5, 7]) that there is a bijective correspondence between
connections on a principal U.n/–bundle P and Hermitian connections on the associated
Hermitian vector bundle E D P �U.n/ Cn . When the base manifold is a Riemann
surface, the latter space may in fact be viewed as the space of holomorphic struc-
tures on E : first, there is a bijective correspondence between holomorphic structures
and .0; 1/–connection x@W �0

M
.E/!�

0;1
M
.E/, provided by the fact that each .0; 1/–

connection on a complex curve is integrable (see Donaldson and Kronheimer [13,
Section 2.2.2]), together with the fact that a holomorphic structure is determined by its
sheaf of holomorphic sections (sections sW M !E with x@sD 0). Now, each Hermitian
connection on E has an associated .0; 1/–connection, and by Griffiths and Harris [17,
page 73] this in fact induces an isomorphism of affine spaces.

From now on we will view holomorphic structures in terms of their associated .0; 1/–
connections. Since the space of .0; 1/–connections is an affine space modeled the vector
space of (smooth) sections of the vector bundle �0;1

M
.End.E// of endomorphism-valued

.0; 1/–forms, we may define Sobolev spaces Ck.E/D Ck;2.E/ of .0; 1/–connections
simply by taking L2

k
–sections of this bundle. When M is a Riemann surface, the above

isomorphism of affine spaces extends to an isomorphism Ak.P /Š Ck.P �U.n/Cn/.
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There is a natural algebraic stratification of Ck.E/ called the Harder–Narasimhan
stratification, which turns out to agree with the Morse stratification of Ak.P /. We now
describe this stratification in the case E DM �Cn .

Definition 4.1 Let E be a holomorphic bundle over M . Let deg.E/ denote its first
Chern number and let rk.E/ denote its dimension. We call E semistable if for every
proper holomorphic subbundle E0 �E , one has

deg.E0/
rk.E0/

6 deg.E/
rk.E/

:

Replacing the 6 by < in this definition, one has the definition of a stable bundle.

Given a holomorphic structure E on the bundle M �Cn , there is a unique filtration
(the Harder–Narasimhan filtration [19])

0D E0 � E1 � � � � Er D E

of E by holomorphic subbundles with the property that each quotient Di D Ei=Ei�1

is semistable (i D 1; : : : ; r ) and �.D1/ > �.D2/ > � � � > �.Dr /, where �.Di/ D

deg.Di/=rank.Di/, and deg.Di/ is the first Chern number of the vector bundle Di .
Letting ni D rank.Di/ and ki D deg.Di/, we call the sequence

�D ..n1; k1/; : : : ; .nr ; kr //

the type of E . Since ranks and degrees add in exact sequences, we have
P

i ni D n

and
P

i ki D 0. By [6, Section 14], each orbit of the complex gauge group on Ck.E/

contains a unique isomorphism type of smooth .0; 1/–connections (ie holomorphic
structures), so we may define Ck

� D Ck
�.n/ � Ck.n/ to be the subspace of all .0; 1/–

connections gauge-equivalent to a smooth connection of type �, and the Ck
� partition

Ck.n/. Note that the semistable stratum corresponds to �D ..n; 0//.

It is a basic fact that every flat connection on E corresponds to a semistable bundle:
the Narasimhan–Seshardri Theorem [6, (8.1)] says that irreducible representations
induce stable bundles. By Proposition 3.9, every flat connection comes from some
unitary representation, which is a sum of irreducible representations, and hence the
holomorphic bundle associated to any representation, ie any flat connection, is a sum
of stable bundles. Finally, an extension of stable bundles of the same degree is always
semistable.
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We can now state the result we will need.

Theorem 4.2 (Daskalopoulos, Rade) Let M be a compact Riemann surface. Then
the gradient flow of the Yang–Mills functional is well-defined for all positive time, and
defines continuous deformation retractions from the Harder–Narasimhan strata Ck

� to
their critical subsets. Moreover, these strata are locally closed submanifolds of Ck.n/

of complex codimension

c.�/D

�X
i>j

nikj � nj ki

�
C .g� 1/

�X
i>j

ninj

�
:

In particular, there is a continuous deformation retraction (defined by the gradient flow
of L) from the space Ck

ss.n/ of all semistable L2
k
.0; 1/–connections on M �Cn to

the subspace Ak
flat.n/ of flat (unitary) connections.

Remark 4.3 This result holds for any C1 vector bundle. Daskalopoulos proved
convergence of the Yang–Mills flow modulo gauge transformations, and established
continuity in the limit on (the gauge quotient of) each Harder–Narasimhan stratum
(which he proved to be submanifolds). Råde later proved the full convergence result
stated above. We will discuss the analogue of this situation in the nonorientable case in
the proof of Proposition 4.9. One could ask for a result slightly stronger than Theorem
4.2: since the gradient flow of L converges at time C1 to give a continuous retraction
from each Ck

� to its critical set, this stratum is a disjoint union of Morse strata. However,
I do not know in general whether Ck

� is connected. Hence the Morse stratification may
be finer than the Harder–Narasimhan stratification.

The following definition will be useful.

Definition 4.4 Consider a sequence of pairs of integers ..n1; k1/; : : : ; .nr ; kr //. We
call such a sequence admissible of total rank n (and total Chern class 0) if ni > 0

for each i ,
P

ni D n,
P

i ki D 0, and k1=n1 > � � � > kr=nr . Hence admissible
sequences of total rank n and total Chern class 0 are precisely those describing Harder–
Narasimhan strata in C.n/. We denote the collection of all admissible sequences of
total rank n and total Chern class 0 by I.n/.

We now compute the minimum codimension of a nonsemistable stratum. In particular,
this computation shows that this minimum tends to infinity with n, so long as the
genus g is positive. This result has been extended to the case of nontrivial bundles
in [43].
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Lemma 4.5 The minimum (real) codimension of a nonsemistable stratum in Ck.n/

(n> 1) is precisely 2nC 2.n� 1/.g� 1/D 2g.n� 1/C 2.

Proof Let �D ..n1; k1/; : : : ; .nr ; kr //2I.n/ be any admissible sequence with r > 1.
Then from Theorem 4.2, we see that it will suffice to show thatX

i>j

nikj � nj ki > n;(2)

X
i>j

ninj > n� 1:(3)

To prove (2), we begin by noting that since
P

ki D 0 and the ratios ki=ni are strictly
decreasing, we must have k1 > 0 and kn < 0. Moreover, there is some l0 2R such
that kl > 1 for l < l0 and kl 6�1 for l > l0 . We allow l0 to be an integer if and only
if kl D 0 for some l ; then this integer l is unique, and in this case we define l0 WD l .
Since r > 2, we know that 1< l0 < r .

Now, if i > l0 > j we have kj > 1 and ki 6 �1, so,

nikj � nj ki > ni C nj :

If i > l0 and j D l0 , we have kj D 0 and ki 6 �1, so

nikl0
� nl0

ki > 0C nl0
D nl0

:

Finally, if i D l0 and j < l0 , then ki D 0 and kj > 1 so we have

nl0
kj � nj kl0

> nl0
� 0D nl0

:

Now, since nikj � nj ki D ninj .kj=nj � ki=ni/ and the kl=nl are strictly decreasing,
we know that each term in the sum

P
i>j nikj �nj ki is positive. Dropping terms and

applying the above bounds givesX
i>j

nikj � nj ki >
X

i>l0>j

.nikj � nj ki/C
X
l0>j

.nl0
kj � nj kl0

/C
X
i>l0

.nikl0
� nl0

ki/

>
X

i>l0>j

.ni C nj /C
X
l0>j

nl0
C

X
i>l0

nl0
:

(In the second and third expressions, the latter sums are taken to be empty if l0 is not
an integer.) Since

P
ni D n, to check that the above expression is at least n it suffices

to check that each ni appears in the final sum. But since 1 < l0 < r , each nl with
l ¤ l0 appears in the first term, and if l0 2 N then nl0

appears in both of the latter
terms. This completes the proof of (2).
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To prove (3), we fix r 2N (r > 2) and consider partitions EpD .p1; : : : ;pr / of n. We
will minimize the function �r .Ep/D

P
i>j pipj , over all length r partitions of n.

Consider a partition EpD .p1; : : : ;pr / with pm > pl > 1 (l ¤m), and define another
partition Ep0 by setting

p0i D

8<:
pi ; i ¤ l; m;

pl � 1; i D l;

pmC 1 i Dm:

It is easily checked that �r .Ep/ > �r . Ep0/.

Now, if we start with any partition Ep such pi > 1 for more than one index i , the above
argument shows that Ep cannot minimize �r . Thus �r is minimized by the partition
Ep0 D .1; : : : ; 1; n� r � 1/, and �r . Ep0/D

�
r�1

2

�
C .r � 1/.n� r � 1/. The latter is an

increasing function for r 2 .0; n/ and hence
P

i>j pipj is minimized by the partition
.1; n� 1/. This completes the proof of (3).

To conclude, note that the sequence ..1; 1/; .n� 1;�1// has complex codimension
nC .n� 1/.g� 1/.

Remark 4.6 It is interesting to note that the results in the next section clearly fail in
the case when M has genus 0. From the point of view of homotopy theory, the problem
is that S2 is not the classifying space of its fundamental group, and so one should not
expect a relationship between K–theory of S2 and representations of �1S2 D 0. But
the only place where our argument breaks down is the previous lemma, which tells us
that there are strata of complex codimension 1 in the Harder–Narasimhan stratification
of Ck.S2�C.n//, and in particular the minimum codimension does not tend to infinity
with the rank.

The main result of this section will be an application of the following infinite-dimen-
sional transversality theorem, due to Smale [2, Theorem 19.1] (see also Abraham [1]).
Recall that a residual set in a topological space is a countable intersection of open,
dense sets. By the Baire category theorem, any residual subset of a Banach space is
dense, and since any Banach manifold is locally a Banach space, any residual subset of
a Banach manifold is dense as well.

Theorem 4.7 (Smale) Let A, X , and Y be second countable C r Banach manifolds,
with X of finite dimension k . Let W � Y be a (locally closed) submanifold of Y ,
of finite codimension q . Assume that r >max.0; k � q/. Let �W A! C r .X;Y / be a
C r –representation, that is, a function for which the evaluation map ev�W A�X ! Y

given by ev�.a;x/D �.a/x is of class C r .
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For a 2 A, let �aW X ! Y be the map �a.x/ D �.a/x . Then fa 2 Aj�a t W g is
residual in A, provided that ev� tW .

Corollary 4.8 Let Y be a second countable Banach space, and let fWigi2I be a
countable collection of (locally closed) submanifolds of Y with finite codimension.
Then if U D Y �

S
i2I Wi is a nonempty open set, it has connectivity at least �� 2,

where
�Dminfcodim Wi W i 2 Ig:

Proof To begin, consider a continuous map f W Sk�1! U , with k � 16 �� 2. We
must show that f is null-homotopic in U ; note that our homotopy need not be based.
First we note that since U is open, f may be smoothed, ie we may replace f by
a C kC1 map f 0W Sk�1 ! U which is homotopic to f inside U (this follows, for
example, from Kurzweil’s approximation theorem [29]).

Choose a smooth function �W R!R with the property that �.t/D 1 for t > 1=2 and
�.t/D 0 for all t 6 1=4. Let Dk �Rk denote the closed unit disk, so @Dk D Sk�1 .
The formula HC.x/ D �.kxk/f .x=kxk/ now gives a C kC1 map Dk ! Y which
restricts to f on each shell fx 2Dk j kxk D rg with r > 1=2. Gluing two copies of
HC now gives a C kC1 “null-homotopy” of f defined on the closed manifold Sk .

We now define

AD fF 2 C kC1.Sk ;Y / j F.x/D 0 for x 2 Sk�1
� Sk

g:

Note that A is a Banach space: since Sk is compact, [1, Theorem 5.4] implies that
C kC1.Sk ;Y / is a Banach space, and A is a closed subspace of C kC1.Sk ;Y /. (This
is the reason for working with C kC1 maps rather than smooth ones.)

Next, we define �W A!C kC1.Sk ;Y / by setting �.F /DFCH . The evaluation map
ev�W A�Sk! Y is given by ev�.F;x/D F.x/CH.x/. Since both .F;x/ 7! F.x/

and .F;x/ 7!x 7!H.x/ are of class C kC1 , so is their sum (the fact that the evaluation
map .F;x/ 7! F.x/ is of class C kC1 follows from [1, Lemma 11.6]).

We are now ready to apply the transversality theorem. Setting X D Sk , W D Wi

(for some i 2 I ) and with A as above, all the hypotheses of Theorem 4.7 are clearly
satisfied, except for the final requirement that ev� tWi . But this is easily seen to be
the case. In fact, the derivative of ev� surjects onto TyY for each y in the image of
ev� , because given a C kC1 map F W Sk ! Y with F.x/D y and a vector v 2 TyY ,
we may adjust F in a small neighborhood of x so that the map remains C kC1 and its
derivative hits v .
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We now conclude that fF 2Aj�a tWig is residual in A, for each stratum Wi . Since
the intersection of countably many residual sets is (by definition) residual, we in fact
see that

fF 2A j �F tWi 8 i 2 Ig

is residual, hence dense, in A. In particular, since A is nonempty, there exists a map
F W Sk! Y such that F jSk�1 D f and �F D F CH is transverse to each Wi . Since
k <�D codim.Wi/, this implies that the image of F CH must be disjoint from each
Wi . Hence .F CH /.Sk/� U , and f is zero in �k�1U .

We can now prove the main result of this section. This result extends work of Ho and Liu,
who showed that spaces of flat connections over surfaces are connected [27, Theorem
5.4]. We note, though, that their work applies to general structure groups G . We also
note that in the orientable case this result is closely related to work of Daskalopoulos
and Uhlenbeck [12, Corollary 2.4], which concerns the less-highly connected space of
stable bundles.

Proposition 4.9 Let M DM g denote a compact Riemann surface of genus g , and
let n> 1 be an integer. Then the space Ak

flat.n/ of flat connections on a trivial rank n

bundle over M is 2g.n�1/–connected, and if † is a nonorientable surface with double
cover M g , then the space of flat connections on any principal U.n/–bundle over † is
.g.n�1/�1/–connected.

Proof We begin by noting that Sobolev spaces (of sections of fiber bundles) over
compact manifolds are always second countable; this follows from Bernstein’s proof of
the Weierstrass theorem since we may approximate any function by smooth functions,
and locally we may approximate smooth functions (uniformly up to the k –th derivative
for any k ) by Bernstein polynomials. Since the inclusion Ak

flat.n/ ,! Ck
ss.n/ is a

homotopy equivalence (Theorem 4.2), the orientable case now follows by applying
Corollary 4.8 (and Lemma 4.5) to the Harder–Narasimhan stratification.3

For the nonorientable case, we work in the set-up of nonorientable Yang–Mills theory,
as developed by Ho and Liu [27]. Let † be a nonorientable surface with double cover
M g , and let P be a principal U.n/–bundle over †. Let � W M g!† be the projection,

3Note that Ck
ss.n/ is in fact open. This is a slightly subtle point. Atiyah and Bott provide an ordering

on the Harder–Narasimhan strata in which the semistable stratum is the minimum stratum, and the closure
of any stratum lies in the union of the larger strata. Hence the complement of Ck

ss.n/ is the union of the
closures of the other strata. The Harder–Narasimhan stratification is actually locally finite, so this union of
closed sets is closed. Local finiteness can be deduced from convergence of the Yang–Mills flow and the
fact that the critical values of the Yang–Mills functional form a discrete subset of R (see Råde [42]), but
also follows from the more elementary methods of Atiyah and Bott, as explained in [43].)
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and let zP D ��P . Then the deck transformation � W M g!M g induces an involution
z� W zP ! zP , and z� acts on the space Ak. zP / by pullback. Connections on P pull back
to connections on zP , and in fact, the image of the pullback map is precisely the set
of fixed points of � (see, for example, Ho [23]). Hence we have a homeomorphism
Ak.P /ŠAk. zP /z� , which we treat as an identification. The Yang–Mills functional L

is invariant under z� , and hence its gradient flow restricts to a flow on Ak.P /.

Assume for the moment that Ak
flat.P / ¤ ∅. The flat connections on P pull back

to flat connections on zP , and again the image of Ak
flat.P / in A. zP / is precisely

Ak
flat.
zP /z� . If we let Ck

ss.P / denote the fixed set Ck
ss.
zP /z� , then the gradient flow of L

restricts to give a deformation retraction from Ck
ss.P / to Ak

flat.P /. The complement of
Ck

ss.P / in Ak.P / may be stratified as follows: for each Harder–Narasimhan stratum
Ck
�.
zP / � Ak. zP /Š Ck. zP �U.n/Cn/, we consider the fixed set Ck

�.P / WD .Ck
�.
zP //z� .

By Ho and Liu [27, Proposition 5.1], Ck
�.P / is a real submanifold of Ak.P /, and if it

is nonempty then its real codimension in Ak.P / is half the real codimension of Ck
�.
zP /

in Ak. zP /. It now follows from Lemma 4.5 that the codimensions of the nonsemistable
strata Ck

�.P / are at least g.n� 1/C 1 (this is a rather poor bound; see [43]). It now
follows from Corollary 4.8 that Ak

flat.P / has the desired connectivity.

To complete the proof, we must show that all bundles P over † actually admit flat
connections. This was originally proven by Ho and Liu [26, Theorem 5.2], and in the
current context may be seen as follows. There are precisely two isomorphism types of
principal U.n/–bundles over any nonorientable surface. (A map from † into BU.n/

may be homotoped to a cellular map, and since the 3–skeleton of BU.n/ is a 2–sphere,
the classification of U.n/–bundles is independent of n. Hence it suffices to note that
the relative K–group zK0.†/ has order 2.) We have just shown that the space of flat
connections on each bundle is either empty or connected, so Proposition 3.9 gives a
bijection between connected components of Hom.�1†;U.n// and bundles admitting
a flat connection. So it suffices to show that the representation space has at least two
components. This follows easily from the obstruction defined by Ho and Liu [26].

Remark 4.10 In the nonorientable case, some improvement to Proposition 4.9 is
possible. The results of Ho and Liu show that many of the Harder–Narasimhan strata
for the double cover of nonorientable surface contain no fixed points, and hence the
above lower bound on the minimal codimension of the Morse strata is not tight in the
nonorientable case. In the orientable case, the tightness of Lemma 4.5 shows that the
bound on connectivity of Ak

flat.n/ is tight. This can be proven using the Hurewicz
theorem and a homological calculation [43].

As discussed in Section 2.3, the next results are quite close to the work of Ho and Liu.
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Corollary 4.11 For any compact Riemann surface M and any n > 1, the represen-
tation space Hom.�1.M /;U.n// is connected. In particular, Rep.�1M / is stably
group-like.

Proof The genus 0 case is trivial. When n D 1, U.1/ D S1 is abelian and all
representations factor through the abelianization of �1M . Hence Hom.�1M;U.1//

is a product of circles. When g; n > 1 we have 2g.n� 1/ > 0, so Proposition 4.9
implies that Ak

flat.n/ is connected. Connectivity of Hom.�1.M /;U.n// follows from
Proposition 3.9, because any U.n/ bundle over a Riemann surface which admits a flat
connection is isomorphic to M �U.n/ (for a nice, elementary, and easy proof of this
fact, see Thaddeus [49, pages 78–79]).

Corollary 4.12 Let † be a compact, nonorientable, aspherical surface. Then for any
n> 1, the representation space Hom.�1†;U.n// has two connected components, and
if � 2Hom.�1†;U.n// and  2Hom.�1†;U.m// lie in the nonidentity components,
then �˚  lies in the identity component of Hom.�1†;U.nCm//. In particular,
Rep.�1†/ is stably group-like.

Proof First we consider connected components. The case nD1 follows as in Corollary
4.11. When n> 1, it follows immediately from Proposition 4.9 that the space of flat
connections on any principal U.n/–bundle over † is connected.

As discussed in the proof of Proposition 4.9, there are precisely two bundles over †,
classified by their first Chern classes, and there is a bijection between components of
the representation space and isomorphism classes of bundles. Hence the components
of Hom.�1†;U.n// are classified by the Chern classes of their induced bundles, and
since Chern classes are additive, the sum of two representations in the nonidentity
components of Hom.�1†;U.�// lies in the identity component.

5 Proof of the main theorem

We can now prove our analogue of the Atiyah–Segal theorem.

Theorem 5.1 Let M be a compact, aspherical surface (that is, M ¤ S2;RP2 ). Then
for �> 0,

Kdef
� .�1.M //ŠK��.M /;

where K�.M / denotes the complex K–theory of M . In the nonorientable case, this
in fact holds in degree 0 as well; in the orientable case, we have Kdef

0
.�1.M //Š Z.
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We note that the isomorphism in Theorem 5.1 is functorial for smooth maps between
surfaces, as will be apparent from the proof. In particular, the isomorphism is equivariant
with respect to the mapping class group of M . The K–theory of surfaces is easily
computed (using the Mayer–Vietoris sequence or the Atiyah–Hirzebruch spectral
sequence), so Theorem 5.1 gives a complete computation of the deformation K–groups.

Corollary 5.2 Let M g be a compact Riemann surface of genus g > 0. Then

Kdef
� .�1M g/D

8<:
Z; � D 0

Z2g; � odd
Z2; � even; �> 0:

Let † be a compact, nonorientable surface of the form †DM g#Nj (g > 0), where
j D 1 or 2 and N1 D RP2 , N2 D RP2#RP2 (so N2 is the Klein bottle). Then if
†¤RP2 , we have

Kdef
� .�1M g#Nj /D

�
Z˚Z=2Z; � even
Z2gCj�1; � odd:

Proof of Theorem 5.1 (I) (The orientable case) Let M D M g be a Riemann
surface of genus g > 0. We will exhibit a zig-zag of weak equivalences between
Kdef.�1M / and Z�Map0.M;BU //; where Map0 denotes the connected component
of the constant map.

By Corollary 2.4 and Proposition 3.9 (and the fact that any bundle over a Riemann sur-
face admitting a flat connection is trivial), the zeroth space of the spectrum Kdef.�1M /

is weakly equivalent to

(4) telescope
������!
˚1

Rep.�1M /hU Š telescope
������!
˚Œ��

a
n

EU.n/�U.n/

�
Ak

flat.n/=G
kC1
0

.n/
�

where the maps are induced by direct sum with the trivial connection � on the trivial
line bundle. Since the based gauge groups GkC1

0
.n/ act freely on Ak.n/, and (by

Mitter and Viallet [38] or Fine–Kirk–Klassen [16]) the projection maps are locally
trivial principal GkC1

0
.n/–bundles, a basic result about homotopy orbit spaces [6, 13.1]

shows that we have a weak equivalence

(5) EGkC1.n/�GkC1.n/Ak
flat.n/

'
�!EU.n/�U.n/

�
Ak

flat.n/=Gk
0 .n/

�
:

It now follows from (5) that the mapping telescope (4) is weakly equivalent to

telescope
������!
˚�

a
n

�
Ak

flat.n/
�
hGkC1.n/

' Z� telescope
������!
˚�

Ak
flat.n/hGkC1.n/:
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Proposition 4.9 shows that the connectivity of the projections Ak
flat.n/hGkC1.n/ !

BGkC1.n/ tends to infinity, and since the homotopy groups of a mapping telescope
may be described as colimits, these maps induce a weak equivalence

(6) Z� telescope
n!1

Ak
flat.n/hGkC1.n/ �! Z� telescope

n!1
BGkC1.n/:

By Lemma 3.2, the inclusion GkC1.n/ ,! G.n/ is a weak equivalence, so we may
replace GkC1.n/ with G.n/ on the right.

We have been using Milnor’s functorial model EJ .�/!BJ .�/ for universal bundles
(see Remark 2.2). Atiyah and Bott have shown [6, Section 2] that the natural map

Map.M;EU.n//!Map0.M;BU.n//

is a universal principal Map.M;U.n//D G.n/ bundle, where again Map0 denotes the
connected component of the constant map. As in Remark 2.2, the “mixed model” for
BG.n/ gives a zig-zag of weak equivalences

BG.n/ � .EG.n/�Map.M;EU.n/// =Map.M;U.n// �!Map0.M;BU.n//;

which are natural in n and hence induce weak equivalences on mapping telescopes
(formed using the standard inclusions U.n/ ,! U.nC 1/). The projection

telescope
n!1

Map0.M;BU.n// �! colim
n!1

Map0.M;BU.n//DMap0.M;BU /

is a weak equivalence, since maps from compact sets into a colimit land in some finite
piece. This completes the desired zig-zag.

(II) (The nonorientable case) Let †¤RP2 be a nonorientable surface. Once again,
Corollary 2.4 and Proposition 3.9 tell us that the zeroth space of Kdef.�1†/ is weakly
equivalent to

telescope
������!
˚�

a
ŒPi �

�
Ak

flat.Pi/
�
hGkC1.Pi /

;

where the disjoint union is taken over all n and over all isomorphism types of prin-
cipal U.n/–bundles. By Proposition 4.9 we know that Ak

flat.Pi/ is .g.�†/.ni�1/�1/–
connected, where ni D dim.Pi/ and g.�†/ denotes the genus of the orientable double
cover of †. Since we have assumed †¤RP2 , we know that g.�†/ > 0, and hence
the connectivity of Ak

flat.Pi/ tends to infinity with ni . Hence the natural map

(7) telescope
������!
˚�

a
ŒPi �

�
Ak

flat.Pi/
�
hGkC1.Pi /

�! telescope
������!
˚1

a
ŒPi �

BGkC1.Pi/
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is a weak equivalence (on the right hand side, 1 denotes the identity element in
GkC1.1/). As in the orientable case, we may now switch to the Atiyah–Bott models
for BG.Pi/, obtaining the space

telescope
������!
˚1

a
ŒPi �

MapPi .†;BU.ni//;

where MapPi denotes the component of the mapping space consisting of those maps
f W †! BU.ni/ with f �.EU.ni// isomorphic to Pi . But since the union is taken
over all isomorphism classes, this space is homotopy equivalent to

Z� telescope
n!1

Map.†;BU.n//' Z�Map.†;BU /DMap.†;Z�BU /:

We briefly discuss the spectrum-level version of Theorem 5.1. The space level construc-
tions used in the proof of Theorem 5.1 can be lifted to spectrum-level constructions.
This involves constructing a variety of spectra (and maps between them) including,
for instance, a spectrum arising from a topological category of flat connections and
gauge transformations. Each spectrum involved can be constructed from a � –space in
the sense of Segal [47], and the space-level constructions above essentially become
weak equivalences between the group completions of the monoids underlying these
� –spaces. Since these group completions are weakly equivalent to the zeroth spaces of
these �–spectra, the space-level weak equivalences lift to weak-equivalences of spectra.
In the nonorientable case, one concludes that Kdef.�1M / is weakly equivalent to the
function spectrum F.M;ku/. The end result in the orientable case is somewhat uglier,
due to the failure of Theorem 5.1 on �0 . In this case, Kdef.�1M / is weakly equivalent
to a subspectrum of F.M;ku/, essentially consisting of those maps homotopic to a
constant map. One may ask whether the intermediate spectra are ku–algebra spectra
and whether the maps between them preserve this structure. More basically, one
may ask whether the isomorphisms in Theorem 5.1 come from a homomorphism of
graded rings. Recall that T Lawson [32] has constructed a ku–algebra structure on the
spectrum Kdef.G/. Constructing a compatible ring structure for the spectrum arising
from flat connections appears to be a subtle problem. This problem, and the full details
of the spectrum-level constructions, will be considered elsewhere.

We now make the following conjecture regarding the homotopy type of the spectrum
Kdef.�1M /, as a algebra over the connective K–theory spectrum ku. Note that it is
easy to check (using Theorem 5.1) that the homotopy groups of the proposed spectrum
are the same as Kdef

� .�1.M //.

Conjecture 5.3 For any Riemann surface M g , the spectrum Kdef.�1M / is weakly
equivalent, as a ku–algebra, to ku_

�W
2g †ku

�
_†2ku.
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6 The stable moduli space of flat connections

In this section we study the coarse moduli space of flat unitary connections over a
surface, after stabilizing with respect to rank. By definition, the moduli space of flat
connections over a compact manifold, with structure group G , is the spacea

ŒPi �

Ak;p
flat .P /=G

kC1;p
Š Hom.�1M;G/=G;

where the disjoint union is taken over isomorphism classes of principal G–bundles.
This homeomorphism follows immediately from Proposition 3.9 (so long as k , p , and
G satisfy the hypotheses of that result). In particular, the moduli space of flat unitary
connections is simply Hom.�1M;U.n//=U.n/, and the inclusions U.n/ ,!U.nC1/

allow us to stabilize with respect to rank. The colimit M.�1M / of these spaces is
just Hom.�1M;U /=U , where U D colim U.n/ is the infinite unitary group. We call
this space the stable moduli space of flat (unitary) connections. (This rather simple
stabilization suffices for surface groups, but in general must be replaced by a subtler
construction; see Remark 6.3.)

T Lawson [33] has exhibited a surprising connection between deformation K–theory
and this stable moduli space. His results suggest that for many compact, aspherical
manifolds, only finitely many homotopy groups of this stable moduli space are nonzero,
and in fact each component of this space should have the homotopy type of a finite
product of Eilenberg–MacLane spaces (see Corollary 6.4). This situation is closely tied
to Atiyah–Segal phenomena in deformation K–theory: we expect that the homotopy
groups of Kdef.M / will agree with K��.M / for � at least one less than the cohomo-
logical dimension of the group, and after this point the homotopy groups of the stable
moduli space should vanish. We now explain Lawson’s results and how they play out
for surface groups.

For the remainder of this section, we think of Kdef.�/ as the connective spectrum
described in Section 2. Lawson’s theorem states that for any finitely generated group � ,
there is a homotopy cofiber sequence of spectra

(8) †2Kdef.�/
ˇ
�!Kdef.�/ �!Rdef.�/;

and a corresponding long exact sequence in homotopy

(9) � � � �!Kdef
��2.�/

ˇ�
�!Kdef

� .�/ �!Rdef
� .�/ �! � � � :

Here †2Kdef.�/ denotes the second suspension of Kdef.�/ and Rdef.�/ denotes the
“deformation representation ring” of � , defined below. Note that for any spectrum X ,
one has ��.†X /D ���1X , hence the degree shift in the long exact sequence (9).
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As we will explain, the cofiber Rdef.�/ is quite closely linked to the stable moduli
space M.�/. The first map ˇ in the cofibration sequence (8) is the Bott map in
deformation K–theory, and is obtained from the Bott map in connective K–theory
ku by smashing with Kdef.�/; this requires the ku–module structure in deformation
K–theory constructed by Lawson [32].

Lawson’s construction of the Bott map relies on the modern theory of structured
ring spectra. In particular, his results require the model categories of module and
algebra spectra studied by Elmendorf, Kriz, Mandell and May [14], Elmendorf and
Mandell [15], and Hovey, Shipley and Smith [28].

His work makes rigorous the following purely heuristic construction (which we include
simply to provide some intuition). We may consider the Bott element ˇ2�2BU.n/DZ
as a family of representations via the map BU.n/ �! EU.n/�U.n/ Hom.�;U.n//
given by x 7! Œzx; In� where zx 2EU.n/ is any lift of x ; this is well-defined since In

is fixed under conjugation. If � is stably group-like, Section 2.3 allows us to think of
homotopy classes in Kdef

m .�/ as families of representations �W Sm! EU.n/�U.n/

Hom.�;U.n//. Now tensoring with ˇ gives a new family �˝ˇW Sm�2^S2DSm!

Hom.�;U.n//hU.n/ , via the formula �˝ ˇ.zw/ D �.z/˝ ˇ.w/. Of course some
care needs to be taken in defining this tensor product, since �.z/ and ˇ.w/ lie in the
homotopy orbit spaces, rather than simply in the representation spaces (and we have
also ignored questions of basepoints and well-definedness.) Lawson’s construction of
the Bott map [32] is in practice quite different from this hands-on approach, and it
would interesting to have a rigorous proof that the two agree.

Since Kdef.�/ is connective, �0†
2Kdef.�/ and �1†

2Kdef.�/ are zero, and hence
the long exact sequence (9) immediately gives isomorphisms

(10) Kdef
i .�/Š �iR

def.�/

for i D 0; 1, as well as an exact sequence

(11) Kdef
0 .�/

ˇ�
�!Kdef

2 .�/ �!Rdef
2 �! 0

(is not known whether the first map is injective in general).

If Kdef
� .�/ agrees with the periodic cohomology theory K��.B�/ for large �, then one

should expect the Bott map to be an isomorphism after this point (certainly this would
follow from a sufficiently natural correspondence between deformation K–theory of
� and topological K–theory of B� ). From the long exact sequence (9), one would
then conclude, as mentioned above, that ��.Rdef.�// vanishes in high degrees.
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Remark 6.1 In Section 2, we described Kdef.�/ as the connective spectrum associated
to a permutative category of representations, and we computed its homotopy groups
in Theorem 5.1. Lawson works with a different model, built from the H –space`

n V .n/�U.n/Hom.�;U.n// [32]. Here V .n/ denotes the infinite Stiefel manifold of
n–frames in C1 . One may interpolate between the two models by using a spectrum
built from the H –space

.EU.n/�V .n//�U.n/ Hom.�;U.n//;

and hence Theorem 5.1 computes the homotopy groups of Lawson’s deformation
K–theory spectrum as well.

We now describe the deformation representation ring and its relation to the stable moduli
space. Given any topological abelian monoid A (for which the inclusion of the identity
is a cofibration), one may apply Segal’s infinite loop space machine [47] to produce a
connective �–spectrum; equivalently the bar construction BA (the realization of the
simplicial space Œn� 7!An , with face maps given by multiplication and degeneracies
given by insertion of the identity [46]) is again an abelian topological monoid and one
may iterate. In particular, the zeroth space of this spectrum is �BA. The deformation
representation ring Rdef.�/ is the spectrum associated to the abelian topological monoid

Rep.�/D
1a

nD0

Hom.�;U.n//=U.n/;

so we have
��R

def.�/Š ���B
�
Rep.�/

�
:

It is in general rather easy to identify the group completion �BA when A is an abelian
monoid.

Proposition 6.2 Let � be a finitely generated discrete group, and assume that Rep.�/
is stably group-like with respect to the trivial representation 1 2 Hom.�;U.1// (eg
� D �1M with M a compact, aspherical surface). Then the zeroth space of Rdef.�/

is weakly equivalent to Z�Hom.�;U /=U . Hence for �> 0 we have

��Hom.�;U /=U Š ��R
def.�/;

and it follows from (10) that �1Hom.�;U /=U ŠKdef
1
.�/.

Proof If Rep.�/ is stably group-like with respect to the trivial representation 1 2

Hom.�;U.1//, then the same is true for the monoid of isomorphism classes Rep.�/.
As in Section 2.3, we can now apply Ramras [44, Theorem 3.6]. (That result has one
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additional hypothesis – the representation 1 must be “anchored” – but this is trivially
satisfied for abelian monoids.) Hence

�B
�
Rep.�/

�
' telescope
������!
˚1

Rep.�/' Z� telescope
n!1

Hom.�;U.n//=U.n/;

and to complete the proof it suffices to check that the projection

telescope
n!1

Hom.�;U.n//=U.n/ �! colim
n!1

Hom.�;U.n//=U.n/

is a weak equivalence. But this follows from the fact that in both spaces, compact
sets land in some finite piece (for the colimit, this requires that points are closed in
Hom.�;U.n//=U.n/; this space is in fact Hausdorff because the orbits of U.n/ are
compact, hence closed in Hom.�;U.n//, which is a metric space, hence normal).

Remark 6.3 When Rep.�/ is not stably group-like with respect to the trivial repre-
sentation, a more complicated stabilization process can be used to obtain a concrete
model for the zeroth space of Rdef.�/. Of course if Rep.�/ is stably group-like with
respect to some other representation � , we can simply replace block sum with 1 by
block sum with � . If there is no such representation � , then we proceed by means of
a rank filtration: the submonoids Repn.�/� Rep.�/ generated by representations of
dimension at most n are finitely generated (by any set of representatives for the finite
sets �0Hom.G;U.n//) hence stably group-like with respect to the sum ˆn of all the
generators. One now obtains a weak equivalence between the zeroth space of Rdef.�/

and the colimit
colim
n!1

.colim
���!
˚ˆn

Repn.�//:

The proof is similar to the arguments in [44, Section 5], and will not be needed here.

We can now show, as promised above, that when Rep.�/ is stably group-like, each
component of the stable moduli space of flat connections has the homotopy type of a
product of Eilenberg–MacLane spaces.

Corollary 6.4 Let � be a finitely generated discrete group, and assume that Rep.�/
stably group-like with respect to the trivial representation. Then the stable moduli space
M.�/D Hom.�;U /=U is homotopy equivalent to

�0M.�/�

1Y
iD0

K.�iM.�/; i/

where K.�; i/ denotes an Eilenberg–MacLane space.
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Proof By Proposition 6.2, each component of Hom.�;U /=U is homotopy equiva-
lent to a path component of the zeroth space of Rdef.�/. As discussed above, this
zeroth space is the loop space on the abelian topological monoid B.Rep.�//. Recall
that any connected abelian topological monoid is weakly equivalent to a product of
Eilenberg–MacLane spaces (see Hatcher [20, Corollary 4K.7]). Using the abelian
monoid structure on the loop space derived from point-wise multiplication of loops
(rather than concatenation) one now sees that the identity component of �B.Rep.�/
is a product of Eilenberg–MacLane spaces. But �B.Rep.�/ is a group-like H –space,
so each of its path components is homotopy equivalent to the identity component,
completing the proof. (Note that each space in question has the homotopy type of a
CW–complex; Hom.�;U.n//=U.n/ is a CW–complex by Park and Suh [41].)

Combining Proposition 6.2 with (10) and Theorem 5.1 yields:

Corollary 6.5 For any compact, aspherical surface M , the fundamental group of the
stable moduli space of flat unitary connections on M is isomorphic to the complex
K–group K�1.M /. Equivalently, if M g is a Riemann surface of genus g ,

�1

�
Hom.�1M g;U /=U

�
Š Z2g;

and in the nonorientable cases (letting K denote the Klein bottle) we have

�1

�
Hom.�1M g#RP2;U /=U

�
Š Z2g and �1

�
Hom.�1M g#K;U /=U

�
Š Z2gC1:

When M is orientable we can also calculate the second homotopy group of the stable
moduli space.

Proposition 6.6 Let M g be a Riemann surface of genus g > 1. Then

�2

�
Hom.�1M g;U /

�
=U Š Z:

Proof In light of the exact sequence (11) and Proposition 6.2, it suffices to compute
the cokernel of the Bott map Kdef

0
.�1M g/!Kdef

2
.�1M g/. Recall that in [32], the

Bott map arises as multiplication by the element q�.b/, where qW � ! f1g is the
projection and b 2 �2Kdeff1g Š �2ku is the canonical generator (we will see below
that the computation of Kdeff1g follows from Corollary 2.4). Since Kdef

0
.�1M g/ŠZ

is generated by the unit of the ring Kdef
� .�1M g/, it follows that ˇ.Kdef

0
.�1M g//�

Kdef
2
.�1M g/ is generated by ˇ.Œ1�/D q�.b/ � Œ1�D q�.b/. Hence we simply need to

understand the image of the canonical generator b 2 �2ku under the map q� . The
inclusion �W f1g ,! �1M g induces a splitting of q� , and since Kdef

2
.�1M g/ŠZ˚Z
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and �2ku Š Z, the proposition now follows from the elementary fact that in any
diagram

Z˚Z
p

// Z
sqq

with pısD Id, the cokernel of s is Z (briefly, if s.1/D .s1; s2/, then 1Dp.s1; s2/D

p.1; 0/s1Cp.0; 1/s2 so s1 and s2 are relatively prime, and it follows that coker.s/
is torsion-free).

In the nonorientable case, an analogous argument shows that the cokernel of the map
ˇW Kdef

0
.�1†/!Kdef

2
.�1†/ is either 0 or Z=2 (recall that both of these groups are

isomorphic to Z˚Z=2), and hence by (11), Rdef
2
.�1†/ is either 0 or Z=2. We expect

that ˇ is in fact an isomorphism in degree zero, and hence that Rdef
2
.�1†/ is zero.

For orientable surfaces M g (g > 0), it would follow from Conjecture 5.3 that the Bott
map is an isomorphism above degree zero, and consequently ��M.�1M g/D 0 for
� > 3. Our computation of �iM.�1M g/ (i D 0; 1; 2), together with Corollary 6.4,
would then imply that M.�1M g/ is homotopy equivalent to the infinite symmetric
product Sym1.M g/. In the case g D 1, this is a well-known fact, and follows easily
from simultaneous diagonalizability of commuting matrices.

In the nonorientable case the situation appears to be somewhat different. There, the
isomorphism with complex K–theory begins in dimension zero, and hence we expect
that the Bott map is always an isomorphism. Hence we expect that the homotopy groups
of Hom.�1†;U /=U vanish above dimension 1, ie this space has the homotopy type of
a product of circles. The precise meaning of the homotopy groups ��Hom.�;U /=U

thus seems rather mysterious. The reader should note the similarity between these
calculations and the main result of Lawson’s paper [33], which states that U k=U , the
space of isomorphism classes of representations of a free group, has the homotopy
type of Sym1.S1/k D Sym1B.Fk/. (Of course this space is homotopy equivalent
to .S1/k .)

7 Connected sum decompositions

In this section we consider the behavior of deformation K–theory on connected sum
decompositions of Riemann surfaces. Given an amalgamation diagram of groups,
applying deformation K–theory results in a pullback diagram of spectra. An excision
theorem states that the natural map

ˆW Kdef.G �K H / �! holim
�
Kdef.G/ �!Kdef.K/ �Kdef.H /

�
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is an isomorphism, where holim denotes the homotopy pullback.

Associated to a homotopy cartesian diagram of spaces

(12) W
f //

g

��

X

h
��

Y
k // Z

there is a long exact “Mayer–Vietoris” sequence of homotopy groups

(13) : : : �! �k.W /
f�˚g�
�����! �k.X /˚�k.Y /

h��k�
����! �k.Z/

@
�! �k�1.W / �! : : :

(this follows from Hatcher [20, page 159], together with the fact that the homotopy
fibers of the vertical maps in a homotopy cartesian square are weakly equivalent). If the
diagram (12) is a diagram in the category of group-like H –spaces (ie H –spaces for
which �0 is a group), then all of the maps in the sequence (13) (including the boundary
map) are homomorphisms in dimension zero. Hence whenever deformation K–theory
is excisive on an amalgamation diagram, one obtains a long-exact sequence in Kdef

� .

Deformation K–theory can fail to satisfy excision in low dimensions, and in particular
the failure of Theorem 5.1 in degree zero leads to a failure of excision for connected
sum decompositions of Riemann surfaces. We briefly describe this situation.

Letting M DM g1Cg2 denote the surface of genus g1Cg2 and Fk the free group on
k generators, if we think of M as a connected sum then the Van Kampen Theorem
gives us an amalgamation diagram for �1M . The long exact sequence coming from
excision would end with

Kdef
1 .F2g1

/˚Kdef
1 .F2g2

/ �!Kdef
1 .Z/ �!Kdef

0 .�1M /

�!Kdef
0 .F2g1

/˚Kdef
0 .F2g2

/�Kdef
0 .Z/:

The groups in this sequence are known, and so the sequence would have the form

Kdef
1 .F2g1

/˚Kdef
1 .F2g2

/ �!Kdef
1 .Z/D Z �! Z �! Z˚Z� Z:

We claim, however, that the maps Kdef
1
.F2gi

/!Kdef
1
.Z/ are zero. This leads imme-

diately to a contradiction, meaning that no such exact sequence can exist and excision
is not satisfied in degree zero.

If we write the generators of F2gi
as ai

1
; bi

1
; : : : ; ai

gi
; bi

gi
, then the map ci W Z! F2gi

is the multiple-commutator map, which sends 1 2 Z to
Qgi

jD1
Œai

j ; b
i
j �. Since the

representation spaces of Fk are always connected, Rep.Fk/ is stably group-like with
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respect to 1 2 Hom.Fk ;U.1//. Hence (using Theorem 2.3) one finds that the induced
map c�i W K

def
� .F2gi

/!Kdef
� .Z/ may be identified with the map

��.Z� .U
2gi /hU /! ��.Z�UhU /

induced by the multiple commutator map C W U 2gi !U (here the actions of U are via
conjugation). The induced map C� on homotopy is always zero, and from the diagram
of fibrations

U 2gi //

C

��

EU �U U 2gi //

��

BU

D

��
U // EU �U U // BU

one now concludes (using Bott Periodicity) that c�i is zero for � odd. This shows
that deformation K–theory is not excisive on �0 for connected sum decompositions.
However, based on Theorem 5.1 we expect that excision will hold in all higher degrees.

8 Appendix: Holonomy of flat connections

We now discuss the holonomy representation associated to a flat connection on a
principal G–bundle (G a Lie group) over a smooth, connected manifold M . We
show that holonomy induces a bijection from the set of all such (smooth) connections
to Hom.�1M;G/, after taking the action of the based gauge group into account
(Proposition 8.3). This is well-known, but there does not appear to be a complete
reference. Some of the results to follow appear in Morita’s books [40; 39], and a close
relative of the main result is stated in the introduction to Fine, Kirk and Klassen [16].

Most proofs are left to the reader; these are generally tedious but straightforward
unwindings of the definitions. Usually a good picture contains the necessary ideas.
Many choices must be made in the subsequent discussion, starting with a choice of left
versus right principal bundles. It is quite easy to make incompatible choices, especially
because these may cancel out later in the argument. We have carefully made consistent
and correct choices.

Our principal bundles will always be equipped with a right action of the structure
group G . A connection on P is a G –equivariant splitting of the natural map TP !

��TM . The gauge group G.P / is the group of all equivariant maps �W P ! P

such that � ı � D � ; the gauge group acts on the left of A.P / via pushforward:
��ADD� ıA ı z��1 .

Given a smooth curve  W Œ0; 1� ! M we may define a parallel transport operator
T W P.0/! P.1/ by following A–horizontal lifts of the path  . An A–horizontal
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lift of  is a curve z W Œ0; 1�! P satisfying

� ı z D  and z 0p.t/DA
�
 0.t/; zp.t/

�
;

and is uniquely determined by its starting point z .0/; we denote the lift starting at
p 2 P.0/ by zp . Parallel transport is now defined by T .p/D zp.1/:

Parallel transport is G –equivariant and behaves appropriately with respect to composi-
tion and reversal of paths. Any flat connection A is locally trivial (see Donaldson and
Kronheimer [13, Theorem 2.2.1]), and a standard compactness argument shows that
parallel transport is homotopy invariant for such connections.

Definition 8.1 Let P be a principal G –bundle over M , and choose basepoints m0 2

M , p0 2Pm0
. Associated to any flat connection A on P , the holonomy representation

�AW �1.M;m0/!G

is defined by setting �A.Œ �/ to be the unique element of G satisfying p0 D T A
 .p0/ �

�A.Œ �/. Here  W I ! M is a smooth loop based at m0 and Œ � is its class in
�1.M;m0/.

We now assume that M is equipped with a basepoint m0 2 M , and we equip all
principal bundles P with basepoints p0 2 Pm0

. We denote the set of all (smooth) flat
connections on a principal bundle P by Aflat.P /.

Proposition 8.2 For any A 2Aflat.P / and any � 2 G.P / we have

���A D �m0
�A�

�1
m0
;

where �m0
2G is the unique element such that p0 ��m0

D �.p0/: (Note that � 7! �m0

is a homomorphism G.P /!G .)

Proposition 8.2 shows that we have a diagram

Œ̀P �

Aflat.P /

''NNNNNNNNNNN

H // Hom.�1.M;m0/;G/

Œ̀P �

Aflat.P /=G0.P /;

SH

66mmmmmmmmmmmmmmmm

where H.A/D �A . The disjoint unions range over some chosen set of representatives
for the unbased isomorphism classes of (based) principal G –bundles. (In other words,
we choose a set of representatives for the unbased isomorphism classes, and then
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choose, arbitrarily, a basepoint in each representative, at which we compute holonomy.)
We now explain the equivariance properties of this diagram. When G is connected,
Lemma 3.3 shows that G acts on the space

`
ŒP �Aflat.P /=G0.P /. The action of g 2G

on an equivalence class ŒA� 2Aflat.P /=G0.P / is given by g � ŒA�D Œ.�g/�A�, where
�g 2 G.P / is any gauge transformation satisfying .�g/m0

D g . We can now state the
main result of this appendix.

Proposition 8.3 The holonomy map defines a (continuous) bijection

SHW
a
ŒP �

Aflat.P /=G0.P /! Hom.�1M;G/:

If G is connected, this map is G –equivariant with respect to the above G –action.

Proof We begin by noting that equivariance is immediate from Proposition 8.2, and
continuity of the holonomy map is immediate from its definition in terms of integral
curves of vector fields (here we are thinking of the C1–topology on Aflat.P /). In
order to prove bijectivity of SH , we will need to introduce the mixed bundles associated
to representations �W �1M !G . This will provide a proof of surjectivity. Injectivity
requires the idea that maps between bundles with the same holonomy can be described
in terms of parallel transport.

Let �W �1M !G be a representation. We define the mixed bundle E� by

E� D �M �� G D . �M �G/
.
.x;g/� .x � ; �. /�1g/

Here � �M W �M !M is the universal cover of M , equipped with a basepoint zm0 2
�M

lying over m0 2M . It is easy to check that E� is a principal G –bundle on M , with
projection Œ. zm;g/� 7! � �M . zm/. We denote this map by ��W E�!M . Note that since
we have chosen basepoints m0 2M and zm0 2

�M , E� acquires a canonical basepoint
Œ. zm0; e/� 2E� making E� a based principal G –bundle (e 2G denotes the identity.)

The trivial bundle �M �G has a natural horizontal connection, which descends to a
canonical flat connection A� on the bundle E� . This connection is given by

A�
�
Œzx;g�; Evx

�
DDq

�
.Dzx� �M /�1.Evx/; E0g

�
:

On the left, x 2M , Evx 2TxM , zx 2��1�M .x/� �M , and g 2G . On the right, E0g 2TgG

denotes the zero vector, q denotes the quotient map �M �G! �M �� G D E� , and
Dzx� �M is invertible because � �M W �M !M is a covering map. We leave it to the reader
to check that the connection A� is flat, with holonomy representation H.A�/ D � .
This proves surjectivity of the holonomy map. Injectivity will follow from:
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Proposition 8.4 Let .P;p0/ and .Q; q0/ be based principal G –bundles over M with
flat connections AP and AQ , respectively. If H.AP /DH.AQ/, then there is a based
isomorphism �W P !Q such that ��AP DAQ .

The proof will in fact show that the assumption of flatness in Proposition 8.4 is
unnecessary. For nonflat connections, however, the holonomy along a loop  no longer
depends only on the homotopy class of  , so the condition H.AP /DH.AQ/ should
be interpreted as saying that for every smooth loop  in M , the holonomies of AP

and AQ around  coincide.

The map � is defined by setting �.p0 � g/ D q0 � g and then extending via parallel
transport:

�.p/D T
AQ
 ı� ıT

AP

 ;

where  W Œ0; 1�!M is any path with  .0/Dm0 and  .1/D �.p/. Using the fact
that H.AP /DH.AQ/, one may check that � is well-defined.

To prove that ��AP DAQ , we consider the lifts of a particular vector Ev2TmM under
these two connections. Let  W Œ0; 1�! M be a smooth path with  .0/ D m0 and
 0.1=2/DEv. By definition of � we have �.zp0

/D zq0
and hence D�

�
z 0p0
.t/
�
D z 0q0

.t/

for any t 2 Œ0; 1�. We now have

.��AP /.zQ.1=2/; Ev/DD�
�
AP .�

�1
zQ.1=2/; 

0.1=2//
�

DD�
�
AP .zP .1=2/; 

0.1=2//
�

DD�
�
z 0P .1=2/

�
D z 0Q.1=2/

DAQ.zQ.1=2/; 
0.1=2//

DAQ.zQ.1=2/; Ev/

and by G –equivariance it follows that .��AP /.q; Ev/DAQ.q; Ev/ for every q 2Qm .

This completes the proof of Proposition 8.3.

As an easy consequence of this result, one obtains the more well-known bijection
between (unbased) isomorphism classes of flat connections and conjugacy classes of
homomorphisms. A proof of the latter result is given by Morita [39, Theorem 2.9];
however, Morita does not prove an analogue of Proposition 8.4 and consequently his
argument does not make the injectivity portions of these results clear.
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