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Unitary braid representations with finite image

MICHAEL LARSEN

ERIC ROWELL

We characterize unitary representations of braid groups Bn of degree linear in n and
finite images of such representations of degree exponential in n .

20F36; 20C15

1 Introduction

In this paper, we prove two loosely connected results about unitary representations of
the braid group �W Bn!U.d/, when n is sufficiently large and the degree d is not too
large compared to n. The original motivation goes back to the work of Jones on images
of Braid groups in Hecke algebra representations H.q; n/. Jones showed [10] that
when q D i , the image of Bn in every irreducible factor of the Hecke algebra is finite;
more explicitly, each such image is an extension of a symmetric group by a 2–group.
This is in sharp contrast to the usual behavior of irreducible factors of Hecke algebra
representations, in which the closure of the image of Bn contains all unimodular unitary
matrices (see Freedman, Larsen and Wang [8]). Birman and Wajnryb showed [2] that
when q D e2�i=6 , certain factors of H.q; n/ give rise to representations whose images
are extensions of symplectic groups Sp.2r;F3/ by 3–groups, where n� 2r (see also
Goldschmidt and Jones [9]). It seems to be known by some experts, though so far as we
know it has not appeared in print, that some other factors of H.e2�i=6; n/ give rise to
image groups which are extensions of SU.r C 1;F2/ by 2–groups. Other (extensions
of) symplectic groups appear as quotients of the braid group; Wajnryb [19] has found
explicit relations exhibiting Sp.2r;Fp/ as a quotient of B2rC1 for all p . We would
like to explain in some sense or at least characterize the possibilities for finite images
in such representations. Such a characterization is given in Theorem 4.5.

It appears to be typically the case that a finite image of Bn in U.d/ can be regarded as
a linear group, whose rank is comparable to n, over a finite field. We would therefore
like to systematically study all representations of Bn of dimension O.n/ over all
fields. Such a study has been initiated for complex representations of degree � n by
Formanek and his coworkers in [6; 7; 17]. In Theorem 3.3, we extend these results to
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higher multiples of n, but only for unitary representations. For general representations,
we have only the very soft result Theorem 2.10, which is used to relate n and r in
Theorem 4.5.

Acknowledgements We would like to thank the referee for suggesting several sub-
stantive improvements to the paper. Michael Larsen was partially supported by NSF
grant DMS-0354772 and Eric Rowell was partially supported by NSA grant H98230-
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2 Braid groups

In this section we establish some basic facts concerning the braid groups Bn and their
representations in the general sense of homomorphisms �W Bn! G where G is any
group. Proposition 2.2 and Proposition 2.9 can be found in [6], but we include full
proofs for the reader’s convenience.

For each braid group Bn we fix generators x1; : : : ;xn�1 such that

xixj xi D xj xixj if ji � j j D 1;(2–1)

xixj D xj xi if ji � j j ¤ 1:(2–2)

Definition 2.1 We say a homomorphism �W Bn!G is constant if

�.x1/D �.x2/D � � � D �.xn�1/:

Proposition 2.2 If �W Bn ! G is a homomorphism and �.xi/ commutes with
�.xiC1/ for some i � n� 2, then � is constant.

Proof Applying (2–1) when j D i C 1, we get

�.xi/
2�.xiC1/D �.xiC1/

2�.xi/;

which implies �.xi/ D �.xiC1/. As xi commutes with xiC2 , �.xiC1/ D �.xi/

commutes with �.xiC2/. By induction on i ,

�.xi/D �.xiC1/D � � � D �.xn�1/:

Likewise, �.xi�1/ and �.xi/ D �.xiC1/ commute, so �.xi/ D �.xi�1/, and by
downward induction,

�.xi/D �.xi�1/D � � � D �.x1/:

Corollary 2.3 If �.xi/ 2Z.G/ for some i , then � is constant.
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Corollary 2.4 If �.xi/D �.xiC1/ for some i , then � is constant.

If j � i , we use the notation XŒi;j � for the product xixiC1 � � �xj ; if j < i , we define
XŒi;j � to be the identity.

Lemma 2.5 For k � 3 and 1� i � k � 2, we have

XŒ1;k�xiX
�1
Œ1;k� D xiC1:

Proof The lemma holds by the following computation:

XŒ1;k�xiX
�1
Œ1;k� DXŒ1;i�1�xixiC1XŒiC2;k�xiX

�1
ŒiC2;k�x

�1
iC1x�1

i X�1
Œ1;i�1�

DXŒ1;i�1�xixiC1xix
�1
iC1x�1

i X�1
Œ1;i�1�

DXŒ1;i�1�xiC1X�1
Œ1;i�1�

D xiC1:

Lemma 2.6 If 1 � i; j ; k; l � n � 1, ji � j j � 2, jk � l j � 2, then there exists
z D zi;j ;k;l 2 Bn such that

zxiz
�1
D xk ; zxj z�1

D xl :

Proof First we assume i < j and k < l . By Lemma 2.5, without loss of generality
we may assume j D l D n� 1. As XŒ1;n�3� commutes with xn�1 , the ordered pair
.xi ;xn�1/ can be conjugated to .xiC1;xn�1/ as long as 1� i � n� 4. By induction
on i , all the .xi ;xn�1/ with i � n� 3 are conjugate.

To treat the case that i > j or k > l , it suffices to prove that .x1;x3/ can be conjugated
to .x3;x1/. Letting

y D x1x2x3x1x2x1 D x1x2x1x3x2x1;

we have

yx1 D x1x2x3x1x2x1x1 D x1x2x3x2x1x2x1 D x1x3x2x3x1x2x1 D x3yI

yx3 D x1x2x1x3x2x3x1 D x1x2x1x2x3x2x1 D x1x1x2x1x3x2x1 D x1y:

Now let 0 ! A ! G ! H ! 0 be a central extension. We write Œh1; h2�
� for

the commutator g1g2g�1
1

g�1
2
2 G , where gi is any element mapping to hi . As the

extension is central, this is well-defined.

Lemma 2.7 If 0! A! G
�
! H ! 0 is a central extension and �W Bn ! G is a

homomorphism such that � ı� is constant, then � is constant.
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Proof Any two elements of G which map to the same element of H must commute.
The lemma therefore follows from Proposition 2.2.

Proposition 2.8 If 0!A!G
�
!H ! 0 is a central extension and �W Bn!H is

a homomorphism such that Œ�.xi/; �.xj /�
� D 1 for some i; j with ji � j j � 2, then

� lifts to a homomorphism z�W Bn!G .

Proof As Œ �� respects conjugation, Lemma 2.6 implies

Œ�.xi/; �.xj /�
�
D 1

for all i; j with ji � j j � 2. Fix an element zx1 2 G with �.zx1/ D �.x1/ and an
element zy 2G with �.zy/D �.XŒ1;n�1�/. By Lemma 2.5,

�.zyk
zx1 zy
�k/D �.xkC1/; k D 0; 1; : : : ; n� 2:

Let gi D zy
i�1
zx1 zy

1�i :

Thus gi and gj commute when ji � j j ¤ 1, and the elements

ai WD gigiC1gig
�1
iC1g�1

i g�1
iC1

are all conjugate in G and lie in A. Thus, they all coincide; denoting this common
element a, and setting zxi D aigi , we have �.zxi/ D �.xi/, and the zxi satisfy the
relations (2–1) and (2–2). Defining a homomorphism z� by the equations z�.xi/D zxi ,
we see that z� is a lift of � .

Proposition 2.9 If n� 5, then every homomorphism from Bn to a solvable group G

is constant.

Proof We use induction on the length of the derived series. The proposition follows
immediately from Corollary 2.3 when G is abelian, so without loss of generality we
may assume that the last nontrivial term A in the derived series of G is a proper
subgroup of G . By the induction hypothesis, any homomorphism Bn ! G=A is
constant. We therefore choose an element g 2 G and a sequence a1; : : : ; an�1 2 Z

such that �.xi/D aig for i D 1; : : : ; n� 1. Writing ag for gag�1 , we have

aia
g
j g2
D �.xixj /D �.xj xi/D aj a

g
i g2

and therefore
a�1

i a
g
i D a�1

j a
g
j
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whenever ji � j j � 2. The graph on the vertex set f1; 2; : : : ; n� 1g defined by the
relation ji � j j � 2 is connected for n� 5. Thus,

a�1
1 a

g
1
D � � � D a�1

n�1a
g
n�1
D a

for some a 2A. The braid relation (2–1) for j D i C 1 implies

a3a2
i aiC1 D aia

g
iC1

a
g2

i D aiC1a
g
i a

g2

iC1
D a3aia

2
iC1;

so a1 D � � � D an�1 , and � is constant as claimed.

We are indebted to the referee for useful suggestions which simplified the proof and
improved the constant in the following theorem:

Theorem 2.10 If G is a linear algebraic group over a field K with solvable component
group, and n � max.5; 2

p
dimG C 4/, then every homomorphism Bn ! G.K/ is

constant.

Proof We assume without loss of generality that K is algebraically closed. We
use induction on dimG , the cases dimG � 2 being immediate from Proposition 2.9.
We may therefore assume n � 7. Proposition 2.9 implies also that the composition
of �W Bn ! G.K/ with the quotient map G.K/ ! G.K/=Gı.K/ is constant. We
may therefore assume that G=Gı is cyclic. Assuming without loss of generality that
Bn! G=Gı is surjective, all generators of Bn map into the same generator of this
cyclic group. If U denotes the unipotent radical of Gı , then U is a normal algebraic
subgroup of G . If the composition homomorphism Bn! .G=U/.K/ is constant, then
Bn maps to a solvable subgroup of G.K/, namely, an extension of the (cyclic) image
of this homomorphism by U.K/. By Proposition 2.9, this implies that � is constant.
Without loss of generality, therefore, we may assume that G is reductive. Likewise,
composing � with the quotient of G by the center of Gı , we may assume without loss
of generality that Gı is adjoint semisimple.

If there exist positive dimensional normal subgroups N1; : : : ;Nt of G such that
N1.K/\� � �\Nt .K/Df1g, then the compositions of � with the projections G.K/!
.G=Ni/.K/ are all constant, and therefore � is constant. If Gı has at least two
nonisomorphic simple factors, then the product of all factors of any one type is a proper
normal subgroup of G . We may therefore assume that Gı Š Hk for some positive
integer k and some (adjoint) simple algebraic group H . Moreover, conjugation by a
generator of G=Hk induces a well-defined outer automorphism of Hk and therefore
a permutation � of the factors, which are the minimal nontrivial normal subgroups
of Hk . Without loss of generality we may assume that this permutation is a k –cycle,
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since otherwise, each orbit of � determines a product of factors H which is a normal
subgroup of G .

We assume first that k D 1, so Gı D H is simple. Let x D �.xn�1/, and let Bn�2

denote the subgroup of Bn generated by x1; : : : ;xn�3 . Thus, �.Bn�3/ lies in the
centralizer of x in G.K/. If x is semisimple, setting K WD ZG.x/, a well-known
theorem of Springer and Steinberg [16, Theorem 9.1] implies that the component
group of Gı\K is commutative and therefore that the component group of K itself is
solvable. If not, let xu ¤ 1 denote the unipotent factor in the Jordan decomposition
x D xuxs . Then xu 2 Gı.K/. By the Borel–Tits theorem [3, Proposition 3.1], there
exists a parabolic subgroup P of Gı which contains ZGı.xu/ and which is fixed by
every automorphism of Gı which fixes xu . In particular,

ZG.xu/�NG.P/:

As P is self-normalizing in G , the group K WDNG.P/ has a solvable component group.
In every case, therefore, �.Bn�3/ lies in K , where K=Kı solvable and Kı ¨ Gı .
Replacing K with its quotient by the radical of Kı , we may assume that Kı is
a semisimple subquotient of Gı From the classification of maximal subgroups by
Seitz [14; 15] it follows (with some examination of cases) that

p
dimK �

p
dimG � 1;

so n� 2�max.5; 2
p

dimKC 4/, and the theorem follows by induction.

Finally, we consider the case k � 2. Conjugation by x induces an action on Hk given
by

.h1; : : : ; hk/ 7! .�1.h2/; �2.h3/; : : : ; �n.h1//:

Therefore, the centralizer of x in G is contained in

K WD fxi.h; ��1
1 .h/; : : : ; ��1

n � � � �
�1
1 .h// j 0� i < k; h 2Hg:

Again K has solvable component group, and

p
dimKD

p
dimH �

p
dimK
p

2
<
p

dimG � 1:

Again, the theorem follows by induction.

A variant of this idea which will be useful later is the following:
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Proposition 2.11 Let G and H be finite groups, and k and n positive integers, such
that G contains a normal subgroup

N ŠH �H � � � � �H„ ƒ‚ …
k

:

Suppose the conjugation action of G on N preserves this factorization, and G=N is
solvable. If n�max.5; 2 log2 jGj/, then every representation �W Bn!G is constant.

Proof Let f .k/D�2 for k D 1 and f .k/D 0 for k � 2. We prove that if

n�max.5; 2 log2 jGjCf .k//

then every G–representation of Bn is constant. If G is solvable, the theorem is
immediate. Otherwise, jGj � 60, so we may assume n � 9. We suppose that the
ordered quadruple .G;H; k; n/ is given and that the proposition is known for all groups
of order less than jGj. As in the proof of Theorem 2.10, we may assume that G=N is a
cyclic group of order k and that x WD �.xn�1/ maps to a generator of this quotient. If
kD1, then GDH , and the centralizer Zx of x in G satisfies log2 jZxj� log2 jGj�1.
As �.Bn�2/�Zx , and the proposition is known for the quadruple .Zx;Zx; 1; n�2/,
we conclude that �jBn�2

is constant, from which it follows that � is constant.

If k � 2, as conjugation by x preserves the decomposition N ŠH k , we can write

x.h1; : : : ; hk/x
�1
D .�1.h2/; �2.h3/; : : : ; �n.h1//

for automorphisms �i . It follows that the centralizer of x is contained in a group
K which is an extension of Z=kZ by H . Applying the induction hypothesis to the
quadruple .K;K; 1; n� 2/, the proposition holds.

3 Representations of linearly bounded degree

In this section, we examine the possible degrees of low-dimensional unitary represen-
tations of a braid group Bn . The complex irreducible representations of degree � n

of Bn have been completely described by Formanek et al [7] and Sysoeva [17]. The
constant representations have degree 1, and the nonconstant representations in this
range have degree n� 2, n� 1, or n. Sysoeva [17] has announced that there are no
irreducible representations of degree nC1 for n sufficiently large, and has conjectured
that such a statement holds for degree nC k as well.

In this section, we consider the irreducible unitary representations of Bn of degree
� ln where l is a fixed integer and n is sufficiently large in terms of l .
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We say that a sequence d0; d1; d2; : : : is weakly convex if the sequence of differences
d1� d2; d2� d3; : : : is nonincreasing.

Lemma 3.1 If d0; d1; : : : is a weakly convex sequence and i < j < k , then there
exists an integer s such that

dj � di

j � i
� s �

dk � dj

k � j
:

Proof Setting s D djC1� dj , the lemma follows immediately.

Lemma 3.2 Let V be a finite-dimensional vector space, W � V a subspace, and
T W V ! V an invertible linear transformation. The sequence d0; d1; d2; : : : defined
by d0 WD dim V and

dk WD dim W \T .W /\T 2.W /\ � � � \T k�1.W /; k � 1

is weakly convex.

Proof Define W0 D V , and

Wk WDW \T .W /\T 2.W /\ � � � \T k�1.W /; k � 1:

Then dk � dkC1 D dim Wk � dim WkC1 D dim Wk=WkC1

As T �1 maps to WkC1 to Wk and WkC2 to WkC1 , it induces a map

WkC1=WkC2!Wk=WkC1:

As WkC1\T .WkC1/DWkC2;

this linear transformation is injective, so

dk � dkC1 � dkC1� dkC2:

We apply this lemma in the following way. Let V be a finite-dimensional complex vector
space endowed with a Hermitian inner product, and �W Bn ! U.V / an irreducible
unitary representation. For each �2C , we define W DW � to be the �–eigenspace of
�.x1/. By Lemma 2.5 there exists y 2Bn such that yxiy

�1D xiC1 for 1� i � n�2.
We set T D �.y/. Now, w 2W � , if and only if

.�.x1/��/.w/D 0:
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For any k , this is equivalent to

.�.y1�kxkyk�1/��/.w/D 0;

.�.xk/��/.�.y
k�1/.w//D 0:or to

Thus, the �–eigenspace of �.xk/ is T k�1.W �/.

We say that an irreducible representation �W Bn! U.m/ is of level k if one of the
following is true:

(1) k D 0 and mD 1.

(2) k � 1 and kn� .k2C 3k � 2/�m� kn.

Theorem 3.3 For every integer l � 1 and every integer n sufficiently large in terms
of l , every irreducible unitary representation of the braid group Bn of degree � ln is
of some (unique) level k � l .

Proof As
.k � 1/n< kn� .k2

C 3k � 2/

when n is sufficiently large, uniqueness is clear. For existence, we use induction on l ,
the l D 1 case being known [7]. For given l � 2, let �W Bn!Aut.V / be an irreducible
unitary representation of degree � ln. We may therefore assume that

(3–1) .l � 1/nC 1� dim V � ln� .l2
C 3l � 1/:

We write Bn�1 and Bn�2 for the subgroups of Bn generated by xi with 1� i � n�2

and 1� i � n� 3 respectively.

For each eigenvalue � of �.xn�1/, let X� denote the �–eigenspace. As Bn�2

commutes with xn�1 , �.Bn�2/ acts on X� . We say that X� splits if it is a direct
sum of constant representations of Bn�2 . A sufficient condition that X� splits is

dim X�
� n� 5;

as the minimum degree of a nonconstant representation of Bn�2 is n�4. Let X denote
the direct sum of all irreducible 1–dimension factors of Bn�2 in V , so X contains
the sum of all split X� . Let �1; : : : ; �r be the constants appearing in X regarded as a
Bn�2 –representation, and let W �i denote the �i –eigenspace of �.x1/ on V , which
of course contains the �i –eigenspace of �.x1/ on X . Thus W

�i

j is the intersection of
the �i –eigenspaces of �.x1/; : : : ; �.xj /. As W

�i

n�1
D f0g, Lemma 3.2 implies

dim W
�i

j �
n� 1� j

2
dim W

�i

n�3
;
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for 1� j � n� 3. If dim X � 2l C 1,

ln�
X

i

dim W
�i

1
�

n� 2

2
dim X � lnC .n=2� 2l � 1/:

Assuming n> 4l C 2, we may therefore conclude that dim X � 2l .

We consider first the case that there are at least two different eigenvalues �i such
that X�i does not split. For each � 2 f�1; : : : ; �r g, let X

�
ns denote the orthogonal

complement in X� of the direct sum of all constant representations of Bn�2 . Then

dim V � dim X�
ns � ln� .l2

C 3l � 1/� .n� 4/

D .l � 1/.n� 2/� .l2
C l � 3/

< .l � 1/.n� 2/;

so
L
�i¤�

X
�i
ns satisfies the induction hypothesis for representations of Bn�2 , and the

same is true of each irreducible factor of each X
�i
ns . Each irreducible factor of X

�i
ns

therefore has a level. Letting k1; k2; : : : ; ks � 1 denote the sequence of levels, we have

dim V D dim X C

sX
iD1

dim X�i
ns ;

so .k1C� � �Cks/.n�2/�

sX
iD1

.k2
i C3ki�2/�dim V �2lC.k1C� � �Cks/.n�2/:

For n sufficiently large in terms of l , this, together with (3–1) implies k1C� � �CksD l .
As x2C3x�2 is convex, for any fixed values of s � 2 and l , the sum of k2

i C3ki�2

is minimized, subject to the constraints ki � 1 and k1C � � � C ks D l , when all but
one value of ki is 1. As the difference between values of x2C 3x� 2 for consecutive
positive integers exceeds the value at x D 1, if s is constrained to be greater than 1

but otherwise can be chosen freely, the sum of k2
i C3ki �2 is maximized when sD 2.

Thus,

dim V � .k1C � � �C ks/.n� 2/�

sX
iD1

.k2
i C 3ki � 2/

� ln� 2l � .l � 1/2� 3.l � 1/C 2� 2

D ln� .l2
C 3l � 2/:

This leaves the case that there exists a unique � such that X
�
ns is not zero. Let X

�
i

denote the intersection of the �–eigenspaces of xn�1;xn�2; : : : ;xn�i . By Lemma 3.2,
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applying Lemma 3.1 for 0< i < j ,

dim X
�
i � dim X

�
j � .j � i/

�
dim V � dim X

�
i

i

�
:

If dim V � dim X
�

l
< l2;

then setting j D n� 1 and i D l , we have

dim V � l2
� 1C dim X

�

l
� l2
� 1C dim X

�

l
� dim X

�
n�1

� l2
� 1C .n� l � 1/

�
l2� 1

l

�
D .l � 1/n;

which for n sufficiently large is inconsistent with (3–1). On the other hand,

dim V � dim X�
� 2l;

dim V � dim X
�

l
� 2l2:so

Assuming that 2l2 � n� l � 6, this implies that the orthogonal complement of X
�

l
is

a split representation of Bn�l�1 , the subgroup of Bn generated by x1; : : : ;xn�l�2 .

Let �i denote the eigenvalues of this representation. We haveX
i

dim W
�i

n�l�2
� l2:

On the other hand, dim W
�i

n�1
D 0. By Lemma 3.1 and Lemma 3.2,

dim W
�i

1
� dim W

�i

n�l�2
� .n� l � 3/

�
dim W

�i

n�l�2

l C 1

�
:

As dx=.l C 1/e is superadditive in x and dl2=.l C 1/e D l ,

X
i

dim W
�i

1
�

X
i

dim W
�i

n�l�2
C .n� l � 3/

�
dim W

�i

n�l�2

l C 1

�
� l2
C .n� l � 3/l D nl � 3l;

contrary to (3–1).

In particular by the proof of Theorem 3.3 we see that Bn has no irreducible .nC 1/–
dimensional unitary representations for n� 16. The actual lower bound is at least 8 as
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B7 has irreducible 8–dimensional unitary representations (factoring over the Hecke
algebra H.i; 7/; see Jones [10]).

Theorem 3.3 can be extended to projective unitary representations. In fact, we have the
following proposition:

Proposition 3.4 Every irreducible projective unitary representation of Bn of degree
d � 2n=6 lifts to a linear representation of Bn .

Proof The proposition is trivial for n � 5. We may therefore assume n � 6. Thus
there exists a sequence a1 < � � � < a2m of positive odd integers less than n, with
m � n=6. Let yi D xai

. The generators yi commute with one another. The central
extension

0! U.1/! U.d/
�
! PSU.d/! 0

defines a commutator map Œ �� . By Lemma 2.6, Œ�.xi/; �.xj /�
� is independent of

the pair .i; j / provided ji � j j � 2. It is therefore symmetric as well as antisymmetric
and consequently takes values ˙1. If Œ�.xi/; �.xj /�

� D 1 for some (and therefore
all) .i; j / with ji � j j � 2, then by Lemma 2.7, � lifts to a homomorphism to U.m/.

We therefore assume that Œ�.yi/; �.yj /�
� D�1 for all i ¤ j . Let

ai D y1y2 � � �y2i�1; bi D y1y2 � � �y2i�2y2i :

Then Œai ; aj �
�
D Œbi ; bj �

�
D 1; Œai ; bj �

�
D .�1/ıij :

Let Gi WD �
�1.�.hai ; bii//:

Clearly, the restriction of the standard representation of U.m/ to Gi has no 1–dimen-
sional components. The subgroups G1; : : : ;Gm � U.d/ commute in pairs and give
rise to a homomorphism G1� � � � �Gm! U.d/. The restriction of the standard repre-
sentation of U.m/ to this product decomposes as a sum of irreducible representations
of G1� � � � �Gm , each of which is an external tensor product of representations of the
Gi , each of degree > 1. Therefore, d � 2m .

4 Representations of exponentially bounded degree

In this section we fix a constant c and consider nonconstant unitary representations of
Bn , n � 5, of degree d � cn with finite image. We are interested in the behavior of
G WD �.Bn/. By Proposition 2.9, G cannot be solvable.

Algebraic & Geometric Topology, Volume 8 (2008)



Unitary braid representations with finite image 2075

Definition 4.1 We say a finite group G is almost characteristically simple if there
exists a (nonabelian) finite simple group H and a positive integer k such that H k <

G < Aut.H k/. We say G is of permutation type if H is isomorphic to the alternating
group An for some n� 5.

Proposition 4.2 If G is any finite group which is not solvable and K is maximal
among normal subgroups of G such that G=K is not solvable, then G=K is almost
characteristically simple.

Proof Replacing G by G=K , we may assume that G is not solvable but every
nontrivial quotient group of G is. In particular, G has no nontrivial normal abelian
subgroup. Every minimal normal subgroup L is characteristically simple, ie, of the
form H k where H is simple or cyclic of prime order. However, L cannot be abelian,
so H cannot be cyclic. If M is any other minimal normal subgroup, it is also a
power of a simple group, and L \M D f1g since L and M are minimal. This
implies that the solvable group G=M contains a simple subgroup isomorphic to H ,
which is impossible. It follows that L is the unique minimal normal subgroup, and
therefore the conjugation map G!Aut.L/ is injective, which proves that G is almost
characteristically simple.

Definition 4.3 If G is a finite group which is not solvable, a minimal quotient is any
group of the form G=K where K is maximal among normal subgroups of G such that
G=K is not solvable.

Definition 4.4 A finite group is of classical type of rank r if it is a finite simple group
of the form Ar .q/, 2Ar .q/,Br .q/, Cr .q/, Dr .q/, or 2Dr .q/.

Roughly speaking, a finite simple group is of classical type if it is a linear, unitary,
orthogonal, or symplectic group over a finite field.

Theorem 4.5 For every constant c there exist positive constants A, B , K , N , and Q

such that for all n>N and all �W Bn! U.d/ with d � cn and finite image G , every
minimal quotient of G is either of permutation type or of the form H k ÌZ=mZ, where
H is a finite simple group of classical type of rank r . In the latter case, 1 � k �K ,
2� q �Q, and An� r � Bn.

Proof A minimal quotient is of the form H k Ì C , where C is solvable and H is
simple. By hypothesis, H is not an alternating group. By Proposition 2.11, if n is
sufficiently large, then jH j can be taken to be as large as we wish; in particular, we
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exclude that case that H is sporadic. By Theorem 2.10, if n is sufficiently large and H

is of Lie type, the dimension of the underlying simple algebraic group must be > �n2

for some absolute constant � > 0, so the rank r of the group must be greater than An

for some absolute constant A > 0. Thus, we may assume that H is a perfect group
whose universal central extension is H.F/, where H is a simply connected semisimple
algebraic group over F which is absolutely simple modulo its center and of rank r � 9.

Let G0 denote the inverse image of H k � H k Ì C in G . We have a short exact
sequence

0! J !G0!H k
! 0;

which we pull back to a short exact sequence

(4–1) 0! J ! zG0!H.F/k ! 0:

As zG0 is a central extension of G0 , the faithful representation G0! U.d/ gives rise
to an almost faithful d –dimensional representation of zG0 . We claim that this implies
that d is greater than or equal to the degree of the minimal nontrivial representation of
H.F/. Let X � Hom.Z.J /;C�/ denote the set of characters obtained by restricting
zG0 ! U.d/ to the abelian group Z.J /. Thus H.F/k acts on X . If this action is
nontrivial, then the permutation representation of H.F/k acting on X is nontrivial and
therefore contains a nontrivial factor. The minimal degree for a nontrivial representation
of H.F/k is the same as that for H.F/. We may therefore assume that H.F/k acts
trivially on X . This implies that the action of H.F/k on Z.J / preserves both Z. zG0/�

Z.J / and Z. zG0/=Z.J / pointwise. As H.F/k is perfect, any action of this group on an
abelian group which fixes a subgroup and quotient group pointwise is trivial. It follows
that Z.J / lies in the center of zG0 . The nonabelian cohomology class which determines
whether (4–1) splits lies in H 2.H.F/k ;J /, which is a principal homogeneous space of
H 2.H.K/k ;Z.J //. The latter is trivial since H.K/k is centrally closed. Therefore,
G0 contains a subgroup isomorphic to H.F/k , and restricting V to this subgroup, we
see that our claim holds.

The Seitz–Landazuri bound [12] on the minimal degree projective representations of
finite simple groups of Lie types now implies that qkr=n is bounded in terms of c .
Given that r=n > A, this gives upper bounds Q and K for q and k , and given that
q � 2, k � 1, this gives an upper bound B for r=n.

We remark that the theorem can be extended in two ways without essentially modifying
the proof. On the one hand, we need not assume that the representation V is unitary.
On the other hand, if V is unitary, we need not assume that �.Bn/ is finite; we can
take the closure of the image, obtain a compact Lie group, and characterize the group
of components of this Lie group without assuming that the identity component is trivial.
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5 An application

We would like to describe a general setting in which one obtains sequences of unitary
representations of the braid group of exponentially bounded degree. Let C be any
unitary premodular (D ribbon fusion) category (see Turaev [18, Chapter II.5]). In
particular this means that C is semisimple with finitely many (isomorphism classes
of) simple objects fX0; � � � ;Xr g and the morphism spaces are finite dimensional C–
vector spaces. Moreover, such a category is equipped with a conjugation and a positive
definite Hermitian form with respect to which each End.X˝n/ is a Hilbert space.
The braiding isomorphisms cX ;Y W X ˝ Y Š Y ˝X induce unitary representations
�X

n W Bn! U.End.X˝n// via:

�X
n .�i/f D Id˝i�1

X
˝ cX ;X ˝ Id˝n�i�1

X
ıf

for any object X , where the Bn –invariance of the Hermitian form is included in the
axioms. By semisimplicity of End.X˝n/ the spaces Hom.Xj ;X

˝n/ for simple Xj

are equivalent to (potentially reducible) unitary Bn subrepresentations of End.X˝n/.

We will show that dim Hom.Xj ;X
˝n/ is exponentially bounded. For simplicity of

notation we assume that X D Xi is a simple object and each object is isomorphic
to its dual; the general case is essentially the same. For each simple object Xi we
define a (symmetric) matrix Ni whose .j ; k/–entry is dim Hom.Xk ;Xi ˝Xj /. The
matrices Ni , 0� i � r pairwise commute, and are clearly nonnegative. Let di be the
Perron–Frobenius eigenvalue of Ni , ie the largest eigenvalue. Setting D Dmaxfdig

we will show that dim Hom.Xj ;X
˝n/�Dn . First observe that di � 1, since j�j � di

for all other eigenvalues � and clearly .Ni/
n ¤ 0 for all n. It follows from the

Perron–Frobenius Theorem that the vector dD .d0; d1; � � � ; dr /
T is a strictly positive

eigenvector with eigenvalue di for each Ni , uniquely determined up to rescaling (one
applies the Perron–Frobenius Theorem to the strictly positive matrix M WD

P
i Ni ;

see eg Etingof, Nikshych and Ostrik [4]). Now denoting by ei the i –th standard basis
vector for Rr , we see that dim.Xj ;X

˝n
i / is the j –th entry of .Ni/

n�1ei which is less
than or equal to the j –th entry of .Ni/

n�1dD .di/
n�1d which in turn is bounded by

Dn .

There are two well-known constructions of unitary premodular categories. The first is
Rep.D!G/: the representation category of the twisted quantum double of a finite group
G . D!G is a semisimple jGj2 –dimensional quasi-triangular quasi-Hopf algebra (see
Bakalov and Kirillov [1]), and Rep.D!G/ is a modular category. The braid group
representations were studied by Etingof, Rowell and Witherspoon [5] and found to
have finite images. In particular the image of �H

n where H DD!G is the left regular
representation of D!G is found to be a subgroup of the full monomial group Sn Ë Zn

s
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for some s and hence of permutation type. Since any simple object appears as a
subobject of H , it follows that all images are of permutation type. The second set
of examples come from representations of quantum groups at roots of unity (see eg
Rowell [13]) or, equivalently, from fixed level representations of affine Kac–Moody
algebras. Quantum groups of type Ak at 4–th and 6–th roots of unity yield modular
categories supporting braid group representations with finite images. In fact, these
representations factor over quotients of Hecke algebras H.q; n/ and are precisely those
alluded to in the introduction. Quantum groups of type C2 at 10–th roots of unity also
yield finite braid group images [11], with images Sp.n� 1;F5/. Here the object X of
interest has dX D

p
5, and for Bn with n odd, dim End.X˝n/D .

p
5/n�1 and is the

metaplectic representation of Sp.n� 1;F5/ with two irreducible subrepresentations of
dimension ..

p
5/n�1˙ 1/=2. It appears that this can be generalized: there is evidence

that quantum groups of type Bk at .4kC2/–th roots of unity and Dk at 4k –th roots
of unity support braid group representations with finite symplectic groups as images.
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