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ON SCATTERING FOR WAVE EQUATIONS

WITH TIME DEPENDENT COEFFICIENTS

By

Kiyoshi Mochizuki

Abstract. We consider the wave equations with perturbation of the

first order di¤erential operators, the coe‰cients of which depend on

both the space and time variables. Under suitable conditions on the

coe‰cients, we show the existence of the scattering operator. The

main tool used is space-time energy estimates of solutions.

1. Introduction and Results

Let W be an exterior domain in Rn ðnb 3Þ with smooth boundary qW which

is star-shaped with respect to the origin 0. We consider in W the wave equation

q2t w� Dwþ b0ðx; tÞqtwþ
Xn

j¼1

bjðx; tÞqjwþ cðx; tÞw ¼ 0; ðx; tÞ A W� R ð1Þ

with Dirichlet boundary condition

wðx; tÞ ¼ 0; ðx; tÞ A qW� R; ð2Þ

where qt ¼ q=qt, qj ¼ q=qxj, D is the n-dimensional Laplacian, and bjðx; tÞ
ð j ¼ 0; 1; . . . ; nÞ and cðx; tÞ are real-valued bounded continuous functions.

Throughout this paper solutions are assumed to be real-valued. Moreover, we

restrict ourselves to solutions with finite energy.

The energy at time t of solution wðx; tÞ is defined by

k~wwðtÞk2E ¼ 1

2

ð
W

fj‘wðx; tÞj2 þ wtðx; tÞ2g dx;

where ‘w is the gradient of w, wt ¼ qtw, and we mean by ~ww the pair of functions

fw;wtg.
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We compare the solutions of problem (1), (2) with those of the free problem

q2t w0 � Dw0 ¼ 0; ðx; tÞ A W� R ð3Þ

w0ðx; tÞ ¼ 0; ðx; tÞ A qW� R; ð4Þ

More precisely, under suitable smallness conditions on bjðx; tÞ and cðx; tÞ, we

shall develop a scattering theory between these two problems.

When the coe‰cients bjðx; tÞ and cðx; tÞ are independent of t, the scattering

theory has been studied by Mochizuki [5], [7] under the conditions

jb0ðxÞja exðrÞ; bjðxÞ1 0 ð j ¼ 1; . . . ; nÞ; jcðxÞja exðrÞ n� 2

2r

ðr ¼ jxjÞ, where e is a small positive constant, and xðrÞ is a positive L1-function of

r > 0. On the other hand, when they are independent of the space variable, the

scattering operator is constructed by Wirth [10] under the conditions

b0ðtÞ A L1ðRÞ; bjðtÞ1 0 ð j ¼ 1; . . . ; nÞ; cðtÞ1 0:

In this paper, we shall develop a theory which generalizes both of these two

results. Our results will cover the coe‰cients which satisfy

jbjðx; tÞja bj0ð1þ rÞ�aj ð1þ jtjÞ�bj ð j ¼ 0; 1; . . . ; nÞ;
jcðx; tÞja c0r

�1ð1þ rÞ�~aað1þ jtjÞ� ~bb;

(
ð5Þ

where bj0, c0 are positive constants, and aj; bj ; ~aa;
~bbb 0 satisfy

aj þ bj > 1; ~aaþ ~bb > 1:

bj0 (or c0) should be chosen su‰ciently small if bj (or ~bb) ¼ 0.

For the Schrödinger equation

iqtu� Duþ Vðx; tÞu ¼ 0; ðx; tÞ A Rn � R

with time dependent complex potential, the scattering operator is constructed in

Mochizuki-Motai [8] under similar smallness conditions on the potential. Note

that time dependent real potentials have been treated in Howland [1], Yafaev [11],

Yajima [12] and Kitada-Yajima [4] without requiring smallness conditions. For

time independent complex potentials, the so called smooth perturbation theory

has been developed in Kato’s classical paper [2] (see also [3]). His theory based on

the weighted resolvent estimate is not available in our prolem. In this paper, we

directly obtain the necessary space-time weighted energy estimate for problem (1),

(2), and use it to obtain asymptotics of solutions (cf., [5], [7]).
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Now, let H 1
D be the closure in the Dirichlet norm

kukD ¼
ð
j‘uj2 dx

� �1=2

of scalar functions u with compact support in W, and let L2 be the usual L2 space

with norm

kuk ¼
ð
juj2 dx

� �1=2

:

Here and in the following we denote by
Ð
the integration over the domain W. We

define HE ¼ H 1
D � L2. Then HE forms a Hilbert space with energy norm

k f kE ¼ 1ffiffiffi
2

p fk f1k2D þ k f2k2g1=2; f ¼ f f1; f2g:

As an evolution equation in HE , the free problem (3), (4) is rewritten in the

matrix form

iqt~ww0 ¼ L0~ww0; ~ww0 ¼ fw0;w0tg ð6Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and L0 ¼ i

0 1

D 0

� �
. The operator L0 becomes selfadjoint in

HE if the domain is defined by DðL0Þ ¼ H 2
D � fH 1

D VL2g, where H 2
D is the set

of functions f1 A H 1
D such that D f1 A L2. Thus, L0 generates a unitary group

fU0ðtÞ ¼ e�itL0 ; t A Rg in HE , and for given initial data ~ww0ð0Þ ¼ f A HE , the

solution of (6) is represented as

~ww0ðtÞ ¼ U0ðtÞ f :

The perturbed problem (1), (2) is similarly rewritten in the form

iqt~ww ¼ L0~wwþ VðtÞ~ww; ~ww ¼ fw;wtg: ð7Þ

where

VðtÞ ¼ �i
0 0

bðx; tÞ � ‘þ cðx; tÞ b0ðx; tÞ

� �
ð8Þ

with bðx; tÞ � ‘ ¼
Pn
j¼1

bjðx; tÞqj .

By use of the free unitary group U0ðtÞ, problem (7) is reduced to the integral

equation
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~wwðtÞ ¼ U0ðtÞ f þ
ð t

0

U0ðt� sÞVðsÞ~wwðsÞ ds: ð9Þ

As a bounded opertor in HE , VðtÞ depends continously on t A R. So, for given

f A HE , this equation has a unique solution ~wwðtÞ A CðR;HEÞ. We denote by

Uðt; sÞ A BðHEÞ the evolution operator which maps solutions at time s to those at

time t. The unique existence of solutions of (9) implies that for each fixed s and t,

Uðt; sÞ defines a bijection on HE .

Let h ¼ hðtÞ be a positive L1-function of t A R, and let x ¼ xðrÞ be a smooth

positive L1-function of r > 0 which also satisfies

x 0ðrÞa 0; x 0ðrÞ2 a 2xðrÞx 00ðrÞ: ð10Þ

With these functions, we require the following conditions on the coe‰cients

of the perturbed problem (1), (2).

jbjðx; tÞja exðrÞ þ hðtÞ ð j ¼ 0; 1; . . . ; nÞ

jcðx; tÞja fexðrÞ þ hðtÞg n� 2

2r

8><
>:ðA1Þ

in ðx; tÞ A Rn � R, where e is a small positive constant.

Note that the following functions satisfy condition (10) (cf., Mochizuki-

Nakazawa [9]).

xðrÞ ¼ ð1þ rÞ�1�d;

xðrÞ ¼ ðeþ rÞ�1½logðeþ rÞ��1�d;

xðrÞ ¼ ðek þ rÞ�1½logðek þ rÞ��1 � � � ½log½k�ðek þ rÞ��1�d;

where d > 0 and ek, log½k� are defined by

e0 ¼ 1; e1 ¼ e; . . . ; ek ¼ eek�1 ;

log½0� a ¼ a; log½1� a ¼ log a; . . . ; log½k� a ¼ log log½k�1� a:

The functions (5) satisfy ðA1Þ. To verify this we consider the function

aðr; tÞ ¼ a0ð1þ rÞ�að1þ jtjÞ�b;

where a0 > 0, a; bb 0 and aþ b > 1. The case b ¼ 0 is obvious since we can

choose e ¼ a0 and x ¼ ð1þ rÞ�a. In case b > 0 we use the Young inequality to

obtain
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aðr; tÞa a0e
a

aþ b
ð1þ rÞ�a�b þ a0e

�a=b b

aþ b
ð1þ jtjÞ�a�b;

where e is any positive number. Thus, each function of (5) is estimated like

jbjðx; tÞja ejxjðrÞ þ hjðtÞ ð j ¼ 0; 1; . . . ; nÞ

jcðx; tÞja f~ee~xxðrÞ þ ~hhðtÞg n� 2

2r

8><
>:

and ðA1Þ holds if we choose

e ¼ maxfej; ~eeg; xðrÞ ¼ maxfxjðrÞ; ~xxðrÞg; hðtÞ ¼ maxfhjðtÞ; ~hhðtÞg:

We can now state the main theorem of this paper.

Theorem 1. Assume ðA1Þ with small e > 0. Then

(i) Every solution of ð1Þ is asymptotically free, that is, for every f A HE there

exists fG0 A HE such that

kUðt; 0Þ f �U0ðtÞ fG0 kE ! 0 as t !Gy:

(ii) We put

ZG ¼ s� lim
t!Gy

U0ð�tÞUðt; 0Þ:

Then ZG defines a nontrivial bounded operator on HE.

(iii) If e is chosen to be small enough, then ZG gives a bijection on HE. Thus,

the scattering operator

S ¼ ZþðZ�Þ�1 : f �0 ! f þ0

is well defined and also gives a bijection on HE.

Remark. The smallness of e is estimated as

e
9ð2n� 3Þ
n� 2

kxkL1 < 1 for ðiÞ and ðiiÞ;

e
9ð2n� 3Þ
n� 2

kxkL1 1þ e
20ð2n� 3Þ

n� 2
kxkL1e

9khk
L1 ð1þ 3khkL1Þ

� �
< 1

for (iii).

This theorem will be proved in § 4 based on the space-time weighted energy

estimates of solutions. The estimates for free solutions are treated in the next § 2,
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and the results will be applied in § 3 to obtain similar estimates for perturbed

solutions.

2. Space-time Weighted Energy Estimates of Free Solutions

The basic identities used in this and next sections are originated by Morawetz

[10] (cf., also Strauss [11]), and they are summarized in the present forms in

Mochizuki [6].

In this section we consider solutions to the free problem (3), (4).

First we multiply by w0t on both sides of (3). Then

1

2
qtðw2

0tÞ � ‘ � ð‘w0w0tÞ þ
1

2
qtðj‘w0j2Þ ¼ 0:

Integrating this over W� ½0; t� and taking account of the boundary condition

w0tjqW ¼ 0, we obtain

k~ww0ðtÞk2E ¼ k~ww0ð0Þk2E for any t A R; ð11Þ

which verifies the conservation of the energy.

Next, we multiply by c w0r þ
n� 1

2r
w0

� �
on both sides of (3), where c ¼ cðrÞ

is a positive, bounded smooth function of r ¼ jxj > 0, and w0r ¼ ~xx � ‘w0 with

~xx ¼ x=jxj. We have

w0ttc w0r þ
n� 1

2r
w0

� �

¼ qt w0tc w0r þ
n� 1

2r
w0

� �� �
� 1

2
‘ � ð~xxcw2

0tÞ þ
1

2
c 0w2

0t;

�Dw0c w0r þ
n� 1

2r
w0

� �
¼ �‘ � c‘w0 w0r þ

n� 1

2r
w0

� �� �

þ c‘w0 � ð~xx � ‘Þ‘w0 þ c
1

r
fj‘w0j2 � w2

0rg þ c 0w2
0r

þ c
n� 1

2r
j‘w0j2 þ c

n� 1

2r

� �0
ð~xx � ‘w0Þw0;

and also

c‘w0 � ð~xx � ‘Þ‘w0 ¼
1

2
‘ � ½~xxcj‘w0j2� �

n� 1

2r
cj‘w0j2 �

1

2
c 0j‘w0j2;
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c
n� 1

2r

� �0
ð~xx � ‘w0Þw0 ¼

1

2
‘ � ~xx c

n� 1

2r

� �0
w2
0

� �

þ 1

r
c� c 0

� �
ðn� 1Þðn� 3Þ

4r2
w2
0 � c 00 n� 1

2r
w2
0 :

Thus, it follows that

qtX0 þ
1

2
‘ � Y0 þ Z0 ¼ 0; ð12Þ

where

X0 ¼ X0ðx; tÞ ¼ c w0tw0r þ
n� 1

2r
w0tw0

� �
;

Y0 ¼ Y0ðx; tÞ ¼ ~xxcð�w2
0t þ j‘w0j2Þ � 2c‘w0 w0r þ

n� 1

2r
w0

� �
þ ~xx c

n� 1

2r

� �0
w2
0 ;

Z0 ¼ Z0ðx; tÞ ¼
1

r
c� c 0

� �
j‘w0j2 � w2

0r þ
ðn� 1Þðn� 3Þ

4r2
w2
0

� �

þ 1

2
c 0ðw2

0t þ j‘w0j2Þ � c 00 n� 1

4r
w2
0 :

Integrating (12) over W� ½s; t� ðs < tÞ, we haveð
X0ðtÞ dx�

ð
X0ðsÞ dxþ 1

2

ð t

s

ð
qW

n � Y0 dSdtþ
ð t

s

ð
Z0 dxdt ¼ 0 ð13Þ

With this equation, we can prove the following space-time weighted energy

estimate of solutions w0ðx; tÞ.

Theorem 2. Let xðrÞ, r > 0, be a positive L1-function satisfying ð10Þ. Then
for any s < t we have

1

2

ð t

s

ð
xðj‘w0j2 þ w2

0tÞ � x 0 n� 1

2r
w2
0

� �
dxdtaC1k~ww0ð0Þk2E ;

where C1 ¼ C1ðxÞ ¼
4n� 6

n� 2
kxkL1 .

Proof. Let cðrÞ ¼
Ð r

0 xðsÞ ds in (13). Then since

cðrÞb xðrÞr ¼ c 0ðrÞr; j‘w0j2 � w2
0r b 0 and nb 3;

it follows that
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ð t

s

ð
Z0 dxdtb

1

2

ð t

s

ð
xðj‘w0j2 þ w2

0tÞ � x 0 n� 1

2r
w2
0

� �
dxdt:

Since n � ~xxa 0 by the starshapedness assumption of qW, the boundary condition

w0jqW ¼ w0tjqW ¼ ~tt � ‘w0jqW ¼ 0;

where ~tt is any tangential vector to the boundary, shows thatð t

s

ð
qW

n � Y0 dSdt ¼
ð t

s

ð
qW

cfðn � ~xxÞj‘w0j2 � 2ðn � ‘w0Þð~xx � ‘w0Þg dSdt

¼ �
ð t

s

ð
qW

ðn � ~xxÞcjn � ‘w0j2 dSdtb 0:

On the other hand, the well known inequalityð
n� 2

2r

� �2
juðxÞj2 dxa

ð
j‘uðxÞj2 dx ð14Þ

and the Schwarz inequality imply thatð
X0ðtÞ dx

����
����a 2n� 3

2ðn� 2Þ kxkL1

ð
ðj‘w0j2 þ w2

0tÞ dx

a
1

2
C1k~ww0ðtÞk2E :

These inequalities applied to (13) and the energy identity (11) show the theorem.

r

3. Space-time Weighted Energy Estimates of Perturbed Solutions

In this section we consider solutions of the perturbed problem (1), (2).

First we multiply (1) by wt and integrate by parts over W� ½s; t�. Then

corresponding to (11) we have

k~wwðtÞk2E � k~wwðsÞk2E þ
ð t

s

ð
P1 dxdt ¼ 0; ð15Þ

where

P1 ¼ P1ðx; tÞ ¼ fb0wt þ b � ‘wþ cwgwt:

Next, we multiply (1) by c wr þ
n� 1

2r
w

� �
with cðrÞ ¼

Ð r

0 xðsÞ ds. Integration by

parts then gives us
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ð
XðtÞ dx�

ð
X ðsÞ dxþ

ð t

s

ð
fZ þ P2g dsdta 0 ð16Þ

since
Ð t

s

Ð
qW

n � Y dSdtb 0. Here X , Y , Z are respectively the functions X0, Y0,

Z0 with w0 replaced by w, and

P2 ¼ P2ðx; tÞ ¼ cfb0wt þ b � ‘wþ cwg wr þ
n� 1

2r
w

� �
:

Lemma 1. We have

GC1k~wwðtÞk2E þ
ð
XðtÞ dx

� �t
s

þ 1

2

ð t

s

ð
xðj‘wj2 þ w2

t Þ � x 0 n� 1

2r
w2

� �
dxdt

�
ð t

s

ð
fC1jP1j þ jP2jg dxdta 0;

where

C1k~wwðtÞk2E �
ð
X ðtÞ dx

����
����b 1

2
C1k~wwðtÞk2E ;

C1k~wwðtÞk2E þ
ð
X ðtÞ dx

����
����a 3

2
C1k~wwðtÞk2E :

Proof. The above inequalities follow from (15) multiplied by C1 and (16) if

we note

ð t

s

ð
Z dxdtb

1

2

ð t

s

ð
xðj‘wj2 þ w2

t Þ � x 0 n� 1

2r
w2

� �
dxdt

and ð
XðtÞ dx

����
����a 1

2
C1k~wwðtÞk2E ; r

Lemma 2. We have

ð t

s

ð
fC1jP1j þ jP2jg dxdta

9

4
C1e

ð t

s

ð
xðw2

t þ j‘wj2Þ � x 0 n� 1

2r
w2

� �
dxdt

þ 9

2
C1

ð t

s

hðtÞk~wwðtÞk2E dt:
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Proof. Since cðrÞa kxkL1 ¼
n� 2

4n� 6
C1, as is easily seen

jwtj þ j‘wj þ n� 2

2r
jwj

� �
C1jwtj þ c jwrj þ

n� 1

2r
jwj

� �� �

aC1

�
w2
t þ j‘wj þ n� 2

2r
w

����
����

� �
a

2
j‘wj þ a 0

2

n� 2

2r
w

����
����

� �

þ 5

2
jwtj bj‘wj þ b 0 n� 2

2r
w

����
����

� ��

aC1 1þ 5

4

� �
w2
t þ

1

2
aþ 1

2
þ 5

2
b

� �
j‘wj2 þ 1

2
a 0 þ 1

2
þ 5

2
b 0

� �
n� 2

2r
w

� �2( )

¼ 9

4
C1 w2

t þ gj‘wj2 þ g 0
n� 2

2r
w

� �2( )
:

Here a, a 0, b, b 0, g and g 0 are positive numbers given by

aþ a 0 ¼ 1; b þ b 0 ¼ 1; gþ g 0 ¼ 1;

a ¼ n� 2

2n� 3
; b ¼ 5n� 8

10n� 15
; g ¼ 2

9
aþ 1

2
þ 5

2
b

� �
:

So, by use of ðA1Þ we have

ð t

s

ð
fC1jP1j þ jP2jg dxdt

a
9

4
C1

ð t

s

ð
fexðrÞ þ hðtÞg w2

t þ gj‘wj2 þ g 0
n� 2

2r
w

� �2( )
dxdt: ð17Þ

Note here

j‘ð
ffiffiffi
x

p
wÞj2 ¼

ffiffiffi
x

p
‘wþ x 0

2x
~xxw

� �����
����
2

¼ xj‘wj2 þ 1

2
‘ � ð~xxx 0w2Þ � x 0 n� 1

2r
w2 � 2x 00x� x 02

4x
w2:

Then since 2x 00x� x 02
b 0 by (10), integrating this, we have
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ð t

s

ð
x

n� 2

2r
w

� �2
dxdta

ð t

s

k
ffiffiffi
x

p
wk2D dt

a

ð t

s

ð
xj‘wj2 � x 0 n� 1

2r
jwj2

� �
dxdt; ð18Þ

This and (17) show with (14) the inequality of the lemma. r

Now we put together the inequalities of the above two lemmas. Then

GC1k~wwðtÞk2E þ
ð
X ðtÞ dx

� �t
s

þ 1

2
� 9

4
C1e

� �ð t

s

ð
xðw2

t þ j‘wj2Þ � x 0 n� 1

2r
w2

� �
dxdt

� 9

2
C1

ð t

s

hðtÞk~wwðtÞk2E dta 0: ð19ÞG

Based on this inequality we can prove the following theorem.

Theorem 3. Assume ðA1Þ with e <
2

9C1
. Then

(i) There exists C2 ¼ C2ðhÞ > 0 such that for any t A R, we have

k~wwðtÞk2E aC2k~wwð0Þk2E :

(ii) There exists C3 ¼ C3ðe; x; hÞ > 0 such that for any s < t we have

1

2

ð t

s

ð
W

xðj‘wj2 þ w2
t Þ � x 0 n� 1

2r
w2

� �
dxdtaC3k~wwð0Þk2E :

Proof. (i) If t > 0, we put s ¼ 0 in ð19Þþ. Since
1

2
� 9

4
C1e > 0, by means of

the second and third inequalities of Lemma 1,

k~wwðtÞk2E a 3k~wwð0Þk2E þ 9

ð t

0

hðtÞk~wwðtÞk2E dt:

The Gronwall inequality then shows

k~wwðtÞka 3k~wwð0Þk2Ee
9
Ð t

0
hðtÞ dt

:

If t < 0, we put t ¼ 0 and s ¼ t in ð19Þ�. Then we similarly have
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k~wwðtÞk2E a 3k~wwð0Þk2E þ 9

ð0

t

hðtÞk~wwðtÞk2E dt;

and

k~wwðtÞk2E a 3k~wwð0Þk2Ee
9
Ð 0

t
hðtÞ dt

:

Thus, the desired inequality holds with C2 ¼ 3e9khkL1 .

(ii) Once the boundedness of the energy k~wwðtÞk2E is assured to hold, the

remainder of the theorem is obvious from ð19Þþ. In fact

1

2
� 9

4
C1e

� �ð t

s

ð
xðw2

t þ j‘wj2 � x 0 n� 1

2r
w2

� �
dxdt

a
3

2
C1k~wwðsÞk2E þ 9

2
C1

ð t

s

hðtÞk~wwðtÞk2E dt

a
3

2
C1C2ð1þ 3khkL1Þk~wwð0Þk2E ;

and hence (ii) is concluded with

C3 ¼
3C1C2ð1þ 3khkL1Þ

2� 9C1e
: r

4. Proof of Theorem 1

Theorem 3 will play a key role to prove Theorem 1. So, e in ðA1Þ is restricted

less than
2

9C1
from the beginning of this section.

We put ~ww0ðtÞ ¼ U0ðtÞ f0 and ~wwðtÞ ¼ Uðt; 0Þ f , and consider the innerproduct

ð~wwðtÞ; ~ww0ðtÞÞE in HE :

Di¤erentiate this. Then by means of (6) and (7) we obtain

d

dt
ð~wwðtÞ; ~ww0ðtÞÞE ¼ � 1

2
ðfb0wt þ b � ‘wþ cwgðtÞ;w0tðtÞÞ; ð20Þ

where ð� ; �Þ is the usual innerproduct of L2.

Proof of Theorem 1 (i). Since Uðt; 0Þ f ¼ U0ðtÞU0ð�tÞUðt; 0Þ f , to verify

the assertion we have only to show that U0ð�tÞUðt; 0Þ strongly converges in HE

as t !Gy. We shall show this when t ! y. A similar argument can be applied

when t ! �y.
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Integrating (20) on ðs; tÞ ðs < tÞ gives us

ðU0ð�tÞUðt; 0Þ f �U0ð�sÞUðs; 0Þ f ; f0ÞE

¼ � 1

2

ð t

s

ð
fb0wt þ b � ‘wþ cwgw0t dxdt:

Here by ðA1Þ

jb0wt þ b � ‘wþ cwja
ffiffiffi
5

p
fexðrÞ þ hðtÞg w2

t þ
1

2
j‘wj2 þ 1

2

n� 2

2r
w

� �2( )1=2

:

So, after using the Schwarz inequality, we can apply (18), Theorems 3 (i) and (11)

to get

jðU0ð�tÞUðt; 0Þ f �U0ð�sÞUðs; 0Þ f ; f0ÞE j

a
1

2

ffiffiffi
5

p
e�

ð t

s

ð
xðw2

t þ j‘wj2Þ � x 0 n� 1

2r
w2

� �
dxdt

� �1=2 ð t

s

ð
xw2

0t dxdt

� �1=2

þ
ffiffiffi
5

p
C2

ð t

s

hðtÞ dtk~wwð0ÞkEk~ww0ð0ÞkE : ð21Þ

Note that ðy
s

ð
xw2

0t dxdta 2C1k~ww0ð0Þk2E ¼ 2C1k f0k2E

by Theorem 2. Then sinceðy
s

ð
xðw2

t þ j‘wj2 � x 0 n� 1

2r
w2

� �
dxdt ! 0 as s ! y

by Theorem 3 (ii), it follows from (21) that

jðU0ð�tÞUðt; 0Þ f �U0ð�sÞUðs; 0Þ f ; f0ÞE j

a

�
1

2

ffiffiffiffiffiffiffiffiffiffiffi
10C1

p
e�

ðy
s

ð
xðw2

t þ j‘wj2Þ � x 0 n� 1

2r
w2

� �
dxdt

� �1=2

þ
ffiffiffi
5

p
C2

ðy
s

hðtÞ dtk f kE
�
k f0kE ! 0 as s ! y:

This shows that U0ð�tÞUðt; 0Þ converges strongly in HE as t ! y.

To conclude the assertion we put

fG0 ¼ s� lim
t!Gy

U0ð�tÞUðt; 0Þ f :
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Then as is expected

kUðt; 0Þ f �U0ðtÞ fG0 kE ¼ kU0ðtÞfU0ð�tÞUðt; 0Þ f � fG0 gkE ! 0

when t !Gy. r

Proof of Theorem 1 (ii). We apply the above argument to the operator

U0ðs� tÞUðt; sÞ with fixed s A R, and put

ZGðsÞ ¼ s� lim
t!Gy

U0ðs� tÞUðt; sÞ:

ZGðsÞ defines a bounded operator in HE . We shall show that for each 00 f A HE

there exists s > 0 su‰ciently large such that ZþðsÞU0ðsÞ f 0 0. (Similarly, we can

show the existence of s < 0 su‰ciently small such that Z�ðsÞU0ðsÞ f 0 0.) Then

since

ZGUð0; sÞU0ðsÞ f ¼ U0ð�sÞZGðsÞU0ðsÞ f ;

ZG is verified to be a nontrivial bounded operator.

Let ~wwðtÞ ¼ Uðt; sÞ f and ~ww0ðtÞ ¼ U0ðt� sÞ f0 in (2). Then the argument of the

proof of (1) yields

jðZþðsÞ f ; f0ÞE � ð f ; f0ÞE j

a
1

2

ffiffiffi
5

p
e�

ðy
s

ð
xðw2

t þ j‘wj2Þ � x 0 n� 1

2r
w2

� �
dxdt

� �1=2 ðy
s

ð
xw2

0t dxdt

� �1=2

þ
ffiffiffi
5

p
C2

ðy
s

hðtÞ dtk~wwðsÞkEk~ww0ðsÞkE ; ð22Þ

We choose here f ¼ f0 ¼ U0ðsÞg, where g0 0, and assume that ZþðsÞU0ðsÞg ¼ 0

for any s > 0. Then since

ðy
s

ð
xw2

0t dxdta

ðy
s

ð
xjU0ðt� sÞU0ðsÞgj2 dxdt;

it follows from Theorem 3 (ii) that

kU0ðsÞgk2E a
1

2

ffiffiffiffiffiffiffiffiffiffiffi
10C3

p
ekU0ðsÞgkE

ðy
s

ð
xjU0ðtÞgj2 dxdt

� �1=2

þ
ffiffiffi
5

p
C2

ðy
s

hðtÞ dtkU0ðsÞgk2E :
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kU0ðsÞgkE ¼ kgkE > 0 is independent of s, whereas the right side goes to 0 as

s ! y. These cause a contradiction and the assertion (ii) is proved. r

Proof of Theorem 1 (iii). We shall show that if e is chosen to be small

enough, then there exists sb 0 (or sa 0) such that ZþðsÞ (or Z�ðsÞ) defines a

bijection on HE . Then since

ZG ¼ U0ð�sÞZGðsÞUðs; 0Þ;

ZG is verified to be a bijection on HE , and the scattering operator S ¼ ðZþÞ�1
Z�

is well defined also as a bijection on HE .

Assume that g A HE satisfies ZþðsÞg ¼ 0 or g ? ZþðsÞHE . Then putting

f ¼ f0 ¼ g in (22), we obtain

kgk2E a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5C3C1

p
ekgk2E þ

ffiffiffi
5

p
C2

ðy
s

hðtÞ dtkgk2E :

So, if e is small enough to satisfy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5C3C1

p
e < 1, then we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5C3C1

p
eþ

ffiffiffi
5

p
C2

ðy
s

hðtÞ dt < 1

choosing s > 0 su‰ciently large. These conclude g ¼ 0, and hence ZþðsÞ becomes

a bijection.

The same conclusion is valid also for Z�ðsÞ with su‰ciently small s < 0.

The assertion (iii) is proved. r
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