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ON SCATTERING FOR WAVE EQUATIONS
WITH TIME DEPENDENT COEFFICIENTS

By

Kiyoshi MocHIZUKI

Abstract. We consider the wave equations with perturbation of the
first order differential operators, the coefficients of which depend on
both the space and time variables. Under suitable conditions on the
coefficients, we show the existence of the scattering operator. The
main tool used is space-time energy estimates of solutions.

1. Introduction and Results

Let Q be an exterior domain in R” (n > 3) with smooth boundary 0Q which
is star-shaped with respect to the origin 0. We consider in Q the wave equation

2w — Aw + by (x, )dw + ij(x7 How+c(x,hw=0, (x,1)eQxR (1)
J=1

with Dirichlet boundary condition
w(x, 1) =0, (x,t)edQ xR, (2)

where 0, =0/0t, 0; =0/0x;, A is the n-dimensional Laplacian, and b;(x, )
(j=0,1,...,n) and ¢(x,t) are real-valued bounded continuous functions.
Throughout this paper solutions are assumed to be real-valued. Moreover, we
restrict ourselves to solutions with finite energy.
The energy at time ¢ of solution w(x,) is defined by

501 =5 | Vw0 4 mx0?)

where Vw is the gradient of w, w, = 0,w, and we mean by w the pair of functions

{w,w,}.
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We compare the solutions of problem (1), (2) with those of the free problem
?wo — Awg =0, (x,0) e QxR (3)
wo(x,1) =0, (x,f) €0Q xR, 4)

More precisely, under suitable smallness conditions on b;(x,#) and c(x,), we
shall develop a scattering theory between these two problems.

When the coefficients b;(x, ) and c(x,¢) are independent of ¢, the scattering
theory has been studied by Mochizuki [5], [7] under the conditions

n—2
2r

Bo()| < 62(r), Bi(X) =0 (=1,....m), [e(x)| < &2(r

(r = |x|), where ¢ is a small positive constant, and &(r) is a positive L'-function of
r > 0. On the other hand, when they are independent of the space variable, the
scattering operator is constructed by Wirth [10] under the conditions

bo(t) e L'(R), bi(1)=0 (j=1,...,n), c(t)=0.

In this paper, we shall develop a theory which generalizes both of these two
results. Our results will cover the coefficients which satisfy

{ij(x»t)l <bo(L+n) (1417 (7=0.1,....n), 5
le(x, 0)| < cor ™ (14 1) (1 + |2]) P,

where bj, ¢ are positive constants, and oy, §;, @, ,g > 0 satisfy
o+ p>1, a+f>1

bjo (or ¢o) should be chosen sufficiently small if f; (or f) = 0.
For the Schrédinger equation

i0u—Au+V(x,hu=0, (x,f)eR"xR

with time dependent complex potential, the scattering operator is constructed in
Mochizuki-Motai [8] under similar smallness conditions on the potential. Note
that time dependent real potentials have been treated in Howland [1], Yafaev [11],
Yajima [12] and Kitada-Yajima [4] without requiring smallness conditions. For
time independent complex potentials, the so called smooth perturbation theory
has been developed in Kato’s classical paper [2] (see also [3]). His theory based on
the weighted resolvent estimate is not available in our prolem. In this paper, we
directly obtain the necessary space-time weighted energy estimate for problem (1),
(2), and use it to obtain asymptotics of solutions (cf., [5], [7]).
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Now, let H}, be the closure in the Dirichlet norm

12
lullp = (j Vul dx)

of scalar functions u with compact support in Q, and let L? be the usual L> space

with norm
NV
= ([ )

Here and in the following we denote by | the integration over the domain Q. We
define #r = H), x L>. Then #% forms a Hilbert space with energy norm

1/l =%{|If1||§+ APV £ = (5.

As an evolution equation in #%, the free problem (3), (4) is rewritten in the
matrix form

i@,% = A()ﬁ/‘()7 1/_150 = {W(), M/OI} (6)

0 1 C
where i =+v—1 and Ag=1i ( A O). The operator Ay becomes selfadjoint in

A5 if the domain is defined by Z(Ag) = H} x {H},N L?}, where H} is the set
of functions f; € H), such that Af; e L*>. Thus, Ao generates a unitary group
{Up(f) = e™o;t e R} in #%, and for given initial data wy(0) = f € #%, the
solution of (6) is represented as
wo(1) = Uo(2)f
The perturbed problem (1), (2) is similarly rewritten in the form
0w = Aow+ V(O)w, w={w,w}. (7)

where

. O 0
V(t) = _l<b(x, 1)-V+celx, 1) bo(x, l)) o

with b(x, [) V= Z bj(X, t)aj.
=1
By use of the free unitary group Uy(¢), problem (7) is reduced to the integral

equation
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t
w(t) = Uo(t)f + Jo Up(t — s)V(s)w(s) ds. 9)
As a bounded opertor in #%, V(t) depends continously on ¢ e R. So, for given
f € A%, this equation has a unique solution w(¢) e C(R; #%). We denote by
U(t,s) € B(A%) the evolution operator which maps solutions at time s to those at
time 7. The unique existence of solutions of (9) implies that for each fixed s and ¢,
U(t,s) defines a bijection on #%.
Let = () be a positive L'-function of # € R, and let & = &(r) be a smooth
positive L'-function of r > 0 which also satisfies

E'r) <0, &(r)? <28r)e"(r). (10)

With these functions, we require the following conditions on the coefficients
of the perturbed problem (1), (2).

|bj(x,1)| <&&(r)+n(t) (j=0,1,...,n)
(A1) n—>2
le(x, )| < {ec(r) +77(l)}7
in (x,7) e R" x R, where ¢ is a small positive constant.
Note that the following functions satisfy condition (10) (cf., Mochizuki-
Nakazawa [9]).

ry=(1+n""
&) = (e+ ) logle + )",

E(r) = (ex + r)_l [log(ex + r)]_1 e [log["](ek + r)]‘l‘é,
where > 0 and e, log[k] are defined by
eg=1l,e1=e,..., ¢ =%,
log[O] a=a, logm a=1loga,... 710g[k] a=log log[k_” a.

The functions (5) satisfy (A41). To verify this we consider the function
a(ry ) = ao(1+7) (1 + 1) 7,

where ap >0, o,/ >0 and o+ f > 1. The case f =0 is obvious since we can
choose ¢ =ag and &= (1+r)"". In case f >0 we use the Young inequality to
obtain
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B

ot p

(1 +|e)7,

a(r, 1) < aoe x ﬁ(l + 1) P age

where ¢ is any positive number. Thus, each function of (5) is estimated like
1bj(x, )] < &&;(r) +n;(1)  (j=0,1,....m)

le(x, 0)| < {&E(r) + ﬁ(t)}"z_rz

and (A1) holds if we choose

e=max{g, &}, &() =max{&(r), &}, (1) = max{n(1).7(1)}.

We can now state the main theorem of this paper.

THEOREM 1. Assume (A1) with small ¢ > 0. Then
(i) Every solution of (1) is asymptotically free, that is, for every f € #g there
exists folL € HE such that

|U,0)f — U(0) f5" |l = 0 as t — foo.
(i) We put
Z* =5~ lim Uy(—1)U(1,0).

t—+oo
Then Z* defines a nontrivial bounded operator on Hg.
(iii) If ¢ is chosen to be small enough, then Z* gives a bijection on #g. Thus,
the scattering operator

S=Z"Z)" fy = K

is well defined and also gives a bijection on Hg.

ReEMARK. The smallness of ¢ is estimated as

s%”éﬂu <1 for (i) and (ii),
9(2n —3)

-3 20(2n — 3)
8ﬁ|f||u{1 te— —5—

€]l (1 + 3||’7|L1)} <1
for (iii).

This theorem will be proved in §4 based on the space-time weighted energy
estimates of solutions. The estimates for free solutions are treated in the next §2,
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and the results will be applied in §3 to obtain similar estimates for perturbed
solutions.

2. Space-time Weighted Energy Estimates of Free Solutions

The basic identities used in this and next sections are originated by Morawetz
[10] (cf., also Strauss [11]), and they are summarized in the present forms in
Mochizuki [6].

In this section we consider solutions to the free problem (3), (4).

First we multiply by wp, on both sides of (3). Then

1 1
za,(wg,) — V- (Vwowg,) + Ea[(|vW0|2) =0.

Integrating this over Q x [0,7] and taking account of the boundary condition
Wor|s0 = 0, we obtain

I%0(0)llz = IWo(0)|5 for any 1eR, (11)

which verifies the conservation of the energy.
n—1

Next, we multiply by W(wor + w0> on both sides of (3), where ¥ = y(r)

is a positive, bounded smooth function of r = |x| >0, and wy = X Vwy with
X = x/|x|. We have

n—1
wor | wor + 5, o

n—1 1 - 1
=0 [Woﬂ// (WOr + > Wo)] - EV' (xwwg,) + Etp’wé,,

n—1 n—1
—Awoiy <w0r + P wo) =-V. {WWO <w0,. + 2rw0>]
1
+YVw - (X-V)Vwg + 1//;{|Vw0|2 —wi} ' wd
+lﬁn_ ! |Vw 1>+ wn— ! /()E Vwo)w
o 0 o 0)Wo,
and also

1 1 1
YV - (£ V)Vio = 5V - [#[ Vo] ] - ”Tlpwwo\z — W[Vl
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5o smom b o252

n (%lﬁ—lﬁl> (n—a)(n—3)w§_w,,n—lwé

72 2r

Thus, it follows that
1
5[X0+§V-Y0+Z():0, (12)
where

n—1
Xo = Xo(x, 1) = w(WOIWOr + Z}’WOIWO)’

-1 -1y
Yo = Yo(x, 1) = )w(—wé, + |Vw0|2) — 2 Vwy (wO, + n7w0> + i(x//nzr )wg,

20 = Za(w.0) = (10— ) { ol =+ =00

an—1 ,
w3,
4r 0

1
50 (w5, + [Vwo[*) =

Integrating (12) over Q X [s,7] (s < t), we have

1 t

Jxo(z) dx — JXO(S) dx +%J

N

J v-Yoder+J
Fle)

N

jzo dxdr=0  (13)

With this equation, we can prove the following space-time weighted energy
estimate of solutions wy(x, ¢).

THEOREM 2. Let &(r), r > 0, be a positive L'-function satisfying (10). Then
for any s <t we have

1! n—1 -
3| [{erwmt gy - 2z} asae < copmon.
dn — 6
where Cy = Ci(¢) = p—) (14138

Proor. Let y(r) = [; (o) do in (13). Then since
W(r) = Err=y'(r)r, |Vwol> —wg =0 and n=3,

it follows that
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! (! -1
J JZO dxdt > EJ J{f(|VWO|2 +wg) — ffnng} dxdr.

S S
Since v-x < 0 by the starshapedness assumption of 0Q, the boundary condition
wolag = Worlsq =T+ Vwolsq =0,

where 7 is any tangential vector to the boundary, shows that

s s

JtJ v Yy dSdt = J[J Y{(v- X)|Ving|* = 2(v - Vwp) (% - Ving)} dSd
o0 o0

t
:_JJ (v- X)W|v - Viwo|* dSdz = 0.
aQ

N

On the other hand, the well known inequality

J(;ﬁ%wﬁwsﬁwmﬁw (14)

and the Schwarz inequality imply that

2n—3
3066 x| = =Sl [(vl® )
| 2
= ECIHWO(T)“E

These inequalities applied to (13) and the energy identity (11) show the theorem.
O

3. Space-time Weighted Energy Estimates of Perturbed Solutions

In this section we consider solutions of the perturbed problem (1), (2).
First we multiply (1) by w, and integrate by parts over Q x [s,¢]. Then
corresponding to (11) we have

t

1312 — 1711 +j JP1 dxdr =0, (15)

s

where

Py = Pi(x,1) = {bow; + b - Vw + cw}w,.

-1
Next, we multiply (1) by lﬂ(w, + %w) with y(r) = [; &(0) do. Integration by
parts then gives us
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t

JX(t) dx — JX(S) dx +j J{z + Py} dsdt <0 (16)

s

since f; Jsqv- Y dSdt > 0. Here X, Y, Z are respectively the functions Xj, Yo,
Zy with wq replaced by w, and

Py = Py(x,t) = y{bow; +b-Vw+ cw} <w,. + %w)

LemMA 1. We have

t

|:iC1||v_t3(T)||12:- + JX(‘L’) dx] —&—%J J{é(|VW|2 +w?) — é’%wz} dxdr

N

t
- [ Jeeipi+ 2oty dvaz <

s

where
" 1 "
Gl - |[ X0 = Salael
BN 3 i 12
Cillw(@)l[e + | [ X(7) dx| < 5 CLl[w(7) -
Proor. The above inequalities follow from (15) multiplied by C; and (16) if
we note
! 1 ! 2 2 yn— 1 2
, Z dxdt > al E(Vw|" +wy) =& w” o dxdt
and
1 — 2
[ x5 < S, O

Lemma 2. We have

' 2 2 =1 5
J Ewr + |Vw|7) =& W dxdt

N

! 9
J J{C1|P1‘ + |P2|} dxdr < chej

A

9 ! .
56 [ @I e
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-6

n—2 n—1
<|w,| + |Vw| + > |w|) {Cl [wi| + l,b(|w,‘| + 5 w)}

n—2 o o' |ln—2
o )(z'v‘“z

2r
5\ , 1/ 15 » 1/, 1 5 N(mn=2 Y
< — — — 4 — — — 4 —
_Cl{(1+4)w,+2(oc+2+2/5')|Vw +2(oc +2+2ﬂ 7V
_9 2 2 /1’1—2 2
—4C1{Wt +V|VW| +y TW .

Here «, o, B, B', y and 9’ are positive numbers given by

Proor. Since Y(r) < ||€]|1 = C), as is easily seen

n
4n

w w

< Cl{w,z + <|VW| + ‘

)

n

5 _
43wl + 45 2

ato' =1, f+p' =1, y+y =1,
g 12 g =8 _2(, 1.5
Twm-3 P am-150 T To\*T2T2l)
So, by use of (41) we have

”{c,w + |Pa]} dxde

N

<3a | Jww +n<r>}{w3 ol (%5 2)} dxdz. (17)

Note here

2

IV(v/Ew)|? = ‘ﬁ(w —l—f—éiw)

1 2gME 2]
/n2r w? — éié < w?.

= ¢&|[vw|? +%V- (XE'w?) = &

Then since 2¢"¢ — &2 >0 by (10), integrating this, we have
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t 2 t
J Jé<n2r2W> dxdr < J I/ Ew|)3, dr

S

< JIJ{QVMZ - 5’%|w|2} dxdr, (18)

s

This and (17) show with (14) the inequality of the lemma. O

Now we put together the inequalities of the above two lemmas. Then

t

a1 + [ X0 d

s

—|—(; —ZC1£> L J{f(w,z + |Vw]?) — é’n

—5 | @l dr <o (19),

S

_ lwz} dxdt
r

Based on this inequality we can prove the following theorem.

2
THEOREM 3. Assume (Al) with ¢ <f' Then
1
(i) There exists Cy = Cy(n) > 0 such that for any te R, we have
PN (2
WD)z < Gllw(0)|-
(i) There exists Cs = Cs(e,&,m) > 0 such that for any s <t we have

1 —1
EJ L{f(IVWIZ +w?) — g’"Twz} dxdr < C3||w(0)]|3.

s

. . .19
Proor. (i) If >0, we put s = 0 in (19), . Since 37 ZCIS > 0, by means of
the second and third inequalities of Lemma 1,

Ie(0)7 < 31 (0)I% + 9J071(T)IIW(T)II§ dr.

The Gronwall inequality then shows
[B()]| < 3[(0)[2e Jo 7O,

If t<0, we put t=0 and s=1¢ in (19)_. Then we similarly have
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0
I#(0)7 < 31(0)1% + 9Jt n(o)|[#(2)] dx,

and
0
(1% < 3wO)|3e’ ) 7,

Thus, the desired inequality holds with C, = 3¢’
(i) Once the boundedness of the energy ||v'v'(t)||12E is assured to hold, the
remainder of the theorem is obvious from (19),. In fact

1 9 ! 2 2 = 1 2
(e[ e 52} v

. 9o . .
< SGIFGIE+5C [ alaEIE dr

A

(O8]

<;GG1+ 317l ) 179(0) 1+

and hence (ii) is concluded with

_ 3G G+ 3nllp)

G 2-9Ce

4. Proof of Theorem 1
Theorem 3 will play a key role to prove Theorem 1. So, ¢ in (A1) is restricted
less than 9—21 from the beginning of this section.
We put wy(1) = Up(t) fo and w(r) = U(z,0)f, and consider the innerproduct
(w(t),Wo(2))y In Hk.
Differentiate this. Then by means of (6) and (7) we obtain

%(W(t), wo(t)) g = f%({bow, +b-Vw+ ew}(), wo(t)), (20)

where (-,-) is the usual innerproduct of LZ.

ProoF OF THEOREM 1 (i). Since U(z,0)f = Uy(t)Up(—1)U(¢,0)f, to verify
the assertion we have only to show that Uy(—7)U(z,0) strongly converges in #%
as t — +oo. We shall show this when ¢t — co. A similar argument can be applied
when ¢ — —oo0.
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Integrating (20) on (s,¢) (s <) gives us
(Uo(=0)U(t,0)f = Up(=s)U(s,0) 1, fo)
1 t
= _EJ J{bow, +b-Vw+ ewlwy, dxdr.
Here by (A41)

1/2
1 1(n-2 Y
lbow; + b - Vw 4 ew| < V/5{e&(r) 4—7](l)}{wt2 +§|VW|2 +3 (n > w) } :

So, after using the Schwarz inequality, we can apply (18), Theorems 3 (i) and (11)
to get

|(U0(7t) U(tv O)f - UO(*S) U(Sv O)fvﬁ))E|

1 ‘ 01 12 /0t 172
< E\/gs X (J J{f(wtz + |Vw]?) = f’zrwz} dxdr) <J Jéwg, dxdr)

+ \/§C2J n(z) d||[w(0)|| gl[Wo(0)]| - (21)
Note that

|| [ e axar < 2¢O = 2001503

N
by Theorem 2. Then since

« -1
J J{f(wtz +|Vw|* - f'%wz} dxdt — 0 as s — ®©

s

by Theorem 3 (ii), it follows from (21) that
[(To(=0)U(,0).f = Un(=5)U(5,0).f, fo) gl

<|L/1oc 2w — "0 avae)
_[5 lex(j J{é(w,+| wlT) = ¢ TW} xr)

S

o0

o0
N

V5 [ delf | Ll =0 as 5 o

This shows that Uy(—#)U(¢,0) converges strongly in #% as t — 0.
To conclude the assertion we put

fit =s— lim Up(=)U(1,0)f.
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Then as is expected

1U(2,0)f = Un(6) 15"l = [ Uo(){Up(—=0)U(£,0) f — f5"}Iz — 0
when ¢ — +o0. [
Proor oF THEOREM 1 (ii). We apply the above argument to the operator
Uy(s — 1) U(t,s) with fixed se R, and put

ZE(s)=s— lim U(s—1)U(t,s).

t—+w

Z*(s) defines a bounded operator in #%. We shall show that for each 0 # f € #%
there exists s > 0 sufficiently large such that Z*(s)Up(s)f # 0. (Similarly, we can
show the existence of s < 0 sufficiently small such that Z~(s)Up(s)f # 0.) Then
since

U(0,5)Us(s)f = Uo(—5)Z*(s) Us(5)

Z* is verified to be a nontrivial bounded operator.
Let w(¢) = U(t,s)f and wo(t) = Up(t — s)fo in (2). Then the argument of the
proof of (1) yields

(Z5(9) S /o) = (f fo)e]

© 12 /poo 1/2
< %\/ge X <JA‘ J{f(w,z + |Vw]?) — f'n;’ ! wz} dxdr) <L Jéwg, dxd‘c)

+V50 r 1(t) dz||w(s)l| £l Wo(s)ll £, (22)

We choose here f = fy = Uy(s)g, where g # 0, and assume that Z*(s) Uy(s)g =0
for any s> 0. Then since

JOC wagt dxdrt < Jﬂ Jf\ Uo(t — 5)Us(s)g|* dxd-,

N s

it follows from Theorem 3 (ii) that

o 12
U (s)gll3 = 5 v/I0Cse] (e m(j wao(r)gfdxdr)

s

+V5G JOC n(z) de| Up(s)gl|5-
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|Uo(s)gllz = |lgllz > O is independent of s, whereas the right side goes to 0 as
s — oo. These cause a contradiction and the assertion (ii) is proved. O

ProOF OF THEOREM 1 (iii). We shall show that if ¢ is chosen to be small
enough, then there exists s > 0 (or s <0) such that Z*(s) (or Z (s)) defines a
bijection on #%. Then since

Z* = Up(—$)Z*(s5)U(s,0),

Z* is verified to be a bijection on #%, and the scattering operator S = (Z+) ' Z~
is well defined also as a bijection on #g.

Assume that g e #p satisfies Z"(s)g=0 or g L Z*(s)#%. Then putting
f = fo=g in (22), we obtain

o0
s

1912 < v/3G;Crellgl + ﬁczj n(2) dllg] -

So, if ¢ is small enough to satisfy /5C;Ce < 1, then we have

o0

V/5C3Cie + \Eczj n(t) de < 1

s

choosing s > 0 sufficiently large. These conclude g = 0, and hence Z*(s) becomes
a bijection.
The same conclusion is valid also for Z~(s) with sufficiently small s < 0.
The assertion (iii) is proved. O
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