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1. In our previous papers [1] and [2] we have observed several interesting

and significant aspects of the generalized Josephus problem. In the present article

we shall again concern ourselves with this problem. Thus, given a total number

nb 1 and certain n objects numbered from 1 to n, and another integer mb 1,

called the reduction coe‰cient, we arrange these n objects in a circle and, starting

with the object numbered 1, and counting each object in turn around the

circle, we eliminate every mth object until all of them are removed. By

amðk; nÞ ð1a ka nÞ we denote as before the kth Josephus number, that is, the

object number to be removed in the kth step of elimination. It is evident that we

have

1a amðk; nÞa nð1Þ

and

amð1; nÞ1m ðmod nÞ;ð2Þ

and that

amðk þ 1; nþ 1Þ1 amð1; nþ 1Þ þ amðk; nÞ ðmod nþ 1Þ;

from which follows at once

amðk þ 1; nþ 1Þ1mþ amðk; nÞ ðmod nþ 1Þð3Þ

in view of (2); (3) is the fundamental relation due to P. G. Tait for the

Josephus numbers amðk; nÞ (cf. [1; §§ 1–2]). In e¤ect, the Josephus numbers

amðk; nÞ ð1a ka nÞ are completely determined by the conditions (1), (2) and (3).

In what follows we devote ourselves to the study of the special case of k ¼ n

and write for simplicity’s sake dmðnÞ ¼ amðn; nÞ as in [1]. We have then dmð1Þ ¼ 1

for any mb 1, and the fundamental relation (3) becomes

dmðnþ 1Þ1mþ dmðnÞ ðmod nþ 1Þ:ð4Þ
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Now, in connexion with his study of a Japanese version of the Josephus

problem, Seki Takakazu (1642?–1708) called any positive integer n for which one

has dmðnþ 1Þ ¼ 1, if it exists, a limitative number with respect to the reduction

coe‰cient m; compare [1; § 8]. We have formulated there a hypothesis on the

infinitude of limitative numbers n for every fixed mb 2, regarding it as an

implicit intention of Seki’s. The validity of this hypothesis is easy to prove for

m ¼ 2 and 3, but for mb 4 it appears to be di‰cult to settle it. At present we

are able only to show that there are infinitely many integers n satisfying the

condition

1a dmðnþ 1Þam� 1

for every fixed reduction coe‰cient mb 2 (cf. [2; § 3]). In this respect it will be of

some interest to note that the set of positive integers m for which exist only a

bounded number of integers n satisfying dmðnþ 1Þ ¼ 1 has natural density 0; in

other words, there are unboundedly many limitative numbers n for almost all, so

to say, values of the reduction coe‰cient m ðb4Þ (see § 3 below).

In the present note we wish to provide a proof for this metric result as an

approach to the original hypothesis mentioned above.

Note. Let S be a set of positive integers m. The upper asymptotic density

dðSÞ of the set S is defined by

dðSÞ ¼ lim sup
X!y

1

X

X
m AS
maX

1

and the lower asymptotic density dðSÞ of S is with lim inf in place of lim sup; we

always have dðSÞb dðSÞ and, in case the upper and lower asymptotic densities

coincide with each other, say dðSÞ ¼ d ¼ dðSÞ, the common value d ¼ dðSÞ is the

natural density of the set S. If in particular dðSÞ ¼ 0 then we have naturally

dðSÞ ¼ 0.

2. Let n, p and q be given positive integers > 1. We denote by HðnÞ the

set of positive integers m for which one has dmðnÞ ¼ 1 and by Hðp; qÞ the set

of positive integers m such that dmðpÞ ¼ dmðqÞ ¼ 1. If p ¼ q then Hðp; qÞ ¼
Hðp; pÞ ¼ HðpÞ.

We set M1 ¼ 1 and for n > 1

Mn :¼ L:C:M:ð1; 2; . . . ; nÞ:
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Lemma 1. For any l ð1a la nÞ the number Zðn; lÞ of integers

m ð1amaMnÞ satisfying the condition dmðnÞ ¼ l is given by

Zðn; lÞ ¼ Mn

n
;

so that, in particular, the natural density dðHðnÞÞ exists and equals 1=n.

This is the special case k ¼ n of Proposition 3 in [2].

Lemma 2. Suppose that p and q be prime numbers, p < q. Then, for any

lp ð1a lp a pÞ and any lq ð1a lq a qÞ the number Zðp; q; lp; lqÞ of integers

m ð1amaMqÞ fulfilling the conditions dmðpÞ ¼ lp and dmðqÞ ¼ lq is given by

Zðp; q; lp; lqÞ ¼
Mq

pq
;

so that, in particular, the natural density dðHðp; qÞÞ exists and is equal to 1=ðpqÞ.

Proof. Consider the system of q congruences in m (cf. (4)):

m1 hi � hi�1 ðmod iÞ ði ¼ 1; 2; . . . ; qÞ;ð5Þ

where h0 ¼ 0 and the hi ð1a ia qÞ are parameters taking some integer values

such that

1a hi a i ð1a ia qÞ;

thus, h1 ¼ 1 and the first congruence in the system (5) is absurd, so that we shall

actually deal with (5) only for 2a ia q.

We fix h1 ¼ 1, hp ¼ lp and hq ¼ lq. For an arbitrary integer j ð2a ja qÞ we
contemplate the subsystem of (5):

m1 hi � hi�1 ðmod iÞ ði ¼ 2; . . . ; jÞ:ð6Þ

The system of congruences (6) may admit a solution

m1mj ðmod MjÞ

under certain conditions, in general, to be imposed on the integers hi. Anyway

there may be several, mutually incongruent solutions mj ðmod MjÞ of (6), where

mj ¼ mjðh1; h2; . . . ; hjÞ depends on the ordered j-tuple of integers ðh1; h2; . . . ; hjÞ,
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and it is readily seen that if moreover ðh 0
1; h

0
2; . . . ; h

0
j Þ is such a j-tuple di¤erent

from ðh1; h2; . . . ; hjÞ, then we have

mjðh 0
1; h

0
2; . . . ; h

0
j ÞDmjðh1; h2; . . . ; hjÞ ðmod MjÞ:

For j ¼ 2 we have plainly with 1a h2 a 2

m2 ¼ m2ðh1; h2Þ1 h2 � h1 ¼ h2 � 1 ðmod M2Þ:

For jb 3 the solvability condition for the system

m1mj�1 ðmod Mj�1Þ
m1 hj � hj�1 ðmod jÞ;

�
ð7Þ

which is equivalent to (6), is provided by

mj�1 1 hj � hj�1 ðmod djÞ;ð8Þ

where

di ¼ G:C:D:ðMi�1; iÞ ðib 2Þ:

Having determined mj�1 modulo Mj�1 with ðh1; . . . ; hj�1Þ, we fix hj to the modulus

dj by ðh1; . . . ; hj�1Þ according to the congruence (8), so that the number of possible

choices for the value of hj turns out to be equal primarily to j=dj .

Setting Z1 ¼ M1 ¼ 1, we denote by Zj for 2a ja q the number of di¤erent

(i.e. incongruent) solutions mj ðmod MjÞ of the system (6), or of the system (7).

Clearly Zq ¼ Zðp; q; lp; lqÞ.
If 2a j < p then we have

Zj ¼ Zj�1
j

dj
¼ Mj:

For j ¼ p, a prime, we have dp ¼ 1 and may arbitrarily fix the integer hp ¼ lp

with 1a lp a p, so that

Zp ¼ Zp�1 � 1 ¼ Mp�1 ¼
Mp

p
;

for pþ 1a ja q we find, as above, that

Zj ¼ Zj�1
j

dj
¼ Mj

p
;

and finally for j ¼ q, a prime di¤erent from p, we have again dq ¼ 1 and,

therefore, with hq ¼ lq, 1a lq a q,
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Zq ¼ Zq�1 � 1 ¼ Mq�1

p
¼ Mq

pq
;

which was to be proved.

Needless to add, our Lemma 2 can naturally be extended to the case in which

three or more distinct primes are involved. Given an arbitrary finite set P of

prime numbers p and a set ðlpÞ of prescribed integers lp with 1a lp a p ðp A PÞ,
the number ZðP; ðlpÞÞ of integers m ð1amaMsÞ such that we have

dmðpÞ ¼ lp for all p A P

is found to be equal to Ms=D, where s is any integer not less than the maximal

prime of the set P and D is the product of all primes p A P.

3. We are now in a position to enunciate and establish our principal result

about the hypothesis of Seki, as mentioned in § 1 above. We shall prove the

following

Theorem. For all values of the reduction coe‰cient m ð>1Þ, except possibly
for a set of integers m of natural density 0, there exist unboundedly many positive

integers n satisfying the condition dmðnÞ ¼ 1.

Proof. Let A0 (resp. A0ðvÞ, v being a natural number) the set of positive

integers m such that there are only a bounded number (resp. at most v in number)

of integers n satisfying dmðnÞ ¼ 1. We have to show that dðA0Þ ¼ 0; this can be

achieved, if we prove that dðA0ðvÞÞ ¼ 0 however large the bound v ð<þyÞ may

be, since we have A0ðvÞJA0ðv 0Þ if v < v 0 so that

A0 ¼ 6
1av<þy

A0ðvÞ and dðA0Þ ¼ sup
1av<þy

dðA0ðvÞÞ ¼ 0:

We define for a fixed positive integer n

cmðnÞ ¼
1 if dmðnÞ ¼ 1;

0 otherwise;

�

this is the characteristic function of the set HðnÞ of integers m for which holds

dmðnÞ ¼ 1. Denoting by p and q generic primes, we have, in virtue of Lemmas 1

and 2,

dðHðpÞÞ ¼ 1

Ms

XMs

m¼1

cmðpÞ ¼
1

p
if pa sð9Þ
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and

dðHðp; qÞÞ ¼ 1

Ms

XMs

m¼1

cmðpÞcmðqÞ ¼

1

pq
if p0 q; p; qa s;

1

p
if p ¼ qa s:

8>>><
>>>:

ð10Þ

We now calculate, with a positive real number Q, the dispersion

VðQÞ :¼ lim
X!y

1

X

X
maX

X
paQ

cmðpÞ �
1

p

� � !2

;ð11Þ

where
P

paQ indicates the summation over the prime numbers paQ.

Let s be any integer not less than the largest primeaQ. Then it follows from

(9) and (10) that

VðQÞ ¼ 1

Ms

XMs

m¼1

X
paQ

cmðpÞ �
1

p

� � !2

¼
X
paQ

1

p
1� 1

p

� �
;ð12Þ

which ensures the existence of the limit on the right-hand side of (11).

For any natural number v let us denote by AðvÞ the set of positive integers m

for which we have dmðpÞ ¼ 1 for at most v primes p in number.

Writing for the sake of brevity

SðQÞ :¼
X
paQ

1

p
;

we have for every m A AðvÞ

X
paQ

cmðpÞ �
1

p

� ������
�����bSðQÞ � v:

Consequently, however large the bound v ð<þyÞ may be, we may choose Q so

large as to satisfy SðQÞ > 2v, which is certainly possible, since SðQÞ tends to

infinity with Q, as is seen from the well-known inequality

SðQÞ > log log Q� 1

2
ðQ > 2Þ;

and we find, by (11),

258 Saburô Uchiyama



VðQÞb lim sup
X!y

1

X

X
maX
m AAðvÞ

X
paQ

cmðpÞ �
1

p

� � !2

b
1

2
SðQÞ

� �2
lim sup
X!y

1

X

X
maX
m AAðvÞ

1 ¼ 1

4
ðSðQÞÞ2dðAðvÞÞ:

We have VðQÞ < SðQÞ in view of (12), so that

dðAðvÞÞa VðQÞ
1
4 ðSðQÞÞ2

<
4

SðQÞ ;

and we may conclude that dðAðvÞÞ ¼ 0, on letting Q ! þy. We thus have

dðAðvÞÞ ¼ 0 for all v < þy and so dðA0Þ ¼ 0, as was noticed above.

This completes our proof of the theorem.

Note that we have actually demonstrated that for almost all values of m > 1

there are indefinitely many primes p satisfying dmðpÞ ¼ 1; here, that the qualifier

‘almost’ cannot be omitted is clear, as we recall the fact that for m ¼ 2 the

integers n for which holds d2ðnÞ ¼ 1 are exclusively the powers of 2 (cf. [1; § 8]).

Remark. We note also that if the (upper or lower) asymptotic density were

a completely additive probability measure over the subsets of the set of positive

integers m, then, in our proof of the theorem, we could have directly appealed to

the Borel-Cantelli lemma in probability theory; the density is not a completely

additive measure, however.
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